Turán numbers of sunflowers

Domagoj Bradač

ETH Zürich

joint work with Matija Bucić and Benny Sudakov

Slides based on a deck by Matija Bucić.

Sunflowers

Definition

A collection of distinct sets is called a sunflower if the intersection of any pair of sets equals the common intersection of all the sets

Sunflowers

Definition

A collection of distinct sets is called a sunflower if the intersection of any pair of sets equals the common intersection of all the sets

$$
\begin{aligned}
& \{1,2,3,4\} \\
& \{1,2,5,6\} \\
& \{1,2,7,8\} \\
& \{1,2,9,10\} \\
& \{1,2,11,12\}
\end{aligned}
$$

Sunflowers

Definition

A collection of distinct sets is called a sunflower if the intersection of any pair of sets equals the common intersection of all the sets

$$
\begin{aligned}
& \{1,2,3,4\} \\
& \{1,2,5,6\} \\
& \{1,2,7,8\} \\
& \{1,2,9,10\} \\
& \{1,2,11,12\}
\end{aligned}
$$

Sunflowers

Definition

A collection of distinct sets is called a sunflower if the intersection of any pair of sets equals the common intersection of all the sets

$$
\begin{aligned}
& \{1,2,3,4\} \\
& \{1,2,5,6\} \\
& \{1,2,7,8\} \\
& \{1,2,9,10\} \\
& \{1,2,11,12\}
\end{aligned}
$$

Sunflowers

Definition

A collection of distinct sets is called a sunflower if the intersection of any pair of sets equals the common intersection of all the sets

$$
\begin{aligned}
& \{1,2,3,4\} \\
& \{1,2,5,6\} \\
& \{1,2,7,8\} \\
& \{1,2,9,10\} \\
& \{1,2,11,12\}
\end{aligned}
$$

Sunflowers

Definition

A collection of distinct sets is called a sunflower if the intersection of any pair of sets equals the common intersection of all the sets

$$
\begin{aligned}
& \{1,2,3,4\} \\
& \{1,2,5,6\} \\
& \{1,2,7,8\} \\
& \{1,2,9,10\} \\
& \{1,2,11,12\}
\end{aligned}
$$

Sunflowers

Definition

A collection of distinct sets is called a sunflower if the intersection of any pair of sets equals the common intersection of all the sets

$$
\begin{aligned}
& \{1,2,3,4\} \\
& \{1,2,5,6\} \\
& \{1,2,7,8\} \\
& \{1,2,9,10\} \\
& \{1,2,11,12\}
\end{aligned}
$$

Sunflowers

Definition

A collection of distinct sets is called a sunflower if the intersection of any pair of sets equals the common intersection of all the sets

$$
\begin{aligned}
& \{1,2,3,4\} \\
& \{1,2,5,6\} \\
& \{1,2,7,8\} \\
& \{1,2,9,10\} \\
& \{1,2,11,12\}
\end{aligned}
$$

Sunflowers

Definition

A collection of distinct sets is called a sunflower if the intersection of any pair of sets equals the common intersection of all the sets

$$
\begin{aligned}
& \{1,2,3,4\} \\
& \{1,2,5,6\} \\
& \{1,2,7,8\} \\
& \{1,2,9,10\} \\
& \{1,2,11,12\}
\end{aligned}
$$

- The common intersection is the kernel of the sunflower.

Sunflowers

Definition

A collection of distinct sets is called a sunflower if the intersection of any pair of sets equals the common intersection of all the sets

$$
\begin{aligned}
& \{1,2,3,4\} \\
& \{1,2,5,6\} \\
& \{1,2,7,8\} \\
& \{1,2,9,10\} \\
& \{1,2,11,12\}
\end{aligned}
$$

- The common intersection is the kernel of the sunflower.

Sunflowers

Definition

A collection of distinct sets is called a sunflower if the intersection of any pair of sets equals the common intersection of all the sets

$$
\begin{aligned}
& \{1,2,3,4\} \\
& \{1,2,5,6\} \\
& \{1,2,7,8\} \\
& \{1,2,9,10\} \\
& \{1,2,11,12\}
\end{aligned}
$$

- The common intersection is the kernel of the sunflower.

Sunflowers

Definition

A collection of distinct sets is called a sunflower if the intersection of any pair of sets equals the common intersection of all the sets

$$
\begin{aligned}
& \{1,2,3,4\} \\
& \{1,2,5,6\} \\
& \{1,2,7,8\} \\
& \{1,2,9,10\} \\
& \{1,2,11,12\}
\end{aligned}
$$

- The common intersection is the kernel of the sunflower.
- r-uniform if all sets have size r.

Erdős-Rado sunflower conjecture

Question (Erdős-Rado, 1960)
What is the max size of a family of r-sets without a k petal sunflower?

Erdős-Rado sunflower conjecture

Question (Erdős-Rado, 1960)
What is the max size of a family of r-sets without a k petal sunflower?

- Denote the answer by $f_{r}(k)$.

Erdős-Rado sunflower conjecture

Question (Erdős-Rado, 1960)
What is the max size of a family of r-sets without a k petal sunflower?

- Denote the answer by $f_{r}(k)$.
- Erdős-Rado sunflower lemma:

$$
f_{r}(k) \leq(k-1)^{r} \cdot r!.
$$

Erdős-Rado sunflower conjecture

Question (Erdős-Rado, 1960)

What is the max size of a family of r-sets without a k petal sunflower?

- Denote the answer by $f_{r}(k)$.
- Erdős-Rado sunflower lemma: $(k-1)^{r} \leq f_{r}(k) \leq(k-1)^{r} \cdot r$!.

Erdős-Rado sunflower conjecture

Question (Erdős-Rado, 1960)

What is the max size of a family of r-sets without a k petal sunflower?

- Denote the answer by $f_{r}(k)$.
- Erdős-Rado sunflower lemma: $(k-1)^{r} \leq f_{r}(k) \leq(k-1)^{r} \cdot r$!.
- Best known upper bound is: $\quad f_{r}(k) \leq O(k \log r)^{r}$.

