The Turán number of the grid

Domagoj Bradač

ETH Zürich
joint work with Oliver Janzer, Benny Sudakov and István Tomon

Turán numbers

Definition

Given a graph F, the Turán or extremal number ex (n, F) of F is the max number of edges in an n-vertex graph with no copy of F.

Turán numbers

Definition
 Given a graph F, the Turán or extremal number ex (n, F) of F is the max number of edges in an n-vertex graph with no copy of F.

- Mantel 1907: $\operatorname{ex}\left(n, K_{3}\right)=\left\lfloor n^{2} / 4\right\rfloor$.

Turán numbers

Definition

Given a graph F, the Turán or extremal number ex (n, F) of F is the max number of edges in an n-vertex graph with no copy of F.

- Mantel 1907: $\operatorname{ex}\left(n, K_{3}\right)=\left\lfloor n^{2} / 4\right\rfloor$.
- Turán 1941: $\operatorname{ex}\left(n, K_{r}\right)=e\left(T_{n, r-1}\right)=\left(1-\frac{1}{r-1}+o(1)\right)\binom{n}{2}$.

Turán numbers

Definition

Given a graph F, the Turán or extremal number ex (n, F) of F is the max number of edges in an n-vertex graph with no copy of F.

- Mantel 1907: $\operatorname{ex}\left(n, K_{3}\right)=\left\lfloor n^{2} / 4\right\rfloor$.
- Turán 1941: $\operatorname{ex}\left(n, K_{r}\right)=e\left(T_{n, r-1}\right)=\left(1-\frac{1}{r-1}+o(1)\right)\binom{n}{2}$.
- Erdős, Stone 1946: ex $(n, F)=\left(1-\frac{1}{\chi(F)-1}+o(1)\right)\binom{n}{2}$.

Turán numbers

Definition

Given a graph F, the Turán or extremal number ex (n, F) of F is the max number of edges in an n-vertex graph with no copy of F.

- Mantel 1907: $\operatorname{ex}\left(n, K_{3}\right)=\left\lfloor n^{2} / 4\right\rfloor$.
- Turán 1941: $\operatorname{ex}\left(n, K_{r}\right)=e\left(T_{n, r-1}\right)=\left(1-\frac{1}{r-1}+o(1)\right)\binom{n}{2}$.
- Erdős, Stone 1946: ex $(n, F)=\left(1-\frac{1}{\chi(F)-1}+o(1)\right)\binom{n}{2}$.
- Kövári, Sós, Turán 1954: if F is bipartite, then ex $(n, F)=O\left(n^{2-\varepsilon_{F}}\right)$.

Turán numbers

Definition

Given a graph F, the Turán or extremal number ex (n, F) of F is the max number of edges in an n-vertex graph with no copy of F.

- Mantel 1907: $\operatorname{ex}\left(n, K_{3}\right)=\left\lfloor n^{2} / 4\right\rfloor$.
- Turán 1941: $\operatorname{ex}\left(n, K_{r}\right)=e\left(T_{n, r-1}\right)=\left(1-\frac{1}{r-1}+o(1)\right)\binom{n}{2}$.
- Erdős, Stone 1946: ex $(n, F)=\left(1-\frac{1}{\chi(F)-1}+o(1)\right)\binom{n}{2}$.
- Kövári, Sós, Turán 1954: if F is bipartite, then ex $(n, F)=O\left(n^{2-\varepsilon_{F}}\right)$.
- Poorly understood for general bipartite graphs, e.g. not known for $C_{8}, K_{4,4}, Q_{3}$.

Erdős' conjecture

Definition

A graph is r-degenerate if each of its subgraphs has minimum degree at most r.

Erdős' conjecture

Definition

A graph is r-degenerate if each of its subgraphs has minimum degree at most r.

Conjecture (Erdős 1966)

If F is bipartite and r-degnerate, then ex $(n, F)=O\left(n^{2-\frac{1}{r}}\right)$.

