Powers of Hamilton cycles of high discrepancy are unavoidable

Domagoj Bradač

ETH Zürich

September 10, 2021

Dirac-type problems

Suppose a graph G has minimum degree $\delta(G) \geq \alpha n$. Does G necessarily contain a specified spanning subgraph H ?

Dirac-type problems

Suppose a graph G has minimum degree $\delta(G) \geq \alpha n$. Does G necessarily contain a specified spanning subgraph H ?

Theorem (Dirac, 1952)
A graph G with $\delta(G) \geq \frac{1}{2} n$ has a Hamilton cycle.

Dirac-type problems

Suppose a graph G has minimum degree $\delta(G) \geq \alpha n$. Does G necessarily contain a specified spanning subgraph H ?

Theorem (Dirac, 1952)
A graph G with $\delta(G) \geq \frac{1}{2} n$ has a Hamilton cycle.

- A K_{r}-tiling of a graph is a partition of its vertices into disjoint r-cliques.

Theorem (Hajnal, Szemerédi, 1972)

If r divides n then any graph G with $\delta(G) \geq(1-1 / r) n$ contains a K_{r}-tiling.

The Pósa-Seymour Conjecture

- The $r^{t h}$ power of a graph is obtained by adding an edge for every pair of vertices at distance at most r. We denote the $r^{t h}$ power of a Hamilton cycle by H^{r}.
- The $r^{t h}$ power of a graph is obtained by adding an edge for every pair of vertices at distance at most r. We denote the $r^{t h}$ power of a Hamilton cycle by H^{r}.

- The $r^{t h}$ power of a graph is obtained by adding an edge for every pair of vertices at distance at most r. We denote the $r^{t h}$ power of a Hamilton cycle by H^{r}.

The Pósa-Seymour Conjecture

- The $r^{t h}$ power of a graph is obtained by adding an edge for every pair of vertices at distance at most r. We denote the $r^{t h}$ power of a Hamilton cycle by H^{r}.

Conjecture (Pósa, Seymour)
If $\delta(G) \geq\left(1-\frac{1}{r+1}\right) n$, then G contains a copy of H^{r}.

The Pósa-Seymour Conjecture

- The $r^{t h}$ power of a graph is obtained by adding an edge for every pair of vertices at distance at most r. We denote the $r^{t h}$ power of a Hamilton cycle by H^{r}.

Conjecture (Pósa, Seymour)

If $\delta(G) \geq\left(1-\frac{1}{r+1}\right) n$, then G contains a copy of H^{r}.

Theorem (Komlós, Sárközy, Szemerédi, 1998)

For any $r \in \mathbb{N}$ and $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$ so that any graph G on $n \geq n_{0}$ vertices with $\delta(G) \geq\left(1-\frac{1}{r+1}+\varepsilon\right) n$ has a copy of H^{r}.

The Pósa-Seymour Conjecture

- The $r^{t h}$ power of a graph is obtained by adding an edge for every pair of vertices at distance at most r. We denote the $r^{t h}$ power of a Hamilton cycle by H^{r}.

Conjecture (Pósa, Seymour)

If $\delta(G) \geq\left(1-\frac{1}{r+1}\right) n$, then G contains a copy of H^{r}.

Theorem (Komlós, Sárközy, Szemerédi, 1998)

For any $r \in \mathbb{N}$ and $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$ so that any graph G on $n \geq n_{0}$ vertices with $\delta(G) \geq\left(1-\frac{1}{r+1}+\varepsilon\right) n$ has a copy of H^{r}.

Theorem (Komlós, Sárközy, Szemerédi, 1998)

For any $r \in \mathbb{N}$ there exists $n_{0} \in \mathbb{N}$ so that any graph G on $n \geq n_{0}$ vertices with $\delta(G) \geq\left(1-\frac{1}{r+1}\right) n$ has a copy of H^{r}.

Discrepancy

Suppose we are given a family \mathcal{F} of subsets of a ground set \mathcal{U}. Can we color the elements of \mathcal{U} in 2 colors such that set in \mathcal{F} has roughly the same number of elements from each color?

Discrepancy in the graph setting

Suppose we are given a family \mathcal{F} of subsets of a ground set \mathcal{U}. Can we color the elements of \mathcal{U} in 2 colors such that set in \mathcal{F} has roughly the same number of elements from each color?

Discrepancy in the graph setting

Suppose we are given a family \mathcal{F} of subsets of a ground set \mathcal{U}. Can we color the elements of \mathcal{U} in 2 colors such that set in \mathcal{F} has roughly the same number of elements from each color?
$\mathcal{U}=$ edges of G

Discrepancy in the graph setting

Suppose we are given a family \mathcal{F} of subsets of a ground set \mathcal{U}. Can we color the elements of \mathcal{U} in 2 colors such that set in \mathcal{F} has roughly the same number of elements from each color?
$\mathcal{U}=$ edges of G
$\mathcal{F}=$ labelled copies of a given subgraph H