Erdős-Rado sunflower conjecture

Question (Erdős-Rado, 1960)

What is the max size of a family of r-sets without a k petal sunflower?

- Denote the answer by $f_{r}(k)$.
- Erdős-Rado sunflower lemma: $(k-1)^{r} \leq f_{r}(k) \leq(k-1)^{r} \cdot r$!.
- Best known upper bound is: $\quad f_{r}(k) \leq O(k \log r)^{r}$.

Conjecture (Sunflower conjecture, Erdős-Rado, 1960)

For fixed k,

$$
f_{r}(k) \leq C_{k}^{r}
$$

Erdős-Rado sunflower conjecture

Question (Erdős-Rado, 1960)

What is the max size of a family of r-sets without a k petal sunflower?

- Denote the answer by $f_{r}(k)$.
- Erdős-Rado sunflower lemma: $(k-1)^{r} \leq f_{r}(k) \leq(k-1)^{r} \cdot r$!.
- Best known upper bound is: $\quad f_{r}(k) \leq O(k \log r)^{r}$.

Conjecture (Sunflower conjecture, Erdős-Rado, 1960)

For fixed k,

$$
f_{r}(k) \leq C_{k}^{r}
$$

- Even $k=3$ case is open and very interesting.

Erdős-Rado sunflower conjecture

Question (Erdős-Rado, 1960)

What is the max size of a family of r-sets without a k petal sunflower?

- Denote the answer by $f_{r}(k)$.
- Erdős-Rado sunflower lemma: $(k-1)^{r} \leq f_{r}(k) \leq(k-1)^{r} \cdot r$!.
- Best known upper bound is: $\quad f_{r}(k) \leq O(k \log r)^{r}$.

Conjecture (Sunflower conjecture, Erdős-Rado, 1960)

For fixed k,

$$
f_{r}(k) \leq C_{k}^{r}
$$

- Even $k=3$ case is open and very interesting.
- Relations to many topics in computer science and probability theory.

Specific sunflowers

- Let $\mathcal{S}_{t}^{(r)}(k)$ be the r-uniform sunflower with k petals and kernel of size t.

Specific sunflowers

- Let $\mathcal{S}_{t}^{(r)}(k)$ be the r-uniform sunflower with k petals and kernel of size t.

Specific sunflowers

- Let $\mathcal{S}_{t}^{(r)}(k)$ be the r-uniform sunflower with k petals and kernel of size t.

Specific sunflowers

- Let $\mathcal{S}_{t}^{(r)}(k)$ be the r-uniform sunflower with k petals and kernel of size t.

Specific sunflowers

- Let $\mathcal{S}_{t}^{(r)}(k)$ be the r-uniform sunflower with k petals and kernel of size t.

$$
\mathcal{S}_{1}^{(2)}(5)
$$

$$
\mathcal{S}_{2}^{(4)}(5)
$$

Specific sunflowers

- Let $\mathcal{S}_{t}^{(r)}(k)$ be the r-uniform sunflower with k petals and kernel of size t.

$$
\mathcal{S}_{1}^{(2)}(5)
$$

$\mathcal{S}_{2}^{(4)}(5)$

Specific sunflowers

- Let $\mathcal{S}_{t}^{(r)}(k)$ be the r-uniform sunflower with k petals and kernel of size t.

$\mathcal{S}_{1}^{(2)}(5)$

$\mathcal{S}_{2}^{(4)}(5)$
- Sunflower problem: What is the max number of edges in an r-graph without any of $\mathcal{S}_{0}^{(r)}(k), \mathcal{S}_{1}^{(r)}(k) \ldots, \mathcal{S}_{r-1}^{(r)}(k)$?

Specific sunflowers

- Let $\mathcal{S}_{t}^{(r)}(k)$ be the r-uniform sunflower with k petals and kernel of size t.

- Sunflower problem: What is the max number of edges in an r-graph without any of $\mathcal{S}_{0}^{(r)}(k), \mathcal{S}_{1}^{(r)}(k) \ldots, \mathcal{S}_{r-1}^{(r)}(k)$?

Question (Duke and Erdős 1977)

What is the max number of edges in an n-vertex r-graph without $\mathcal{S}_{t}^{(r)}(k)$?

Turán problem for sunflowers

Question (Duke and Erdős 1977)

What is the max number of edges in an n-vertex r-graph without $\mathcal{S}_{t}^{(r)}(k)$?

Turán problem for sunflowers

Question (Duke and Erdős 1977)

What is the max number of edges in an n-vertex r-graph without $\mathcal{S}_{t}^{(r)}(k)$?

- The answer is called the Turán number of $\mathcal{S}_{t}^{(r)}(k)$, denoted $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right)$.

Turán problem for sunflowers

Question (Duke and Erdős 1977)

What is the max number of edges in an n-vertex r-graph without $\mathcal{S}_{t}^{(r)}(k)$?

- The answer is called the Turán number of $\mathcal{S}_{t}^{(r)}(k)$, denoted $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right)$.
- Captures several classical problems:

Turán problem for sunflowers

Question (Duke and Erdős 1977)

What is the max number of edges in an n-vertex r-graph without $\mathcal{S}_{t}^{(r)}(k)$?

- The answer is called the Turán number of $\mathcal{S}_{t}^{(r)}(k)$, denoted $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right)$.
- Captures several classical problems:
- Case $t=0$ corresponds to the Erdős matching conjecture

Turán problem for sunflowers

Question (Duke and Erdős 1977)

What is the max number of edges in an n-vertex r-graph without $\mathcal{S}_{t}^{(r)}(k)$?

- The answer is called the Turán number of $\mathcal{S}_{t}^{(r)}(k)$, denoted $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right)$.
- Captures several classical problems:
- Case $t=0$ corresponds to the Erdős matching conjecture
- Case $k=2$ corresponds to the forbidden intersection problem

Turán problem for sunflowers

Question (Duke and Erdős 1977)

What is the max number of edges in an n-vertex r-graph without $\mathcal{S}_{t}^{(r)}(k)$?