Definition

A graph is r-degenerate if each of its subgraphs has minimum degree at most r.

Conjecture (Erdős 1966)

If F is bipartite and r-degnerate, then ex $(n, F)=O\left(n^{2-\frac{1}{r}}\right)$.

- Füredi 1991: true when one side of F has maximum degree at most r.

Definition

A graph is r-degenerate if each of its subgraphs has minimum degree at most r.

Conjecture (Erdős 1966)

If F is bipartite and r-degnerate, then ex $(n, F)=O\left(n^{2-\frac{1}{r}}\right)$.

- Füredi 1991: true when one side of F has maximum degree at most r.
- Known for some special cases.

Definition

A graph is r-degenerate if each of its subgraphs has minimum degree at most r.

Conjecture (Erdős 1966)

If F is bipartite and r-degnerate, then ex $(n, F)=O\left(n^{2-\frac{1}{r}}\right)$.

- Füredi 1991: true when one side of F has maximum degree at most r.
- Known for some special cases.
- Even $r=2$ is open and interesting.

Definition

A graph is r-degenerate if each of its subgraphs has minimum degree at most r.

Conjecture (Erdős 1966)

If F is bipartite and r-degnerate, then ex $(n, F)=O\left(n^{2-\frac{1}{r}}\right)$.

- Füredi 1991: true when one side of F has maximum degree at most r.
- Known for some special cases.
- Even $r=2$ is open and interesting.
- Alon, Krivelevich, Sudakov 2003: ex $(n, F)=O\left(n^{2-\frac{1}{4 r}}\right)$.

Our result

Theorem (B., Janzer, Sudakov, Tomon 2022+)

For fixed $t \geq 2$, the $t \times t$ grid F_{t} satisfies ex $\left(n, F_{t}\right)=\Theta_{t}\left(n^{3 / 2}\right)$.

Our result

Theorem (B., Janzer, Sudakov, Tomon 2022+)

For fixed $t \geq 2$, the $t \times t$ grid F_{t} satisfies ex $\left(n, F_{t}\right)=\Theta_{t}\left(n^{3 / 2}\right)$.

F_{t} contains a 4-cycle, so we only need to prove ex $\left(n, F_{t}\right)=O\left(n^{3 / 2}\right)$.

Other extremal results on grids

- Clemens, Miralaei, Reding, Schacht and Taraz and Conlon, Nenadov and Trujić studied the size Ramsey number of F_{t}.

Other extremal results on grids

- Clemens, Miralaei, Reding, Schacht and Taraz and Conlon, Nenadov and Trujić studied the size Ramsey number of F_{t}.
- Kim, Lee and Lee proved Sidorenko's conjecture for grids in arbitrary dimension.

Other extremal results on grids

- Clemens, Miralaei, Reding, Schacht and Taraz and Conlon, Nenadov and Trujić studied the size Ramsey number of F_{t}.
- Kim, Lee and Lee proved Sidorenko's conjecture for grids in arbitrary dimension.
- Füredi and Ruszinkó studied an extremal problem for a certain hypergraph grid graph.
(1) Prove ex $\left(n, F_{t}\right)=O\left(n^{3 / 2}(\log n)^{t}\right)$.
(1) Prove ex $\left(n, F_{t}\right)=O\left(n^{3 / 2}(\log n)^{t}\right)$.
(2) Get rid of the polylog factor using the tensor power trick.

Proof sketch of ex $\left(n, F_{t}\right)=O\left(n^{3 / 2}(\log n)^{t}\right)$

Setting:

- G is almost regular, i.e. $\Delta(G) / \delta(G)=O(1)$ with average degree d, where $d=\alpha n^{1 / 2}$ and $\alpha=(\log n)^{t}$.

