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Given a graph F, the Turdn or extremal number ex(n, F') of F' is the max
number of edges in an n-vertex graph with no copy of F.
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Turan numbers

Given a graph F, the Turdn or extremal number ex(n, F') of F is the max
number of edges in an n-vertex graph with no copy of F.

e Mantel 1907: ex(n, K3) = |n?/4].
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Turan numbers

Given a graph F, the Turdn or extremal number ex(n, F') of F is the max
number of edges in an n-vertex graph with no copy of F.

e Mantel 1907: ex(n, K3) = |n?/4].
o Turdn 1941: ex(n, K,) = e(Tp,—1) = (1 — L5 +0(1))(3).
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Turan numbers

Given a graph F, the Turdn or extremal number ex(n, F') of F is the max
number of edges in an n-vertex graph with no copy of F.

e Mantel 1907: ex(n, K3) = |n?/4].
o Turdn 1941: ex(n, K,) = e(Tp,—1) = (1 — L5 +0(1))(3).

e Erdds, Stone 1946: ex(n, F) = (1 — ﬁ +0(1))(3).
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Turan numbers

Given a graph F, the Turdn or extremal number ex(n, F') of F is the max
number of edges in an n-vertex graph with no copy of F.

e Mantel 1907: ex(n, K3) = |n?/4].
o Turdn 1941: ex(n, K,) = e(Tnyr_1) = (1 — L +o(1)(y).
e Erdés, Stone 1946: ex(n, F') = (1 — x(F) -+ 0(1))(5)-

@ Koviari, Sés, Turdn 1954: if F is bipartite, then ex(n, F) = O(n?=¢F).
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Turan numbers

Given a graph F, the Turdn or extremal number ex(n, F') of F is the max
number of edges in an n-vertex graph with no copy of F.

e Mantel 1907: ex(n, K3) = |n?/4].

o Turdn 1941: ex(n, K,) = e(Tnyr_1) = (1 — L +o(1)(y).

e Erdés, Stone 1946: ex(n, F') = (1 — x(F) -+ 0(1))(5)-

@ Koviari, Sés, Turdn 1954: if F is bipartite, then ex(n, F) = O(n?=¢F).

@ Poorly understood for general bipartite graphs, e.g. not known for
Cs, K44, Q3.
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A graph is r-degenerate if each of its subgraphs has minimum degree at
most r.
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Erd6s’ conjecture

A graph is r-degenerate if each of its subgraphs has minimum degree at
most .

.

If F is bipartite and r-degnerate, then ex(n, F') = O(nQ_%).

.
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Erd6s’ conjecture

A graph is r-degenerate if each of its subgraphs has minimum degree at
most .

v,

If F is bipartite and r-degnerate, then ex(n, F') = O(nQ_%).

.

o Fiiredi 1991: true when one side of F' has maximum degree at most 7.
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Erd6s’ conjecture

A graph is r-degenerate if each of its subgraphs has minimum degree at
most .

v,

If F is bipartite and r-degnerate, then ex(n, F') = O(nQ_%).

.

o Fiiredi 1991: true when one side of F' has maximum degree at most 7.
@ Known for some special cases.
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Erd6s’ conjecture

A graph is r-degenerate if each of its subgraphs has minimum degree at
most .

v,

If F is bipartite and r-degnerate, then ex(n, F') = O(nQ_%).

.

o Fiiredi 1991: true when one side of F' has maximum degree at most 7.
@ Known for some special cases.

@ Even r = 2 is open and interesting.
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Erd6s’ conjecture

A graph is r-degenerate if each of its subgraphs has minimum degree at
most .

v,

If F is bipartite and r-degnerate, then ex(n, F') = O(nQ_%).

.

o Fiiredi 1991: true when one side of F' has maximum degree at most 7.
@ Known for some special cases.
@ Even r = 2 is open and interesting.

1

@ Alon, Krivelevich, Sudakov 2003: ex(n, F') = O(nQ_E).
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Our result

Theorem (B., Janzer, Sudakov, Tomon 2022+)
For fixed t > 2, the t x t grid Fy satisfies ex(n, Fy) = ©(n?/?).

Domagoj Brada& (ETH Ziirich) The Turan number of the grid Random Structures & Algorithms 2022



Our result

Theorem (B., Janzer, Sudakov, Tomon 2022+)
For fixed t > 2, the t x t grid Fy satisfies ex(n, Fy) = ©(n?/?).

