Effective bounds for induced size-Ramsey numbers of cycles

Domagoj Bradač

joint work with Nemanja Draganić and Benny Sudakov

Ramsey numbers

Definition

For a positive integer k, a graph G is k-Ramsey for a graph H if every k-edge-coloring of G contains a monochromatic copy of H. We write $G \stackrel{k}{\to} H$.

Ramsey numbers

Definition

For a positive integer k, a graph G is k-Ramsey for a graph H if every k-edge-coloring of G contains a monochromatic copy of H. We write $G \stackrel{k}{\to} H$.

Theorem (Ramsey's theorem)

For every k and H, there exists N such that $K_N \stackrel{k}{\to} H$.

Ramsey numbers

Definition

For a positive integer k, a graph G is k-Ramsey for a graph H if every k-edge-coloring of G contains a monochromatic copy of H. We write $G \stackrel{k}{\to} H$.

Theorem (Ramsey's theorem)

For every k and H, there exists N such that $K_N \stackrel{k}{\to} H$.

Definition

The k-color Ramsey number of H, denoted by $r^k(H)$, is defined as $r^k(H) = \min\{v(G) \mid G \xrightarrow{k} H\}$.

Definition

The k-color size-Ramsey number of H is $\hat{r}^k(H) = \min\{e(G) \mid G \xrightarrow{k} H\}$.

Definition

The k-color size-Ramsey number of H is $\hat{r}^k(H) = \min\{e(G) \mid G \xrightarrow{k} H\}$.

Definition

The k-color size-Ramsey number of H is $\hat{r}^k(H) = \min\{e(G) \mid G \xrightarrow{k} H\}$.

For fixed k, $\hat{r}^k(H) = O(n)$ for an n-vertex graph H which is:

a path (Beck '83),

Definition

The k-color size-Ramsey number of H is $\hat{r}^k(H) = \min\{e(G) \mid G \xrightarrow{k} H\}$.

- a path (Beck '83),
- a bounded degree tree (Friedman, Pippenger '87),

Definition

The k-color size-Ramsey number of H is $\hat{r}^k(H) = \min\{e(G) \mid G \xrightarrow{k} H\}$.

- a path (Beck '83),
- a bounded degree tree (Friedman, Pippenger '87),
- a cycle (Haxell, Kohayakawa, Łuczak '95),

Definition

The k-color size-Ramsey number of H is $\hat{r}^k(H) = \min\{e(G) \mid G \xrightarrow{k} H\}$.

- a path (Beck '83),
- a bounded degree tree (Friedman, Pippenger '87),
- a cycle (Haxell, Kohayakawa, Łuczak '95),
- a bounded degree graph with bounded treewidth (Kamčev, Liebenau, Wood, Yepremyan '21),

Definition

The k-color size-Ramsey number of H is $\hat{r}^k(H) = \min\{e(G) \mid G \xrightarrow{k} H\}$.

- a path (Beck '83),
- a bounded degree tree (Friedman, Pippenger '87),
- a cycle (Haxell, Kohayakawa, Łuczak '95),
- a bounded degree graph with bounded treewidth (Kamčev, Liebenau, Wood, Yepremyan '21),
- a logarithmic subdivision of a bounded degree graph (Draganić, Krivelevich, Nenadov '22),

Definition

The k-color size-Ramsey number of H is $\hat{r}^k(H) = \min\{e(G) \mid G \xrightarrow{k} H\}$.

- a path (Beck '83),
- a bounded degree tree (Friedman, Pippenger '87),
- a cycle (Haxell, Kohayakawa, Łuczak '95),
- a bounded degree graph with bounded treewidth (Kamčev, Liebenau, Wood, Yepremyan '21),
- a logarithmic subdivision of a bounded degree graph (Draganić, Krivelevich, Nenadov '22),

Definition

The k-color size-Ramsey number of H is $\hat{r}^k(H) = \min\{e(G) \mid G \xrightarrow{k} H\}$.