Discrepancy in the graph setting

Suppose we are given a family \mathcal{F} of subsets of a ground set \mathcal{U}. Can we color the elements of \mathcal{U} in 2 colors such that set in \mathcal{F} has roughly the same number of elements from each color?
$\mathcal{U}=$ edges of G
$\mathcal{F}=$ labelled copies of a given subgraph H
Let f be a coloring of the edges of G into +1 (blue) or -1 (red).
For a subgraph F of G, define

$$
f(F)=\sum_{e \in F} f(e) .
$$

Discrepancy in the graph setting

Suppose we are given a family \mathcal{F} of subsets of a ground set \mathcal{U}. Can we color the elements of \mathcal{U} in 2 colors such that set in \mathcal{F} has roughly the same number of elements from each color?
$\mathcal{U}=$ edges of G
$\mathcal{F}=$ labelled copies of a given subgraph H
Let f be a coloring of the edges of G into +1 (blue) or -1 (red).
For a subgraph F of G, define

$$
f(F)=\sum_{e \in F} f(e) .
$$

We are given a graph G with $\delta(G) \geq \alpha n$. Does G contain, for every coloring $f: E(G) \rightarrow\{-1,1\}$, a copy of H with high discrepancy, i.e. a subgraph F isomorphic to H such that $|f(F)|$ is large?

Previous results

Theorem (Balogh, Csaba, Jing and Pluhár, 2020)
Let G be a graph with $\delta(G) \geq(3 / 4+\eta) n$. Given any edge coloring $f: E(G) \rightarrow\{-1,1\}$, there exists a Hamilton cycle of absolute discrepancy at least $\eta n / 32$ with respect to f.

Previous results

Theorem (Balogh, Csaba, Jing and Pluhár, 2020)

Let G be a graph with $\delta(G) \geq(3 / 4+\eta) n$. Given any edge coloring $f: E(G) \rightarrow\{-1,1\}$, there exists a Hamilton cycle of absolute discrepancy at least $\eta n / 32$ with respect to f.

Theorem (Balogh, Csaba, Pluhár and Treglown, 2020)

For every $\eta>0$, there is a $\gamma>0$ and $n_{0} \in \mathbb{N}$ such that the following holds. Let G be a graph on $n \geq n_{0}$ vertices with $\delta(G) \geq\left(1-\frac{1}{r+1}+\eta\right) n$. Then, given any edge coloring $f: E(G) \rightarrow\{-1,1\}$, there exists a K_{r}-tiling of G with absolute discrepancy at least γn with respect to f.

Previous results

Theorem (Balogh, Csaba, Jing and Pluhár, 2020)

Let G be a graph with $\delta(G) \geq(3 / 4+\eta) n$. Given any edge coloring $f: E(G) \rightarrow\{-1,1\}$, there exists a Hamilton cycle of absolute discrepancy at least $\eta n / 32$ with respect to f.

Theorem (Balogh, Csaba, Pluhár and Treglown, 2020)

For every $\eta>0$, there is a $\gamma>0$ and $n_{0} \in \mathbb{N}$ such that the following holds. Let G be a graph on $n \geq n_{0}$ vertices with $\delta(G) \geq\left(1-\frac{1}{r+1}+\eta\right) n$. Then, given any edge coloring $f: E(G) \rightarrow\{-1,1\}$, there exists a K_{r}-tiling of G with absolute discrepancy at least γn with respect to f.

Balogh, Csaba, Pluhár and Treglown, 2020
For fixed $r \geq 2$, what is the degree threshold for containing the $r^{t h}$ power of a Hamilton cycle with large absolute discrepancy?

Previous results

Theorem (Balogh, Csaba, Jing and Pluhár, 2020)

Let G be a graph with $\delta(G) \geq(3 / 4+\eta) n$. Given any edge coloring $f: E(G) \rightarrow\{-1,1\}$, there exists a Hamilton cycle of absolute discrepancy at least $\eta n / 32$ with respect to f.

Theorem (Balogh, Csaba, Pluhár and Treglown, 2020)

For every $\eta>0$, there is a $\gamma>0$ and $n_{0} \in \mathbb{N}$ such that the following holds. Let G be a graph on $n \geq n_{0}$ vertices with $\delta(G) \geq\left(1-\frac{1}{r+1}+\eta\right) n$. Then, given any edge coloring $f: E(G) \rightarrow\{-1,1\}$, there exists a K_{r}-tiling of G with absolute discrepancy at least γn with respect to f.

Balogh, Csaba, Pluhár and Treglown, 2020
For fixed $r \geq 2$, what is the degree threshold for containing the $r^{t h}$ power of a Hamilton cycle with large absolute discrepancy?
$\left(1-\frac{1}{r+2}\right) n$?

Theorem

For any $\eta>0$, there exist $n_{0} \in \mathbb{N}$ and $\gamma>0$ such that the following holds. Suppose a graph G on $n \geq n_{0}$ vertices with minimum degree $\delta(G) \geq(3 / 4+\eta) n$ and an edge coloring $f: E(G) \rightarrow\{-1,1\}$ are given. Then in G there exists the square of a Hamilton cycle H^{2} satisfying $\left|f\left(H^{2}\right)\right|>\gamma n$.

Theorem

For any $\eta>0$, there exist $n_{0} \in \mathbb{N}$ and $\gamma>0$ such that the following holds. Suppose a graph G on $n \geq n_{0}$ vertices with minimum degree $\delta(G) \geq(3 / 4+\eta) n$ and an edge coloring $f: E(G) \rightarrow\{-1,1\}$ are given. Then in G there exists the square of a Hamilton cycle H^{2} satisfying $\left|f\left(H^{2}\right)\right|>\gamma n$.

