Powers of Hamilton cycles of high discrepancy are unavoidable

Domagoj Bradač

ETH Zürich

September 10, 2021

イロト イボト イヨト イヨト

3

1/21

Dirac-type problems

Suppose a graph G has minimum degree $\delta(G) \ge \alpha n$. Does G necessarily contain a specified spanning subgraph H?

Dirac-type problems

Suppose a graph G has minimum degree $\delta(G) \ge \alpha n$. Does G necessarily contain a specified spanning subgraph H?

Theorem (Dirac, 1952)

A graph G with $\delta(G) \geq \frac{1}{2}n$ has a Hamilton cycle.

Dirac-type problems

Suppose a graph G has minimum degree $\delta(G) \ge \alpha n$. Does G necessarily contain a specified spanning subgraph H?

Theorem (Dirac, 1952)

A graph G with $\delta(G) \geq \frac{1}{2}n$ has a Hamilton cycle.

• A K_r -tiling of a graph is a partition of its vertices into disjoint r-cliques.

Theorem (Hajnal, Szemerédi, 1972)

If r divides n then any graph G with $\delta(G) \geq (1-1/r)n$ contains a $K_r\text{-tiling.}$

• The r^{th} power of a graph is obtained by adding an edge for every pair of vertices at distance at most r. We denote the r^{th} power of a Hamilton cycle by H^r .

• The r^{th} power of a graph is obtained by adding an edge for every pair of vertices at distance at most r. We denote the r^{th} power of a Hamilton cycle by H^r .

• The r^{th} power of a graph is obtained by adding an edge for every pair of vertices at distance at most r. We denote the r^{th} power of a Hamilton cycle by H^r .

• The r^{th} power of a graph is obtained by adding an edge for every pair of vertices at distance at most r. We denote the r^{th} power of a Hamilton cycle by H^r .

Conjecture (Pósa, Seymour)

If
$$\delta(G) \ge \left(1 - \frac{1}{r+1}\right)n$$
, then G contains a copy of H^r .

• The r^{th} power of a graph is obtained by adding an edge for every pair of vertices at distance at most r. We denote the r^{th} power of a Hamilton cycle by H^r .

Conjecture (Pósa, Seymour)

If
$$\delta(G) \ge \left(1 - \frac{1}{r+1}\right)n$$
, then G contains a copy of H^r .

Theorem (Komlós, Sárközy, Szemerédi, 1998)

For any $r \in \mathbb{N}$ and $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ so that any graph G on $n \ge n_0$ vertices with $\delta(G) \ge \left(1 - \frac{1}{r+1} + \varepsilon\right) n$ has a copy of H^r .

• The r^{th} power of a graph is obtained by adding an edge for every pair of vertices at distance at most r. We denote the r^{th} power of a Hamilton cycle by H^r .

Conjecture (Pósa, Seymour)

If
$$\delta(G) \ge \left(1 - \frac{1}{r+1}\right)n$$
, then G contains a copy of H^r .

Theorem (Komlós, Sárközy, Szemerédi, 1998)

For any $r \in \mathbb{N}$ and $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ so that any graph Gon $n \ge n_0$ vertices with $\delta(G) \ge \left(1 - \frac{1}{r+1} + \varepsilon\right) n$ has a copy of H^r .

Theorem (Komlós, Sárközy, Szemerédi, 1998)

For any $r \in \mathbb{N}$ there exists $n_0 \in \mathbb{N}$ so that any graph G on $n \ge n_0$ vertices with $\delta(G) \ge \left(1 - \frac{1}{r+1}\right)n$ has a copy of H^r .

Suppose we are given a family \mathcal{F} of subsets of a ground set \mathcal{U} . Can we color the elements of \mathcal{U} in 2 colors such that set in \mathcal{F} has roughly the same number of elements from each color?

Suppose we are given a family \mathcal{F} of subsets of a ground set \mathcal{U} . Can we color the elements of \mathcal{U} in 2 colors such that set in \mathcal{F} has roughly the same number of elements from each color?

Suppose we are given a family \mathcal{F} of subsets of a ground set \mathcal{U} . Can we color the elements of \mathcal{U} in 2 colors such that set in \mathcal{F} has roughly the same number of elements from each color?

