Effective bounds for induced size-Ramsey numbers of cycles

Domagoj Bradač

joint work with Nemanja Draganić and Benny Sudakov

(ETH Zürich)

Ramsey numbers

Definition

For a positive integer k, a graph G is k-Ramsey for a graph H if every k-edge-coloring of G contains a monochromatic copy of H. We write $G \xrightarrow{k} H$.

Ramsey numbers

Definition

For a positive integer k, a graph G is k-Ramsey for a graph H if every k-edge-coloring of G contains a monochromatic copy of H. We write $G \xrightarrow{k} H$.

Theorem (Ramsey's theorem)
For every k and H, there exists N such that $K_{N} \xrightarrow{k} H$.

Ramsey numbers

Definition

For a positive integer k, a graph G is k-Ramsey for a graph H if every k-edge-coloring of G contains a monochromatic copy of H. We write $G \xrightarrow{k} H$.

Theorem (Ramsey's theorem)

For every k and H, there exists N such that $K_{N} \xrightarrow{k} H$.

Definition

The k-color Ramsey number of H, denoted by $r^{k}(H)$, is defined as $r^{k}(H)=\min \{v(G) \mid G \xrightarrow{k} H\}$.

Size-Ramsey numbers

Definition

The k-color size-Ramsey number of H is $\hat{r}^{k}(H)=\min \{e(G) \mid G \xrightarrow{k} H\}$.

Size-Ramsey numbers

Definition
 The k-color size-Ramsey number of H is $\hat{r}^{k}(H)=\min \{e(G) \mid G \xrightarrow{k} H\}$.

For fixed $k, \hat{r}^{k}(H)=O(n)$ for an n-vertex graph H which is:

Size-Ramsey numbers

Definition

The k-color size-Ramsey number of H is $\hat{r}^{k}(H)=\min \{e(G) \mid G \xrightarrow{k} H\}$.
For fixed $k, \hat{r}^{k}(H)=O(n)$ for an n-vertex graph H which is:

- a path (Beck '83),
- a bounded degree tree (Friedman, Pippenger '87),
- a cycle (Haxell, Kohayakawa, Łuczak '95),
- a bounded degree graph with bounded treewidth (Kamčev, Liebenau, Wood, Yepremyan '21; Berger, Kohayakawa, Maesaka, Martins, Mendonça, Mota, Parczyk '21),
- a logarithmic subdivision of a bounded degree graph (Draganić, Krivelevich, Nenadov '22).

Size-Ramsey numbers

Definition

The k-color size-Ramsey number of H is $\hat{r}^{k}(H)=\min \{e(G) \mid G \xrightarrow{k} H\}$.
For fixed $k, \hat{r}^{k}(H)=O(n)$ for an n-vertex graph H which is:

- a path (Beck '83),
- a bounded degree tree (Friedman, Pippenger '87),
- a cycle (Haxell, Kohayakawa, Łuczak '95),
- a bounded degree graph with bounded treewidth (Kamčev, Liebenau, Wood, Yepremyan '21; Berger, Kohayakawa, Maesaka, Martins, Mendonça, Mota, Parczyk '21),
- a logarithmic subdivision of a bounded degree graph (Draganić, Krivelevich, Nenadov '22).
However, $\hat{r}^{2}(H)$ is not linear in $v(H)$ for all bounded degree graphs (Rödl, Szemerédi ‘00; Tikhomirov '22+).

Induced Ramsey numbers

Definition

A graph G is k-color induced Ramsey for H if every k-edge-coloring of G contains a monochromatic copy of H as an induced subgraph of G.

Induced Ramsey numbers

Definition

A graph G is k-color induced Ramsey for H if every k-edge-coloring of G contains a monochromatic copy of H as an induced subgraph of G.

Definition

The k-color induced Ramsey number of H is the minimum number of vertices of a graph that is k-color induced Ramsey for H.

Induced Ramsey numbers

Definition

A graph G is k-color induced Ramsey for H if every k-edge-coloring of G contains a monochromatic copy of H as an induced subgraph of G.

Definition

The k-color induced Ramsey number of H is the minimum number of vertices of a graph that is k-color induced Ramsey for H.

Induced Ramsey numbers

Definition

A graph G is k-color induced Ramsey for H if every k-edge-coloring of G contains a monochromatic copy of H as an induced subgraph of G.

Definition

The k-color induced Ramsey number of H is the minimum number of vertices of a graph that is k-color induced Ramsey for H.

- These numbers exist (Deuber '75; Erdős, Hajnal, Pósa '75; Rödl '73).

