Effective bounds for induced size-Ramsey numbers of cycles

Domagoj Bradač

joint work with Nemanja Draganić and Benny Sudakov

(ETH Zürich)

Eurocomb '23, Prague, 31.8.2023.

For a positive integer k, a graph G is k-Ramsey for a graph H if every k-edge-coloring of G contains a monochromatic copy of H. We write $G \xrightarrow{k} H$.

For a positive integer k, a graph G is k-Ramsey for a graph H if every k-edge-coloring of G contains a monochromatic copy of H. We write $G \xrightarrow{k} H$.

Theorem (Ramsey's theorem)

For every k and H, there exists N such that $K_N \xrightarrow{k} H$.

For a positive integer k, a graph G is k-Ramsey for a graph H if every k-edge-coloring of G contains a monochromatic copy of H. We write $G \xrightarrow{k} H$.

Theorem (Ramsey's theorem)

For every k and H, there exists N such that $K_N \xrightarrow{k} H$.

Definition

The k-color Ramsey number of H, denoted by $r^k(H)$, is defined as $r^k(H) = \min\{v(G) \mid G \xrightarrow{k} H\}.$

Size-Ramsey numbers

Definition

The k-color size-Ramsey number of H is $\hat{r}^k(H) = \min\{e(G) \mid G \xrightarrow{k} H\}.$

The k-color size-Ramsey number of H is $\hat{r}^k(H) = \min\{e(G) \mid G \xrightarrow{k} H\}.$

For fixed k, $\hat{r}^k(H) = O(n)$ for an *n*-vertex graph H which is:

The k-color size-Ramsey number of H is $\hat{r}^k(H) = \min\{e(G) | G \xrightarrow{k} H\}.$

For fixed k, $\hat{r}^k(H) = O(n)$ for an *n*-vertex graph H which is:

- a path (Beck '83),
- a bounded degree tree (Friedman, Pippenger '87),
- a cycle (Haxell, Kohayakawa, Łuczak '95),
- a bounded degree graph with bounded treewidth (Kamčev, Liebenau, Wood, Yepremyan '21; Berger, Kohayakawa, Maesaka, Martins, Mendonça, Mota, Parczyk '21),
- a logarithmic subdivision of a bounded degree graph (Draganić, Krivelevich, Nenadov '22).

The k-color size-Ramsey number of H is $\hat{r}^k(H) = \min\{e(G) \mid G \xrightarrow{k} H\}.$

For fixed k, $\hat{r}^k(H) = O(n)$ for an *n*-vertex graph H which is:

- a path (Beck '83),
- a bounded degree tree (Friedman, Pippenger '87),
- a cycle (Haxell, Kohayakawa, Łuczak '95),
- a bounded degree graph with bounded treewidth (Kamčev, Liebenau, Wood, Yepremyan '21; Berger, Kohayakawa, Maesaka, Martins, Mendonça, Mota, Parczyk '21),
- a logarithmic subdivision of a bounded degree graph (Draganić, Krivelevich, Nenadov '22).

However, $\hat{r}^2(H)$ is not linear in v(H) for all bounded degree graphs (Rödl, Szemerédi '00; Tikhomirov '22+).

A graph G is k-color induced Ramsey for H if every k-edge-coloring of G contains a monochromatic copy of H as an induced subgraph of G.

A graph G is k-color induced Ramsey for H if every k-edge-coloring of G contains a monochromatic copy of H as an induced subgraph of G.

Definition

The k-color induced Ramsey number of H is the minimum number of vertices of a graph that is k-color induced Ramsey for H.

A graph G is k-color induced Ramsey for H if every k-edge-coloring of G contains a monochromatic copy of H as an induced subgraph of G.

Definition

The k-color induced Ramsey number of H is the minimum number of vertices of a graph that is k-color induced Ramsey for H.

A graph G is k-color induced Ramsey for H if every k-edge-coloring of G contains a monochromatic copy of H as an induced subgraph of G.

Definition

The k-color induced Ramsey number of H is the minimum number of vertices of a graph that is k-color induced Ramsey for H.

• These numbers exist (Deuber '75; Erdős, Hajnal, Pósa '75; Rödl '73).

A graph G is k-color induced Ramsey for H if every k-edge-coloring of G contains a monochromatic copy of H as an induced subgraph of G.

Definition

The k-color induced Ramsey number of H is the minimum number of vertices of a graph that is k-color induced Ramsey for H.

These numbers exist (Deuber '75; Erdős, Hajnal, Pósa '75; Rödl '73).
r²_{ind}(H) = 2^{O(n log n)} (Conlon, Fox, Sudakov '12).