Proof sketch of ex $\left(n, F_{t}\right)=O\left(n^{3 / 2}(\log n)^{t}\right)$

Setting:

- G is almost regular, i.e. $\Delta(G) / \delta(G)=O(1)$ with average degree d, where $d=\alpha n^{1 / 2}$ and $\alpha=(\log n)^{t}$.
- For every edge $u v \in E(G)$, there are $\Omega(d)$ neighbours w of u such that $d(v, w) \geq \alpha$.

Proof sketch of ex $\left(n, F_{t}\right)=O\left(n^{3 / 2}(\log n)^{t}\right)$

Setting:

- G is almost regular, i.e. $\Delta(G) / \delta(G)=O(1)$ with average degree d, where $d=\alpha n^{1 / 2}$ and $\alpha=(\log n)^{t}$.
- For every edge $u v \in E(G)$, there are $\Omega(d)$ neighbours w of u such that $d(v, w) \geq \alpha$.

Proof sketch of ex $\left(n, F_{t}\right)=O\left(n^{3 / 2}(\log n)^{t}\right)$

Setting:

- G is almost regular, i.e. $\Delta(G) / \delta(G)=O(1)$ with average degree d, where $d=\alpha n^{1 / 2}$ and $\alpha=(\log n)^{t}$.
- For every edge $u v \in E(G)$, there are $\Omega(d)$ neighbours w of u such that $d(v, w) \geq \alpha$.

Strategy:

- Find many ladders, i.e. $2 \times t$ grids.

Proof sketch of ex $\left(n, F_{t}\right)=O\left(n^{3 / 2}(\log n)^{t}\right)$

Setting:

- G is almost regular, i.e. $\Delta(G) / \delta(G)=O(1)$ with average degree d, where $d=\alpha n^{1 / 2}$ and $\alpha=(\log n)^{t}$.
- For every edge $u v \in E(G)$, there are $\Omega(d)$ neighbours w of u such that $d(v, w) \geq \alpha$.

Strategy:

- Find many ladders, i.e. $2 \times t$ grids.
- Glue the ladders to form a grid without repeating vertices.

Proof sketch of ex $\left(n, F_{t}\right)=O\left(n^{3 / 2}(\log n)^{t}\right)$

Proof sketch of ex $\left(n, F_{t}\right)=O\left(n^{3 / 2}(\log n)^{t}\right)$

Proof sketch of ex $\left(n, F_{t}\right)=O\left(n^{3 / 2}(\log n)^{t}\right)$

Proof sketch of ex $\left(n, F_{t}\right)=O\left(n^{3 / 2}(\log n)^{t}\right)$

Proof sketch of ex $\left(n, F_{t}\right)=O\left(n^{3 / 2}(\log n)^{t}\right)$

Proof sketch of ex $\left(n, F_{t}\right)=O\left(n^{3 / 2}(\log n)^{t}\right)$

Setting:

- G is almost regular, i.e. $\Delta(G) / \delta(G)=O(1)$ with average degree d, where $d=\alpha n^{1 / 2}$ and $\alpha \gg(\log n)^{t}$.
- For every edge $u v \in E(G)$, there are $\Omega(d)$ neighbours w of u such that $d(v, w) \geq \alpha$.

Strategy:

- Find many ladders, i.e. $2 \times t$ grids.
- Glue the ladders to form a grid without repeating vertices.

Proof sketch of ex $\left(n, F_{t}\right)=O\left(n^{3 / 2}(\log n)^{t}\right)$

Setting:

- G is almost regular, i.e. $\Delta(G) / \delta(G)=O(1)$ with average degree d, where $d=\alpha n^{1 / 2}$ and $\alpha \gg(\log n)^{t}$.
- For every edge $u v \in E(G)$, there are $\Omega(d)$ neighbours w of u such that $d(v, w) \geq \alpha$.

Strategy:

- Find many ladders, i.e. $2 \times t$ grids.
- Glue the ladders to form a grid without repeating vertices.
- To do this we would like an upper bound on the number of ways to extend a path on t vertices to a ladder containing a particular vertex.