Induced Ramsey numbers

Definition

A graph G is k-color induced Ramsey for H if every k-edge-coloring of G contains a monochromatic copy of H as an induced subgraph of G.

Definition

The k-color induced Ramsey number of H is the minimum number of vertices of a graph that is k-color induced Ramsey for H.

- These numbers exist (Deuber '75; Erdős, Hajnal, Pósa '75; Rödl '73).
- $r_{\text {ind }}^{2}(H)=2^{O(n \log n)}$ (Conlon, Fox, Sudakov '12).

Induced Ramsey numbers

Definition

A graph G is k-color induced Ramsey for H if every k-edge-coloring of G contains a monochromatic copy of H as an induced subgraph of G.

Definition

The k-color induced Ramsey number of H is the minimum number of vertices of a graph that is k-color induced Ramsey for H.

- These numbers exist (Deuber '75; Erdős, Hajnal, Pósa '75; Rödl '73).
- $r_{\text {ind }}^{2}(H)=2^{O(n \log n)}$ (Conlon, Fox, Sudakov '12).
- Erdős conjectured $r_{\text {ind }}^{2}(H)=2^{O(n)}$.

Induced size-Ramsey numbers

Definition

The k-color induced size-Ramsey number, $\hat{r}_{\text {ind }}^{k}(H)$, of H is the minimum number of edges of a graph that is k-color induced Ramsey for H.

Induced size-Ramsey numbers

Definition

The k-color induced size-Ramsey number, $\hat{r}_{\text {ind }}^{k}(H)$, of H is the minimum number of edges of a graph that is k-color induced Ramsey for H.

Theorem (Haxell, Kohayakawa, Łuczak '95)
For every k, there is $C=C(k)$ such that $\hat{r}_{\text {ind }}^{k}\left(P_{n}\right), \hat{r}_{\text {ind }}^{k}\left(C_{n}\right) \leq C n$.

Induced size-Ramsey numbers

Definition

The k-color induced size-Ramsey number, $\hat{r}_{\text {ind }}^{k}(H)$, of H is the minimum number of edges of a graph that is k-color induced Ramsey for H.

Theorem (Haxell, Kohayakawa, Łuczak '95)

For every k, there is $C=C(k)$ such that $\hat{r}_{\text {ind }}^{k}\left(P_{n}\right), \hat{r}_{\text {ind }}^{k}\left(C_{n}\right) \leq C n$.

Question

What is the best value of $C=C(k)$ for cycles in the Theorem above?

Previous results

	Lower bound		Upper bound	
$\hat{r}^{k}\left(P_{n}\right)$	$\Omega\left(k^{2}\right) n$	(DP '17)	$O\left(k^{2} \log k\right) n$	(K '19)
$\hat{r}_{\text {ind }}^{k}\left(P_{n}\right)$	$\Omega\left(k^{2}\right) n$	(DP '17)	$O\left(k^{3} \log ^{4} k\right) n$	(DGK '22)
$\hat{r}^{k}\left(C_{n}\right), n$ even	$\Omega\left(k^{2}\right) n$	(DP '17)	$O\left(k^{120} \log ^{2} k\right) n$	(JM '23)
$\hat{r}^{k}\left(C_{n}\right), n$ odd	$2^{k-1} n$	$\left(\mathrm{JM}^{\prime} 23\right)$	$O\left(2^{k^{2}+16 \log k}\right) n$	(JM '23)
$\hat{r}_{\text {ind }}^{k}\left(C_{n}\right), n$ even	$\Omega\left(k^{2}\right) n$	(DP '17)	$?$	(HKŁ '95)
$\hat{r}_{\text {ind }}^{k}\left(C_{n}\right), n$ odd	$2^{k-1} n$	$\left(\mathrm{JM}{ }^{\prime} 23\right)$	$?$	(HKŁ '95)

Previous results

	Lower bound		Upper bound	
$\hat{r}^{k}\left(P_{n}\right)$	$\Omega\left(k^{2}\right) n$	(DP '17)	$O\left(k^{2} \log k\right) n$	(K '19)
$\hat{r}_{\text {ind }}^{k}\left(P_{n}\right)$	$\Omega\left(k^{2}\right) n$	(DP '17)	$O\left(k^{3} \log ^{4} k\right) n$	(DGK '22)
$\hat{r}^{k}\left(C_{n}\right), n$ even	$\Omega\left(k^{2}\right) n$	(DP '17)	$O\left(k^{120} \log ^{2} k\right) n$	(JM '23)
$\hat{r}^{k}\left(C_{n}\right), n$ odd	$2^{k-1} n$	$\left(\mathrm{JM}^{\prime} 23\right)$	$O\left(2^{k^{2}+16 \log k}\right) n$	(JM '23)
$\hat{r}_{\text {ind }}^{k}\left(C_{n}\right), n$ even	$\Omega\left(k^{2}\right) n$	(DP '17)		(HKŁ '95)
$\hat{r}_{\text {ind }}^{k}\left(C_{n}\right), n$ odd	$2^{k-1} n$	(JM '23)		(HKŁ '95)