 $\mathcal{U} = \mathsf{edges} \text{ of } G$

Suppose we are given a family \mathcal{F} of subsets of a ground set \mathcal{U} . Can we color the elements of \mathcal{U} in 2 colors such that set in \mathcal{F} has roughly the same number of elements from each color?

 $\mathcal{U} = \text{edges of } G$ $\mathcal{F} = \text{labelled copies of a given subgraph } H$

Suppose we are given a family \mathcal{F} of subsets of a ground set \mathcal{U} . Can we color the elements of \mathcal{U} in 2 colors such that set in \mathcal{F} has roughly the same number of elements from each color?

U = edges of G $\mathcal{F} = \text{labelled copies of a given subgraph } H$ Let f be a coloring of the edges of G into +1 (blue) or -1 (red). For a subgraph F of G, define

$$f(F) = \sum_{e \in F} f(e).$$

Suppose we are given a family \mathcal{F} of subsets of a ground set \mathcal{U} . Can we color the elements of \mathcal{U} in 2 colors such that set in \mathcal{F} has roughly the same number of elements from each color?

 $\mathcal{U} = \text{edges of } G$ $\mathcal{F} = \text{labelled copies of a given subgraph } H$ Let f be a coloring of the edges of G into +1 (blue) or -1 (red). For a subgraph F of G, define

$$f(F) = \sum_{e \in F} f(e).$$

We are given a graph G with $\delta(G) \ge \alpha n$. Does G contain, for every coloring $f: E(G) \to \{-1, 1\}$, a copy of H with high discrepancy, i.e. a subgraph F isomorphic to H such that |f(F)| is large?

Let G be a graph with $\delta(G) \ge (3/4 + \eta)n$. Given any edge coloring $f: E(G) \rightarrow \{-1, 1\}$, there exists a Hamilton cycle of absolute discrepancy at least $\eta n/32$ with respect to f.

Let G be a graph with $\delta(G) \ge (3/4 + \eta)n$. Given any edge coloring $f: E(G) \rightarrow \{-1, 1\}$, there exists a Hamilton cycle of absolute discrepancy at least $\eta n/32$ with respect to f.

Theorem (Balogh, Csaba, Pluhár and Treglown, 2020)

For every $\eta > 0$, there is a $\gamma > 0$ and $n_0 \in \mathbb{N}$ such that the following holds. Let G be a graph on $n \ge n_0$ vertices with $\delta(G) \ge (1 - \frac{1}{r+1} + \eta)n$. Then, given any edge coloring $f: E(G) \to \{-1, 1\}$, there exists a K_r -tiling of G with absolute discrepancy at least γn with respect to f.

Let G be a graph with $\delta(G) \ge (3/4 + \eta)n$. Given any edge coloring $f: E(G) \rightarrow \{-1, 1\}$, there exists a Hamilton cycle of absolute discrepancy at least $\eta n/32$ with respect to f.

Theorem (Balogh, Csaba, Pluhár and Treglown, 2020)

For every $\eta > 0$, there is a $\gamma > 0$ and $n_0 \in \mathbb{N}$ such that the following holds. Let G be a graph on $n \ge n_0$ vertices with $\delta(G) \ge (1 - \frac{1}{r+1} + \eta)n$. Then, given any edge coloring $f: E(G) \to \{-1, 1\}$, there exists a K_r -tiling of G with absolute discrepancy at least γn with respect to f.

Balogh, Csaba, Pluhár and Treglown, 2020

For fixed $r \ge 2$, what is the degree threshold for containing the r^{th} power of a Hamilton cycle with large absolute discrepancy?

Let G be a graph with $\delta(G) \ge (3/4 + \eta)n$. Given any edge coloring $f: E(G) \rightarrow \{-1, 1\}$, there exists a Hamilton cycle of absolute discrepancy at least $\eta n/32$ with respect to f.

Theorem (Balogh, Csaba, Pluhár and Treglown, 2020)

For every $\eta > 0$, there is a $\gamma > 0$ and $n_0 \in \mathbb{N}$ such that the following holds. Let G be a graph on $n \ge n_0$ vertices with $\delta(G) \ge (1 - \frac{1}{r+1} + \eta)n$. Then, given any edge coloring $f: E(G) \to \{-1, 1\}$, there exists a K_r -tiling of G with absolute discrepancy at least γn with respect to f.

Balogh, Csaba, Pluhár and Treglown, 2020

For fixed $r \ge 2$, what is the degree threshold for containing the r^{th} power of a Hamilton cycle with large absolute discrepancy? $\left(1 - \frac{1}{r+2}\right)n$?