Proof sketch of ex $\left(n, F_{t}\right)=O\left(n^{3 / 2}(\log n)^{t}\right)$

Setting:

- G is almost regular, i.e. $\Delta(G) / \delta(G)=O(1)$ with average degree d, where $d=\alpha n^{1 / 2}$ and $\alpha \gg(\log n)^{t}$.
- For every edge $u v \in E(G)$, there are $\Omega(d)$ neighbours w of u such that $d(v, w) \geq \alpha$.

Strategy:

- Find many ladders, i.e. $2 \times t$ grids while controlling certain codegrees.
- Glue the ladders to form a grid without repeating vertices.
- To do this we would like an upper bound on the number of ways to extend a path on t vertices to a ladder containing a particular vertex.

Proof of ex $\left(n, F_{t}\right)=O\left(n^{3 / 2}(\log n)^{t}\right)$

Proof of ex $\left(n, F_{t}\right)=O\left(n^{3 / 2}(\log n)^{t}\right)$

Claim

We can find integers $s_{1}, s_{2}, \ldots s_{t-1} \geq \alpha$ s.t. there are $\Omega\left(\frac{n d^{t} \prod_{i-1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)$ ladders with $d_{i} \in\left[s_{i} / 2, s_{i}\right], i \in[t-1]$.

Proof of ex $\left(n, F_{t}\right)=O\left(n^{3 / 2}(\log n)^{t}\right)$

Claim

We can find integers $s_{1}, s_{2}, \ldots s_{t-1} \geq \alpha$ s.t. there are $\Omega\left(\frac{n d^{t} \prod_{i=1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)$ ladders with $d_{i} \in\left[s_{i} / 2, s_{i}\right], i \in[t-1]$.

- Let \mathcal{F} be the collection of such ladders.

Proof of ex $\left(n, F_{t}\right)=O\left(n^{3 / 2}(\log n)^{t}\right)$

Claim

We can find integers $s_{1}, s_{2}, \ldots s_{t-1} \geq \alpha$ s.t. there are $\Omega\left(\frac{n d^{t} \prod_{i-1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)$ ladders with $d_{i} \in\left[s_{i} / 2, s_{i}\right], i \in[t-1]$.

- Let \mathcal{F} be the collection of such ladders.
- Build an auxiliary graph \mathcal{H} whose vertices are paths on t vertices and edges correspond to ladders in \mathcal{F}.

Proof of ex $\left(n, F_{t}\right)=O\left(n^{3 / 2}(\log n)^{t}\right)$

Claim

We can find integers $s_{1}, s_{2}, \ldots s_{t-1} \geq \alpha$ s.t. there are $\Omega\left(\frac{n d^{t} \prod_{i=1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)$ ladders with $d_{i} \in\left[s_{i} / 2, s_{i}\right], i \in[t-1]$.

- Let \mathcal{F} be the collection of such ladders.
- Build an auxiliary graph \mathcal{H} whose vertices are paths on t vertices and edges correspond to ladders in \mathcal{F}.
- We want to find a path of length $t-1$ in \mathcal{H} while avoiding collisions.

Proof of ex $\left(n, F_{t}\right)=O\left(n^{3 / 2}(\log n)^{t}\right)$

Claim

We can find integers $s_{1}, s_{2}, \ldots s_{t-1} \geq \alpha$ s.t. there are $\Omega\left(\frac{n d^{t} \prod_{i-1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)$ ladders with $d_{i} \in\left[s_{i} / 2, s_{i}\right], i \in[t-1]$.

