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Sunflowers

Definition

A collection of distinct sets is called a sunflower if the intersection of any
pair of sets equals the common intersection of all the sets

1, 2 3, 4

5, 6

7, 8

9, 10

11, 12

The common intersection is the kernel of the sunflower.

r-uniform if all sets have size r.
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Domagoj Bradač (ETH Zürich) Turán numbers of sunflowers British Combinatorial Conference 2022



Sunflowers

Definition

A collection of distinct sets is called a sunflower if the intersection of any
pair of sets equals the common intersection of all the sets

{1, 2, 3, 4}
{1, 2, 5, 6}
{1, 2, 7, 8}
{1, 2, 9, 10}
{1, 2, 11, 12}

1, 2 3, 4

5, 6

7, 8

9, 10

11, 12

The common intersection is the kernel of the sunflower.

r-uniform if all sets have size r.
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Erdős-Rado sunflower conjecture

Question (Erdős-Rado, 1960)

What is the max size of a family of r-sets without a k petal sunflower?

Denote the answer by fr(k).

Erdős-Rado sunflower lemma:

(k − 1)r ≤

fr(k) ≤ (k − 1)r · r!.
Best known upper bound is: fr(k) ≤ O(k log r)r.

Conjecture (Sunflower conjecture, Erdős-Rado, 1960)

For fixed k,
fr(k) ≤ Cr

k .

Even k = 3 case is open and very interesting.

Relations to many topics in computer science and probability theory.
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Specific sunflowers

Let S(r)
t (k) be the r-uniform sunflower with k petals and kernel of size t.

S(2)
1 (5)

S(4)
2 (5)

Sunflower problem: What is the max number of edges in an r-graph

without any of S(r)
0 (k),S(r)

1 (k) . . . ,S(r)
r−1(k)?

Question (Duke and Erdős 1977)

What is the max number of edges in an n-vertex r-graph without S(r)
t (k)?
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What is the max number of edges in an n-vertex r-graph without S(r)
t (k)?
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Turán problem for sunflowers

Question (Duke and Erdős 1977)

What is the max number of edges in an n-vertex r-graph without S(r)
t (k)?

The answer is called the Turán number of S(r)
t (k), denoted

ex(n,S(r)
t (k)).

Captures several classical problems:

▶ Case t = 0 corresponds to the Erdős matching conjecture

▶ Case k = 2 corresponds to the forbidden intersection problem

Many results and bounds in various regimes.

Frankl and Füredi 1985: For fixed r and k we have

ex(n,S(r)
t (k)) ≈r,k nmax{r−t+1,t}.
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What is the max number of edges in an n-vertex r-graph without S(r)
t (k)?

The answer is called the Turán number of S(r)
t (k), denoted

ex(n,S(r)
t (k)).

Captures several classical problems:

▶ Case t = 0 corresponds to the Erdős matching conjecture
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Frankl and Füredi 1985: For fixed r and k we have

ex(n,S(r)
t (k)) ≈r,k nmax{r−t+1,t}.
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Large sunflowers

Frankl and Füredi 1985: For fixed r and k we have

ex(n,S(r)
t (k)) ≈r,k nmax{r−t+1,t}.

Chung, Erdős, Graham 1980’s: What if we let k grow with n?

If r = 2, Erdős and Gallai proved ex(n,S(2)
0 (k)) ≈ nk and it is trivial to

see ex(n,S(2)
1 (k)) ≈ nk.

For r = 3, we have

▶ Erdős: ex(n,S(3)
0 (k)) ≈ n2k

▶ Duke and Erdős; Frankl: ex(n,S(3)
1 (k)) ≈ nk2 and ex(n,S(3)

2 (k)) ≈ n2k

▶ Chung determined ex(n,S(3)
1 (k)) up to lower order terms.

▶ Chung and Frankl determined ex(n,S(3)
1 (k)) precisely.

The r = 4 case solved approximately by Bucić, Draganić, Sudakov, Tran.
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If r = 2, Erdős and Gallai proved ex(n,S(2)
0 (k)) ≈ nk and it is trivial to

see ex(n,S(2)
1 (k)) ≈ nk.

For r = 3, we have
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▶ Duke and Erdős; Frankl: ex(n,S(3)
1 (k)) ≈ nk2 and ex(n,S(3)

2 (k)) ≈ n2k

▶ Chung determined ex(n,S(3)
1 (k)) up to lower order terms.

▶ Chung and Frankl determined ex(n,S(3)
1 (k)) precisely.

The r = 4 case solved approximately by Bucić, Draganić, Sudakov, Tran.
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Frankl and Füredi 1985: For fixed r and k we have

ex(n,S(r)
t (k)) ≈r,k nmax{r−t+1,t}.
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▶ Duke and Erdős; Frankl: ex(n,S(3)
1 (k)) ≈ nk2 and ex(n,S(3)

2 (k)) ≈ n2k

▶ Chung determined ex(n,S(3)
1 (k)) up to lower order terms.