- The answer is called the Turán number of $\mathcal{S}_{t}^{(r)}(k)$, denoted $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right)$.
- Captures several classical problems:
- Case $t=0$ corresponds to the Erdős matching conjecture
- Case $k=2$ corresponds to the forbidden intersection problem
- Many results and bounds in various regimes.

Turán problem for sunflowers

Question (Duke and Erdős 1977)

What is the max number of edges in an n-vertex r-graph without $\mathcal{S}_{t}^{(r)}(k)$?

- The answer is called the Turán number of $\mathcal{S}_{t}^{(r)}(k)$, denoted $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right)$.
- Captures several classical problems:
- Case $t=0$ corresponds to the Erdős matching conjecture
- Case $k=2$ corresponds to the forbidden intersection problem
- Many results and bounds in various regimes.
- Frankl and Füredi 1985: For fixed r and k we have

$$
\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right) \approx_{r, k} n^{\max \{r-t+1, t\}}
$$

Large sunflowers

- Frankl and Füredi 1985: For fixed r and k we have

$$
\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right) \approx_{r, k} n^{\max \{r-t+1, t\}}
$$

Large sunflowers

- Frankl and Füredi 1985: For fixed r and k we have

$$
\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right) \approx_{r, k} n^{\max \{r-t+1, t\}}
$$

- Chung, Erdős, Graham 1980's: What if we let k grow with n ?

Large sunflowers

- Frankl and Füredi 1985: For fixed r and k we have

$$
\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right) \approx_{r, k} n^{\max \{r-t+1, t\}}
$$

- Chung, Erdős, Graham 1980's: What if we let k grow with n ?
- If $r=2$, Erdős and Gallai proved $\mathrm{ex}\left(n, \mathcal{S}_{0}^{(2)}(k)\right) \approx n k$ and it is trivial to see $\operatorname{ex}\left(n, \mathcal{S}_{1}^{(2)}(k)\right) \approx n k$.

Large sunflowers

- Frankl and Füredi 1985: For fixed r and k we have

$$
\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right) \approx_{r, k} n^{\max \{r-t+1, t\}}
$$

- Chung, Erdős, Graham 1980's: What if we let k grow with n ?
- If $r=2$, Erdős and Gallai proved $\operatorname{ex}\left(n, \mathcal{S}_{0}^{(2)}(k)\right) \approx n k$ and it is trivial to see $\operatorname{ex}\left(n, \mathcal{S}_{1}^{(2)}(k)\right) \approx n k$.
- For $r=3$, we have

Large sunflowers

- Frankl and Füredi 1985: For fixed r and k we have

$$
\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right) \approx_{r, k} n^{\max \{r-t+1, t\}}
$$

- Chung, Erdős, Graham 1980's: What if we let k grow with n ?
- If $r=2$, Erdős and Gallai proved $\operatorname{ex}\left(n, \mathcal{S}_{0}^{(2)}(k)\right) \approx n k$ and it is trivial to see $\operatorname{ex}\left(n, \mathcal{S}_{1}^{(2)}(k)\right) \approx n k$.
- For $r=3$, we have
- Erdős: $\operatorname{ex}\left(n, \mathcal{S}_{0}^{(3)}(k)\right) \approx n^{2} k$

Large sunflowers

- Frankl and Füredi 1985: For fixed r and k we have

$$
\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right) \approx_{r, k} n^{\max \{r-t+1, t\}}
$$

- Chung, Erdős, Graham 1980's: What if we let k grow with n ?
- If $r=2$, Erdős and Gallai proved $\mathrm{ex}\left(n, \mathcal{S}_{0}^{(2)}(k)\right) \approx n k$ and it is trivial to see $\operatorname{ex}\left(n, \mathcal{S}_{1}^{(2)}(k)\right) \approx n k$.
- For $r=3$, we have
- Erdős: $\operatorname{ex}\left(n, \mathcal{S}_{0}^{(3)}(k)\right) \approx n^{2} k$
- Duke and Erdős; Frankl: $\operatorname{ex}\left(n, \mathcal{S}_{1}^{(3)}(k)\right) \approx n k^{2}$ and $\operatorname{ex}\left(n, \mathcal{S}_{2}^{(3)}(k)\right) \approx n^{2} k$

Large sunflowers

- Frankl and Füredi 1985: For fixed r and k we have

$$
\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right) \approx_{r, k} n^{\max \{r-t+1, t\}}
$$

- Chung, Erdős, Graham 1980's: What if we let k grow with n ?
- If $r=2$, Erdős and Gallai proved $\operatorname{ex}\left(n, \mathcal{S}_{0}^{(2)}(k)\right) \approx n k$ and it is trivial to see $\operatorname{ex}\left(n, \mathcal{S}_{1}^{(2)}(k)\right) \approx n k$.
- For $r=3$, we have
- Erdős: $\operatorname{ex}\left(n, \mathcal{S}_{0}^{(3)}(k)\right) \approx n^{2} k$
- Duke and Erdős; Frankl: $\operatorname{ex}\left(n, \mathcal{S}_{1}^{(3)}(k)\right) \approx n k^{2}$ and $\operatorname{ex}\left(n, \mathcal{S}_{2}^{(3)}(k)\right) \approx n^{2} k$
- Chung determined ex $\left(n, \mathcal{S}_{1}^{(3)}(k)\right)$ up to lower order terms.

Large sunflowers

- Frankl and Füredi 1985: For fixed r and k we have

$$
\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right) \approx_{r, k} n^{\max \{r-t+1, t\}}
$$

- Chung, Erdős, Graham 1980's: What if we let k grow with n ?
- If $r=2$, Erdős and Gallai proved $\operatorname{ex}\left(n, \mathcal{S}_{0}^{(2)}(k)\right) \approx n k$ and it is trivial to see $\operatorname{ex}\left(n, \mathcal{S}_{1}^{(2)}(k)\right) \approx n k$.
- For $r=3$, we have
- Erdős: $\operatorname{ex}\left(n, \mathcal{S}_{0}^{(3)}(k)\right) \approx n^{2} k$
- Duke and Erdős; Frankl: $\operatorname{ex}\left(n, \mathcal{S}_{1}^{(3)}(k)\right) \approx n k^{2}$ and $\operatorname{ex}\left(n, \mathcal{S}_{2}^{(3)}(k)\right) \approx n^{2} k$
- Chung determined ex $\left(n, \mathcal{S}_{1}^{(3)}(k)\right)$ up to lower order terms.
- Chung and Frankl determined ex $\left(n, \mathcal{S}_{1}^{(3)}(k)\right)$ precisely.