- Let \mathcal{F} be the collection of such ladders.
- Build an auxiliary graph \mathcal{H} whose vertices are paths on t vertices and edges correspond to ladders in \mathcal{F}.
- We want to find a path of length $t-1$ in \mathcal{H} while avoiding collisions.
- Let $\mathcal{H}^{\prime} \subseteq \mathcal{H}$ satisfy

$$
\delta\left(\mathcal{H}^{\prime}\right) \geq \bar{d}(\mathcal{H}) / 2 \geq \frac{|\mathcal{F}|}{O\left(n d^{t-1}\right)} \geq \Omega\left(\frac{d \prod_{i=1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)
$$

Proof of ex $\left(n, F_{t}\right)=O\left(n^{3 / 2}(\log n)^{t}\right)$

Claim

We can find integers $s_{1}, s_{2}, \ldots s_{t-1} \geq \alpha$ s.t. there are $\Omega\left(\frac{n d^{t} \prod_{i=1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)$ ladders with $d_{i} \in\left[s_{i} / 2, s_{i}\right], i \in[t-1]$.

- Let \mathcal{F} be the collection of such ladders.
- Build an auxiliary graph \mathcal{H} whose vertices are paths on t vertices and edges correspond to ladders in \mathcal{F}.
- We want to find a path of length $t-1$ in \mathcal{H} while avoiding collisions.
- Let $\mathcal{H}^{\prime} \subseteq \mathcal{H}$ satisfy

$$
\delta\left(\mathcal{H}^{\prime}\right) \geq \bar{d}(\mathcal{H}) / 2 \geq \frac{|\mathcal{F}|}{O\left(n d^{t-1}\right)} \geq \Omega\left(\frac{d \prod_{i=1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)
$$

- Enough to show: for a $(t-1)$-path P and a fixed vertex $v \in V(G)$, the number of P^{\prime} with $\left(P, P^{\prime}\right) \in E(\mathcal{H})$ containing v is $o\left(\delta\left(\mathcal{H}^{\prime}\right)\right)$.

Proof of ex $\left(n, F_{t}\right)=O\left(n^{3 / 2}(\log n)^{t}\right)$

The number of extensions containing a fixed vertex
Want: for a path $P=\left(x_{1}, \ldots, x_{t}\right)$ and $v \in V(G)$, the number of P^{\prime} with $\left(P, P^{\prime}\right) \in E(\mathcal{H})$ containing v is $o\left(\frac{d \prod_{i=1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)$.

The number of extensions containing a fixed vertex

Want: for a path $P=\left(x_{1}, \ldots, x_{t}\right)$ and $v \in V(G)$, the number of P^{\prime} with $\left(P, P^{\prime}\right) \in E(\mathcal{H})$ containing v is $o\left(\frac{d \prod_{i=1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)$.

The number of extensions containing a fixed vertex

Want: for a path $P=\left(x_{1}, \ldots, x_{t}\right)$ and $v \in V(G)$, the number of P^{\prime} with $\left(P, P^{\prime}\right) \in E(\mathcal{H})$ containing v is $o\left(\frac{d \prod_{i=1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)$.

The number of extensions containing a fixed vertex

Want: for a path $P=\left(x_{1}, \ldots, x_{t}\right)$ and $v \in V(G)$, the number of P^{\prime} with $\left(P, P^{\prime}\right) \in E(\mathcal{H})$ containing v is $o\left(\frac{d \prod_{i=1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)$.

The number of extensions containing a fixed vertex

Want: for a path $P=\left(x_{1}, \ldots, x_{t}\right)$ and $v \in V(G)$, the number of P^{\prime} with $\left(P, P^{\prime}\right) \in E(\mathcal{H})$ containing v is $o\left(\frac{d \prod_{i=1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)$.

The number of extensions containing a fixed vertex

Want: for a path $P=\left(x_{1}, \ldots, x_{t}\right)$ and $v \in V(G)$, the number of P^{\prime} with $\left(P, P^{\prime}\right) \in E(\mathcal{H})$ containing v is $o\left(\frac{d \prod_{i=1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)$.

The number of extensions containing a fixed vertex

Want: for a path $P=\left(x_{1}, \ldots, x_{t}\right)$ and $v \in V(G)$, the number of P^{\prime} with $\left(P, P^{\prime}\right) \in E(\mathcal{H})$ containing v is $o\left(\frac{d \prod_{i=1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)$.