For fixed k, $\hat{r}^k(H) = O(n)$ for an n-vertex graph H which is:

- a path (Beck '83),
- a bounded degree tree (Friedman, Pippenger '87),
- a cycle (Haxell, Kohayakawa, Łuczak '95),
- a bounded degree graph with bounded treewidth (Kamčev, Liebenau, Wood, Yepremyan '21),
- a logarithmic subdivision of a bounded degree graph (Draganić, Krivelevich, Nenadov '22),

However, $\hat{r}^2(H)$ is not linear in v(H) for all bounded degree graphs (Rödl, Szemerédi '00; Tikhomirov '22+).

Definition

A graph G is k-color induced Ramsey for H if every k-edge-coloring of G contains a monochromatic copy of H as an induced subgraph of G.

Definition

A graph G is k-color induced Ramsey for H if every k-edge-coloring of G contains a monochromatic copy of H as an induced subgraph of G.

Definition

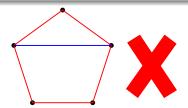
The k-color induced Ramsey number of H is the minimum number of vertices of a graph that is k-color induced Ramsey for H.

Definition

A graph G is k-color induced Ramsey for H if every k-edge-coloring of G contains a monochromatic copy of H as an induced subgraph of G.

Definition

The k-color induced Ramsey number of H is the minimum number of vertices of a graph that is k-color induced Ramsey for H.



Definition

A graph G is k-color induced Ramsey for H if every k-edge-coloring of G contains a monochromatic copy of H as an induced subgraph of G.

Definition

The k-color induced Ramsey number of H is the minimum number of vertices of a graph that is k-color induced Ramsey for H.

These numbers exist (Deuber '75; Erdős, Hajnal, Pósa '75; Rödl '73).

Definition

A graph G is k-color induced Ramsey for H if every k-edge-coloring of G contains a monochromatic copy of H as an induced subgraph of G.

Definition

The k-color induced Ramsey number of H is the minimum number of vertices of a graph that is k-color induced Ramsey for H.

These numbers exist (Deuber '75; Erdős, Hajnal, Pósa '75; Rödl '73).

• $r_{\mathrm{ind}}^2(H) = 2^{O(n\log n)}$ (Conlon, Fox, Sudakov '12).

Definition

A graph G is k-color induced Ramsey for H if every k-edge-coloring of G contains a monochromatic copy of H as an induced subgraph of G.

Definition

The k-color induced Ramsey number of H is the minimum number of vertices of a graph that is k-color induced Ramsey for H.

These numbers exist (Deuber '75; Erdős, Hajnal, Pósa '75; Rödl '73).

- $r_{\mathrm{ind}}^2(H) = 2^{O(n \log n)}$ (Conlon, Fox, Sudakov '12).
- $r_{\mathrm{ind}}^2(H) = n^{O(d\log d)}$ if H is d-degenerate (Fox, Sudakov '08).

Definition

A graph G is k-color induced Ramsey for H if every k-edge-coloring of G contains a monochromatic copy of H as an induced subgraph of G.

Definition

The k-color induced Ramsey number of H is the minimum number of vertices of a graph that is k-color induced Ramsey for H.

These numbers exist (Deuber '75; Erdős, Hajnal, Pósa '75; Rödl '73).

- $r_{\mathrm{ind}}^2(H) = 2^{O(n \log n)}$ (Conlon, Fox, Sudakov '12).
- $r_{\mathrm{ind}}^2(H) = n^{O(d\log d)}$ if H is d-degenerate (Fox, Sudakov '08).

Definition

A graph G is k-color induced Ramsey for H if every k-edge-coloring of G contains a monochromatic copy of H as an induced subgraph of G.

Definition

The k-color induced Ramsey number of H is the minimum number of vertices of a graph that is k-color induced Ramsey for H.

These numbers exist (Deuber '75; Erdős, Hajnal, Pósa '75; Rödl '73).