Theorem

For any integer $r \geq 3$ and $\eta>0$, there exist $n_{0} \in \mathbb{N}$ and $\gamma>0$ such that the following holds. Suppose a graph G on $n \geq n_{0}$ vertices with minimum degree $\delta(G) \geq(1-1 /(r+1)+\eta) n$ and an edge coloring $f: E(G) \rightarrow\{-1,1\}$ are given. Then in G there exists the $r^{\text {th }}$ power of a Hamilton cycle H^{r} satisfying $\left|f\left(H^{r}\right)\right|>\gamma n$.

Threshold comparison

	Threshold		Discrepancy threshold	
K_{r}-tiling	$\left(1-\frac{1}{r}\right) n$	[HS, '70]	$\left(1-\frac{1}{r+1}\right) n$	[BCPT, '20]
H	$\frac{1}{2} n$	[D, '52]	$\frac{3}{4} n$	[BCJP, '20]
H^{2}	$\frac{2}{3} n$	[KSS, '98]	$\frac{3}{4} n$	[B, '20]
$H^{r}, r \geq 3$	$\left(1-\frac{1}{r+1}\right) n$	[KSS, '98]	$\left(1-\frac{1}{r+1}\right) n$	[B, '20]

Lower bound for $r=1,2$

Lower bound for $r=1,2$

- $\delta(G)=\frac{3}{4} n$.

Lower bound for $r=1,2$

- $\delta(G)=\frac{3}{4} n$.
- In a copy of H^{r}, we have $\frac{n}{4} \cdot 2 r=\frac{n r}{2}$ blue edges.

- $\delta(G)=\frac{3}{4} n$.
- In a copy of H^{r}, we have $\frac{n}{4} \cdot 2 r=\frac{n r}{2}$ blue edges.
- H^{r} has $n r$ edges, so $f\left(H^{r}\right)=0$.

$$
r+1 \text { clusters }
$$

$$
r+1 \text { clusters }
$$

$$
r+1 \text { clusters }
$$

$$
r+1 \text { clusters }
$$

$r+1$ clusters

$$
r+1 \text { clusters }
$$

- Note: $\delta(G)=\left(1-\frac{1}{r+1}\right) n$.

$$
r+1 \text { clusters }
$$

- Note: $\delta(G)=\left(1-\frac{1}{r+1}\right) n$.
- Any copy of H^{r} must cycle through clusters in some fixed order.

$$
r+1 \text { clusters }
$$

- Note: $\delta(G)=\left(1-\frac{1}{r+1}\right) n$.
- Any copy of H^{r} must cycle through clusters in some fixed order.
- In H^{r}, every vertex has 2 neighbours in each of the other clusters.

$$
r+1 \text { clusters }
$$

- Note: $\delta(G)=\left(1-\frac{1}{r+1}\right) n$.
- Any copy of H^{r} must cycle through clusters in some fixed order.
- In H^{r}, every vertex has 2 neighbours in each of the other clusters. $\Longrightarrow f\left(H^{r}\right)=0$.

Using Szemerédi's regularity lemma

Using a multicolored version of Szemerédi's regularity lemma, we can partition vertices into clusters $V_{0}, V_{1}, \ldots, V_{\ell}$. Additionally, on the vertex set $\left\{V_{1}, \ldots, V_{\ell}\right\}$ we can define the reduced graph R and an edge coloring $f_{R}: E(R) \rightarrow\{-1,1\}$ such that:

Using Szemerédi's regularity lemma

Using a multicolored version of Szemerédi's regularity lemma, we can partition vertices into clusters $V_{0}, V_{1}, \ldots, V_{\ell}$. Additionally, on the vertex set $\left\{V_{1}, \ldots, V_{\ell}\right\}$ we can define the reduced graph R and an edge coloring $f_{R}: E(R) \rightarrow\{-1,1\}$ such that:

- $\left|V_{0}\right| \leq \varepsilon n$ and $\left|V_{1}\right|=\left|V_{2}\right|=\cdots=\left|V_{\ell}\right|=\Omega(n)$,
- If $f_{R}\left(V_{i}, V_{j}\right)=x$ then the bipartite graph between V_{i} and V_{j} containing all edges labelled x is $(\varepsilon, \eta / 4)$-regular.
- $\delta(R) \geq\left(1-\frac{1}{r+1}+\frac{\eta}{4}\right)|R|\left(\right.$ or $\delta(R) \geq\left(\frac{3}{4}+\frac{\eta}{4}\right)|R|$ for $\left.r=2\right)$,

Using Szemerédi's regularity lemma

Using a multicolored version of Szemerédi's regularity lemma, we can partition vertices into clusters $V_{0}, V_{1}, \ldots, V_{\ell}$. Additionally, on the vertex set $\left\{V_{1}, \ldots, V_{\ell}\right\}$ we can define the reduced graph R and an edge coloring $f_{R}: E(R) \rightarrow\{-1,1\}$ such that:

- $\left|V_{0}\right| \leq \varepsilon n$ and $\left|V_{1}\right|=\left|V_{2}\right|=\cdots=\left|V_{\ell}\right|=\Omega(n)$,
- If $f_{R}\left(V_{i}, V_{j}\right)=x$ then the bipartite graph between V_{i} and V_{j} containing all edges labelled x is $(\varepsilon, \eta / 4)$-regular.
- $\delta(R) \geq\left(1-\frac{1}{r+1}+\frac{\eta}{4}\right)|R|\left(\right.$ or $\delta(R) \geq\left(\frac{3}{4}+\frac{\eta}{4}\right)|R|$ for $\left.r=2\right)$,

Blow-up Lemma (Komlós, Sárközy, Szemerédi, 1994)

"Regular pairs behave like complete bipartite graphs in terms of containing bounded degree subgraphs."