Our results

Theorem (B., Draganić, Sudakov '23+)

For any $k \geq 1$, there is n_{0} such that for $n \geq n_{0}$, the following holds.

- $\hat{r}^{k}\left(C_{n}\right)=2^{O(k)} n$.
- If n is even, then $\hat{r}_{\text {ind }}^{k}\left(C_{n}\right)=O\left(k^{102}\right) n$.
- If n is odd, then $\hat{r}_{\text {ind }}^{k}\left(C_{n}\right)=2^{O(k \log k)} n$.

Overview of results

	Lower bound		Upper bound	
$\hat{r}^{k}\left(P_{n}\right)$	$\Omega\left(k^{2}\right) n$	(DP '17)	$O\left(k^{2} \log k\right) n$	(K '19)
$\hat{r}_{\text {ind }}^{k}\left(P_{n}\right)$	$\Omega\left(k^{2}\right) n$	(DP '17)	$O\left(k^{3} \log ^{4} k\right) n$	(DGK '22)
$\hat{r}^{k}\left(C_{n}\right), n$ even	$\Omega\left(k^{2}\right)$	(DP '17)	$O\left(k^{102}\right) n$	(BDS '23+)
$\hat{r}^{k}\left(C_{n}\right), n$ odd	2^{k-1}	JM '23)	$2^{O(k)} n$	(BDS '23+)
$\hat{r}_{\text {ind }}^{k}\left(C_{n}\right), n$ even	$\Omega\left(k^{2}\right) n$	(DP '17)	$O\left(k^{102}\right) n$	(BDS '23+)
$\hat{r}_{\text {ind }}^{k}\left(C_{n}\right), n$ odd	$2^{k-1} n$	(JM '23)	$2^{O(k \log k)} n$	(BDS '23+)

Proof ideas

Previous results: the host graph is $G\left(N, C_{1} / N\right)$, where $N=C_{2} n$.

Proof ideas

Previous results: the host graph is $G\left(N, C_{1} / N\right)$, where $N=C_{2} n$. Choose a suitable color and find an induced C_{n} in this color or a large subgraph without this color.

Previous results: the host graph is $G\left(N, C_{1} / N\right)$, where $N=C_{2} n$. Choose a suitable color and find an induced C_{n} in this color or a large subgraph without this color.
Main idea: in this suitable color, it is easier to find a cycle of length in [$0.9 n, 1.1 n]$ than of length exactly n.

Previous results: the host graph is $G\left(N, C_{1} / N\right)$, where $N=C_{2} n$. Choose a suitable color and find an induced C_{n} in this color or a large subgraph without this color.
Main idea: in this suitable color, it is easier to find a cycle of length in [$0.9 n, 1.1 n]$ than of length exactly n.
Our new host graph construction is designed to exploits this.

Host graph construction and auxiliary graph

Construction to obtain $\hat{r}_{\text {ind }}^{k}\left(C_{n}\right)=2^{O(k \log k)} n$:

Host graph construction and auxiliary graph

Construction to obtain $\hat{r}_{\text {ind }}^{k}\left(C_{n}\right)=2^{O(k \log k)} n$:

- Find a small gadget graph $F=F(k)$ which is k-induced Ramsey for C_{5}.

Host graph construction and auxiliary graph

Construction to obtain $\hat{r}_{\text {ind }}^{k}\left(C_{n}\right)=2^{O(k \log k)} n$:

- Find a small gadget graph $F=F(k)$ which is k-induced Ramsey for C_{5}.
- Place $C_{1} N$ random copies of F, to get the host graph Γ on $N=C_{2} n$ vertices.