A graph G is k-color induced Ramsey for H if every k-edge-coloring of G contains a monochromatic copy of H as an induced subgraph of G.

Definition

The k-color induced Ramsey number of H is the minimum number of vertices of a graph that is k-color induced Ramsey for H.

- These numbers exist (Deuber '75; Erdős, Hajnal, Pósa '75; Rödl '73).
- $r_{\text{ind}}^2(H) = 2^{O(n \log n)}$ (Conlon, Fox, Sudakov '12).
- Erdős conjectured $r_{\text{ind}}^2(H) = 2^{O(n)}$.

The k-color induced size-Ramsey number, $\hat{r}_{ind}^k(H)$, of H is the minimum number of edges of a graph that is k-color induced Ramsey for H.

The k-color induced size-Ramsey number, $\hat{r}_{ind}^k(H)$, of H is the minimum number of edges of a graph that is k-color induced Ramsey for H.

Theorem (Haxell, Kohayakawa, Łuczak '95)

For every k, there is C = C(k) such that $\hat{r}_{ind}^k(P_n), \hat{r}_{ind}^k(C_n) \leq Cn$.

The k-color induced size-Ramsey number, $\hat{r}_{ind}^k(H)$, of H is the minimum number of edges of a graph that is k-color induced Ramsey for H.

Theorem (Haxell, Kohayakawa, Łuczak '95)

For every k, there is C = C(k) such that $\hat{r}_{ind}^k(P_n), \hat{r}_{ind}^k(C_n) \leq Cn$.

Question

What is the best value of C = C(k) for cycles in the Theorem above?

	Lower bound		Upper bound	
$\hat{r}^k(P_n)$	$\Omega(k^2)n$	(DP '17)	$O(k^2 \log k)n$	(K '19)
$\hat{r}_{\mathrm{ind}}^k(P_n)$	$\Omega(k^2)n$	(DP '17)	$O(k^3 \log^4 k) n$	(DGK '22)
$\hat{r}^k(C_n)$, n even	$\Omega(k^2)n$	(DP '17)	$O(k^{120}\log^2 k)n$	(JM '23)
$\hat{r}^k(C_n)$, n odd	$2^{k-1}n$	(JM '23)	$O(2^{k^2 + 16\log k})n$	(JM '23)
$\hat{r}^k_{\mathrm{ind}}(C_n)$, n even	$\Omega(k^2)n$	(DP '17)	?	(HKŁ '95)
$\hat{r}^k_{\mathrm{ind}}(C_n)$, n odd	$2^{k-1}n$	(JM '23)	?	(HKŁ '95)

	Lower bound		Upper bound	
$\hat{r}^k(P_n)$	$\Omega(k^2)n$	(DP '17)	$O(k^2 \log k) n$	(K '19)
$\hat{r}_{\mathrm{ind}}^k(P_n)$	$\Omega(k^2)n$	(DP '17)	$O(k^3 \log^4 k) n$	(DGK '22)
$\hat{r}^k(C_n)$, n even	$\Omega(k^2)n$	(DP '17)	$O(k^{120}\log^2 k)n$	(JM '23)
$\hat{r}^k(C_n)$, n odd	$2^{k-1}n$	(JM '23)	$O(2^{k^2 + 16\log k})n$	(JM '23)
$\hat{r}^k_{\mathrm{ind}}(C_n)$, n even	$\Omega(k^2)n$	(DP '17)		(HKŁ '95)
$\hat{r}^k_{ ext{ind}}(C_n)$, n odd	$2^{k-1}n$	(JM '23)		(HKŁ '95)

Theorem (B., Draganić, Sudakov '23+)

For any $k \ge 1$, there is n_0 such that for $n \ge n_0$, the following holds. • $\hat{r}^k(C_n) = 2^{O(k)}n$.

- If n is even, then $\hat{r}_{ind}^k(C_n) = O(k^{102})n$.
- If n is odd, then $\hat{r}_{ind}^k(C_n) = 2^{O(k \log k)} n$.

	Lower bound		Upper bound	
$\hat{r}^k(P_n)$	$\Omega(k^2)n$	(DP '17)	$O(k^2 \log k)n$	(K '19)
$\hat{r}_{\mathrm{ind}}^k(P_n)$	$\Omega(k^2)n$	(DP '17)	$O(k^3 \log^4 k) n$	(DGK '22)
$\hat{r}^k(C_n)$, n even	$\Omega(k^2)n$	(DP '17)	$O(k^{102})n$	(BDS '23+)
$\hat{r}^k(C_n)$, n odd	$2^{k-1}n$	(JM '23)	$2^{O(k)}n$	(BDS '23+)
$\hat{r}^k_{\mathrm{ind}}(C_n)$, n even	$\Omega(k^2)n$	(DP '17)	$O(k^{102})n$	(BDS '23+)
$\hat{r}^k_{\mathrm{ind}}(C_n)$, n odd	$2^{k-1}n$	(JM '23)	$2^{O(k\log k)}n$	(BDS '23+)

Previous results: the host graph is $G(N, C_1/N)$, where $N = C_2 n$.