Szemerédi's regularity lemma

Szemerédi＇s regularity lemma

Szemerédi's regularity lemma

Szemerédi＇s regularity lemma

- Denote the $r^{t h}$ power of the cycle $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ by $\left(v_{1}, v_{2}, \ldots, v_{k}\right)^{r}$.
- Denote the $r^{t h}$ power of the cycle $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ by $\left(v_{1}, v_{2}, \ldots, v_{k}\right)^{r}$.
- Its discrepancy is given as
$f_{R}\left(v_{1}, v_{2}, \ldots, v_{k}\right)^{r}=\sum_{i=1}^{k} \sum_{j=1}^{r} f_{R}\left(v_{i}, v_{i+j}\right)$, where $v_{k+i}=v_{i}$
- Denote the $r^{t h}$ power of the cycle $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ by $\left(v_{1}, v_{2}, \ldots, v_{k}\right)^{r}$.
- Its discrepancy is given as

$$
f_{R}\left(v_{1}, v_{2}, \ldots, v_{k}\right)^{r}=\sum_{i=1}^{k} \sum_{j=1}^{r} f_{R}\left(v_{i}, v_{i+j}\right), \text { where }
$$

$$
v_{k+i}=v_{i}
$$

- Example: $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)^{2}$ is a 4-clique, but

$$
f_{R}\left(\left(v_{1}, v_{2}, v_{3}, v_{4}\right)^{2}\right)=f_{R}\left(v_{1}, v_{3}\right)+f_{R}\left(v_{2}, v_{4}\right)+\sum_{i<j} f_{R}\left(v_{i}, v_{j}\right)
$$

- Denote the $r^{t h}$ power of the cycle $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ by $\left(v_{1}, v_{2}, \ldots, v_{k}\right)^{r}$.
- Its discrepancy is given as

$$
\begin{aligned}
& f_{R}\left(v_{1}, v_{2}, \ldots, v_{k}\right)^{r}=\sum_{i=1}^{k} \sum_{j=1}^{r} f_{R}\left(v_{i}, v_{i+j}\right), \text { where } \\
& v_{k+i}=v_{i}
\end{aligned}
$$

- Example: $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)^{2}$ is a 4-clique, but

$$
f_{R}\left(\left(v_{1}, v_{2}, v_{3}, v_{4}\right)^{2}\right)=f_{R}\left(v_{1}, v_{3}\right)+f_{R}\left(v_{2}, v_{4}\right)+\sum_{i<j} f_{R}\left(v_{i}, v_{j}\right)
$$

C^{r}-tiling

A C^{r}-tiling \mathcal{T} of R is a partition of its vertices into $r^{t h}$ powers of simple cycles. Its discrepancy is defined as $f_{R}(\mathcal{T})=\sum_{C^{r} \in \mathcal{T}} f_{R}\left(C^{r}\right)$.

From a C^{r}-tiling to H^{r}

From a C^{r}-tiling to H^{r}

V_{0}

From a C^{r}－tiling to H^{r}

From a C^{r}-tiling to H^{r}

From a C^{r}－tiling to H^{r}

Using a tiling of high discrepancy

Lemma (Tiling Lemma)

Suppose there is a C^{r}-tiling \mathcal{T} of R with $\left|f_{R}(\mathcal{T})\right|=\Omega(|R|)$. Then in G there exists the $r^{\text {th }}$ power of a Hamilton cycle H^{r} satisfying $\left|f\left(H^{r}\right)\right| \geq \gamma n$.

Using a tiling of high discrepancy

Lemma (Tiling Lemma)

Suppose there is a C^{r}-tiling \mathcal{T} of R with $\left|f_{R}(\mathcal{T})\right|=\Omega(|R|)$. Then in G there exists the $r^{\text {th }}$ power of a Hamilton cycle H^{r} satisfying $\left|f\left(H^{r}\right)\right| \geq \gamma n$.

Proof in the case $\delta(G) \geq\left(1-\frac{1}{r+2}+\eta\right) n$:

Using a tiling of high discrepancy

Lemma (Tiling Lemma)

Suppose there is a C^{r}-tiling \mathcal{T} of R with $\left|f_{R}(\mathcal{T})\right|=\Omega(|R|)$. Then in G there exists the $r^{\text {th }}$ power of a Hamilton cycle H^{r} satisfying $\left|f\left(H^{r}\right)\right| \geq \gamma n$.

Proof in the case $\delta(G) \geq\left(1-\frac{1}{r+2}+\eta\right) n$:

- $\delta(R) \geq\left(1-\frac{1}{r+2}+\frac{\eta}{4}\right)|R|$.

Using a tiling of high discrepancy

Lemma (Tiling Lemma)

Suppose there is a C^{r}-tiling \mathcal{T} of R with $\left|f_{R}(\mathcal{T})\right|=\Omega(|R|)$. Then in G there exists the $r^{\text {th }}$ power of a Hamilton cycle H^{r} satisfying $\left|f\left(H^{r}\right)\right| \geq \gamma n$.