Theorem

For any $\eta > 0$, there exist $n_0 \in \mathbb{N}$ and $\gamma > 0$ such that the following holds. Suppose a graph G on $n \ge n_0$ vertices with minimum degree $\delta(G) \ge (3/4 + \eta)n$ and an edge coloring $f: E(G) \to \{-1, 1\}$ are given. Then in G there exists the square of a Hamilton cycle H^2 satisfying $|f(H^2)| > \gamma n$.

Theorem

For any $\eta > 0$, there exist $n_0 \in \mathbb{N}$ and $\gamma > 0$ such that the following holds. Suppose a graph G on $n \ge n_0$ vertices with minimum degree $\delta(G) \ge (3/4 + \eta)n$ and an edge coloring $f: E(G) \to \{-1, 1\}$ are given. Then in G there exists the square of a Hamilton cycle H^2 satisfying $|f(H^2)| > \gamma n$.

Theorem

For any integer $r \geq 3$ and $\eta > 0$, there exist $n_0 \in \mathbb{N}$ and $\gamma > 0$ such that the following holds. Suppose a graph G on $n \geq n_0$ vertices with minimum degree $\delta(G) \geq (1 - 1/(r+1) + \eta)n$ and an edge coloring $f : E(G) \rightarrow \{-1, 1\}$ are given. Then in G there exists the r^{th} power of a Hamilton cycle H^r satisfying $|f(H^r)| > \gamma n$.

	Threshold		Discrepancy threshold	
K_r -tiling	$(1-\frac{1}{r})n$	[HS, '70]	$(1-\frac{1}{r+1})n$	[BCPT, '20]
Н	$\frac{1}{2}n$	[D, '52]	$\frac{3}{4}n$	[BCJP, '20]
H^2	$\frac{2}{3}n$	[KSS, '98]	$\frac{3}{4}n$	[B , '20]
$H^r, \ r \geq 3$	$(1 - \frac{1}{r+1})n$	[KSS, '98]	$(1 - \frac{1}{r+1})n$	[B , '20]

•
$$\delta(G) = \frac{3}{4}n.$$

•
$$\delta(G) = \frac{3}{4}n.$$

• In a copy of H^r , we have $\frac{n}{4} \cdot 2r = \frac{nr}{2}$ blue edges.

•
$$\delta(G) = \frac{3}{4}n$$
.

- In a copy of H^r , we have $\frac{n}{4} \cdot 2r = \frac{nr}{2}$ blue edges.
- H^r has nr edges, so $f(H^r) = 0$.

r+1 clusters

r+1 clusters

r+1 clusters

• Note: $\delta(G) = (1 - \frac{1}{r+1})n$.

- Note: $\delta(G) = (1 \frac{1}{r+1})n$.
- Any copy of H^r must cycle through clusters in some fixed order.

- Note: $\delta(G) = (1 \frac{1}{r+1})n$.
- Any copy of H^r must cycle through clusters in some fixed order.
- In H^r , every vertex has 2 neighbours in each of the other clusters.

- Note: $\delta(G) = (1 \frac{1}{r+1})n$.
- Any copy of H^r must cycle through clusters in some fixed order.
- In H^r , every vertex has 2 neighbours in each of the other clusters. $\implies f(H^r) = 0$.

Using a multicolored version of Szemerédi's regularity lemma, we can partition vertices into clusters V_0, V_1, \ldots, V_ℓ . Additionally, on the vertex set $\{V_1, \ldots, V_\ell\}$ we can define the *reduced graph* R and an edge coloring $f_R \colon E(R) \to \{-1, 1\}$ such that:

Using a multicolored version of Szemerédi's regularity lemma, we can partition vertices into clusters V_0, V_1, \ldots, V_ℓ . Additionally, on the vertex set $\{V_1, \ldots, V_\ell\}$ we can define the *reduced graph* R and an edge coloring $f_R \colon E(R) \to \{-1, 1\}$ such that:

- $|V_0| \leq \varepsilon n$ and $|V_1| = |V_2| = \cdots = |V_\ell| = \Omega(n)$,
- If $f_R(V_i, V_j) = x$ then the bipartite graph between V_i and V_j containing all edges labelled x is $(\varepsilon, \eta/4)$ -regular.
- $\delta(R) \ge (1 \frac{1}{r+1} + \frac{\eta}{4})|R|$ (or $\delta(R) \ge (\frac{3}{4} + \frac{\eta}{4})|R|$ for r = 2),