Previous results: the host graph is $G(N, C_1/N)$, where $N = C_2 n$. Choose a suitable color and find an induced C_n in this color or a large subgraph without this color.

- Previous results: the host graph is $G(N, C_1/N)$, where $N = C_2 n$. Choose a suitable color and find an induced C_n in this color or a large subgraph without this color.
- Main idea: in this suitable color, it is easier to find a cycle of length in $\left[0.9n, 1.1n\right]$ than of length exactly n.

- Previous results: the host graph is $G(N, C_1/N)$, where $N = C_2 n$. Choose a suitable color and find an induced C_n in this color or a large subgraph without this color.
- Main idea: in this suitable color, it is easier to find a cycle of length in $\left[0.9n, 1.1n\right]$ than of length exactly n.
- Our new host graph construction is designed to exploits this.

Host graph construction and auxiliary graph

Construction to obtain $\hat{r}_{ind}^k(C_n) = 2^{O(k \log k)} n$:

Construction to obtain $\hat{r}_{ind}^k(C_n) = 2^{O(k \log k)} n$:

• Find a small gadget graph F = F(k) which is k-induced Ramsey for C_5 .

Construction to obtain $\hat{r}_{ind}^k(C_n) = 2^{O(k \log k)} n$:

- Find a small gadget graph F = F(k) which is k-induced Ramsey for C_5 .
- Place C_1N random copies of F, to get the host graph Γ on $N = C_2n$ vertices.

Construction to obtain $\hat{r}_{ind}^k(C_n) = 2^{O(k \log k)} n$:

- Find a small gadget graph F = F(k) which is k-induced Ramsey for C_5 .
- Place C_1N random copies of F, to get the host graph Γ on $N = C_2n$ vertices.
- Auxiliary graph G with $V(G) = V(\Gamma)$ and edges: for each placed copy of F, find one monochromatic induced C_5 and connect two nonadjacent vertices on this C_5 .

Η

Our task essentially reduces to finding an induced cycle of length in $\left[n/3,n/2\right]$ in a locally sparse graph.

Our task essentially reduces to finding an induced cycle of length in [n/3, n/2] in a locally sparse graph. Main tool: modification of the DFS algorithm for induced paths developed by Draganić, Glock and Krivelevich.

• For the odd induced case F is k-color induced Ramsey for C_5 . We take F to be Alon's dense pseudorandom triangle free graph on $2^{O(k \log k)}$ vertices.

- For the odd induced case F is k-color induced Ramsey for C_5 . We take F to be Alon's dense pseudorandom triangle free graph on $2^{O(k \log k)}$ vertices.
- For the even induced case F is k-color induced Ramsey for C_6 . We take F to be a dense C_4 -free bipartite on $O(k^6)$ vertices.

- For the odd induced case F is k-color induced Ramsey for C_5 . We take F to be Alon's dense pseudorandom triangle free graph on $2^{O(k \log k)}$ vertices.
- For the even induced case F is k-color induced Ramsey for C_6 . We take F to be a dense C_4 -free bipartite on $O(k^6)$ vertices.
- For the odd (non-induced) we want every k-edge-coloring of F to have an odd monochromatic cycle. We take $F = K_{2^k+1}$.

Concluding remarks

Conjecture

For odd *n*,
$$\hat{r}_{ind}^{k}(C_n) = 2^{O(k)}n$$
.

Concluding remarks

Conjecture

For odd n, $\hat{r}_{ind}^k(C_n) = 2^{O(k)}n$.

It is enough to prove the following.

Conjecture

There is a graph F on $2^{O(k)}$ vertices such that in every k-edge-coloring of F there is an odd monochromatic cycle of length at least 5 as an induced subgraph.

Concluding remarks

Conjecture

For odd n, $\hat{r}_{ind}^k(C_n) = 2^{O(k)}n$.

It is enough to prove the following.

Conjecture

There is a graph F on $2^{O(k)}$ vertices such that in every k-edge-coloring of F there is an odd monochromatic cycle of length at least 5 as an induced subgraph.

Thank you!