Large sunflowers

- Frankl and Füredi 1985: For fixed r and k we have

$$
\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right) \approx_{r, k} n^{\max \{r-t+1, t\}}
$$

- Chung, Erdős, Graham 1980's: What if we let k grow with n ?
- If $r=2$, Erdős and Gallai proved $\operatorname{ex}\left(n, \mathcal{S}_{0}^{(2)}(k)\right) \approx n k$ and it is trivial to see $\operatorname{ex}\left(n, \mathcal{S}_{1}^{(2)}(k)\right) \approx n k$.
- For $r=3$, we have
- Erdős: $\operatorname{ex}\left(n, \mathcal{S}_{0}^{(3)}(k)\right) \approx n^{2} k$
- Duke and Erdős; Frankl: $\operatorname{ex}\left(n, \mathcal{S}_{1}^{(3)}(k)\right) \approx n k^{2}$ and $\operatorname{ex}\left(n, \mathcal{S}_{2}^{(3)}(k)\right) \approx n^{2} k$
- Chung determined ex $\left(n, \mathcal{S}_{1}^{(3)}(k)\right)$ up to lower order terms.
- Chung and Frankl determined ex $\left(n, \mathcal{S}_{1}^{(3)}(k)\right)$ precisely.
- The $r=4$ case solved approximately by Bucić, Draganić, Sudakov, Tran.

Main result

Theorem (B., Bucić. and Sudakov)

$$
\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right) \approx_{r} \begin{cases}n^{r-t-1} k^{t+1} & \text { if } t \leq \frac{r-1}{2} \\ n^{t} k^{r-t} & \text { if } t>\frac{r-1}{2}\end{cases}
$$

Main result

Theorem (B., Bucić. and Sudakov)

$$
\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right) \approx_{r} \begin{cases}n^{r-t-1} k^{t+1} & \text { if } t \leq \frac{r-1}{2} \\ n^{t} k^{r-t} & \text { if } t>\frac{r-1}{2}\end{cases}
$$

$$
\operatorname{ex}\left(n, \mathcal{S}_{0}^{(5)}(k)\right) \approx n^{4} k
$$

Main result

Theorem (B., Bucić. and Sudakov)

$$
\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right) \approx_{r} \begin{cases}n^{r-t-1} k^{t+1} & \text { if } t \leq \frac{r-1}{2} \\ n^{t} k^{r-t} & \text { if } t>\frac{r-1}{2}\end{cases}
$$

$$
\operatorname{ex}\left(n, \mathcal{S}_{0}^{(5)}(k)\right) \approx n^{4} k \quad \operatorname{ex}\left(n, \mathcal{S}_{1}^{(5)}(k)\right) \approx n^{3} k^{2}
$$

Main result

Theorem (B., Bucić. and Sudakov)

$$
\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right) \approx_{r} \begin{cases}n^{r-t-1} k^{t+1} & \text { if } t \leq \frac{r-1}{2} \\ n^{t} k^{r-t} & \text { if } t>\frac{r-1}{2}\end{cases}
$$

$\operatorname{ex}\left(n, s_{0}^{(5)}(k)\right) \approx n^{4} k$

$\operatorname{ex}\left(n, s_{1}^{(5)}(k)\right) \approx n^{3} k^{2}$

$\operatorname{ex}\left(n, S_{2}^{(5)}(k)\right) \approx n^{2} k^{3}$

Main result

Theorem (B., Bucić. and Sudakov)

$$
\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right) \approx_{r} \begin{cases}n^{r-t-1} k^{t+1} & \text { if } t \leq \frac{r-1}{2} \\ n^{t} k^{r-t} & \text { if } t>\frac{r-1}{2}\end{cases}
$$

$\operatorname{ex}\left(n, \mathcal{S}_{0}^{(5)}(k)\right) \approx n^{4} k$

$$
\operatorname{ex}\left(n, \mathcal{S}_{3}^{(5)}(k)\right) \approx n^{3} k^{2}
$$

Main result

Theorem (B., Bucić. and Sudakov)

$$
\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right) \approx_{r} \begin{cases}n^{r-t-1} k^{t+1} & \text { if } t \leq \frac{r-1}{2} \\ n^{t} k^{r-t} & \text { if } t>\frac{r-1}{2}\end{cases}
$$

$\operatorname{ex}\left(n, \mathcal{S}_{0}^{(5)}(k)\right) \approx n^{4} k \quad \operatorname{ex}\left(n, \mathcal{S}_{1}^{(5)}(k)\right) \approx n^{3} k^{2} \quad \operatorname{ex}\left(n, \mathcal{S}_{2}^{(5)}(k)\right) \approx n^{2} k^{3}$

$$
\operatorname{ex}\left(n, \mathcal{S}_{3}^{(5)}(k)\right) \approx n^{3} k^{2}
$$

$$
\operatorname{ex}\left(n, \mathcal{S}_{4}^{(5)}(k)\right) \approx n^{4} k
$$

Upper bounds: overview

Theorem (B., Bucić and Sudakov)

$$
\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right) \approx_{r} \begin{cases}n^{r-t-1} k^{t+1} & \text { if } t \leq \frac{r-1}{2} \\ n^{t} k^{r-t} & \text { if } t>\frac{r-1}{2}\end{cases}
$$

We use induction to reduce to the balanced case:

$$
\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right) \leq O\left(n^{t} k^{t+1}\right)
$$

Upper bounds: overview

Theorem (B., Bucić and Sudakov)

$$
\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right) \approx_{r} \begin{cases}n^{r-t-1} k^{t+1} & \text { if } t \leq \frac{r-1}{2} \\ n^{t} k^{r-t} & \text { if } t>\frac{r-1}{2}\end{cases}
$$

