The Turán number of the grid

Domagoj Bradač

ETH Zürich

joint work with Oliver Janzer, Benny Sudakov and István Tomon

Domagoj Bradač (ETH Zürich)

The Turán number of the grid

Random Structures & Algorithms 2022

Given a graph F, the Turán or extremal number ex(n, F) of F is the max number of edges in an n-vertex graph with no copy of F.

Given a graph F, the Turán or extremal number ex(n, F) of F is the max number of edges in an n-vertex graph with no copy of F.

• Mantel 1907: $ex(n, K_3) = \lfloor n^2/4 \rfloor$.

Given a graph F, the Turán or extremal number ex(n, F) of F is the max number of edges in an n-vertex graph with no copy of F.

- Mantel 1907: $ex(n, K_3) = \lfloor n^2/4 \rfloor$.
- Turán 1941: $ex(n, K_r) = e(T_{n,r-1}) = (1 \frac{1}{r-1} + o(1))\binom{n}{2}$.

Given a graph F, the Turán or extremal number ex(n, F) of F is the max number of edges in an n-vertex graph with no copy of F.

• Mantel 1907:
$$ex(n, K_3) = \lfloor n^2/4 \rfloor$$
.

• Turán 1941:
$$ex(n, K_r) = e(T_{n,r-1}) = (1 - \frac{1}{r-1} + o(1))\binom{n}{2}$$
.

• Erdős, Stone 1946: $ex(n, F) = (1 - \frac{1}{\chi(F) - 1} + o(1))\binom{n}{2}$.

Given a graph F, the Turán or extremal number ex(n, F) of F is the max number of edges in an n-vertex graph with no copy of F.

• Mantel 1907:
$$ex(n, K_3) = \lfloor n^2/4 \rfloor$$
.

• Turán 1941:
$$ex(n, K_r) = e(T_{n,r-1}) = (1 - \frac{1}{r-1} + o(1))\binom{n}{2}$$
.

- Erdős, Stone 1946: $ex(n, F) = (1 \frac{1}{\chi(F) 1} + o(1))\binom{n}{2}$.
- Kövári, Sós, Turán 1954: if F is bipartite, then $\mathrm{ex}(n,F)=O(n^{2-\varepsilon_F}).$

Given a graph F, the Turán or extremal number ex(n, F) of F is the max number of edges in an n-vertex graph with no copy of F.

• Mantel 1907:
$$ex(n, K_3) = \lfloor n^2/4 \rfloor$$
.

• Turán 1941:
$$ex(n, K_r) = e(T_{n,r-1}) = (1 - \frac{1}{r-1} + o(1))\binom{n}{2}$$
.

- Erdős, Stone 1946: $ex(n, F) = (1 \frac{1}{\chi(F) 1} + o(1))\binom{n}{2}$.
- Kövári, Sós, Turán 1954: if F is bipartite, then $\mathrm{ex}(n,F)=O(n^{2-\varepsilon_F}).$
- Poorly understood for general bipartite graphs, e.g. not known for $C_8, K_{4,4}, Q_3.$

A graph is r-degenerate if each of its subgraphs has minimum degree at most r.

A graph is r-degenerate if each of its subgraphs has minimum degree at most r.

Conjecture (Erdős 1966)

A graph is r-degenerate if each of its subgraphs has minimum degree at most r.

Conjecture (Erdős 1966)

If F is bipartite and r-degnerate, then $ex(n, F) = O(n^{2-\frac{1}{r}})$.

• Füredi 1991: true when one side of F has maximum degree at most r.

A graph is r-degenerate if each of its subgraphs has minimum degree at most r.

Conjecture (Erdős 1966)

- Füredi 1991: true when one side of F has maximum degree at most r.
- Known for some special cases.

A graph is r-degenerate if each of its subgraphs has minimum degree at most r.

Conjecture (Erdős 1966)

- Füredi 1991: true when one side of F has maximum degree at most r.
- Known for some special cases.
- Even r = 2 is open and interesting.

A graph is r-degenerate if each of its subgraphs has minimum degree at most r.

Conjecture (Erdős 1966)

- Füredi 1991: true when one side of F has maximum degree at most r.
- Known for some special cases.
- Even r = 2 is open and interesting.
- Alon, Krivelevich, Sudakov 2003: $ex(n, F) = O(n^{2-\frac{1}{4r}})$.

