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Turán numbers

Definition

Given a graph F, the Turán or extremal number ex(n, F ) of F is the max
number of edges in an n-vertex graph with no copy of F.

Mantel 1907: ex(n,K3) = ⌊n2/4⌋.
Turán 1941: ex(n,Kr) = e(Tn,r−1) = (1− 1

r−1 + o(1))
(
n
2

)
.

Erdős, Stone 1946: ex(n, F ) = (1− 1
χ(F )−1 + o(1))

(
n
2

)
.

Kövári, Sós, Turán 1954: if F is bipartite, then ex(n, F ) = O(n2−εF ).

Poorly understood for general bipartite graphs, e.g. not known for
C8,K4,4, Q3.
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Kövári, Sós, Turán 1954: if F is bipartite, then ex(n, F ) = O(n2−εF ).

Poorly understood for general bipartite graphs, e.g. not known for
C8,K4,4, Q3.
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Erdős’ conjecture

Definition

A graph is r-degenerate if each of its subgraphs has minimum degree at
most r.

Conjecture (Erdős 1966)

If F is bipartite and r-degnerate, then ex(n, F ) = O(n2− 1
r ).

Füredi 1991: true when one side of F has maximum degree at most r.

Known for some special cases.

Even r = 2 is open and interesting.

Alon, Krivelevich, Sudakov 2003: ex(n, F ) = O(n2− 1
4r ).
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If F is bipartite and r-degnerate, then ex(n, F ) = O(n2− 1
r ).
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Füredi 1991: true when one side of F has maximum degree at most r.

Known for some special cases.

Even r = 2 is open and interesting.

Alon, Krivelevich, Sudakov 2003: ex(n, F ) = O(n2− 1
4r ).
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Our result

Theorem (B., Janzer, Sudakov, Tomon 2022+)

For fixed t ≥ 2, the t× t grid Ft satisfies ex(n, Ft) = Θt(n
3/2).

F6

Ft contains a 4-cycle, so we only need to prove ex(n, Ft) = O(n3/2).
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Other extremal results on grids

Clemens, Miralaei, Reding, Schacht and Taraz and Conlon, Nenadov and
Trujić studied the size Ramsey number of Ft.

Kim, Lee and Lee proved Sidorenko’s conjecture for grids in arbitrary
dimension.

Füredi and Ruszinkó studied an extremal problem for a certain
hypergraph grid graph.
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Proof overview

1 Prove ex(n, Ft) = O(n3/2(log n)t).

2 Get rid of the polylog factor using the tensor power trick.

Domagoj Bradač (ETH Zürich) The Turán number of the grid Random Structures & Algorithms 2022



Proof overview

1 Prove ex(n, Ft) = O(n3/2(log n)t).

2 Get rid of the polylog factor using the tensor power trick.
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Proof sketch of ex(n, Ft) = O(n3/2(log n)t)

Setting:

G is almost regular, i.e. ∆(G)/δ(G) = O(1) with average degree d,
where d = αn1/2 and α = (log n)t.

For every edge uv ∈ E(G), there are Ω(d) neighbours w of u such that
d(v, w) ≥ α.

Strategy:

Find many ladders, i.e. 2× t grids.

Glue the ladders to form a grid without repeating vertices.
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Proof sketch of ex(n, Ft) = O(n3/2(log n)t)

Setting:

G is almost regular, i.e. ∆(G)/δ(G) = O(1) with average degree d,
where d = αn1/2 and α ≫ (log n)t.

For every edge uv ∈ E(G), there are Ω(d) neighbours w of u such that
d(v, w) ≥ α.

Strategy:

Find many ladders, i.e. 2× t grids.

while controlling certain codegrees.

Glue the ladders to form a grid without repeating vertices.