F} contains a 4-cycle, so we only need to prove ex(n, Fy) = O(n3/?).
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@ Clemens, Miralaei, Reding, Schacht and Taraz and Conlon, Nenadov and
Truji¢ studied the size Ramsey number of Fj.
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Other extremal results on grids

@ Clemens, Miralaei, Reding, Schacht and Taraz and Conlon, Nenadov and
Truji¢ studied the size Ramsey number of Fj.

@ Kim, Lee and Lee proved Sidorenko's conjecture for grids in arbitrary
dimension.
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Other extremal results on grids

@ Clemens, Miralaei, Reding, Schacht and Taraz and Conlon, Nenadov and
Truji¢ studied the size Ramsey number of Fj.

@ Kim, Lee and Lee proved Sidorenko's conjecture for grids in arbitrary
dimension.

@ Firedi and Ruszinké studied an extremal problem for a certain
hypergraph grid graph.
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@ Prove ex(n, Fy) = O(n®?(logn)?!).



@ Prove ex(n, Fy) = O(n®?(logn)?!).
@ Get rid of the polylog factor using the tensor power trick.
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Setting:
e G is almost regular, i.e. A(G)/6(G) = O(1) with average degree d,
where d = an'/? and o = (logn)’.
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Proof sketch of ex(n, F}) = O(n*?(logn)?)

Setting:

e G is almost regular, i.e. A(G)/d(G) = O(1) with average degree d,
where d = an'/? and o = (logn)*.

@ For every edge uv € E(G), there are Q(d) neighbours w of u such that
d(v,w) > a.
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Proof sketch of ex(n, F}) = O(n*?(logn)?)

Setting:
e G is almost regular, i.e. A(G)/d(G) = O(1) with average degree d,
where d = an'/? and o = (logn)*.
@ For every edge uv € E(G), there are Q(d) neighbours w of u such that
d(v,w) > a.
U v
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Proof sketch of ex(n, F}) = O(n*?(logn)?)
Setting:

e G is almost regular, i.e. A(G)/0(G) = O(1) with average degree d,
where d = an'/? and a = (logn)*.

@ For every edge uv € E(G), there are Q(d) neighbours w of u such that
d(v,w) > a.

Strategy:
e Find many ladders, i.e. 2 x t grids.
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Proof sketch of ex(n, F}) = O(n*?(logn)?)

Setting:

e G is almost regular, i.e. A(G)/0(G) = O(1) with average degree d,
where d = an'/? and a = (logn)*.

@ For every edge uv € E(G), there are Q(d) neighbours w of u such that
d(v,w) > a.

Strategy:
e Find many ladders, i.e. 2 x t grids.

@ Glue the ladders to form a grid without repeating vertices.
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Proof sketch of ex(n, F}) = O(n*/?(logn)")
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Proof sketch of ex(n, F}) = O(n*/?(logn)")
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Proof sketch of ex(n, F}) = O(n*?(logn)?)
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Proof sketch of ex(n, F}) = O(n*?(logn)?)
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Proof sketch of ex(n, F}) = O(n*?(logn)?)

[ 4 \ 4 4 \ 4 9
[ \ 4 4 4 ®
[ 4 \ 4 L 4 \ 4 ®
v
[ 4 \ 4 L 4 \ 4 \ 4
(%
[ \ 4 4 4 ®
@ @ @ @ ®
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Proof sketch of ex(n, F}) = O(n*?(logn)?)

Setting:

e G is almost regular, i.e. A(G)/d(G) = O(1) with average degree d,
where d = an'/? and o > (logn)*.

@ For every edge uv € E(G), there are Q(d) neighbours w of u such that
d(v,w) > a.

Strategy:
@ Find many /adders, i.e. 2 X t grids.

@ Glue the ladders to form a grid without repeating vertices.
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Proof sketch of ex(n, F}) = O(n*?(logn)?)

Setting:
e G is almost regular, i.e. A(G)/0(G) = O(1) with average degree d,
where d = an'/? and a > (logn)".

@ For every edge uv € E(G), there are Q(d) neighbours w of u such that
d(v,w) > a.

Strategy:
@ Find many /adders, i.e. 2 X t grids.
@ Glue the ladders to form a grid without repeating vertices.

@ To do this we would like an upper bound on the number of ways to
extend a path on t vertices to a ladder containing a particular vertex.
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Proof sketch of ex(n, F}) = O(n*?(logn)?)