Our result

Theorem (B., Janzer, Sudakov, Tomon 2022+)

For fixed $t \ge 2$, the $t \times t$ grid F_t satisfies $ex(n, F_t) = \Theta_t(n^{3/2})$.

Our result

Theorem (B., Janzer, Sudakov, Tomon 2022+)

For fixed $t \ge 2$, the $t \times t$ grid F_t satisfies $ex(n, F_t) = \Theta_t(n^{3/2})$.

 F_t contains a 4-cycle, so we only need to prove $ex(n, F_t) = O(n^{3/2})$.

 \bullet Clemens, Miralaei, Reding, Schacht and Taraz and Conlon, Nenadov and Trujić studied the size Ramsey number of $F_t.$

- Clemens, Miralaei, Reding, Schacht and Taraz and Conlon, Nenadov and Trujić studied the size Ramsey number of F_t .
- Kim, Lee and Lee proved Sidorenko's conjecture for grids in arbitrary dimension.

- Clemens, Miralaei, Reding, Schacht and Taraz and Conlon, Nenadov and Trujić studied the size Ramsey number of F_t .
- Kim, Lee and Lee proved Sidorenko's conjecture for grids in arbitrary dimension.
- Füredi and Ruszinkó studied an extremal problem for a certain hypergraph grid graph.

• Prove
$$ex(n, F_t) = O(n^{3/2}(\log n)^t)$$
.

• Prove
$$ex(n, F_t) = O(n^{3/2} (\log n)^t)$$
.

2 Get rid of the polylog factor using the tensor power trick.

Setting:

• G is almost regular, i.e. $\Delta(G)/\delta(G) = O(1)$ with average degree d, where $d = \alpha n^{1/2}$ and $\alpha = (\log n)^t$.

Setting:

- G is almost regular, i.e. $\Delta(G)/\delta(G) = O(1)$ with average degree d, where $d = \alpha n^{1/2}$ and $\alpha = (\log n)^t$.
- For every edge $uv \in E(G)$, there are $\Omega(d)$ neighbours w of u such that $d(v,w) \geq \alpha$.

Setting:

- G is almost regular, i.e. $\Delta(G)/\delta(G) = O(1)$ with average degree d, where $d = \alpha n^{1/2}$ and $\alpha = (\log n)^t$.
- For every edge $uv \in E(G)$, there are $\Omega(d)$ neighbours w of u such that $d(v,w) \geq \alpha$.

Setting:

- G is almost regular, i.e. $\Delta(G)/\delta(G) = O(1)$ with average degree d, where $d = \alpha n^{1/2}$ and $\alpha = (\log n)^t$.
- For every edge $uv \in E(G)$, there are $\Omega(d)$ neighbours w of u such that $d(v,w) \geq \alpha$.

Strategy:

• Find many *ladders*, i.e. $2 \times t$ grids.

Setting:

- G is almost regular, i.e. $\Delta(G)/\delta(G) = O(1)$ with average degree d, where $d = \alpha n^{1/2}$ and $\alpha = (\log n)^t$.
- For every edge $uv \in E(G)$, there are $\Omega(d)$ neighbours w of u such that $d(v,w) \geq \alpha$.

- Find many *ladders*, i.e. $2 \times t$ grids.
- Glue the ladders to form a grid without repeating vertices.

Domagoj Bradač (ETH Zürich)

The Turán number of the grid

Random Structures & Algorithms 2022

Setting:

- G is almost regular, i.e. $\Delta(G)/\delta(G) = O(1)$ with average degree d, where $d = \alpha n^{1/2}$ and $\alpha \gg (\log n)^t$.
- For every edge $uv \in E(G)$, there are $\Omega(d)$ neighbours w of u such that $d(v,w) \geq \alpha$.

- Find many *ladders*, i.e. $2 \times t$ grids.
- Glue the ladders to form a grid without repeating vertices.

Setting:

- G is almost regular, i.e. $\Delta(G)/\delta(G) = O(1)$ with average degree d, where $d = \alpha n^{1/2}$ and $\alpha \gg (\log n)^t$.
- For every edge $uv \in E(G)$, there are $\Omega(d)$ neighbours w of u such that $d(v,w) \geq \alpha$.

- Find many *ladders*, i.e. $2 \times t$ grids.
- Glue the ladders to form a grid without repeating vertices.
- To do this we would like an upper bound on the number of ways to extend a path on t vertices to a ladder containing a particular vertex.