- $r_{\mathrm{ind}}^2(H) = 2^{O(n\log n)}$ (Conlon, Fox, Sudakov '12).
- $r_{\mathrm{ind}}^2(H) = n^{O(d\log d)}$ if H is d-degenerate (Fox, Sudakov '08).

Erdős conjectured $r_{\text{ind}}^2(H) = 2^{O(n)}$.

Definition

The k-color induced size-Ramsey number, $\hat{r}_{\mathrm{ind}}^k(H)$, of H is the minimum number of edges of a graph that is k-color induced Ramsey for H.

Definition

The k-color induced size-Ramsey number, $\hat{r}_{\mathrm{ind}}^k(H)$, of H is the minimum number of edges of a graph that is k-color induced Ramsey for H.

Theorem (Haxell, Kohayakawa, Łuczak '95)

For every k, there is C = C(k) such that $\hat{r}_{ind}^k(P_n), \hat{r}_{ind}^k(C_n) \leq Cn$.

Definition

The k-color induced size-Ramsey number, $\hat{r}_{\mathrm{ind}}^k(H)$, of H is the minimum number of edges of a graph that is k-color induced Ramsey for H.

Theorem (Haxell, Kohayakawa, Łuczak '95)

For every k, there is C=C(k) such that $\hat{r}_{\mathrm{ind}}^k(P_n), \hat{r}_{\mathrm{ind}}^k(C_n) \leq Cn$.

Not known whether $\hat{r}_{\text{ind}}^2(T) = O(n)$ for bounded degree trees.

Definition

The k-color induced size-Ramsey number, $\hat{r}_{\mathrm{ind}}^k(H)$, of H is the minimum number of edges of a graph that is k-color induced Ramsey for H.

Theorem (Haxell, Kohayakawa, Łuczak '95)

For every k, there is C=C(k) such that $\hat{r}_{\mathrm{ind}}^k(P_n), \hat{r}_{\mathrm{ind}}^k(C_n) \leq Cn$.

Not known whether $\hat{r}_{\text{ind}}^2(T) = O(n)$ for bounded degree trees.

Question

What is the best value of C = C(k) for cycles in the Theorem above?

Previous results

	Lower bound		Upper bound	
$\hat{r}^k(P_n)$	$\Omega(k^2)n$	(DP '17)	$O(k^2 \log k)n$	(K '19)
$\hat{r}_{\mathrm{ind}}^k(P_n)$	$\Omega(k^2)n$	(DP '17)	$O(k^3 \log^4 k)n$	(DGK '22)
$\hat{r}^k(C_n)$, n even	$\Omega(k^2)n$	(DP '17)	$O(k^{120}\log^2 k)n$	(JM '23)
$\hat{r}^k(C_n)$, n odd	$2^{k-1}n$	(JM '23)	$O(2^{k^2 + 16\log k})n$	(JM '23)
$\hat{r}^k_{\mathrm{ind}}(C_n)$, n even	$\Omega(k^2)n$	(DP '17)	?	(HKŁ '95)
$\hat{r}^k_{\mathrm{ind}}(C_n)$, n odd	$2^{k-1}n$	(JM '23)	?	(HKŁ '95)

Previous results

	Lower bound		Upper bound	
$\hat{r}^k(P_n)$	$\Omega(k^2)n$	(DP '17)	$O(k^2 \log k)n$	(K '19)
$\hat{r}_{\mathrm{ind}}^k(P_n)$	$\Omega(k^2)n$	(DP '17)	$O(k^3 \log^4 k)n$	(DGK '22)
$\hat{r}^k(C_n)$, n even	$\Omega(k^2)n$	(DP '17)	$O(k^{120}\log^2 k)n$	(JM '23)
$\hat{r}^k(C_n)$, n odd	$2^{k-1}n$	(JM '23)	$O(2^{k^2 + 16\log k})n$	(JM '23)
$\hat{r}^k_{\mathrm{ind}}(C_n)$, n even	$\Omega(k^2)n$	(DP '17)	1	(HKŁ '95)
$\hat{r}^k_{\mathrm{ind}}(C_n)$, n odd	$2^{k-1}n$	(JM '23)		(HKŁ '95)

Our results

Theorem (B., Draganić, Sudakov '23+)

For any $k \ge 1$, there is n_0 such that for $n \ge n_0$, the following holds.