▶ Chung and Frankl determined ex(n,S(3)
1 (k)) precisely.

The r = 4 case solved approximately by Bucić, Draganić, Sudakov, Tran.
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▶ Duke and Erdős; Frankl: ex(n,S(3)
1 (k)) ≈ nk2 and ex(n,S(3)

2 (k)) ≈ n2k

▶ Chung determined ex(n,S(3)
1 (k)) up to lower order terms.

▶ Chung and Frankl determined ex(n,S(3)
1 (k)) precisely.

The r = 4 case solved approximately by Bucić, Draganić, Sudakov, Tran.
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Chung, Erdős, Graham 1980’s: What if we let k grow with n?
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Frankl and Füredi 1985: For fixed r and k we have

ex(n,S(r)
t (k)) ≈r,k nmax{r−t+1,t}.
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▶ Duke and Erdős; Frankl: ex(n,S(3)
1 (k)) ≈ nk2 and ex(n,S(3)

2 (k)) ≈ n2k

▶ Chung determined ex(n,S(3)
1 (k)) up to lower order terms.

▶ Chung and Frankl determined ex(n,S(3)
1 (k)) precisely.

The r = 4 case solved approximately by Bucić, Draganić, Sudakov, Tran.
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Frankl and Füredi 1985: For fixed r and k we have

ex(n,S(r)
t (k)) ≈r,k nmax{r−t+1,t}.
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Main result

Theorem (B., Bucić. and Sudakov)

ex(n,S(r)
t (k)) ≈r

{
nr−t−1kt+1 if t ≤ r−1

2 ,

ntkr−t if t > r−1
2 .

∅

ex(n,S(5)
0 (k)) ≈ n4k ex(n,S(5)

1 (k)) ≈ n3k2 ex(n,S(5)
2 (k)) ≈ n2k3

ex(n,S(5)
3 (k)) ≈ n3k2 ex(n,S(5)

4 (k)) ≈ n4k
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Domagoj Bradač (ETH Zürich) Turán numbers of sunflowers British Combinatorial Conference 2022



Main result

Theorem (B., Bucić. and Sudakov)
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Upper bounds: overview

Theorem (B., Bucić and Sudakov)

ex(n,S(r)
t (k)) ≈r

{
nr−t−1kt+1 if t ≤ r−1

2 ,

ntkr−t if t > r−1
2 .

We use induction to reduce to the balanced case:

ex(n,S(2t+1)
t (k)) ≤ O(ntkt+1).
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Theorem (B., Bucić and Sudakov)

ex(n,S(r)
t (k)) ≈r

{
nr−t−1kt+1 if t ≤ r−1

2 ,

ntkr−t if t > r−1
2 .

We use induction to reduce to the balanced case:
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t t+ 1

t+ 1
t+ 1

t+ 1
t+ 1

A balanced sunflower:
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Upper bounds: overview

Theorem (B., Bucić and Sudakov)

ex(n,S(r)
t (k)) ≈r

{
nr−t−1kt+1 if t ≤ r−1

2 ,

ntkr−t if t > r−1
2 .

We use induction to reduce to the balanced case:

ex(n,S(2t+1)
t (k)) ≤ O(ntkt+1).
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Upper bounds: ex(n,S(2t+1)
t (k)) = O(ntkt+1)

No S(2t+1)
t (k) ⇐⇒ the link of any t-set has no matching of size k

=⇒ it has a vertex cover of size (k − 1)(t+ 1) = O(k).

For every set S of t vertices, fix such a cover τ(S).

We try to enumerate all edges using the following strategy:
▶ Choose a set X of t vertices.
▶ Choose any vertex v ∈ τ(X) and add it to X.
▶ Until |X| = 2t+ 1, repeat the following: choose a set S ∈

(
X
t

)
and a vertex

v ∈ τ(S) and add v to X.
▶ When |X| = 2t+ 1, add X to the list of enumerated (2t+ 1)-tuples.

Our list has O(ntkt+1) (2t+ 1)-tuples, but does it contain all edges?
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Domagoj Bradač (ETH Zürich) Turán numbers of sunflowers British Combinatorial Conference 2022



Upper bounds: ex(n,S(2t+1)
t (k)) = O(ntkt+1)

No S(2t+1)
t (k) ⇐⇒ the link of any t-set has no matching of size k

=⇒ it has a vertex cover of size (k − 1)(t+ 1) = O(k).

For every set S of t vertices, fix such a cover τ(S).

We try to enumerate all edges using the following strategy:

▶ Choose a set X of t vertices.
▶ Choose any vertex v ∈ τ(X) and add it to X.
▶ Until |X| = 2t+ 1, repeat the following: choose a set S ∈

(
X
t

)
and a vertex

v ∈ τ(S) and add v to X.
▶ When |X| = 2t+ 1, add X to the list of enumerated (2t+ 1)-tuples.