Proof in the case $\delta(G) \geq\left(1-\frac{1}{r+2}+\eta\right) n$:

- $\delta(R) \geq\left(1-\frac{1}{r+2}+\frac{\eta}{4}\right)|R|$.
- Balogh, Csaba, Pluhár and Treglown: there is a K_{r+1}-tiling of R with linear discrepancy.

Using a tiling of high discrepancy

Lemma (Tiling Lemma)

Suppose there is a C^{r}-tiling \mathcal{T} of R with $\left|f_{R}(\mathcal{T})\right|=\Omega(|R|)$. Then in G there exists the $r^{\text {th }}$ power of a Hamilton cycle H^{r} satisfying $\left|f\left(H^{r}\right)\right| \geq \gamma n$.

Proof in the case $\delta(G) \geq\left(1-\frac{1}{r+2}+\eta\right) n$:

- $\delta(R) \geq\left(1-\frac{1}{r+2}+\frac{\eta}{4}\right)|R|$.
- Balogh, Csaba, Pluhár and Treglown: there is a K_{r+1}-tiling of R with linear discrepancy.
- We are done by the Tiling Lemma.

Using a tiling of high discrepancy

Lemma (Tiling Lemma)

Suppose there is a C^{r}-tiling \mathcal{T} of R with $\left|f_{R}(\mathcal{T})\right|=\Omega(|R|)$. Then in G there exists the $r^{\text {th }}$ power of a Hamilton cycle H^{r} satisfying $\left|f\left(H^{r}\right)\right| \geq \gamma n$.

Proof in the case $\delta(G) \geq\left(1-\frac{1}{r+2}+\eta\right) n$:

- $\delta(R) \geq\left(1-\frac{1}{r+2}+\frac{\eta}{4}\right)|R|$.
- Balogh, Csaba, Pluhár and Treglown: there is a K_{r+1}-tiling of R with linear discrepancy.
- We are done by the Tiling Lemma.
- $r=2$

C^{r}-templates

C^{r}-template

Let F be a graph. A collection of $r^{t h}$ powers of cycles $\mathcal{F}=\left\{C_{1}^{r}, \ldots, C_{s}^{r}\right\}$ is a C^{r}-template of F if every vertex in F appears the same number of times.
They need not be distinct nor simple. Its discrepancy is defined as $f_{R}(\mathcal{F})=\sum_{i=1}^{s} f_{R}\left(C_{i}^{r}\right)$.

C^{r}-template

Let F be a graph. A collection of $r^{t h}$ powers of cycles $\mathcal{F}=\left\{C_{1}^{r}, \ldots, C_{s}^{r}\right\}$ is a C^{r}-template of F if every vertex in F appears the same number of times.
They need not be distinct nor simple. Its discrepancy is defined as $f_{R}(\mathcal{F})=\sum_{i=1}^{s} f_{R}\left(C_{i}^{r}\right)$.

Lemma (Template Lemma)
Let \mathcal{F}_{1} and \mathcal{F}_{2} be two "small" C^{r}-templates on some subgraph F of R. If both \mathcal{F}_{1} and \mathcal{F}_{2} contain each vertex of F exactly k times, but have different discrepancies, then we are done.

- We only use: $\delta(R) \geq\left(1-\frac{1}{r+1}+\frac{\eta}{4}\right)|R|$, the Tiling Lemma and the Template Lemma.
- We only use: $\delta(R) \geq\left(1-\frac{1}{r+1}+\frac{\eta}{4}\right)|R|$, the Tiling Lemma and the Template Lemma.
- All cliques in R of size at most $r+2$ are of one of four types.
- We only use: $\delta(R) \geq\left(1-\frac{1}{r+1}+\frac{\eta}{4}\right)|R|$, the Tiling Lemma and the Template Lemma.
- All cliques in R of size at most $r+2$ are of one of four types.
- By Hajnal-Szemerédi's theorem, we get a K_{r+1}-tiling \mathcal{T} of R.
- We only use: $\delta(R) \geq\left(1-\frac{1}{r+1}+\frac{\eta}{4}\right)|R|$, the Tiling Lemma and the Template Lemma.
- All cliques in R of size at most $r+2$ are of one of four types.
- By Hajnal-Szemerédi's theorem, we get a K_{r+1}-tiling \mathcal{T} of R.
- \mathcal{T} has small discrepancy \Longrightarrow the four types of cliques in \mathcal{T} are balanced.
- We only use: $\delta(R) \geq\left(1-\frac{1}{r+1}+\frac{\eta}{4}\right)|R|$, the Tiling Lemma and the Template Lemma.
- All cliques in R of size at most $r+2$ are of one of four types.
- By Hajnal-Szemerédi's theorem, we get a K_{r+1}-tiling \mathcal{T} of R.
- \mathcal{T} has small discrepancy \Longrightarrow the four types of cliques in \mathcal{T} are balanced.
- Two cliques of different types cannot have too many edges between them.
- We only use: $\delta(R) \geq\left(1-\frac{1}{r+1}+\frac{\eta}{4}\right)|R|$, the Tiling Lemma and the Template Lemma.
- All cliques in R of size at most $r+2$ are of one of four types.
- By Hajnal-Szemerédi's theorem, we get a K_{r+1}-tiling \mathcal{T} of R.
- \mathcal{T} has small discrepancy \Longrightarrow the four types of cliques in \mathcal{T} are balanced.
- Two cliques of different types cannot have too many edges between them.
- Contradiction with $\delta(R) \geq\left(1-\frac{1}{r+1}+\frac{\eta}{4}\right)|R|$.
- We only use: $\delta(R) \geq\left(1-\frac{1}{r+1}+\frac{\eta}{4}\right)|R|$, the Tiling Lemma and the Template Lemma.
- All cliques in R of size at most $r+2$ are of one of four types.
- By Hajnal-Szemerédi's theorem, we get a K_{r+1}-tiling \mathcal{T} of R.
- \mathcal{T} has small discrepancy \Longrightarrow the four types of cliques in \mathcal{T} are balanced.
- Two cliques of different types cannot have too many edges between them.
- Contradiction with $\delta(R) \geq\left(1-\frac{1}{r+1}+\frac{\eta}{4}\right)|R|$.