We use induction to reduce to the balanced case:

$$
\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right) \leq O\left(n^{t} k^{t+1}\right)
$$

A balanced sunflower:

Upper bounds: overview

Theorem (B., Bucić and Sudakov)

$$
\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right) \approx_{r} \begin{cases}n^{r-t-1} k^{t+1} & \text { if } t \leq \frac{r-1}{2} \\ n^{t} k^{r-t} & \text { if } t>\frac{r-1}{2}\end{cases}
$$

We use induction to reduce to the balanced case:

$$
\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right) \leq O\left(n^{t} k^{t+1}\right)
$$

Upper bounds: ex $\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

- No $\mathcal{S}_{t}^{(2 t+1)}(k) \Longleftrightarrow$ the link of any t-set has no matching of size k

Upper bounds: $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

- No $\mathcal{S}_{t}^{(2 t+1)}(k) \Longleftrightarrow$ the link of any t-set has no matching of size k
\Longrightarrow it has a vertex cover of size $(k-1)(t+1)=O(k)$.

Upper bounds: ex $\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

- No $\mathcal{S}_{t}^{(2 t+1)}(k) \Longleftrightarrow$ the link of any t-set has no matching of size k
\Longrightarrow it has a vertex cover of size $(k-1)(t+1)=O(k)$.
- For every set S of t vertices, fix such a cover $\tau(S)$.

Upper bounds: ex $\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

- No $\mathcal{S}_{t}^{(2 t+1)}(k) \Longleftrightarrow$ the link of any t-set has no matching of size k
\Longrightarrow it has a vertex cover of size $(k-1)(t+1)=O(k)$.
- For every set S of t vertices, fix such a cover $\tau(S)$.
- We try to enumerate all edges using the following strategy:

Upper bounds: ex $\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

- No $\mathcal{S}_{t}^{(2 t+1)}(k) \Longleftrightarrow$ the link of any t-set has no matching of size k \Longrightarrow it has a vertex cover of size $(k-1)(t+1)=O(k)$.
- For every set S of t vertices, fix such a cover $\tau(S)$.
- We try to enumerate all edges using the following strategy:
- Choose a set X of t vertices.

Upper bounds: $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

- No $\mathcal{S}_{t}^{(2 t+1)}(k) \Longleftrightarrow$ the link of any t-set has no matching of size k
\Longrightarrow it has a vertex cover of size $(k-1)(t+1)=O(k)$.
- For every set S of t vertices, fix such a cover $\tau(S)$.
- We try to enumerate all edges using the following strategy:
- Choose a set X of t vertices.
- Choose any vertex $v \in \tau(X)$ and add it to X.

Upper bounds: $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

- No $\mathcal{S}_{t}^{(2 t+1)}(k) \Longleftrightarrow$ the link of any t-set has no matching of size k
\Longrightarrow it has a vertex cover of size $(k-1)(t+1)=O(k)$.
- For every set S of t vertices, fix such a cover $\tau(S)$.
- We try to enumerate all edges using the following strategy:
- Choose a set X of t vertices.
- Choose any vertex $v \in \tau(X)$ and add it to X.
- Until $|X|=2 t+1$, repeat the following: choose a set $S \in\binom{X}{t}$ and a vertex $v \in \tau(S)$ and add v to X.

Upper bounds: $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

- No $\mathcal{S}_{t}^{(2 t+1)}(k) \Longleftrightarrow$ the link of any t-set has no matching of size k
\Longrightarrow it has a vertex cover of size $(k-1)(t+1)=O(k)$.
- For every set S of t vertices, fix such a cover $\tau(S)$.
- We try to enumerate all edges using the following strategy:
- Choose a set X of t vertices.
- Choose any vertex $v \in \tau(X)$ and add it to X.
- Until $|X|=2 t+1$, repeat the following: choose a set $S \in\binom{X}{t}$ and a vertex $v \in \tau(S)$ and add v to X.
- When $|X|=2 t+1$, add X to the list of enumerated $(2 t+1)$-tuples.

Upper bounds: $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

- No $\mathcal{S}_{t}^{(2 t+1)}(k) \Longleftrightarrow$ the link of any t-set has no matching of size k
\Longrightarrow it has a vertex cover of size $(k-1)(t+1)=O(k)$.
- For every set S of t vertices, fix such a cover $\tau(S)$.
- We try to enumerate all edges using the following strategy:
- Choose a set X of t vertices.
- Choose any vertex $v \in \tau(X)$ and add it to X.
- Until $|X|=2 t+1$, repeat the following: choose a set $S \in\binom{X}{t}$ and a vertex $v \in \tau(S)$ and add v to X.
- When $|X|=2 t+1$, add X to the list of enumerated $(2 t+1)$-tuples.

$?$	$?$	$? ?$	$?$

Upper bounds: $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

- No $\mathcal{S}_{t}^{(2 t+1)}(k) \Longleftrightarrow$ the link of any t-set has no matching of size k
\Longrightarrow it has a vertex cover of size $(k-1)(t+1)=O(k)$.
- For every set S of t vertices, fix such a cover $\tau(S)$.
- We try to enumerate all edges using the following strategy:
- Choose a set X of t vertices.
- Choose any vertex $v \in \tau(X)$ and add it to X.
- Until $|X|=2 t+1$, repeat the following: choose a set $S \in\binom{X}{t}$ and a vertex $v \in \tau(S)$ and add v to X.
- When $|X|=2 t+1$, add X to the list of enumerated $(2 t+1)$-tuples.

Upper bounds: $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

- No $\mathcal{S}_{t}^{(2 t+1)}(k) \Longleftrightarrow$ the link of any t-set has no matching of size k
\Longrightarrow it has a vertex cover of size $(k-1)(t+1)=O(k)$.
- For every set S of t vertices, fix such a cover $\tau(S)$.
- We try to enumerate all edges using the following strategy:
- Choose a set X of t vertices.
- Choose any vertex $v \in \tau(X)$ and add it to X.
- Until $|X|=2 t+1$, repeat the following: choose a set $S \in\binom{X}{t}$ and a vertex $v \in \tau(S)$ and add v to X.
- When $|X|=2 t+1$, add X to the list of enumerated $(2 t+1)$-tuples.