Using a multicolored version of Szemerédi's regularity lemma, we can partition vertices into clusters V_0, V_1, \ldots, V_ℓ . Additionally, on the vertex set $\{V_1, \ldots, V_\ell\}$ we can define the *reduced graph* R and an edge coloring $f_R \colon E(R) \to \{-1, 1\}$ such that:

- $|V_0| \leq \varepsilon n$ and $|V_1| = |V_2| = \cdots = |V_\ell| = \Omega(n)$,
- If $f_R(V_i, V_j) = x$ then the bipartite graph between V_i and V_j containing all edges labelled x is $(\varepsilon, \eta/4)$ -regular.
- $\delta(R) \ge (1 \frac{1}{r+1} + \frac{\eta}{4})|R|$ (or $\delta(R) \ge (\frac{3}{4} + \frac{\eta}{4})|R|$ for r = 2),

Blow-up Lemma (Komlós, Sárközy, Szemerédi, 1994)

"Regular pairs behave like complete bipartite graphs in terms of containing bounded degree subgraphs."

• Denote the r^{th} power of the cycle (v_1, v_2, \ldots, v_k) by $(v_1, v_2, \ldots, v_k)^r$.

- Denote the r^{th} power of the cycle (v_1, v_2, \ldots, v_k) by $(v_1, v_2, \ldots, v_k)^r$.
- Its discrepancy is given as $f_R(v_1, v_2, \ldots, v_k)^r = \sum_{i=1}^k \sum_{j=1}^r f_R(v_i, v_{i+j})$, where $v_{k+i} = v_i$

- Denote the r^{th} power of the cycle (v_1, v_2, \ldots, v_k) by $(v_1, v_2, \ldots, v_k)^r$.
- Its discrepancy is given as $f_R(v_1, v_2, \ldots, v_k)^r = \sum_{i=1}^k \sum_{j=1}^r f_R(v_i, v_{i+j})$, where $v_{k+i} = v_i$
- Example: $(v_1, v_2, v_3, v_4)^2$ is a 4-clique, but

$$f_R\left((v_1, v_2, v_3, v_4)^2\right) = f_R(v_1, v_3) + f_R(v_2, v_4) + \sum_{i < j} f_R(v_i, v_j).$$

- Denote the r^{th} power of the cycle (v_1, v_2, \ldots, v_k) by $(v_1, v_2, \ldots, v_k)^r$.
- Its discrepancy is given as $f_R(v_1, v_2, \ldots, v_k)^r = \sum_{i=1}^k \sum_{j=1}^r f_R(v_i, v_{i+j})$, where $v_{k+i} = v_i$
- Example: $(v_1, v_2, v_3, v_4)^2$ is a 4-clique, but

$$f_R\left((v_1, v_2, v_3, v_4)^2\right) = f_R(v_1, v_3) + f_R(v_2, v_4) + \sum_{i < j} f_R(v_i, v_j).$$

C^r -tiling

A C^r -tiling \mathcal{T} of R is a partition of its vertices into r^{th} powers of simple cycles. Its discrepancy is defined as $\overline{f_R(\mathcal{T})} = \sum_{C^r \in \mathcal{T}} f_R(C^r).$

イロト イヨト イヨト イヨト

(□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□)

(□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□)

From a $C^r\mbox{-tiling to }H^r$

From a $C^r\mbox{-tiling to }H^r$

From a $C^r\mbox{-tiling to }H^r$

Suppose there is a C^r -tiling \mathcal{T} of R with $|f_R(\mathcal{T})| = \Omega(|R|)$. Then in G there exists the r^{th} power of a Hamilton cycle H^r satisfying $|f(H^r)| \geq \gamma n$.

Suppose there is a C^r -tiling \mathcal{T} of R with $|f_R(\mathcal{T})| = \Omega(|R|)$. Then in G there exists the r^{th} power of a Hamilton cycle H^r satisfying $|f(H^r)| \geq \gamma n$.

Proof in the case $\delta(G) \ge (1 - \frac{1}{r+2} + \eta)n$:

Suppose there is a C^r -tiling \mathcal{T} of R with $|f_R(\mathcal{T})| = \Omega(|R|)$. Then in G there exists the r^{th} power of a Hamilton cycle H^r satisfying $|f(H^r)| \geq \gamma n$.