Setting:
e G is almost regular, i.e. A(G)/d(G) = O(1) with average degree d,
where d = an'/? and o > (logn)*.

@ For every edge uv € E(G), there are Q(d) neighbours w of u such that
d(v,w) > a.

Strategy:
@ Find many /adders, i.e. 2 x t grids while controlling certain codegrees.
@ Glue the ladders to form a grid without repeating vertices.

@ To do this we would like an upper bound on the number of ways to
extend a path on t vertices to a ladder containing a particular vertex.
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dy = d($2;yl)

dy = d(z3,y2)
d3 = d(z4,ys)
dy = d(zs5, y4)
d5 = d(w, ys)
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ndt Hti—l—;l T )

(ogn)i -1

We can find integers s1, 2, ...5t—1 > « s.t. there are §2 (
ladders with d; € [s;/2,s;i], i € [t — 1].
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ndt Htg;—l—;l T )

(ogn)i -1

We can find integers s1, 2, ...5t—1 > « s.t. there are §2 (
ladders with d; € [s;/2,s;i], i € [t — 1].

@ Let F be the collection of such ladders.
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= o dt t:l X
We can find integers s1, 2, ...5t—1 > « s.t. there are §2 (n(loﬁ)—tl_—f‘)

ladders with d; € [s;/2,s;i], i € [t — 1].

@ Let F be the collection of such ladders.

o Build an auxiliary graph H whose vertices are paths on ¢ vertices and
edges correspond to ladders in F.
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Proof of ex(n, F}) = O(n*/?(logn)?)

Claim

. . i N
We can find integers s1, S2,...8t—1 > « s.t. there are §) <M)

(logn)t=1
ladders with d; € [s;/2,si], i € [t — 1].

@ Let F be the collection of such ladders.

@ Build an auxiliary graph H whose vertices are paths on ¢ vertices and
edges correspond to ladders in F.

@ We want to find a path of length ¢t — 1 in H while avoiding collisions.
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Proof of ex(n, F}) = O(n*/?(logn)?)

Claim

t t—1
We can find integers s1, S2,...8t—1 > « s.t. there are §) <n(‘fog+)t11)
ladders with d; € [s;/2,si], i € [t — 1].

@ Let F be the collection of such ladders.

@ Build an auxiliary graph H whose vertices are paths on ¢ vertices and
edges correspond to ladders in F.

@ We want to find a path of length ¢t — 1 in H while avoiding collisions.
o Let H' C H satisfy

N g 7] d]Tizy si
5(H)Zd(%)/220(ndtl)29<(logn; )
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Proof of ex(n, F}) = O(n*/?(logn)?)

Claim

t t—1
We can find integers s1, S2,...8t—1 > « s.t. there are §) (ﬁ)g#ll)
ladders with d; € [s;/2,si], i € [t — 1].

@ Let F be the collection of such ladders.

@ Build an auxiliary graph H whose vertices are paths on ¢ vertices and
edges correspond to ladders in F.

@ We want to find a path of length ¢t — 1 in H while avoiding collisions.
o Let H' C H satisfy

N g 7] d]Tizy si
5(H)Zd(%)/220(ndtl>29<(logn; )

e Enough to show: for a (¢ — 1)-path P and a fixed vertex v € V(G), the
number of P’ with (P, P') € E(H) containing v is o(6(H')).
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The number of extensions containing a fixed vertex

Want: for a path P = (x1,...,2¢) and v € V(G), the number of P’ with
t—1
(P, P") € E(H) containing v is o (M) .

(logn)*—+
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Want: for a path P = (z1,...,2¢) and v € V(G), the number of P’ with
t—1
(P, P") € E(H) containing v is o ((dbrg[i—:)lt_s}) .

T ?
T ?
T3 ?
Ty v
Is5 ?
Te ?
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Want: for a path P = (z1,...,2¢) and v € V(G), the number of P’ with
t—1
(P, P") € E(H) containing v is o ((dbrg[i—:)lt_s}) .

T 1 d
T ?
T3 ?
Ty v
Ty ?
Te ?
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Want: for a path P = (z1,...,2¢) and v € V(G), the number of P’ with
t—1
(P, P") € E(H) containing v is o ((dbrg[i—:)lt_s}) .

z1 Y1 d
T2 Y2 S1
T3 ?
Ty v
Is5 ?
Te ?
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Want: for a path P = (z1,...,2¢) and v € V(G), the number of P’ with
t—1
(P, P") € E(H) containing v is o ((dbrg[i—:)lt_s}) .