Setting:

- G is almost regular, i.e. $\Delta(G)/\delta(G) = O(1)$ with average degree d, where $d = \alpha n^{1/2}$ and $\alpha \gg (\log n)^t$.
- For every edge $uv \in E(G)$, there are $\Omega(d)$ neighbours w of u such that $d(v,w) \geq \alpha$.

- Find many *ladders*, i.e. $2 \times t$ grids while controlling certain codegrees.
- Glue the ladders to form a grid without repeating vertices.
- To do this we would like an upper bound on the number of ways to extend a path on t vertices to a ladder containing a particular vertex.

Proof of
$$\mathsf{ex}(n,F_t) = O(n^{3/2}(\log n)^t)$$

Claim

We can find integers $s_1, s_2, \ldots s_{t-1} \ge \alpha$ s.t. there are $\Omega\left(\frac{nd^t \prod_{i=1}^{t-1} s_i}{(\log n)^{t-1}}\right)$ ladders with $d_i \in [s_i/2, s_i], i \in [t-1]$.

Proof of
$$\mathsf{ex}(n,F_t) = O(n^{3/2}(\log n)^t)$$

Claim

We can find integers $s_1, s_2, \ldots s_{t-1} \ge \alpha$ s.t. there are $\Omega\left(\frac{nd^t \prod_{i=1}^{t-1} s_i}{(\log n)^{t-1}}\right)$ ladders with $d_i \in [s_i/2, s_i], i \in [t-1]$.

 \bullet Let ${\mathcal F}$ be the collection of such ladders.
Proof of
$$ex(n, F_t) = O(n^{3/2} (\log n)^t)$$

We can find integers $s_1, s_2, \ldots s_{t-1} \ge \alpha$ s.t. there are $\Omega\left(\frac{nd^t \prod_{i=1}^{t-1} s_i}{(\log n)^{t-1}}\right)$ ladders with $d_i \in [s_i/2, s_i], i \in [t-1]$.

- \bullet Let ${\mathcal F}$ be the collection of such ladders.
- Build an auxiliary graph \mathcal{H} whose vertices are paths on t vertices and edges correspond to ladders in \mathcal{F} .

Proof of
$$ex(n, F_t) = O(n^{3/2} (\log n)^t)$$

We can find integers $s_1, s_2, \ldots s_{t-1} \ge \alpha$ s.t. there are $\Omega\left(\frac{nd^t \prod_{i=1}^{t-1} s_i}{(\log n)^{t-1}}\right)$ ladders with $d_i \in [s_i/2, s_i], i \in [t-1]$.

- \bullet Let ${\mathcal F}$ be the collection of such ladders.
- Build an auxiliary graph \mathcal{H} whose vertices are paths on t vertices and edges correspond to ladders in \mathcal{F} .
- We want to find a path of length t-1 in \mathcal{H} while avoiding collisions.

Proof of
$$ex(n, F_t) = O(n^{3/2} (\log n)^t)$$

We can find integers $s_1, s_2, \ldots s_{t-1} \ge \alpha$ s.t. there are $\Omega\left(\frac{nd^t \prod_{i=1}^{t-1} s_i}{(\log n)^{t-1}}\right)$ ladders with $d_i \in [s_i/2, s_i], i \in [t-1]$.

- \bullet Let ${\mathcal F}$ be the collection of such ladders.
- Build an auxiliary graph \mathcal{H} whose vertices are paths on t vertices and edges correspond to ladders in \mathcal{F} .
- We want to find a path of length t-1 in \mathcal{H} while avoiding collisions.
- Let $\mathcal{H}' \subseteq \mathcal{H}$ satisfy

$$\delta(\mathcal{H}') \ge \bar{d}(\mathcal{H})/2 \ge \frac{|\mathcal{F}|}{O(nd^{t-1})} \ge \Omega\left(\frac{d\prod_{i=1}^{t-1} s_i}{(\log n)^{t-1}}\right)$$

Proof of
$$\mathsf{ex}(n,F_t) = O(n^{3/2}(\log n)^t)$$

We can find integers $s_1, s_2, \ldots s_{t-1} \ge \alpha$ s.t. there are $\Omega\left(\frac{nd^t \prod_{i=1}^{t-1} s_i}{(\log n)^{t-1}}\right)$ ladders with $d_i \in [s_i/2, s_i], i \in [t-1]$.