Our list has O(ntkt+1) (2t+ 1)-tuples, but does it contain all edges?
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Domagoj Bradač (ETH Zürich) Turán numbers of sunflowers British Combinatorial Conference 2022



Upper bounds: ex(n,S(2t+1)
t (k)) = O(ntkt+1)

No S(2t+1)
t (k) ⇐⇒ the link of any t-set has no matching of size k

=⇒ it has a vertex cover of size (k − 1)(t+ 1) = O(k).

For every set S of t vertices, fix such a cover τ(S).

We try to enumerate all edges using the following strategy:
▶ Choose a set X of t vertices.
▶ Choose any vertex v ∈ τ(X) and add it to X.
▶ Until |X| = 2t+ 1, repeat the following: choose a set S ∈

(
X
t

)
and a vertex

v ∈ τ(S) and add v to X.
▶ When |X| = 2t+ 1, add X to the list of enumerated (2t+ 1)-tuples.

a

n

b

n

c

τ({a, b})

O(k) O(k)

τ({a, c})V V

e

O(k)
c d

τ({c, d})

Our list has O(ntkt+1) (2t+ 1)-tuples, but does it contain all edges?
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Domagoj Bradač (ETH Zürich) Turán numbers of sunflowers British Combinatorial Conference 2022



Upper bounds: ex(n,S(2t+1)
t (k)) = O(ntkt+1)

? ?a b

τ({a, b})V V

c

Suppose e = (v1, v2, v3, v4, v5) and we start with a = v1, b = v2 and in the
first step we choose c = v3 ∈ τ({v1, v2}).

But maybe v2 ∈ τ({v1, v3}) and
v4, v5 ̸∈ τ({v1, v3}) so we cannot choose the next vertex from τ({v1, v3}).
And possibly even v1 is the only vertex of e in τ({v2, v3}) and v3 the only
vertex of e in τ({v1, v2}).
So we cannot reach X = e with this start. However, maybe if we started
with e.g. a = v3, b = v4 . . .

Domagoj Bradač (ETH Zürich) Turán numbers of sunflowers British Combinatorial Conference 2022



Upper bounds: ex(n,S(2t+1)
t (k)) = O(ntkt+1)

? ?a b

τ({a, b})V V

c

Suppose e = (v1, v2, v3, v4, v5) and we start with a = v1, b = v2 and in the
first step we choose c = v3 ∈ τ({v1, v2}). But maybe v2 ∈ τ({v1, v3}) and
v4, v5 ̸∈ τ({v1, v3}) so we cannot choose the next vertex from τ({v1, v3}).

And possibly even v1 is the only vertex of e in τ({v2, v3}) and v3 the only
vertex of e in τ({v1, v2}).
So we cannot reach X = e with this start. However, maybe if we started
with e.g. a = v3, b = v4 . . .
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Domagoj Bradač (ETH Zürich) Turán numbers of sunflowers British Combinatorial Conference 2022



Upper bounds: ex(n,S(2t+1)
t (k)) = O(ntkt+1)

We counted every edge unless there exists a (t+ 1, t)-system on the
ground set of size 2t+ 1.

Definition

A family F ⊆ 2[2t+1] is a (t+ 1, t)-system if:

1. A ∩B ∈ F ,∀A,B ∈ F ,

2. for every set K ∈
(
[2t+1]

t

)
, there is a set A ∈ F ,K ⊆ A,

3. |A| ̸∈ {t, 2t+ 1} for all A ∈ F .

Why? Let e = (v1, v2, . . . , v2t+1) and consider the function
f :

(
[2t+1]

t

)
→ [2t+ 1] which maps (i1, . . . it) to a different index j such

that vj ∈ τ({vi1 , . . . , vit}).
A (t+ 1, t) system on [2t+ 1] does not exist so we counted all edges.
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Domagoj Bradač (ETH Zürich) Turán numbers of sunflowers British Combinatorial Conference 2022



Upper bounds: ex(n,S(2t+1)
t (k)) = O(ntkt+1)

We counted every edge unless there exists a (t+ 1, t)-system on the
ground set of size 2t+ 1.

Definition

A family F ⊆ 2[2t+1] is a (t+ 1, t)-system if:

1. A ∩B ∈ F ,∀A,B ∈ F ,

2. for every set K ∈
(
[2t+1]

t

)
, there is a set A ∈ F ,K ⊆ A,

3. |A| ̸∈ {t, 2t+ 1} for all A ∈ F .

Why? Let e = (v1, v2, . . . , v2t+1) and consider the function
f :

(
[2t+1]

t

)
→ [2t+ 1] which maps (i1, . . . it) to a different index j such

that vj ∈ τ({vi1 , . . . , vit}).

A (t+ 1, t) system on [2t+ 1] does not exist so we counted all edges.
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Further directions

We determined the dependency of ex(n,S(r)
t (k)) on n and k.

Problem 1

What is the dependency on r?

Problem 2

What if we forbid a collection of r-uniform sunflowers?

Problem 3 (Chung-Erdős unavoidability problem, 1983)

Among r-uniform hypergraphs with e edges which is hardest to avoid?

Known for r ≤ 4, up to constant factor.
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