1 1 d

T2 Y2 S1
T3 Y3 S
Ty v

Is5 ?

Te ?
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Want: for a path P = (z1,...,2¢) and v € V(G), the number of P’ with
t—1
(P, P") € E(H) containing v is o ((dbrg[i—:)lt_s}) .

T Y1 d
T2 Y2 S1
T3 Y3 S
T4 v 1
Is5 ?

Te ?
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Want: for a path P = (z1,...,2¢) and v € V(G), the number of P’ with
t—1
(P, P") € E(H) containing v is o ((dbrg[i—:)lt_s}) .

z1 Y1 d
T2 Y2 S1
T3 Y3 S
Tq v 1
Ts5 Ys S4
Te ?
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Want: for a path P = (z1,...,2¢) and v € V(G), the number of P’ with
t—1
(P, P") € E(H) containing v is o ((dbrg[i—:)lt_s}) .

z1 Y1 d
T2 Y2 S1
T3 Y3 S
Tq v 1
Ts5 Ys S4
Te Y6 S5
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The number of extensions containing a fixed vertex

Want: for a path P = (x1,...,2¢) and v € V(G), the number of P’ with
t—1
(P, P") € E(H) containing v is o (M) .

(Togn)i—T
1T ¢—@ Y1 d
T2 ([ @—@ U2 51
3 ([@——=@ U3 S9

Ty ([@—@ U 1

rs @———@ Ys S4

T6 @&—@ Yo Sk

d[Tizt i dJTict i .
In total: H;jl %= ((lll_glznz)ltfl) since s; > a = (logn)".
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ndt T[ZL s,
Tog T

3Js1,...8t_1 > « s.t. there are Q ( ) ladders with d; € [s;/2, s;].




=il .
Tﬁ;—g'—%%) ladders with d; € [s;/2, s;].

Given ay,...,an € [1,n], there is an interval [s/2, s] containing at least
m/logn of them.

ds1,...8t1 > « s.t. there are 2 (
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=il .
Tﬁ;—g'—%%) ladders with d; € [s;/2, s;].

Given ay,...,an € [1,n], there is an interval [s/2, s] containing at least
m/logn of them.

ds1,...8t1 > « s.t. there are 2 (

Proof. Consider intervals [1,2],[2,4],[4,8]... and take the best one.
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t—1 .
3Js1,...5t.1 > « s.t. there are ) (%ﬁ%) ladders with d; € [s;/2, si].

Given ay,...,an, € [1,n], there is an interval [s/2, s] containing at least
m/logn of them.

n I @
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t—1 .
3Js1,...5t.1 > « s.t. there are ) (%ﬁ%) ladders with d; € [s;/2, si].

Given ay,...,an, € [1,n], there is an interval [s/2, s] containing at least
m/logn of them.

n T e—e Y1 d
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t—1 .
3Js1,...5t.1 > « s.t. there are ) (%ﬁ%) ladders with d; € [s;/2, si].

Given ay,...,an, € [1,n], there is an interval [s/2, s] containing at least
m/logn of them.

n T Y1 d
dle
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t—1 .
3Js1,...5t.1 > « s.t. there are ) (%ﬁ%) ladders with d; € [s;/2, si].

Given ay,...,an, € [1,n], there is an interval [s/2, s] containing at least
m/logn of them.

n T Y1 d
dy = d(z2,11) =?
d 22
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t—1 .
3Js1,...5t.1 > « s.t. there are ) (%ﬁ%) ladders with d; € [s;/2, si].

Given ay,...,an, € [1,n], there is an interval [s/2, s] containing at least
m/logn of them.

n T Y1 d
dy = d(x2,11) € [51/2, 51] @
d 22
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t—1 .
3Js1,...5t.1 > « s.t. there are ) (%ﬁ%) ladders with d; € [s;/2, si].

Given ay,...,an, € [1,n], there is an interval [s/2, s] containing at least
m/logn of them.

n T Y1 d
dy = d(x2,11) € [51/2, 51] @
d T2 Y2 51
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t—1 .
3Js1,...5t.1 > « s.t. there are ) (%ﬁ%) ladders with d; € [s;/2, si].