- \bullet Let ${\mathcal F}$ be the collection of such ladders.
- Build an auxiliary graph \mathcal{H} whose vertices are paths on t vertices and edges correspond to ladders in \mathcal{F} .
- We want to find a path of length t-1 in \mathcal{H} while avoiding collisions.
- Let $\mathcal{H}' \subseteq \mathcal{H}$ satisfy

$$\delta(\mathcal{H}') \ge \bar{d}(\mathcal{H})/2 \ge \frac{|\mathcal{F}|}{O(nd^{t-1})} \ge \Omega\left(\frac{d\prod_{i=1}^{t-1} s_i}{(\log n)^{t-1}}\right)$$

• Enough to show: for a (t-1)-path P and a fixed vertex $v \in V(G)$, the number of P' with $(P, P') \in E(\mathcal{H})$ containing v is $o(\delta(\mathcal{H}'))$.

Domagoj Bradač (ETH Zürich)

Domagoj Bradač (ETH Zürich)

Want: for a path $P = (x_1, \ldots, x_t)$ and $v \in V(G)$, the number of P' with $(P, P') \in E(\mathcal{H})$ containing v is $o\left(\frac{d\prod_{i=1}^{t-1} s_i}{(\log n)^{t-1}}\right)$.

In total:
$$\frac{d\prod_{i=1}^{t-1}s_i}{s_j} = o\left(\frac{d\prod_{i=1}^{t-1}s_i}{(\log n)^{t-1}}\right) \text{ since } s_j \ge \alpha = (\log n)^t.$$

Domagoj Bradač (ETH Zürich)

Claim

$$\exists s_1, \dots s_{t-1} \ge \alpha \text{ s.t. there are } \Omega\left(\frac{nd^t \prod_{i=1}^{t-1} s_i}{(\log n)^{t-1}}\right) \text{ ladders with } d_i \in [s_i/2, s_i].$$

Claim

$$\exists s_1, \dots s_{t-1} \ge \alpha \text{ s.t. there are } \Omega\left(\frac{nd^t \prod_{i=1}^{t-1} s_i}{(\log n)^{t-1}}\right) \text{ ladders with } d_i \in [s_i/2, s_i].$$

Dyadic pigeonholing

Claim

$$\exists s_1, \dots s_{t-1} \ge \alpha \text{ s.t. there are } \Omega\left(\frac{nd^t \prod_{i=1}^{t-1} s_i}{(\log n)^{t-1}}\right) \text{ ladders with } d_i \in [s_i/2, s_i].$$

Dyadic pigeonholing

Given $a_1, \ldots, a_m \in [1, n]$, there is an interval [s/2, s] containing at least $m/\log n$ of them.

Proof. Consider intervals $[1,2], [2,4], [4,8] \dots$ and take the best one.

Claim

$$\exists s_1, \dots s_{t-1} \ge \alpha$$
 s.t. there are $\Omega\left(\frac{nd^t \prod_{i=1}^{t-1} s_i}{(\log n)^{t-1}}\right)$ ladders with $d_i \in [s_i/2, s_i]$.

Dyadic pigeonholing

Given $a_1, \ldots, a_m \in [1, n]$, there is an interval [s/2, s] containing at least $m/\log n$ of them.

 $n x_1 \bullet$

Claim

$$\exists s_1, \dots s_{t-1} \ge \alpha$$
 s.t. there are $\Omega\left(\frac{nd^t \prod_{i=1}^{t-1} s_i}{(\log n)^{t-1}}\right)$ ladders with $d_i \in [s_i/2, s_i]$.

Dyadic pigeonholing

Given $a_1, \ldots, a_m \in [1, n]$, there is an interval [s/2, s] containing at least $m/\log n$ of them.

 $n \quad x_1 \quad \bullet \quad y_1 \quad d$

Claim

$$\exists s_1, \dots s_{t-1} \ge \alpha$$
 s.t. there are $\Omega\left(\frac{nd^t \prod_{i=1}^{t-1} s_i}{(\log n)^{t-1}}\right)$ ladders with $d_i \in [s_i/2, s_i]$.

Dyadic pigeonholing

Claim

$$\exists s_1, \dots s_{t-1} \ge \alpha$$
 s.t. there are $\Omega\left(\frac{nd^t \prod_{i=1}^{t-1} s_i}{(\log n)^{t-1}}\right)$ ladders with $d_i \in [s_i/2, s_i]$.