- $\hat{r}^k(C_n) = 2^{O(k)}n$.
- If n is even, then $\hat{r}_{\mathrm{ind}}^k(C_n) = O(k^{102})n$.
- If n is odd, then $\hat{r}_{\mathrm{ind}}^k(C_n) = 2^{O(k \log k)} n$.

Overview of results

	Lower bound		Upper bound	
$\hat{r}^k(P_n)$	$\Omega(k^2)n$	(DP '17)	$O(k^2 \log k)n$	(K '19)
$\hat{r}_{\mathrm{ind}}^k(P_n)$	$\Omega(k^2)n$	(DP '17)	$O(k^3 \log^4 k)n$	(DGK '22)
$\hat{r}^k(C_n)$, n even	$\Omega(k^2)n$	(DP '17)	$O(k^{102})n$	(BDS '23+)
$\hat{r}^k(C_n)$, n odd	$2^{k-1}n$	(JM '23)	$2^{O(k)}n$	(BDS '23+)
$\hat{r}_{\mathrm{ind}}^k(C_n)$, n even	$\Omega(k^2)n$	(DP '17)	$O(k^{102})n$	(BDS '23+)
$\hat{r}^k_{\mathrm{ind}}(C_n)$, n odd	$2^{k-1}n$	(JM '23)	$2^{O(k\log k)}n$	(BDS '23+)

Previous results: the host graph is $G(N, C_1/N)$, where $N = C_2 n$.

Previous results: the host graph is $G(N,C_1/N)$, where $N=C_2n$. Choose a suitable color and find an induced C_n in this color or a large subgraph without this color.

Previous results: the host graph is $G(N,C_1/N)$, where $N=C_2n$. Choose a suitable color and find an induced C_n in this color or a large subgraph without this color.

Main idea: in this suitable color, it is easier to find a cycle of length in [0.9n, 1.1n] than of length exactly n.

Previous results: the host graph is $G(N,C_1/N)$, where $N=C_2n$. Choose a suitable color and find an induced C_n in this color or a large subgraph without this color.

Main idea: in this suitable color, it is easier to find a cycle of length in [0.9n, 1.1n] than of length exactly n.

Our new host graph construction is designed to exploits this.

Host graph construction and auxiliary graph

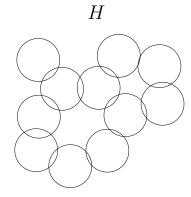
ullet Find a small gadget graph F=F(k) which is k-induced Ramsey for C_5 .

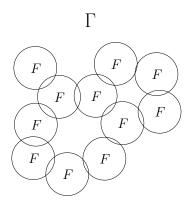
Host graph construction and auxiliary graph

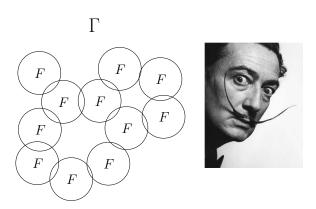
- Find a small gadget graph F = F(k) which is k-induced Ramsey for C_5 .
- Place C_1N random copies of F, to get the host graph Γ on $N=C_2n$ vertices.