Given ay,...,an, € [1,n], there is an interval [s/2, s] containing at least
m/logn of them.

n T Y1 d

dy = d(x2,11) € [51/2, 51] @
d T2 Y2 51
d T3
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t—1
nd T2y s

3s1,...81—1 > « s.t. there are §2 ( ogn)t-T

) ladders with d; € [s;/2, si].

Given ay,...,an, € [1,n], there is an interval [s/2, s] containing at least
m/logn of them.

n T Y1 d

dy = d(x2,11) € [51/2, 51] @
d T2 Y2 51

dz = d(z3,y2) =7
d T3
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t—1 .
3Js1,...5t.1 > « s.t. there are ) (%) ladders with d; € [s;/2, si].

Given ay,...,an, € [1,n], there is an interval [s/2, s] containing at least
m/logn of them.

n T Y1 d
dy = d(x2,11) € [51/2, 51] loén
d T2 Y2 51
1
dy = d(x3,y2) € [52/2, 52] Togn
d T3
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t—1 .
3Js1,...5t.1 > « s.t. there are ) (%) ladders with d; € [s;/2, si].

Given ay,...,an, € [1,n], there is an interval [s/2, s] containing at least
m/logn of them.

n T Y1 d
dy = d(x2,11) € [51/2, 51] loén
d T2 Y2 51
1
dy = d(x3,y2) € [52/2, 52] Togn
d T3 Ys  s2
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t—1 .
3Js1,...5t.1 > « s.t. there are ) (%) ladders with d; € [s;/2, si].

Given ay,...,an, € [1,n], there is an interval [s/2, s] containing at least
m/logn of them.

n T Y1 d
dy = d(x2,11) € [51/2, 51] loén
d T2 Y2 51
1
dy = d(x3,y2) € [52/2, 52] Togn
d T3 Ys  s2
d3 = d(z4,y3) € [s3/2, 53] loén
d Ta Ya  s3
dy = d(w5,Y4) € [54/2,54] loén
d s Ys 54
1
ds = d(x6,ys5) € [55/2, 55 Tog
d %6 Y6 S5
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The k" tensor power G* of a graph G is the graph with vertices
(v1,...,v,) € V(G)F and where (v1,...,v%) ~ (u1,...,u) iff
v; ~ U, Vi € [k‘]
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Using the tensor power trick

The k" tensor power G¥ of a graph G is the graph with vertices
(v1,...,vk) € V(G)F and where (v, ... ,v5) ~ (u1,...,uy) iff
v; ~ u;, Vi € [k]

e We might hope that finding an F} in G¥ gives us an F} in G.
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Using the tensor power trick

The k" tensor power G¥ of a graph G is the graph with vertices
(v1,...,vk) € V(G)F and where (v, ... ,v5) ~ (u1,...,uy) iff

v ~ Ui, Vi € [k]

e We might hope that finding an F} in G¥ gives us an F} in G.

@ Not true, so we cannot use the tensor power trick as a black box.
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Using the tensor power trick

The k" tensor power G¥ of a graph G is the graph with vertices
(v1,...,vk) € V(G)F and where (v, ... ,v5) ~ (u1,...,uy) iff

v ~ Ui, Vi € [k]

e We might hope that finding an F} in G¥ gives us an F} in G.

@ Not true, so we cannot use the tensor power trick as a black box.

@ Instead we do the whole proof inside G* and find a copy of F} such that
in at least one coordinate i € [k], all vertices are distinct in G.
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Using the tensor power trick

The k" tensor power G¥ of a graph G is the graph with vertices
(v1,...,vk) € V(G)F and where (v, ... ,v5) ~ (u1,...,uy) iff

v ~ Ui, Vi € [k]

e We might hope that finding an F} in G¥ gives us an F} in G.

@ Not true, so we cannot use the tensor power trick as a black box.

@ Instead we do the whole proof inside G* and find a copy of F} such that
in at least one coordinate i € [k], all vertices are distinct in G.

@ When finding extensions, we make sure not to ruin too many
coordinates.
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Concluding remarks

Theorem (B., Janzer, Sudakov, Tomon 2022+)
Let P and T be a path and a tree with at least one edge each. Then
ex(n, POT) = ©(n?/?).

Open problems:
@ Prove ex(T10T5) = O(n3/2) for any two trees 11, T5.

@ Prove ex(n, Ft(d)) = O(n*~1/9) for the d-dimensional grid Ft(d).

@ Determine the correct dependence of ex(n, F;) on t. We can show
232 < ex(n, F) < eCn3/2,

@ Erdos’ conjecture.
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