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Ramsey numbers

Definition

For a positive integer k, a graph G is k-Ramsey for a graph H if every
k-edge-coloring of G contains a monochromatic copy of H. We write

G
k→ H.

Theorem (Ramsey’s theorem)

For every k and H, there exists N such that KN
k→ H.

Definition

The k-color Ramsey number of H, denoted by rk(H), is defined as

rk(H) = min{v(G) |G k→ H}.
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Size-Ramsey numbers

Definition

The k-color size-Ramsey number of H is r̂k(H) = min{e(G) |G k→ H}.

For fixed k, r̂k(H) = O(n) for an n-vertex graph H which is:

a path (Beck ‘83),

a bounded degree tree (Friedman, Pippenger ‘87),

a cycle (Haxell, Kohayakawa,  Luczak ‘95),

a bounded degree graph with bounded treewidth (Kamčev, Liebenau,
Wood, Yepremyan ‘21; Berger, Kohayakawa, Maesaka, Martins,
Mendonça, Mota, Parczyk ‘21),

a logarithmic subdivision of a bounded degree graph (Draganić,
Krivelevich, Nenadov ‘22).

However, r̂2(H) is not linear in v(H) for all bounded degree graphs (Rödl,
Szemerédi ‘00; Tikhomirov ‘22+).
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Induced Ramsey numbers

Definition

A graph G is k-color induced Ramsey for H if every k-edge-coloring of G
contains a monochromatic copy of H as an induced subgraph of G.

Definition

The k-color induced Ramsey number of H is the minimum number of
vertices of a graph that is k-color induced Ramsey for H.

These numbers exist (Deuber ‘75; Erdős, Hajnal, Pósa ‘75; Rödl ‘73).

r2ind(H) = 2O(n logn) (Conlon, Fox, Sudakov ‘12).

Erdős conjectured r2ind(H) = 2O(n).
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Domagoj Bradač Induced size-Ramsey numbers of cycles Eurocomb ‘23, Prague, 31.8.2023.



Induced Ramsey numbers

Definition

A graph G is k-color induced Ramsey for H if every k-edge-coloring of G
contains a monochromatic copy of H as an induced subgraph of G.

Definition

The k-color induced Ramsey number of H is the minimum number of
vertices of a graph that is k-color induced Ramsey for H.

These numbers exist (Deuber ‘75; Erdős, Hajnal, Pósa ‘75; Rödl ‘73).
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Induced size-Ramsey numbers

Definition

The k-color induced size-Ramsey number, r̂kind(H), of H is the minimum
number of edges of a graph that is k-color induced Ramsey for H.

Theorem (Haxell, Kohayakawa,  Luczak ‘95)

For every k, there is C = C(k) such that r̂kind(Pn), r̂
k
ind(Cn) ≤ Cn.

Question

What is the best value of C = C(k) for cycles in the Theorem above?
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Previous results

Lower bound Upper bound

r̂k(Pn) Ω(k2)n (DP ‘17) O(k2 log k)n (K ‘19)

r̂kind(Pn) Ω(k2)n (DP ‘17) O(k3 log4 k)n (DGK ‘22)

r̂k(Cn), n even Ω(k2)n (DP ‘17) O(k120 log2 k)n (JM ‘23)

r̂k(Cn), n odd 2k−1n (JM ‘23) O(2k
2+16 log k)n (JM ‘23)

r̂kind(Cn), n even Ω(k2)n (DP ‘17) ? (HK L ‘95)

r̂kind(Cn), n odd 2k−1n (JM ‘23) ? (HK L ‘95)
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Our results

Theorem (B., Draganić, Sudakov ‘23+)

For any k ≥ 1, there is n0 such that for n ≥ n0, the following holds.

r̂k(Cn) = 2O(k)n.

If n is even, then r̂kind(Cn) = O(k102)n.

If n is odd, then r̂kind(Cn) = 2O(k log k)n.
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Overview of results

Lower bound Upper bound

r̂k(Pn) Ω(k2)n (DP ‘17) O(k2 log k)n (K ‘19)

r̂kind(Pn) Ω(k2)n (DP ‘17) O(k3 log4 k)n (DGK ‘22)

r̂k(Cn), n even Ω(k2)n (DP ‘17) O(k102)n (BDS ‘23+)

r̂k(Cn), n odd 2k−1n (JM ‘23) 2O(k)n (BDS ‘23+)

r̂kind(Cn), n even Ω(k2)n (DP ‘17) O(k102)n (BDS ‘23+)

r̂kind(Cn), n odd 2k−1n (JM ‘23) 2O(k log k)n (BDS ‘23+)
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Proof ideas

Previous results: the host graph is G(N,C1/N), where N = C2n.

Choose
a suitable color and find an induced Cn in this color or a large subgraph
without this color.
Main idea: in this suitable color, it is easier to find a cycle of length in
[0.9n, 1.1n] than of length exactly n.
Our new host graph construction is designed to exploits this.
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Host graph construction and auxiliary graph

Construction to obtain r̂kind(Cn) = 2O(k log k)n:

Find a small gadget graph F = F (k) which is k-induced Ramsey for C5.

Place C1N random copies of F, to get the host graph Γ on N = C2n
vertices.

Auxiliary graph G with V (G) = V (Γ) and edges: for each placed copy
of F , find one monochromatic induced C5 and connect two nonadjacent
vertices on this C5.
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Host graph and auxiliary graph

H
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Host graph and auxiliary graph

→

Γ G
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Using the auxiliary graph

Claim: a “good” monochromatic cycle in G of any length ℓ ∈ [n/3, n/2]
gives an induced monochromatic cycle of length n in Γ.
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Domagoj Bradač Induced size-Ramsey numbers of cycles Eurocomb ‘23, Prague, 31.8.2023.



Using the auxiliary graph

Claim: a “good” monochromatic cycle in G of any length ℓ ∈ [n/3, n/2]
gives an induced monochromatic cycle of length n in Γ.
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Finding an induced cycle of approximate length

Our task essentially reduces to finding an induced cycle of length in
[n/3, n/2] in a locally sparse graph.

Main tool: modification of the DFS algorithm for induced paths developed
by Draganić, Glock and Krivelevich.
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Getting all the results

For different results, we use different gadget graphs.

For the odd induced case F is k-color induced Ramsey for C5. We take
F to be Alon’s dense pseudorandom triangle free graph on 2O(k log k)

vertices.

For the even induced case F is k-color induced Ramsey for C6. We take
F to be a dense C4-free bipartite on O(k6) vertices.

For the odd (non-induced) we want every k-edge-coloring of F to have
an odd monochromatic cycle. We take F = K2k+1.
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Concluding remarks

Conjecture

For odd n, r̂kind(Cn) = 2O(k)n.

It is enough to prove the following.

Conjecture

There is a graph F on 2O(k) vertices such that in every k-edge-coloring of
F there is an odd monochromatic cycle of length at least 5 as an induced
subgraph.

Thank you!
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