Proof in the case $\delta(G) \ge (1 - \frac{1}{r+2} + \eta)n$:

•
$$\delta(R) \ge (1 - \frac{1}{r+2} + \frac{\eta}{4})|R|.$$

Suppose there is a C^r -tiling \mathcal{T} of R with $|f_R(\mathcal{T})| = \Omega(|R|)$. Then in G there exists the r^{th} power of a Hamilton cycle H^r satisfying $|f(H^r)| \geq \gamma n$.

Proof in the case $\delta(G) \ge (1 - \frac{1}{r+2} + \eta)n$:

•
$$\delta(R) \ge (1 - \frac{1}{r+2} + \frac{\eta}{4})|R|.$$

• Balogh, Csaba, Pluhár and Treglown: there is a K_{r+1} -tiling of R with linear discrepancy.

Suppose there is a C^r -tiling \mathcal{T} of R with $|f_R(\mathcal{T})| = \Omega(|R|)$. Then in G there exists the r^{th} power of a Hamilton cycle H^r satisfying $|f(H^r)| \geq \gamma n$.

Proof in the case $\delta(G) \ge (1 - \frac{1}{r+2} + \eta)n$:

•
$$\delta(R) \ge (1 - \frac{1}{r+2} + \frac{\eta}{4})|R|.$$

- Balogh, Csaba, Pluhár and Treglown: there is a K_{r+1} -tiling of R with linear discrepancy.
- We are done by the Tiling Lemma.

Suppose there is a C^r -tiling \mathcal{T} of R with $|f_R(\mathcal{T})| = \Omega(|R|)$. Then in G there exists the r^{th} power of a Hamilton cycle H^r satisfying $|f(H^r)| \geq \gamma n$.

Proof in the case $\delta(G) \ge (1 - \frac{1}{r+2} + \eta)n$:

•
$$\delta(R) \ge (1 - \frac{1}{r+2} + \frac{\eta}{4})|R|.$$

- Balogh, Csaba, Pluhár and Treglown: there is a K_{r+1} -tiling of R with linear discrepancy.
- We are done by the Tiling Lemma.

•
$$r = 2 \checkmark$$

C^r -template

Let F be a graph. A collection of r^{th} powers of cycles $\mathcal{F} = \{C_1^r, \ldots, C_s^r\}$ is a C^r -template of F if every vertex in Fappears the same number of times. They need not be distinct nor simple. Its discrepancy is defined as $f_R(\mathcal{F}) = \sum_{i=1}^s f_R(C_i^r).$

C^r -template

Let F be a graph. A collection of r^{th} powers of cycles $\mathcal{F} = \{C_1^r, \ldots, C_s^r\}$ is a C^r -template of F if every vertex in Fappears the same number of times. They need not be distinct nor simple. Its discrepancy is defined as $f_R(\mathcal{F}) = \sum_{i=1}^s f_R(C_i^r).$

Lemma (Template Lemma)

Let \mathcal{F}_1 and \mathcal{F}_2 be two "small" C^r -templates on some subgraph F of R. If both \mathcal{F}_1 and \mathcal{F}_2 contain each vertex of F exactly k times, but have different discrepancies, then we are done.

• We only use: $\delta(R) \ge (1 - \frac{1}{r+1} + \frac{\eta}{4})|R|$, the Tiling Lemma and the Template Lemma.

- We only use: $\delta(R) \geq (1-\frac{1}{r+1}+\frac{\eta}{4})|R|,$ the Tiling Lemma and the Template Lemma.
- All cliques in R of size at most r+2 are of one of four types.

- We only use: $\delta(R) \ge (1 \frac{1}{r+1} + \frac{\eta}{4})|R|$, the Tiling Lemma and the Template Lemma.
- All cliques in R of size at most r+2 are of one of four types.
- By Hajnal-Szemerédi's theorem, we get a K_{r+1} -tiling \mathcal{T} of R.

- We only use: $\delta(R) \ge (1 \frac{1}{r+1} + \frac{\eta}{4})|R|$, the Tiling Lemma and the Template Lemma.
- All cliques in R of size at most r+2 are of one of four types.
- By Hajnal-Szemerédi's theorem, we get a K_{r+1} -tiling \mathcal{T} of R.
- \mathcal{T} has small discrepancy \implies the four types of cliques in \mathcal{T} are balanced.