Upper bounds: $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

- No $\mathcal{S}_{t}^{(2 t+1)}(k) \Longleftrightarrow$ the link of any t-set has no matching of size k
\Longrightarrow it has a vertex cover of size $(k-1)(t+1)=O(k)$.
- For every set S of t vertices, fix such a cover $\tau(S)$.
- We try to enumerate all edges using the following strategy:
- Choose a set X of t vertices.
- Choose any vertex $v \in \tau(X)$ and add it to X.
- Until $|X|=2 t+1$, repeat the following: choose a set $S \in\binom{X}{t}$ and a vertex $v \in \tau(S)$ and add v to X.
- When $|X|=2 t+1$, add X to the list of enumerated $(2 t+1)$-tuples.

Upper bounds: $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

- No $\mathcal{S}_{t}^{(2 t+1)}(k) \Longleftrightarrow$ the link of any t-set has no matching of size k
\Longrightarrow it has a vertex cover of size $(k-1)(t+1)=O(k)$.
- For every set S of t vertices, fix such a cover $\tau(S)$.
- We try to enumerate all edges using the following strategy:
- Choose a set X of t vertices.
- Choose any vertex $v \in \tau(X)$ and add it to X.
- Until $|X|=2 t+1$, repeat the following: choose a set $S \in\binom{X}{t}$ and a vertex $v \in \tau(S)$ and add v to X.
- When $|X|=2 t+1$, add X to the list of enumerated $(2 t+1)$-tuples.

Upper bounds: $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

- No $\mathcal{S}_{t}^{(2 t+1)}(k) \Longleftrightarrow$ the link of any t-set has no matching of size k
\Longrightarrow it has a vertex cover of size $(k-1)(t+1)=O(k)$.
- For every set S of t vertices, fix such a cover $\tau(S)$.
- We try to enumerate all edges using the following strategy:
- Choose a set X of t vertices.
- Choose any vertex $v \in \tau(X)$ and add it to X.
- Until $|X|=2 t+1$, repeat the following: choose a set $S \in\binom{X}{t}$ and a vertex $v \in \tau(S)$ and add v to X.
- When $|X|=2 t+1$, add X to the list of enumerated $(2 t+1)$-tuples.

Upper bounds: $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

- No $\mathcal{S}_{t}^{(2 t+1)}(k) \Longleftrightarrow$ the link of any t-set has no matching of size k
\Longrightarrow it has a vertex cover of size $(k-1)(t+1)=O(k)$.
- For every set S of t vertices, fix such a cover $\tau(S)$.
- We try to enumerate all edges using the following strategy:
- Choose a set X of t vertices.
- Choose any vertex $v \in \tau(X)$ and add it to X.
- Until $|X|=2 t+1$, repeat the following: choose a set $S \in\binom{X}{t}$ and a vertex $v \in \tau(S)$ and add v to X.
- When $|X|=2 t+1$, add X to the list of enumerated $(2 t+1)$-tuples.

Upper bounds: $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

- No $\mathcal{S}_{t}^{(2 t+1)}(k) \Longleftrightarrow$ the link of any t-set has no matching of size k
\Longrightarrow it has a vertex cover of size $(k-1)(t+1)=O(k)$.
- For every set S of t vertices, fix such a cover $\tau(S)$.
- We try to enumerate all edges using the following strategy:
- Choose a set X of t vertices.
- Choose any vertex $v \in \tau(X)$ and add it to X.
- Until $|X|=2 t+1$, repeat the following: choose a set $S \in\binom{X}{t}$ and a vertex $v \in \tau(S)$ and add v to X.
- When $|X|=2 t+1$, add X to the list of enumerated $(2 t+1)$-tuples.

Upper bounds: $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

- No $\mathcal{S}_{t}^{(2 t+1)}(k) \Longleftrightarrow$ the link of any t-set has no matching of size k
\Longrightarrow it has a vertex cover of size $(k-1)(t+1)=O(k)$.
- For every set S of t vertices, fix such a cover $\tau(S)$.
- We try to enumerate all edges using the following strategy:
- Choose a set X of t vertices.
- Choose any vertex $v \in \tau(X)$ and add it to X.
- Until $|X|=2 t+1$, repeat the following: choose a set $S \in\binom{X}{t}$ and a vertex $v \in \tau(S)$ and add v to X.
- When $|X|=2 t+1$, add X to the list of enumerated $(2 t+1)$-tuples.

Upper bounds: $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

- No $\mathcal{S}_{t}^{(2 t+1)}(k) \Longleftrightarrow$ the link of any t-set has no matching of size k
\Longrightarrow it has a vertex cover of size $(k-1)(t+1)=O(k)$.
- For every set S of t vertices, fix such a cover $\tau(S)$.
- We try to enumerate all edges using the following strategy:
- Choose a set X of t vertices.
- Choose any vertex $v \in \tau(X)$ and add it to X.
- Until $|X|=2 t+1$, repeat the following: choose a set $S \in\binom{X}{t}$ and a vertex $v \in \tau(S)$ and add v to X.
- When $|X|=2 t+1$, add X to the list of enumerated $(2 t+1)$-tuples.

Upper bounds: $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

- No $\mathcal{S}_{t}^{(2 t+1)}(k) \Longleftrightarrow$ the link of any t-set has no matching of size k
\Longrightarrow it has a vertex cover of size $(k-1)(t+1)=O(k)$.
- For every set S of t vertices, fix such a cover $\tau(S)$.
- We try to enumerate all edges using the following strategy:
- Choose a set X of t vertices.
- Choose any vertex $v \in \tau(X)$ and add it to X.
- Until $|X|=2 t+1$, repeat the following: choose a set $S \in\binom{X}{t}$ and a vertex $v \in \tau(S)$ and add v to X.
- When $|X|=2 t+1$, add X to the list of enumerated $(2 t+1)$-tuples.