To do this we would like an upper bound on the number of ways to
extend a path on t vertices to a ladder containing a particular vertex.
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Proof of ex(n, Ft) = O(n3/2(log n)t)

x1

x2

x3

x4

x5

x6

y1

y2

y3

y4

y5

y6

d1 = d(x2, y1)

d2 = d(x3, y2)

d3 = d(x4, y3)

d4 = d(x5, y4)

d5 = d(x6, y5)
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Proof of ex(n, Ft) = O(n3/2(log n)t)

Claim

We can find integers s1, s2, . . . st−1 ≥ α s.t. there are Ω
(
ndt

∏t−1
i=1 si

(logn)t−1

)
ladders with di ∈ [si/2, si], i ∈ [t− 1].

Let F be the collection of such ladders.

Build an auxiliary graph H whose vertices are paths on t vertices and
edges correspond to ladders in F .

We want to find a path of length t− 1 in H while avoiding collisions.

Let H′ ⊆ H satisfy

δ(H′) ≥ d̄(H)/2 ≥ |F|
O(ndt−1)

≥ Ω

(
d
∏t−1

i=1 si
(log n)t−1

)
.

Enough to show: for a (t− 1)-path P and a fixed vertex v ∈ V (G), the
number of P ′ with (P, P ′) ∈ E(H) containing v is o(δ(H′)).

Domagoj Bradač (ETH Zürich) The Turán number of the grid Random Structures & Algorithms 2022



Proof of ex(n, Ft) = O(n3/2(log n)t)

Claim

We can find integers s1, s2, . . . st−1 ≥ α s.t. there are Ω
(
ndt

∏t−1
i=1 si

(logn)t−1

)
ladders with di ∈ [si/2, si], i ∈ [t− 1].

Let F be the collection of such ladders.

Build an auxiliary graph H whose vertices are paths on t vertices and
edges correspond to ladders in F .

We want to find a path of length t− 1 in H while avoiding collisions.

Let H′ ⊆ H satisfy

δ(H′) ≥ d̄(H)/2 ≥ |F|
O(ndt−1)

≥ Ω

(
d
∏t−1

i=1 si
(log n)t−1

)
.

Enough to show: for a (t− 1)-path P and a fixed vertex v ∈ V (G), the
number of P ′ with (P, P ′) ∈ E(H) containing v is o(δ(H′)).
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Proof of ex(n, Ft) = O(n3/2(log n)t)

v

v
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The number of extensions containing a fixed vertex

Want: for a path P = (x1, . . . , xt) and v ∈ V (G), the number of P ′ with

(P, P ′) ∈ E(H) containing v is o
(

d
∏t−1

i=1 si
(logn)t−1

)
.

In total:
d
∏t−1

i=1 si
sj

= o
(

d
∏t−1

i=1 si
(logn)t−1

)
since sj ≥ α = (log n)t.
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?

?

?

?

?
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Finding many ladders

Claim

∃s1, . . . st−1 ≥ α s.t. there are Ω
(
ndt

∏t−1
i=1 si

(logn)t−1

)
ladders with di ∈ [si/2, si].

Dyadic pigeonholing

Given a1, . . . , am ∈ [1, n], there is an interval [s/2, s] containing at least
m/ log n of them.
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Finding many ladders

Claim

∃s1, . . . st−1 ≥ α s.t. there are Ω
(
ndt

∏t−1
i=1 si

(logn)t−1

)
ladders with di ∈ [si/2, si].

Dyadic pigeonholing

Given a1, . . . , am ∈ [1, n], there is an interval [s/2, s] containing at least
m/ log n of them.

Proof. Consider intervals [1, 2], [2, 4], [4, 8] . . . and take the best one.
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Finding many ladders

Claim

∃s1, . . . st−1 ≥ α s.t. there are Ω
(
ndt

∏t−1
i=1 si

(logn)t−1

)
ladders with di ∈ [si/2, si].

Dyadic pigeonholing

Given a1, . . . , am ∈ [1, n], there is an interval [s/2, s] containing at least
m/ log n of them.

x1

x2

y1n d

d

d1 = d(x2, y1) =?
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Finding many ladders

Claim

∃s1, . . . st−1 ≥ α s.t. there are Ω
(
ndt

∏t−1
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(logn)t−1

)
ladders with di ∈ [si/2, si].