$(r+2)$-cliques in R

- Consider some $(r+2)$-clique $K=\left\{v_{1}, v_{2}, \ldots, v_{r+2}\right\}$ in R.

$(r+2)$-cliques in R

- Consider some $(r+2)$-clique $K=\left\{v_{1}, v_{2}, \ldots, v_{r+2}\right\}$ in R.
- Let $C_{1}^{r}=\left(v_{1}, \ldots, v_{r+2}\right)^{r}$ and $C_{2}^{r}=\left(v_{2}, v_{1}, v_{3}, v_{4}, \ldots, v_{r+2}\right)^{r}$.
- Consider some $(r+2)$-clique $K=\left\{v_{1}, v_{2}, \ldots, v_{r+2}\right\}$ in R.
- Let $C_{1}^{r}=\left(v_{1}, \ldots, v_{r+2}\right)^{r}$ and $C_{2}^{r}=\left(v_{2}, v_{1}, v_{3}, v_{4}, \ldots, v_{r+2}\right)^{r}$.
- Note that $f_{R}\left(C_{1}^{r}\right)=2 \sum_{i<j} f_{R}\left(v_{i}, v_{j}\right)-\sum_{i=1}^{r} f\left(v_{i}, v_{i+1}\right)$.
- Consider some $(r+2)$-clique $K=\left\{v_{1}, v_{2}, \ldots, v_{r+2}\right\}$ in R.
- Let $C_{1}^{r}=\left(v_{1}, \ldots, v_{r+2}\right)^{r}$ and $C_{2}^{r}=\left(v_{2}, v_{1}, v_{3}, v_{4}, \ldots, v_{r+2}\right)^{r}$.
- Note that $f_{R}\left(C_{1}^{r}\right)=2 \sum_{i<j} f_{R}\left(v_{i}, v_{j}\right)-\sum_{i=1}^{r} f\left(v_{i}, v_{i+1}\right)$.
- From the Template Lemma, we have:

$$
\begin{aligned}
0 & =f_{R}\left(C_{1}^{r}\right)-f_{R}\left(C_{2}^{r}\right) \\
& =f_{R}\left(v_{1}, v_{3}\right)+f_{R}\left(v_{2}, v_{r+2}\right)-f_{R}\left(v_{2}, v_{3}\right)-f_{R}\left(v_{1}, v_{r+2}\right)
\end{aligned}
$$

- Consider some $(r+2)$-clique $K=\left\{v_{1}, v_{2}, \ldots, v_{r+2}\right\}$ in R.
- Let $C_{1}^{r}=\left(v_{1}, \ldots, v_{r+2}\right)^{r}$ and $C_{2}^{r}=\left(v_{2}, v_{1}, v_{3}, v_{4}, \ldots, v_{r+2}\right)^{r}$.
- Note that $f_{R}\left(C_{1}^{r}\right)=2 \sum_{i<j} f_{R}\left(v_{i}, v_{j}\right)-\sum_{i=1}^{r} f\left(v_{i}, v_{i+1}\right)$.
- From the Template Lemma, we have:

$$
\begin{aligned}
0 & =f_{R}\left(C_{1}^{r}\right)-f_{R}\left(C_{2}^{r}\right) \\
& =f_{R}\left(v_{1}, v_{3}\right)+f_{R}\left(v_{2}, v_{r+2}\right)-f_{R}\left(v_{2}, v_{3}\right)-f_{R}\left(v_{1}, v_{r+2}\right)
\end{aligned}
$$

- Same for every $a, b, c, d \in K$.

$(r+2)$-cliques in R

- Consider some $(r+2)$-clique $K=\left\{v_{1}, v_{2}, \ldots, v_{r+2}\right\}$ in R.
- Let $C_{1}^{r}=\left(v_{1}, \ldots, v_{r+2}\right)^{r}$ and $C_{2}^{r}=\left(v_{2}, v_{1}, v_{3}, v_{4}, \ldots, v_{r+2}\right)^{r}$.
- Note that $f_{R}\left(C_{1}^{r}\right)=2 \sum_{i<j} f_{R}\left(v_{i}, v_{j}\right)-\sum_{i=1}^{r} f\left(v_{i}, v_{i+1}\right)$.
- From the Template Lemma, we have:

$$
\begin{aligned}
0 & =f_{R}\left(C_{1}^{r}\right)-f_{R}\left(C_{2}^{r}\right) \\
& =f_{R}\left(v_{1}, v_{3}\right)+f_{R}\left(v_{2}, v_{r+2}\right)-f_{R}\left(v_{2}, v_{3}\right)-f_{R}\left(v_{1}, v_{r+2}\right)
\end{aligned}
$$

- Same for every $a, b, c, d \in K$.