The number of extensions containing a fixed vertex

Want: for a path $P=\left(x_{1}, \ldots, x_{t}\right)$ and $v \in V(G)$, the number of P^{\prime} with $\left(P, P^{\prime}\right) \in E(\mathcal{H})$ containing v is $o\left(\frac{d \prod_{i=1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)$.

The number of extensions containing a fixed vertex

Want: for a path $P=\left(x_{1}, \ldots, x_{t}\right)$ and $v \in V(G)$, the number of P^{\prime} with $\left(P, P^{\prime}\right) \in E(\mathcal{H})$ containing v is $o\left(\frac{d \prod_{i=1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)$.

In total: $\frac{d \prod_{i=1}^{t-1} s_{i}}{s_{j}}=o\left(\frac{d \prod_{i=1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)$ since $s_{j} \geq \alpha=(\log n)^{t}$.

Finding many ladders

Claim

$\exists s_{1}, \ldots s_{t-1} \geq \alpha$ s.t. there are $\Omega\left(\frac{n d^{t} \prod_{i-1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)$ ladders with $d_{i} \in\left[s_{i} / 2, s_{i}\right]$.

Finding many ladders

Claim

$\exists s_{1}, \ldots s_{t-1} \geq \alpha$ s.t. there are $\Omega\left(\frac{n d^{t} \prod_{i-1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)$ ladders with $d_{i} \in\left[s_{i} / 2, s_{i}\right]$.

Dyadic pigeonholing

Given $a_{1}, \ldots, a_{m} \in[1, n]$, there is an interval $[s / 2, s]$ containing at least $m / \log n$ of them.

Finding many ladders

Claim

$\exists s_{1}, \ldots s_{t-1} \geq \alpha$ s.t. there are $\Omega\left(\frac{n d^{t} \prod_{i=1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)$ ladders with $d_{i} \in\left[s_{i} / 2, s_{i}\right]$.

Dyadic pigeonholing

Given $a_{1}, \ldots, a_{m} \in[1, n]$, there is an interval $[s / 2, s]$ containing at least $m / \log n$ of them.

Proof. Consider intervals $[1,2],[2,4],[4,8] \ldots$ and take the best one.

Finding many ladders

Claim

$\exists s_{1}, \ldots s_{t-1} \geq \alpha$ s.t. there are $\Omega\left(\frac{n d^{t} \prod_{i=1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)$ ladders with $d_{i} \in\left[s_{i} / 2, s_{i}\right]$.

Dyadic pigeonholing

Given $a_{1}, \ldots, a_{m} \in[1, n]$, there is an interval $[s / 2, s]$ containing at least $m / \log n$ of them.

Finding many ladders

Claim

$\exists s_{1}, \ldots s_{t-1} \geq \alpha$ s.t. there are $\Omega\left(\frac{n d^{t} \prod_{i=1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)$ ladders with $d_{i} \in\left[s_{i} / 2, s_{i}\right]$.

Dyadic pigeonholing

Given $a_{1}, \ldots, a_{m} \in[1, n]$, there is an interval $[s / 2, s]$ containing at least $m / \log n$ of them.

Finding many ladders

Claim

$\exists s_{1}, \ldots s_{t-1} \geq \alpha$ s.t. there are $\Omega\left(\frac{n d^{t} \prod_{i=1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)$ ladders with $d_{i} \in\left[s_{i} / 2, s_{i}\right]$.

Dyadic pigeonholing

Given $a_{1}, \ldots, a_{m} \in[1, n]$, there is an interval $[s / 2, s]$ containing at least $m / \log n$ of them.

Finding many ladders

Claim

$\exists s_{1}, \ldots s_{t-1} \geq \alpha$ s.t. there are $\Omega\left(\frac{n d^{t} \prod_{i=1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)$ ladders with $d_{i} \in\left[s_{i} / 2, s_{i}\right]$.