Upper bounds: $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

- No $\mathcal{S}_{t}^{(2 t+1)}(k) \Longleftrightarrow$ the link of any t-set has no matching of size k
\Longrightarrow it has a vertex cover of size $(k-1)(t+1)=O(k)$.
- For every set S of t vertices, fix such a cover $\tau(S)$.
- We try to enumerate all edges using the following strategy:
- Choose a set X of t vertices.
- Choose any vertex $v \in \tau(X)$ and add it to X.
- Until $|X|=2 t+1$, repeat the following: choose a set $S \in\binom{X}{t}$ and a vertex $v \in \tau(S)$ and add v to X.
- When $|X|=2 t+1$, add X to the list of enumerated $(2 t+1)$-tuples.

Upper bounds: $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

- No $\mathcal{S}_{t}^{(2 t+1)}(k) \Longleftrightarrow$ the link of any t-set has no matching of size k
\Longrightarrow it has a vertex cover of size $(k-1)(t+1)=O(k)$.
- For every set S of t vertices, fix such a cover $\tau(S)$.
- We try to enumerate all edges using the following strategy:
- Choose a set X of t vertices.
- Choose any vertex $v \in \tau(X)$ and add it to X.
- Until $|X|=2 t+1$, repeat the following: choose a set $S \in\binom{X}{t}$ and a vertex $v \in \tau(S)$ and add v to X.
- When $|X|=2 t+1$, add X to the list of enumerated $(2 t+1)$-tuples.

Upper bounds: $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

- No $\mathcal{S}_{t}^{(2 t+1)}(k) \Longleftrightarrow$ the link of any t-set has no matching of size k
\Longrightarrow it has a vertex cover of size $(k-1)(t+1)=O(k)$.
- For every set S of t vertices, fix such a cover $\tau(S)$.
- We try to enumerate all edges using the following strategy:
- Choose a set X of t vertices.
- Choose any vertex $v \in \tau(X)$ and add it to X.
- Until $|X|=2 t+1$, repeat the following: choose a set $S \in\binom{X}{t}$ and a vertex $v \in \tau(S)$ and add v to X.
- When $|X|=2 t+1$, add X to the list of enumerated $(2 t+1)$-tuples.

Upper bounds: $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

- No $\mathcal{S}_{t}^{(2 t+1)}(k) \Longleftrightarrow$ the link of any t-set has no matching of size k
\Longrightarrow it has a vertex cover of size $(k-1)(t+1)=O(k)$.
- For every set S of t vertices, fix such a cover $\tau(S)$.
- We try to enumerate all edges using the following strategy:
- Choose a set X of t vertices.
- Choose any vertex $v \in \tau(X)$ and add it to X.
- Until $|X|=2 t+1$, repeat the following: choose a set $S \in\binom{X}{t}$ and a vertex $v \in \tau(S)$ and add v to X.
- When $|X|=2 t+1$, add X to the list of enumerated $(2 t+1)$-tuples.

n	n	$O(k)$	$O(k)$	$O(k)$
a	\boxed{b}	\boxed{c}	\boxed{d}	e
V	V	$\tau(\{a, b\})$	$\tau(\{a, c\})$	$\tau(\{c, d\})$

Upper bounds: $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

- No $\mathcal{S}_{t}^{(2 t+1)}(k) \Longleftrightarrow$ the link of any t-set has no matching of size k \Longrightarrow it has a vertex cover of size $(k-1)(t+1)=O(k)$.
- For every set S of t vertices, fix such a cover $\tau(S)$.
- We try to enumerate all edges using the following strategy:
- Choose a set X of t vertices.
- Choose any vertex $v \in \tau(X)$ and add it to X.
- Until $|X|=2 t+1$, repeat the following: choose a set $S \in\binom{X}{t}$ and a vertex $v \in \tau(S)$ and add v to X.
- When $|X|=2 t+1$, add X to the list of enumerated $(2 t+1)$-tuples.

Our list has $O\left(n^{t} k^{t+1}\right)(2 t+1)$-tuples, but does it contain all edges?

Upper bounds: $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

Suppose $e=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)$ and we start with $a=v_{1}, b=v_{2}$ and in the first step we choose $c=v_{3} \in \tau\left(\left\{v_{1}, v_{2}\right\}\right)$.

Upper bounds: $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

Suppose $e=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)$ and we start with $a=v_{1}, b=v_{2}$ and in the first step we choose $c=v_{3} \in \tau\left(\left\{v_{1}, v_{2}\right\}\right)$. But maybe $v_{2} \in \tau\left(\left\{v_{1}, v_{3}\right\}\right)$ and $v_{4}, v_{5} \notin \tau\left(\left\{v_{1}, v_{3}\right\}\right)$ so we cannot choose the next vertex from $\tau\left(\left\{v_{1}, v_{3}\right\}\right)$.

Upper bounds: $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

Suppose $e=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)$ and we start with $a=v_{1}, b=v_{2}$ and in the first step we choose $c=v_{3} \in \tau\left(\left\{v_{1}, v_{2}\right\}\right)$. But maybe $v_{2} \in \tau\left(\left\{v_{1}, v_{3}\right\}\right)$ and $v_{4}, v_{5} \notin \tau\left(\left\{v_{1}, v_{3}\right\}\right)$ so we cannot choose the next vertex from $\tau\left(\left\{v_{1}, v_{3}\right\}\right)$. And possibly even v_{1} is the only vertex of e in $\tau\left(\left\{v_{2}, v_{3}\right\}\right)$ and v_{3} the only vertex of e in $\tau\left(\left\{v_{1}, v_{2}\right\}\right)$.