Dyadic pigeonholing

Claim

$$\exists s_1, \dots s_{t-1} \ge \alpha$$
 s.t. there are $\Omega\left(\frac{nd^t \prod_{i=1}^{t-1} s_i}{(\log n)^{t-1}}\right)$ ladders with $d_i \in [s_i/2, s_i]$.

Dyadic pigeonholing

Claim

$$\exists s_1, \dots s_{t-1} \ge \alpha$$
 s.t. there are $\Omega\left(\frac{nd^t \prod_{i=1}^{t-1} s_i}{(\log n)^{t-1}}\right)$ ladders with $d_i \in [s_i/2, s_i]$.

Dyadic pigeonholing

Claim

$$\exists s_1, \dots s_{t-1} \ge \alpha$$
 s.t. there are $\Omega\left(\frac{nd^t \prod_{i=1}^{t-1} s_i}{(\log n)^{t-1}}\right)$ ladders with $d_i \in [s_i/2, s_i]$.

Dyadic pigeonholing

Claim

$$\exists s_1, \dots s_{t-1} \ge \alpha$$
 s.t. there are $\Omega\left(\frac{nd^t \prod_{i=1}^{t-1} s_i}{(\log n)^{t-1}}\right)$ ladders with $d_i \in [s_i/2, s_i]$.

Dyadic pigeonholing

Claim

$$\exists s_1, \dots s_{t-1} \ge \alpha$$
 s.t. there are $\Omega\left(\frac{nd^t \prod_{i=1}^{t-1} s_i}{(\log n)^{t-1}}\right)$ ladders with $d_i \in [s_i/2, s_i]$.

Dyadic pigeonholing

Claim

$$\exists s_1, \dots s_{t-1} \ge \alpha$$
 s.t. there are $\Omega\left(\frac{nd^t \prod_{i=1}^{t-1} s_i}{(\log n)^{t-1}}\right)$ ladders with $d_i \in [s_i/2, s_i]$.

Dyadic pigeonholing

Claim

$$\exists s_1, \dots s_{t-1} \ge \alpha$$
 s.t. there are $\Omega\left(\frac{nd^t \prod_{i=1}^{t-1} s_i}{(\log n)^{t-1}}\right)$ ladders with $d_i \in [s_i/2, s_i]$.

Dyadic pigeonholing

Given $a_1, \ldots, a_m \in [1, n]$, there is an interval [s/2, s] containing at least $m/\log n$ of them.

Random Structures & Algorithms 2022

• We might hope that finding an F_t in G^k gives us an F_t in G.

- We might hope that finding an F_t in G^k gives us an F_t in G.
- Not true, so we cannot use the tensor power trick as a black box.

- We might hope that finding an F_t in G^k gives us an F_t in G.
- Not true, so we cannot use the tensor power trick as a black box.
- Instead we do the whole proof inside G^k and find a copy of F_t such that in at least one coordinate $i \in [k]$, all vertices are distinct in G.
The k^{th} tensor power G^k of a graph G is the graph with vertices $(v_1, \ldots, v_k) \in V(G)^k$ and where $(v_1, \ldots, v_k) \sim (u_1, \ldots, u_k)$ iff $v_i \sim u_i, \forall i \in [k]$.

- We might hope that finding an F_t in G^k gives us an F_t in G.
- Not true, so we cannot use the tensor power trick as a black box.
- Instead we do the whole proof inside G^k and find a copy of F_t such that in at least one coordinate $i \in [k]$, all vertices are distinct in G.
- When finding extensions, we make sure not to ruin too many coordinates.

Theorem (B., Janzer, Sudakov, Tomon 2022+)

Let P and T be a path and a tree with at least one edge each. Then $\exp(n,P\Box T)=\Theta(n^{3/2}).$

Open problems:

- Prove $ex(T_1 \Box T_2) = O(n^{3/2})$ for any two trees T_1, T_2 .
- Prove $ex(n, F_t^{(d)}) = O(n^{2-1/d})$ for the *d*-dimensional grid $F_t^{(d)}$.
- Determine the correct dependence of $ex(n, F_t)$ on t. We can show $ct^{1/2}n^{3/2} \le ex(n, F_t) \le e^{O(t^5)}n^{3/2}$.
- Erdős' conjecture.

Domagoj Bradač (ETH Zürich)

The Turán number of the grid

Random Structures & Algorithms 2022