- We only use: $\delta(R) \ge (1 \frac{1}{r+1} + \frac{\eta}{4})|R|$, the Tiling Lemma and the Template Lemma.
- All cliques in R of size at most r+2 are of one of four types.
- By Hajnal-Szemerédi's theorem, we get a K_{r+1} -tiling \mathcal{T} of R.
- \mathcal{T} has small discrepancy \implies the four types of cliques in \mathcal{T} are balanced.
- Two cliques of different types cannot have too many edges between them.

- We only use: $\delta(R) \ge (1 \frac{1}{r+1} + \frac{\eta}{4})|R|$, the Tiling Lemma and the Template Lemma.
- All cliques in R of size at most r+2 are of one of four types.
- By Hajnal-Szemerédi's theorem, we get a K_{r+1} -tiling \mathcal{T} of R.
- \mathcal{T} has small discrepancy \implies the four types of cliques in \mathcal{T} are balanced.
- Two cliques of different types cannot have too many edges between them.
- Contradiction with $\delta(R) \ge (1 \frac{1}{r+1} + \frac{\eta}{4})|R|$.

- We only use: $\delta(R) \ge (1 \frac{1}{r+1} + \frac{\eta}{4})|R|$, the Tiling Lemma and the Template Lemma.
- All cliques in R of size at most r+2 are of one of four types.
- By Hajnal-Szemerédi's theorem, we get a K_{r+1} -tiling \mathcal{T} of R.
- \mathcal{T} has small discrepancy \implies the four types of cliques in \mathcal{T} are balanced.
- Two cliques of different types cannot have too many edges between them.
- Contradiction with $\delta(R) \ge (1 \frac{1}{r+1} + \frac{\eta}{4})|R|$.

• Consider some (r+2)-clique $K = \{v_1, v_2, \dots, v_{r+2}\}$ in R.

- Consider some (r+2)-clique $K = \{v_1, v_2, \dots, v_{r+2}\}$ in R.
- Let $C_1^r = (v_1, \dots, v_{r+2})^r$ and $C_2^r = (v_2, v_1, v_3, v_4, \dots, v_{r+2})^r$.

- Consider some (r+2)-clique $K = \{v_1, v_2, \dots, v_{r+2}\}$ in R.
- Let $C_1^r = (v_1, \dots, v_{r+2})^r$ and $C_2^r = (v_2, v_1, v_3, v_4, \dots, v_{r+2})^r$.
- Note that $f_R(C_1^r) = 2 \sum_{i < j} f_R(v_i, v_j) \sum_{i=1}^r f(v_i, v_{i+1}).$

• Consider some (r+2)-clique $K = \{v_1, v_2, \dots, v_{r+2}\}$ in R.

• Let
$$C_1^r = (v_1, \dots, v_{r+2})^r$$
 and $C_2^r = (v_2, v_1, v_3, v_4, \dots, v_{r+2})^r$.

- Note that $f_R(C_1^r) = 2 \sum_{i < j} f_R(v_i, v_j) \sum_{i=1}^r f(v_i, v_{i+1}).$
- From the Template Lemma, we have:

$$0 = f_R(C_1^r) - f_R(C_2^r)$$

= $f_R(v_1, v_3) + f_R(v_2, v_{r+2}) - f_R(v_2, v_3) - f_R(v_1, v_{r+2}).$

• Consider some (r+2)-clique $K = \{v_1, v_2, \dots, v_{r+2}\}$ in R.

• Let
$$C_1^r = (v_1, \dots, v_{r+2})^r$$
 and $C_2^r = (v_2, v_1, v_3, v_4, \dots, v_{r+2})^r$.

- Note that $f_R(C_1^r) = 2 \sum_{i < j} f_R(v_i, v_j) \sum_{i=1}^r f(v_i, v_{i+1}).$
- From the Template Lemma, we have:

$$0 = f_R(C_1^r) - f_R(C_2^r)$$

= $f_R(v_1, v_3) + f_R(v_2, v_{r+2}) - f_R(v_2, v_3) - f_R(v_1, v_{r+2}).$

• Consider some (r+2)-clique $K = \{v_1, v_2, \dots, v_{r+2}\}$ in R.