Dyadic pigeonholing

Given $a_{1}, \ldots, a_{m} \in[1, n]$, there is an interval $[s / 2, s]$ containing at least $m / \log n$ of them.

$$
d_{1}=d\left(x_{2}, y_{1}\right)=?
$$

Finding many ladders

Claim

$\exists s_{1}, \ldots s_{t-1} \geq \alpha$ s.t. there are $\Omega\left(\frac{n d^{t} \prod_{i=1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)$ ladders with $d_{i} \in\left[s_{i} / 2, s_{i}\right]$.

Dyadic pigeonholing

Given $a_{1}, \ldots, a_{m} \in[1, n]$, there is an interval $[s / 2, s]$ containing at least $m / \log n$ of them.

$$
d_{1}=d\left(x_{2}, y_{1}\right) \in\left[s_{1} / 2, s_{1}\right] \quad \frac{1}{\log n}
$$

Finding many ladders

Claim

$\exists s_{1}, \ldots s_{t-1} \geq \alpha$ s.t. there are $\Omega\left(\frac{n d^{t} \prod_{i=1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)$ ladders with $d_{i} \in\left[s_{i} / 2, s_{i}\right]$.

Dyadic pigeonholing

Given $a_{1}, \ldots, a_{m} \in[1, n]$, there is an interval $[s / 2, s]$ containing at least $m / \log n$ of them.

Finding many ladders

Claim

$\exists s_{1}, \ldots s_{t-1} \geq \alpha$ s.t. there are $\Omega\left(\frac{n d^{t} \prod_{i=1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)$ ladders with $d_{i} \in\left[s_{i} / 2, s_{i}\right]$.

Dyadic pigeonholing

Given $a_{1}, \ldots, a_{m} \in[1, n]$, there is an interval $[s / 2, s]$ containing at least $m / \log n$ of them.

Finding many ladders

Claim

$\exists s_{1}, \ldots s_{t-1} \geq \alpha$ s.t. there are $\Omega\left(\frac{n d^{t} \prod_{i=1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)$ ladders with $d_{i} \in\left[s_{i} / 2, s_{i}\right]$.

Dyadic pigeonholing

Given $a_{1}, \ldots, a_{m} \in[1, n]$, there is an interval $[s / 2, s]$ containing at least $m / \log n$ of them.

$$
\begin{aligned}
& d_{1}=d\left(x_{2}, y_{1}\right) \in\left[s_{1} / 2, s_{1}\right] \quad \frac{1}{\log n} \\
& d_{2}=d\left(x_{3}, y_{2}\right)=?
\end{aligned}
$$

Finding many ladders

Claim

$\exists s_{1}, \ldots s_{t-1} \geq \alpha$ s.t. there are $\Omega\left(\frac{n d^{t} \prod_{i=1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)$ ladders with $d_{i} \in\left[s_{i} / 2, s_{i}\right]$.

Dyadic pigeonholing

Given $a_{1}, \ldots, a_{m} \in[1, n]$, there is an interval $[s / 2, s]$ containing at least $m / \log n$ of them.

Finding many ladders

Claim

$\exists s_{1}, \ldots s_{t-1} \geq \alpha$ s.t. there are $\Omega\left(\frac{n d^{t} \prod_{i=1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)$ ladders with $d_{i} \in\left[s_{i} / 2, s_{i}\right]$.

Dyadic pigeonholing

Given $a_{1}, \ldots, a_{m} \in[1, n]$, there is an interval $[s / 2, s]$ containing at least $m / \log n$ of them.

Finding many ladders

Claim

$\exists s_{1}, \ldots s_{t-1} \geq \alpha$ s.t. there are $\Omega\left(\frac{n d^{t} \prod_{i=1}^{t-1} s_{i}}{(\log n)^{t-1}}\right)$ ladders with $d_{i} \in\left[s_{i} / 2, s_{i}\right]$.