$(r+2)$-cliques in R

- Consider some $(r+2)$-clique $K=\left\{v_{1}, v_{2}, \ldots, v_{r+2}\right\}$ in R.
- Let $C_{1}^{r}=\left(v_{1}, \ldots, v_{r+2}\right)^{r}$ and $C_{2}^{r}=\left(v_{2}, v_{1}, v_{3}, v_{4}, \ldots, v_{r+2}\right)^{r}$.
- Note that $f_{R}\left(C_{1}^{r}\right)=2 \sum_{i<j} f_{R}\left(v_{i}, v_{j}\right)-\sum_{i=1}^{r} f\left(v_{i}, v_{i+1}\right)$.
- From the Template Lemma, we have:

$$
\begin{aligned}
0 & =f_{R}\left(C_{1}^{r}\right)-f_{R}\left(C_{2}^{r}\right) \\
& =f_{R}\left(v_{1}, v_{3}\right)+f_{R}\left(v_{2}, v_{r+2}\right)-f_{R}\left(v_{2}, v_{3}\right)-f_{R}\left(v_{1}, v_{r+2}\right)
\end{aligned}
$$

- Same for every $a, b, c, d \in K$.

$(r+2)$-cliques in R

- Consider some $(r+2)$-clique $K=\left\{v_{1}, v_{2}, \ldots, v_{r+2}\right\}$ in R.
- Let $C_{1}^{r}=\left(v_{1}, \ldots, v_{r+2}\right)^{r}$ and $C_{2}^{r}=\left(v_{2}, v_{1}, v_{3}, v_{4}, \ldots, v_{r+2}\right)^{r}$.
- Note that $f_{R}\left(C_{1}^{r}\right)=2 \sum_{i<j} f_{R}\left(v_{i}, v_{j}\right)-\sum_{i=1}^{r} f\left(v_{i}, v_{i+1}\right)$.
- From the Template Lemma, we have:

$$
\begin{aligned}
0 & =f_{R}\left(C_{1}^{r}\right)-f_{R}\left(C_{2}^{r}\right) \\
& =f_{R}\left(v_{1}, v_{3}\right)+f_{R}\left(v_{2}, v_{r+2}\right)-f_{R}\left(v_{2}, v_{3}\right)-f_{R}\left(v_{1}, v_{r+2}\right)
\end{aligned}
$$

- Same for every $a, b, c, d \in K$.

$(r+2)$-cliques in R

When does K satisfy this?

$(r+2)$-cliques in R

When does K satisfy this? If it is monochromatic.

$(r+2)$-cliques in R

When does K satisfy this? If it is monochromatic. Suppose not and v has at least two blue and one red edge.

$(r+2)$-cliques in R

When does K satisfy this? If it is monochromatic. Suppose not and v has at least two blue and one red edge.

$(r+2)$-cliques in R

When does K satisfy this? If it is monochromatic. Suppose not and v has at least two blue and one red edge.

$(r+2)$-cliques in R

When does K satisfy this? If it is monochromatic. Suppose not and v has at least two blue and one red edge.

$(r+2)$-cliques in R

When does K satisfy this? If it is monochromatic. Suppose not and v has at least two blue and one red edge.

$(r+2)$-cliques in R

When does K satisfy this? If it is monochromatic. Suppose not and v has at least two blue and one red edge.

$(r+2)$-cliques in R

When does K satisfy this? If it is monochromatic. Suppose not and v has at least two blue and one red edge.

$(r+2)$-cliques in R

When does K satisfy this? If it is monochromatic. Suppose not and v has at least two blue and one red edge.

$(r+2)$-cliques in R

When does K satisfy this? If it is monochromatic. Suppose not and v has at least two blue and one red edge.

Because $\delta(R) \geq\left(1-\frac{1}{r+1}+\eta\right)|R|$, any smaller clique is contained in an $(r+2)$-clique.

$(r+2)$-cliques in R

When does K satisfy this? If it is monochromatic. Suppose not and v has at least two blue and one red edge.

Because $\delta(R) \geq\left(1-\frac{1}{r+1}+\eta\right)|R|$, any smaller clique is contained in an $(r+2)$-clique. Thus, any clique of size at most $r+2$ is either monochromatic, a red star or a blue star. In particular, this holds for any clique in \mathcal{T}.

Finishing the proof

Finishing the proof

- We can assume $|B|+|C| \geq|A|+|D|$.

Finishing the proof

- We can assume $|B|+|C| \geq|A|+|D|$.
- Consider two cliques X and Y in \mathcal{T} and a vertex $v \in X$. We show $d(v, Y) \leq r-1$ if:

Finishing the proof

- We can assume $|B|+|C| \geq|A|+|D|$.
- Consider two cliques X and Y in \mathcal{T} and a vertex $v \in X$. We show $d(v, Y) \leq r-1$ if:
- $X \in A$ and $Y \in B$ or

Finishing the proof

- We can assume $|B|+|C| \geq|A|+|D|$.
- Consider two cliques X and Y in \mathcal{T} and a vertex $v \in X$. We show $d(v, Y) \leq r-1$ if:
- $X \in A$ and $Y \in B$ or
- $X \in A$ and $Y \in C$ or

Finishing the proof

- We can assume $|B|+|C| \geq|A|+|D|$.
- Consider two cliques X and Y in \mathcal{T} and a vertex $v \in X$. We show $d(v, Y) \leq r-1$ if:
- $X \in A$ and $Y \in B$ or
- $X \in A$ and $Y \in C$ or
- $X \in C, Y \in D$ and v is the head of X.