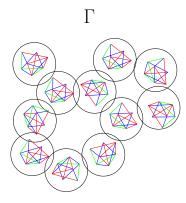
Host graph construction and auxiliary graph

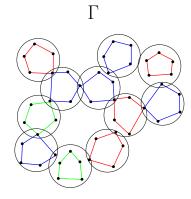
- ullet Find a small gadget graph F=F(k) which is k-induced Ramsey for C_5 .
- Place C_1N random copies of F, to get the host graph Γ on $N=C_2n$ vertices.
- Auxiliary graph G with $V(G)=V(\Gamma)$ and edges: for each placed copy of F, find one monochromatic induced C_5 and connect two nonadjacent vertices on this C_5 .

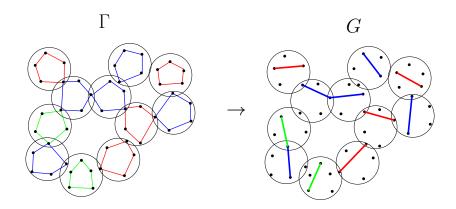


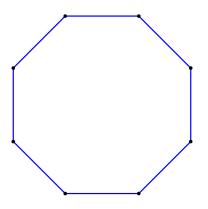




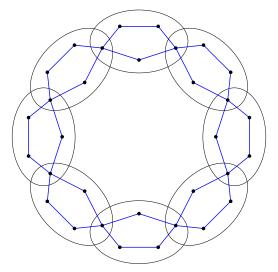


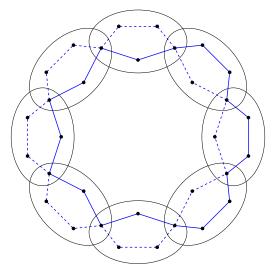


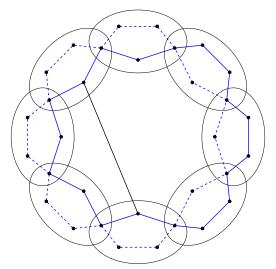


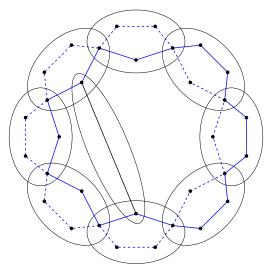


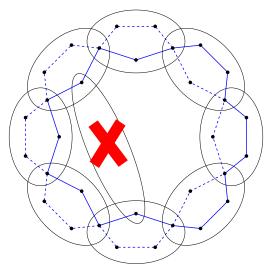












Our task essentially reduces to find an induced cycle of length in [n/3, n/2] in a locally sparse graph.

Our task essentially reduces to find an induced cycle of length in [n/3, n/2] in a locally sparse graph.

Consider $G \sim G(N, C_1/N)$ where $N = C_2 n$ and G is k-edge-colored. We want to find monochromatic induced cycle of length in $\lfloor n/3, n/2 \rfloor$ in G.

Our task essentially reduces to find an induced cycle of length in [n/3, n/2] in a locally sparse graph.

Consider $G \sim G(N, C_1/N)$ where $N = C_2 n$ and G is k-edge-colored. We want to find monochromatic induced cycle of length in [n/3, n/2] in G.

• Take the densest color, say red.

Our task essentially reduces to find an induced cycle of length in [n/3, n/2] in a locally sparse graph.

Consider $G \sim G(N, C_1/N)$ where $N = C_2 n$ and G is k-edge-colored. We want to find monochromatic induced cycle of length in [n/3, n/2] in G.

- Take the densest color, say red.
- ullet By a theorem of Krivelevich '19, we can find a large expander G_1 in $G_{
 m red}.$

Our task essentially reduces to find an induced cycle of length in [n/3, n/2] in a locally sparse graph.

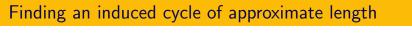
Consider $G \sim G(N, C_1/N)$ where $N = C_2 n$ and G is k-edge-colored. We want to find monochromatic induced cycle of length in [n/3, n/2] in G.

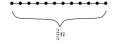
- Take the densest color, say red.
- ullet By a theorem of Krivelevich '19, we can find a large expander G_1 in $G_{\mathrm{red}}.$
- Pass to a subgraph G_2 of large minimum degree in G_1 .