Host graph construction and auxiliary graph

Construction to obtain $\hat{r}_{\text {ind }}^{k}\left(C_{n}\right)=2^{O(k \log k)} n$:

- Find a small gadget graph $F=F(k)$ which is k-induced Ramsey for C_{5}.
- Place $C_{1} N$ random copies of F, to get the host graph Γ on $N=C_{2} n$ vertices.
- Auxiliary graph G with $V(G)=V(\Gamma)$ and edges: for each placed copy of F, find one monochromatic induced C_{5} and connect two nonadjacent vertices on this C_{5}.

Host graph and auxiliary graph

H

Host graph and auxiliary graph

Host graph and auxiliary graph

Host graph and auxiliary graph

Γ

Host graph and auxiliary graph

Host graph and auxiliary graph

Using the auxiliary graph
Claim: a "good" monochromatic cycle in G of any length $\ell \in[n / 3, n / 2]$ gives an induced monochromatic cycle of length n in Γ.

Using the auxiliary graph

Claim: a "good" monochromatic cycle in G of any length $\ell \in[n / 3, n / 2]$ gives an induced monochromatic cycle of length n in Γ.

Using the auxiliary graph

Claim: a "good" monochromatic cycle in G of any length $\ell \in[n / 3, n / 2]$ gives an induced monochromatic cycle of length n in Γ.

Using the auxiliary graph

Claim: a "good" monochromatic cycle in G of any length $\ell \in[n / 3, n / 2]$ gives an induced monochromatic cycle of length n in Γ.

Using the auxiliary graph

Claim: a "good" monochromatic cycle in G of any length $\ell \in[n / 3, n / 2]$ gives an induced monochromatic cycle of length n in Γ.

Using the auxiliary graph

Claim: a "good" monochromatic cycle in G of any length $\ell \in[n / 3, n / 2]$ gives an induced monochromatic cycle of length n in Γ.

Using the auxiliary graph

Claim: a "good" monochromatic cycle in G of any length $\ell \in[n / 3, n / 2]$ gives an induced monochromatic cycle of length n in Γ.

Using the auxiliary graph

Claim: a "good" monochromatic cycle in G of any length $\ell \in[n / 3, n / 2]$ gives an induced monochromatic cycle of length n in Γ.

Finding an induced cycle of approximate length

Our task essentially reduces to finding an induced cycle of length in $[n / 3, n / 2]$ in a locally sparse graph.

Finding an induced cycle of approximate length

Our task essentially reduces to finding an induced cycle of length in [$n / 3, n / 2$] in a locally sparse graph.
Main tool: modification of the DFS algorithm for induced paths developed by Draganić, Glock and Krivelevich.

Getting all the results

For different results, we use different gadget graphs.

Getting all the results

For different results, we use different gadget graphs.

- For the odd induced case F is k-color induced Ramsey for C_{5}. We take F to be Alon's dense pseudorandom triangle free graph on $2^{O(k \log k)}$ vertices.

Getting all the results

For different results, we use different gadget graphs.

- For the odd induced case F is k-color induced Ramsey for C_{5}. We take F to be Alon's dense pseudorandom triangle free graph on $2^{O(k \log k)}$ vertices.
- For the even induced case F is k-color induced Ramsey for C_{6}. We take F to be a dense C_{4}-free bipartite on $O\left(k^{6}\right)$ vertices.

Getting all the results

For different results, we use different gadget graphs.

- For the odd induced case F is k-color induced Ramsey for C_{5}. We take F to be Alon's dense pseudorandom triangle free graph on $2^{O(k \log k)}$ vertices.
- For the even induced case F is k-color induced Ramsey for C_{6}. We take F to be a dense C_{4}-free bipartite on $O\left(k^{6}\right)$ vertices.
- For the odd (non-induced) we want every k-edge-coloring of F to have an odd monochromatic cycle. We take $F=K_{2^{k}+1}$.

Concluding remarks

Conjecture

For odd $n, \hat{r}_{\text {ind }}^{k}\left(C_{n}\right)=2^{O(k)} n$.

Concluding remarks

Conjecture

For odd $n, \hat{r}_{\text {ind }}^{k}\left(C_{n}\right)=2^{O(k)} n$.
It is enough to prove the following.

Conjecture

There is a graph F on $2^{O(k)}$ vertices such that in every k-edge-coloring of F there is an odd monochromatic cycle of length at least 5 as an induced subgraph.

Concluding remarks

Conjecture

For odd $n, \hat{r}_{\text {ind }}^{k}\left(C_{n}\right)=2^{O(k)} n$.
It is enough to prove the following.

Conjecture

There is a graph F on $2^{O(k)}$ vertices such that in every k-edge-coloring of F there is an odd monochromatic cycle of length at least 5 as an induced subgraph.

Thank you!