Dyadic pigeonholing

Given a1, . . . , am ∈ [1, n], there is an interval [s/2, s] containing at least
m/ log n of them.

x1

x2

y1n d

d

d1 = d(x2, y1) ∈ [s1/2, s1]
1

log n
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Finding many ladders

Claim

∃s1, . . . st−1 ≥ α s.t. there are Ω
(
ndt

∏t−1
i=1 si

(logn)t−1

)
ladders with di ∈ [si/2, si].

Dyadic pigeonholing

Given a1, . . . , am ∈ [1, n], there is an interval [s/2, s] containing at least
m/ log n of them.

x1

x2

y1

y2

n d

d

d1 = d(x2, y1) ∈ [s1/2, s1]

s1

1
log n
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Domagoj Bradač (ETH Zürich) The Turán number of the grid Random Structures & Algorithms 2022



Finding many ladders

Claim

∃s1, . . . st−1 ≥ α s.t. there are Ω
(
ndt

∏t−1
i=1 si

(logn)t−1

)
ladders with di ∈ [si/2, si].

Dyadic pigeonholing

Given a1, . . . , am ∈ [1, n], there is an interval [s/2, s] containing at least
m/ log n of them.

x1

x2

x3

y1

y2

n d

d

d1 = d(x2, y1) ∈ [s1/2, s1]

s1

d

d2 = d(x3, y2) ∈ [s2/2, s2]

1
log n

1
log n
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Finding many ladders

Claim

∃s1, . . . st−1 ≥ α s.t. there are Ω
(
ndt

∏t−1
i=1 si

(logn)t−1

)
ladders with di ∈ [si/2, si].

Dyadic pigeonholing

Given a1, . . . , am ∈ [1, n], there is an interval [s/2, s] containing at least
m/ log n of them.

x1

x2

x3

y1

y2

y3

n d

d

d1 = d(x2, y1) ∈ [s1/2, s1]

s1

d

d2 = d(x3, y2) ∈ [s2/2, s2]

s2

1
log n

1
log n
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Finding many ladders

Claim

∃s1, . . . st−1 ≥ α s.t. there are Ω
(
ndt

∏t−1
i=1 si

(logn)t−1

)
ladders with di ∈ [si/2, si].

Dyadic pigeonholing

Given a1, . . . , am ∈ [1, n], there is an interval [s/2, s] containing at least
m/ log n of them.

x1

x2

x3

x4

x5

x6

y1

y2

y3

y4

y5

y6

n d

d

d1 = d(x2, y1) ∈ [s1/2, s1]

s1

d

d2 = d(x3, y2) ∈ [s2/2, s2]

s2

s3

s4

s5

d3 = d(x4, y3) ∈ [s3/2, s3]

d4 = d(x5, y4) ∈ [s4/2, s4]

d5 = d(x6, y5) ∈ [s5/2, s5]

1
log n

1
log n

1
log n

1
log n

1
log n

d

d

d
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Using the tensor power trick

The kth tensor power Gk of a graph G is the graph with vertices
(v1, . . . , vk) ∈ V (G)k and where (v1, . . . , vk) ∼ (u1, . . . , uk) iff
vi ∼ ui,∀i ∈ [k].

We might hope that finding an Ft in Gk gives us an Ft in G.

Not true, so we cannot use the tensor power trick as a black box.

Instead we do the whole proof inside Gk and find a copy of Ft such that
in at least one coordinate i ∈ [k], all vertices are distinct in G.

When finding extensions, we make sure not to ruin too many
coordinates.
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Concluding remarks

Theorem (B., Janzer, Sudakov, Tomon 2022+)

Let P and T be a path and a tree with at least one edge each. Then
ex(n, P2T ) = Θ(n3/2).

Open problems:

Prove ex(T12T2) = O(n3/2) for any two trees T1, T2.

Prove ex(n, F
(d)
t ) = O(n2−1/d) for the d-dimensional grid F

(d)
t .

Determine the correct dependence of ex(n, Ft) on t. We can show
ct1/2n3/2 ≤ ex(n, Ft) ≤ eO(t5)n3/2.

Erdős’ conjecture.
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