Dyadic pigeonholing

Given $a_{1}, \ldots, a_{m} \in[1, n]$, there is an interval $[s / 2, s]$ containing at least $m / \log n$ of them.

Using the tensor power trick

The $k^{t h}$ tensor power G^{k} of a graph G is the graph with vertices $\left(v_{1}, \ldots, v_{k}\right) \in V(G)^{k}$ and where $\left(v_{1}, \ldots, v_{k}\right) \sim\left(u_{1}, \ldots, u_{k}\right)$ iff $v_{i} \sim u_{i}, \forall i \in[k]$.

Using the tensor power trick

The $k^{t h}$ tensor power G^{k} of a graph G is the graph with vertices $\left(v_{1}, \ldots, v_{k}\right) \in V(G)^{k}$ and where $\left(v_{1}, \ldots, v_{k}\right) \sim\left(u_{1}, \ldots, u_{k}\right)$ iff $v_{i} \sim u_{i}, \forall i \in[k]$.

- We might hope that finding an F_{t} in G^{k} gives us an F_{t} in G.

Using the tensor power trick

The $k^{t h}$ tensor power G^{k} of a graph G is the graph with vertices $\left(v_{1}, \ldots, v_{k}\right) \in V(G)^{k}$ and where $\left(v_{1}, \ldots, v_{k}\right) \sim\left(u_{1}, \ldots, u_{k}\right)$ iff $v_{i} \sim u_{i}, \forall i \in[k]$.

- We might hope that finding an F_{t} in G^{k} gives us an F_{t} in G.
- Not true, so we cannot use the tensor power trick as a black box.

Using the tensor power trick

The $k^{t h}$ tensor power G^{k} of a graph G is the graph with vertices $\left(v_{1}, \ldots, v_{k}\right) \in V(G)^{k}$ and where $\left(v_{1}, \ldots, v_{k}\right) \sim\left(u_{1}, \ldots, u_{k}\right)$ iff $v_{i} \sim u_{i}, \forall i \in[k]$.

- We might hope that finding an F_{t} in G^{k} gives us an F_{t} in G.
- Not true, so we cannot use the tensor power trick as a black box.
- Instead we do the whole proof inside G^{k} and find a copy of F_{t} such that in at least one coordinate $i \in[k]$, all vertices are distinct in G.

Using the tensor power trick

The $k^{t h}$ tensor power G^{k} of a graph G is the graph with vertices $\left(v_{1}, \ldots, v_{k}\right) \in V(G)^{k}$ and where $\left(v_{1}, \ldots, v_{k}\right) \sim\left(u_{1}, \ldots, u_{k}\right)$ iff $v_{i} \sim u_{i}, \forall i \in[k]$.

- We might hope that finding an F_{t} in G^{k} gives us an F_{t} in G.
- Not true, so we cannot use the tensor power trick as a black box.
- Instead we do the whole proof inside G^{k} and find a copy of F_{t} such that in at least one coordinate $i \in[k]$, all vertices are distinct in G.
- When finding extensions, we make sure not to ruin too many coordinates.

Concluding remarks

Theorem (B., Janzer, Sudakov, Tomon 2022+)

Let P and T be a path and a tree with at least one edge each. Then $e x(n, P \square T)=\Theta\left(n^{3 / 2}\right)$.

Open problems:

- Prove ex $\left(T_{1} \square T_{2}\right)=O\left(n^{3 / 2}\right)$ for any two trees T_{1}, T_{2}.
- Prove ex $\left(n, F_{t}^{(d)}\right)=O\left(n^{2-1 / d}\right)$ for the d-dimensional grid $F_{t}^{(d)}$.
- Determine the correct dependence of ex $\left(n, F_{t}\right)$ on t. We can show $c t^{1 / 2} n^{3 / 2} \leq \operatorname{ex}\left(n, F_{t}\right) \leq e^{O\left(t^{5}\right)} n^{3 / 2}$.
- Erdős' conjecture.