• Let
$$C_1^r = (v_1, \dots, v_{r+2})^r$$
 and $C_2^r = (v_2, v_1, v_3, v_4, \dots, v_{r+2})^r$.

- Note that $f_R(C_1^r) = 2 \sum_{i < j} f_R(v_i, v_j) \sum_{i=1}^r f(v_i, v_{i+1}).$
- From the Template Lemma, we have:

$$0 = f_R(C_1^r) - f_R(C_2^r)$$

= $f_R(v_1, v_3) + f_R(v_2, v_{r+2}) - f_R(v_2, v_3) - f_R(v_1, v_{r+2}).$

• Consider some (r+2)-clique $K = \{v_1, v_2, \dots, v_{r+2}\}$ in R.

• Let
$$C_1^r = (v_1, \dots, v_{r+2})^r$$
 and $C_2^r = (v_2, v_1, v_3, v_4, \dots, v_{r+2})^r$.

- Note that $f_R(C_1^r) = 2 \sum_{i < j} f_R(v_i, v_j) \sum_{i=1}^r f(v_i, v_{i+1}).$
- From the Template Lemma, we have:

$$0 = f_R(C_1^r) - f_R(C_2^r)$$

= $f_R(v_1, v_3) + f_R(v_2, v_{r+2}) - f_R(v_2, v_3) - f_R(v_1, v_{r+2}).$

• Consider some (r+2)-clique $K = \{v_1, v_2, \dots, v_{r+2}\}$ in R.

• Let
$$C_1^r = (v_1, \dots, v_{r+2})^r$$
 and $C_2^r = (v_2, v_1, v_3, v_4, \dots, v_{r+2})^r$.

- Note that $f_R(C_1^r) = 2 \sum_{i < j} f_R(v_i, v_j) \sum_{i=1}^r f(v_i, v_{i+1}).$
- From the Template Lemma, we have:

$$0 = f_R(C_1^r) - f_R(C_2^r)$$

= $f_R(v_1, v_3) + f_R(v_2, v_{r+2}) - f_R(v_2, v_3) - f_R(v_1, v_{r+2}).$

When does K satisfy this?

When does K satisfy this? If it is monochromatic.

When does K satisfy this? If it is monochromatic. Suppose not and v has at least two blue and one red edge.

Because $\delta(R) \geq (1-\frac{1}{r+1}+\eta)|R|,$ any smaller clique is contained in an (r+2)-clique.

When does K satisfy this? If it is <u>monochromatic</u>. Suppose not and v has at least two blue and one red edge.

Because $\delta(R) \ge (1 - \frac{1}{r+1} + \eta)|R|$, any smaller clique is contained in an (r+2)-clique. Thus, any clique of size at most r+2 is either monochromatic, a red star or a blue star. In particular, this holds for any clique in \mathcal{T} .

• We can assume $|B| + |C| \ge |A| + |D|$.

- We can assume $|B| + |C| \ge |A| + |D|$.
- Consider two cliques X and Y in \mathcal{T} and a vertex $v \in X$. We show $d(v, Y) \leq r 1$ if:

- We can assume $|B| + |C| \ge |A| + |D|$.
- Consider two cliques X and Y in \mathcal{T} and a vertex $v \in X$. We show $d(v, Y) \leq r 1$ if:
 - $\bullet \ X \in A \text{ and } Y \in B \text{ or }$

- We can assume $|B| + |C| \ge |A| + |D|$.
- Consider two cliques X and Y in \mathcal{T} and a vertex $v \in X$. We show $d(v, Y) \leq r 1$ if:
 - $X \in A$ and $Y \in B$ or
 - $\bullet \ X \in A \text{ and } Y \in C \text{ or }$

- We can assume $|B| + |C| \ge |A| + |D|$.
- Consider two cliques X and Y in \mathcal{T} and a vertex $v \in X$. We show $d(v, Y) \leq r 1$ if:
 - $X \in A$ and $Y \in B$ or
 - $\bullet \ X \in A \text{ and } Y \in C \text{ or }$
 - $X \in C, Y \in D$ and v is the head of X.