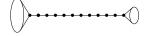
Our task essentially reduces to find an induced cycle of length in [n/3,n/2] in a locally sparse graph.

Consider $G \sim G(N, C_1/N)$ where $N = C_2 n$ and G is k-edge-colored. We want to find monochromatic induced cycle of length in [n/3, n/2] in G.

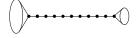
- Take the densest color, say red.
- ullet By a theorem of Krivelevich '19, we can find a large expander G_1 in $G_{
 m red}.$
- Pass to a subgraph G_2 of large minimum degree in G_1 .
- And then...

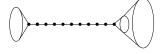


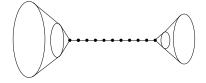


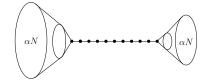


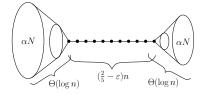
•••••

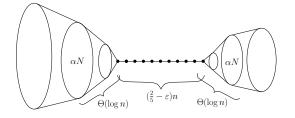


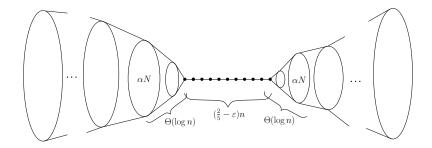


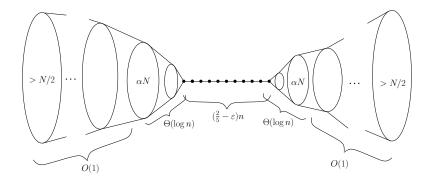


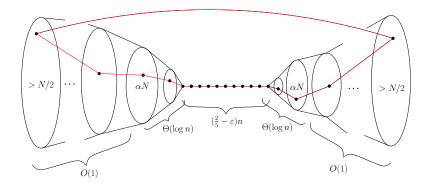












For different results, we use different gadget graphs.

For different results, we use different gadget graphs.

ullet For the odd induced case F is k-color induced Ramsey for C_5 . We take F to be Alon's dense pseudorandom triangle free graph on $2^{O(k\log k)}$ vertices.

For different results, we use different gadget graphs.

- ullet For the odd induced case F is k-color induced Ramsey for C_5 . We take F to be Alon's dense pseudorandom triangle free graph on $2^{O(k \log k)}$ vertices.
- For the even induced case F is k-color induced Ramsey for C_6 . We take F to be a dense C_4 -free bipartite on $O(k^6)$ vertices.

For different results, we use different gadget graphs.

- ullet For the odd induced case F is k-color induced Ramsey for C_5 . We take F to be Alon's dense pseudorandom triangle free graph on $2^{O(k\log k)}$ vertices.
- ullet For the even induced case F is k-color induced Ramsey for C_6 . We take F to be a dense C_4 -free bipartite on $O(k^6)$ vertices.
- ullet For the odd (non-induced) we want every k-edge-coloring of F to have an odd monochromatic cycle. We take $F=K_{2^k+1}$.

Concluding remarks

Conjecture

For odd n, $\hat{r}_{\mathrm{ind}}^k(C_n) = 2^{O(k)}n$.

Concluding remarks

Conjecture

For odd
$$n$$
, $\hat{r}_{\mathrm{ind}}^k(C_n) = 2^{O(k)}n$.

It is enough to prove the following.

Conjecture

There is a graph F on $2^{O(k)}$ vertices such that in every k-edge-coloring of F there is an odd monochromatic cycle of length at least 5 as an induced subgraph.

Concluding remarks

Conjecture

For odd
$$n$$
, $\hat{r}_{\mathrm{ind}}^k(C_n) = 2^{O(k)}n$.

It is enough to prove the following.

Conjecture

There is a graph F on $2^{O(k)}$ vertices such that in every k-edge-coloring of F there is an odd monochromatic cycle of length at least 5 as an induced subgraph.

Thank you!