Finishing the proof

- We can assume $|B|+|C| \geq|A|+|D|$.
- Consider two cliques X and Y in \mathcal{T} and a vertex $v \in X$. We show $d(v, Y) \leq r-1$ if:
- $X \in A$ and $Y \in B$ or
- $X \in A$ and $Y \in C$ or
- $X \in C, Y \in D$ and v is the head of X.
- Let $X \in A$ and $v \in X$. Then $d(v) \leq(r-1)(|B|+|C|)+(r+1)(|A|+|D|) \leq \frac{r}{r+1}|R|$.

Finishing the proof

- We can assume $|B|+|C| \geq|A|+|D|$.
- Consider two cliques X and Y in \mathcal{T} and a vertex $v \in X$. We show $d(v, Y) \leq r-1$ if:
- $X \in A$ and $Y \in B$ or
- $X \in A$ and $Y \in C$ or
- $X \in C, Y \in D$ and v is the head of X.
- Let $X \in A$ and $v \in X$. Then
$d(v) \leq(r-1)(|B|+|C|)+(r+1)(|A|+|D|) \leq \frac{r}{r+1}|R|$. So, $A=\emptyset$.

Finishing the proof

- We can assume $|B|+|C| \geq|A|+|D|$.
- Consider two cliques X and Y in \mathcal{T} and a vertex $v \in X$. We show $d(v, Y) \leq r-1$ if:
- $X \in A$ and $Y \in B$ or
- $X \in A$ and $Y \in C$ or
- $X \in C, Y \in D$ and v is the head of X.
- Let $X \in A$ and $v \in X$. Then
$d(v) \leq(r-1)(|B|+|C|)+(r+1)(|A|+|D|) \leq \frac{r}{r+1}|R|$. So, $A=\emptyset$.
- $\left|f_{R}(\mathcal{T})\right| \leq \beta|R|$

Finishing the proof

- We can assume $|B|+|C| \geq|A|+|D|$.
- Consider two cliques X and Y in \mathcal{T} and a vertex $v \in X$. We show $d(v, Y) \leq r-1$ if:
- $X \in A$ and $Y \in B$ or
- $X \in A$ and $Y \in C$ or
- $X \in C, Y \in D$ and v is the head of X.
- Let $X \in A$ and $v \in X$. Then $d(v) \leq(r-1)(|B|+|C|)+(r+1)(|A|+|D|) \leq \frac{r}{r+1}|R|$. So, $A=\emptyset$.
- $\left|f_{R}(\mathcal{T})\right| \leq \beta|R| \Longrightarrow|B| \leq \beta|R|$ and $|B|+|C|-|D| \leq \beta|R|$.

Finishing the proof

- We can assume $|B|+|C| \geq|A|+|D|$.
- Consider two cliques X and Y in \mathcal{T} and a vertex $v \in X$. We show $d(v, Y) \leq r-1$ if:
- $X \in A$ and $Y \in B$ or
- $X \in A$ and $Y \in C$ or
- $X \in C, Y \in D$ and v is the head of X.
- Let $X \in A$ and $v \in X$. Then

$$
d(v) \leq(r-1)(|B|+|C|)+(r+1)(|A|+|D|) \leq \frac{r}{r+1}|R| \text {. So, }
$$

$$
A=\emptyset .
$$

- $\left|f_{R}(\mathcal{T})\right| \leq \beta|R| \Longrightarrow|B| \leq \beta|R|$ and $|B|+|C|-|D| \leq \beta|R|$.
- Let $X \in C$ and v be the head of X. Then
$d(v) \leq(r-1)|D|+(r+1)(|B|+|C|) \leq\left(\frac{r}{r+1}+\beta\right)|R|$.

Finishing the proof

- We can assume $|B|+|C| \geq|A|+|D|$.
- Consider two cliques X and Y in \mathcal{T} and a vertex $v \in X$. We show $d(v, Y) \leq r-1$ if:
- $X \in A$ and $Y \in B$ or
- $X \in A$ and $Y \in C$ or
- $X \in C, Y \in D$ and v is the head of X.
- Let $X \in A$ and $v \in X$. Then

$$
d(v) \leq(r-1)(|B|+|C|)+(r+1)(|A|+|D|) \leq \frac{r}{r+1}|R| \text {. So, }
$$

$$
A=\emptyset .
$$

- $\left|f_{R}(\mathcal{T})\right| \leq \beta|R| \Longrightarrow|B| \leq \beta|R|$ and $|B|+|C|-|D| \leq \beta|R|$.
- Let $X \in C$ and v be the head of X. Then

$$
d(v) \leq(r-1)|D|+(r+1)(|B|+|C|) \leq\left(\frac{r}{r+1}+\beta\right)|R|
$$

- $C=\emptyset$, contradiction.

Thank you!