Upper bounds: $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

Suppose $e=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)$ and we start with $a=v_{1}, b=v_{2}$ and in the first step we choose $c=v_{3} \in \tau\left(\left\{v_{1}, v_{2}\right\}\right)$. But maybe $v_{2} \in \tau\left(\left\{v_{1}, v_{3}\right\}\right)$ and $v_{4}, v_{5} \notin \tau\left(\left\{v_{1}, v_{3}\right\}\right)$ so we cannot choose the next vertex from $\tau\left(\left\{v_{1}, v_{3}\right\}\right)$. And possibly even v_{1} is the only vertex of e in $\tau\left(\left\{v_{2}, v_{3}\right\}\right)$ and v_{3} the only vertex of e in $\tau\left(\left\{v_{1}, v_{2}\right\}\right)$.
So we cannot reach $X=e$ with this start.

Upper bounds: $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

Suppose $e=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)$ and we start with $a=v_{1}, b=v_{2}$ and in the first step we choose $c=v_{3} \in \tau\left(\left\{v_{1}, v_{2}\right\}\right)$. But maybe $v_{2} \in \tau\left(\left\{v_{1}, v_{3}\right\}\right)$ and $v_{4}, v_{5} \notin \tau\left(\left\{v_{1}, v_{3}\right\}\right)$ so we cannot choose the next vertex from $\tau\left(\left\{v_{1}, v_{3}\right\}\right)$. And possibly even v_{1} is the only vertex of e in $\tau\left(\left\{v_{2}, v_{3}\right\}\right)$ and v_{3} the only vertex of e in $\tau\left(\left\{v_{1}, v_{2}\right\}\right)$.
So we cannot reach $X=e$ with this start. However, maybe if we started with e.g. $a=v_{3}, b=v_{4} \ldots$

Upper bounds: ex $\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

We counted every edge unless there exists a $(t+1, t)$-system on the ground set of size $2 t+1$.

Upper bounds: $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

We counted every edge unless there exists a $(t+1, t)$-system on the ground set of size $2 t+1$.

Definition

A family $\mathcal{F} \subseteq 2^{[2 t+1]}$ is a $(t+1, t)$-system if:

1. $A \cap B \in \mathcal{F}, \forall A, B \in \mathcal{F}$,

Upper bounds: $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

We counted every edge unless there exists a $(t+1, t)$-system on the ground set of size $2 t+1$.

Definition

A family $\mathcal{F} \subseteq 2^{[2 t+1]}$ is a $(t+1, t)$-system if:

1. $A \cap B \in \mathcal{F}, \forall A, B \in \mathcal{F}$,
2. for every set $K \in\binom{[2 t+1]}{t}$, there is a set $A \in \mathcal{F}, K \subseteq A$,

Upper bounds: $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

We counted every edge unless there exists a $(t+1, t)$-system on the ground set of size $2 t+1$.

Definition

A family $\mathcal{F} \subseteq 2^{[2 t+1]}$ is a $(t+1, t)$-system if:

1. $A \cap B \in \mathcal{F}, \forall A, B \in \mathcal{F}$,
2. for every set $K \in\binom{[2 t+1]}{t}$, there is a set $A \in \mathcal{F}, K \subseteq A$,
3. $|A| \notin\{t, 2 t+1\}$ for all $A \in \mathcal{F}$.

Upper bounds: $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

We counted every edge unless there exists a $(t+1, t)$-system on the ground set of size $2 t+1$.

Definition

A family $\mathcal{F} \subseteq 2^{[2 t+1]}$ is a $(t+1, t)$-system if:

1. $A \cap B \in \mathcal{F}, \forall A, B \in \mathcal{F}$,
2. for every set $K \in\binom{[2 t+1]}{t}$, there is a set $A \in \mathcal{F}, K \subseteq A$,
3. $|A| \notin\{t, 2 t+1\}$ for all $A \in \mathcal{F}$.

Why? Let $e=\left(v_{1}, v_{2}, \ldots, v_{2 t+1}\right)$ and consider the function $f:\binom{[2 t+1]}{t} \rightarrow[2 t+1]$ which maps $\left(i_{1}, \ldots i_{t}\right)$ to a different index j such that $v_{j} \in \tau\left(\left\{v_{i_{1}}, \ldots, v_{i_{t}}\right\}\right)$.

Upper bounds: $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$

We counted every edge unless there exists a $(t+1, t)$-system on the ground set of size $2 t+1$.

Definition

A family $\mathcal{F} \subseteq 2^{[2 t+1]}$ is a $(t+1, t)$-system if:

1. $A \cap B \in \mathcal{F}, \forall A, B \in \mathcal{F}$,
2. for every set $K \in\binom{[2 t+1]}{t}$, there is a set $A \in \mathcal{F}, K \subseteq A$,
3. $|A| \notin\{t, 2 t+1\}$ for all $A \in \mathcal{F}$.

Why? Let $e=\left(v_{1}, v_{2}, \ldots, v_{2 t+1}\right)$ and consider the function $f:\binom{[2 t+1]}{t} \rightarrow[2 t+1]$ which maps $\left(i_{1}, \ldots i_{t}\right)$ to a different index j such that $v_{j} \in \tau\left(\left\{v_{i_{1}}, \ldots, v_{i_{t}}\right\}\right)$.
A $(t+1, t)$ system on $[2 t+1]$ does not exist so we counted all edges.

Further directions

- We determined the dependency of $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right)$ on n and k.

Further directions

- We determined the dependency of $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right)$ on n and k.

Problem 1

What is the dependency on r ?

Further directions

- We determined the dependency of $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right)$ on n and k.

Problem 1

What is the dependency on r ?

Problem 2

What if we forbid a collection of r-uniform sunflowers?

Further directions

- We determined the dependency of $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right)$ on n and k.

Abstract

Problem 1 What is the dependency on r ?

Problem 2

What if we forbid a collection of r-uniform sunflowers?

Problem 3 (Chung-Erdős unavoidability problem, 1983)

Among r-uniform hypergraphs with e edges which is hardest to avoid?

Further directions

- We determined the dependency of $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right)$ on n and k.

Abstract

Problem 1 What is the dependency on r ?

Problem 2

What if we forbid a collection of r-uniform sunflowers?

Problem 3 (Chung-Erdős unavoidability problem, 1983)

Among r-uniform hypergraphs with e edges which is hardest to avoid?

- Known for $r \leq 4$, up to constant factor.