- We can assume $|B| + |C| \ge |A| + |D|$.
- Consider two cliques X and Y in \mathcal{T} and a vertex $v \in X$. We show $d(v, Y) \leq r 1$ if:
 - $X \in A$ and $Y \in B$ or
 - $X \in A$ and $Y \in C$ or
 - $X \in C, Y \in D$ and v is the head of X.
- Let $X \in A$ and $v \in X$. Then

 $d(v) \leq (r-1)\left(|B| + |C|\right) + (r+1)\left(|A| + |D|\right) \leq \frac{r}{r+1}|R|.$

- We can assume $|B| + |C| \ge |A| + |D|$.
- Consider two cliques X and Y in \mathcal{T} and a vertex $v \in X$. We show $d(v, Y) \leq r 1$ if:
 - $X \in A$ and $Y \in B$ or
 - $X \in A$ and $Y \in C$ or
 - $X \in C, Y \in D$ and v is the head of X.
- Let $X \in A$ and $v \in X$. Then $d(v) \leq (r-1)(|B|+|C|) + (r+1)(|A|+|D|) \leq \frac{r}{r+1}|R|$. So, $A = \emptyset$.

- $\bullet \ \ {\rm We \ can \ assume \ } |B|+|C|\geq |A|+|D|.$
- Consider two cliques X and Y in \mathcal{T} and a vertex $v \in X$. We show $d(v, Y) \leq r 1$ if:
 - $X \in A$ and $Y \in B$ or
 - $X \in A$ and $Y \in C$ or
 - $X \in C, Y \in D$ and v is the head of X.
- Let $X \in A$ and $v \in X$. Then $d(v) \leq (r-1)(|B|+|C|) + (r+1)(|A|+|D|) \leq \frac{r}{r+1}|R|$. So, $A = \emptyset$.
- $|f_R(\mathcal{T})| \leq \beta |R|$

- We can assume $|B| + |C| \ge |A| + |D|$.
- Consider two cliques X and Y in \mathcal{T} and a vertex $v \in X$. We show $d(v, Y) \leq r 1$ if:
 - $X \in A$ and $Y \in B$ or
 - $X \in A$ and $Y \in C$ or
 - $X \in C, Y \in D$ and v is the head of X.
- Let $X \in A$ and $v \in X$. Then $d(v) \leq (r-1)(|B|+|C|) + (r+1)(|A|+|D|) \leq \frac{r}{r+1}|R|$. So, $A = \emptyset$.
- $\bullet \ |f_R(\mathcal{T})| \leq \beta |R| \implies |B| \leq \beta |R| \text{ and } |B| + |C| |D| \leq \beta |R|.$

- We can assume $|B| + |C| \ge |A| + |D|$.
- Consider two cliques X and Y in T and a vertex $v \in X$. We show $d(v, Y) \leq r 1$ if:
 - $X \in A$ and $Y \in B$ or
 - $X \in A$ and $Y \in C$ or
 - $X \in C, Y \in D$ and v is the head of X.
- Let $X \in A$ and $v \in X$. Then $d(v) \leq (r-1)(|B|+|C|) + (r+1)(|A|+|D|) \leq \frac{r}{r+1}|R|$. So, $A = \emptyset$.
- $\bullet \ |f_R(\mathcal{T})| \leq \beta |R| \implies |B| \leq \beta |R| \text{ and } |B| + |C| |D| \leq \beta |R|.$
- Let $X \in C$ and v be the head of X. Then $d(v) \leq (r-1)|D| + (r+1)(|B| + |C|) \leq \left(\frac{r}{r+1} + \beta\right)|R|.$

- We can assume $|B| + |C| \ge |A| + |D|$.
- Consider two cliques X and Y in T and a vertex $v \in X$. We show $d(v, Y) \leq r 1$ if:
 - $X \in A$ and $Y \in B$ or
 - $X \in A$ and $Y \in C$ or
 - $X \in C, Y \in D$ and v is the head of X.
- Let $X \in A$ and $v \in X$. Then $d(v) \leq (r-1)(|B|+|C|) + (r+1)(|A|+|D|) \leq \frac{r}{r+1}|R|$. So, $A = \emptyset$.
- $\bullet \ |f_R(\mathcal{T})| \leq \beta |R| \implies |B| \leq \beta |R| \text{ and } |B| + |C| |D| \leq \beta |R|.$
- Let $X \in C$ and v be the head of X. Then $d(v) \leq (r-1)|D| + (r+1)(|B| + |C|) \leq \left(\frac{r}{r+1} + \beta\right)|R|.$
- $C = \emptyset$, contradiction.

Thank you!