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Classical Secretary Model

Known number of items n.

Arrival times are uniformly random in [0, 1].

Upon arrival, we must decide to accept or reject the item.

Our choices are immediate and irrevocable.

Value maximization:
@ Items have positive real values.

@ Values are chosen |adversarially , but before arrival times.

@ Objective: expected value compared to the maximum.
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Known number of items n.

Arrival times are uniformly random in [0, 1].

Upon arrival, we must decide to accept or reject the item.

Our choices are immediate and irrevocable.

Value maximization:
@ Items have positive real values.

@ Values are chosen |adversarially , but before arrival times.

@ Objective: expected value compared to the maximum.

Probability maximization:
@ Items only have a relative order.

@ Objective: probability of choosing the maximum element.
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Classical Secretary Model
Dynkin’s algorithm

In the classical secretary setting there is an algorithm that picks the
highest item with probability at least 1/4.
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Algorithm: ‘
@ Do not pick anything until I select first
; 1 observe | )
time t = 3. | prefix max
o Accept the first item that is |
larger than everything seen F—0 tirine 1

so far.



Classical Secretary Model
Proof of Dynkin's algorithm

In the classic secretary setting there is an algorithm that gets the
highest bid with probability at least 1/4.

t=0 time t=1

Pr[we select 1%t max] > Pr[2"! max in left half] - Pr[15t max in right half]
—1/2-1/2=1/4



Classical secretary model:
@ The 1/4 can be improved to 1/e ~ 0.37. [Dynkin'63]
@ Simple model.

@ Lots of generalizations: choosing multiple items, choosing
matroid-independent elements, ...

@ Application: online ad auctions.

However...



Classical secretary model:
@ The 1/4 can be improved to 1/e ~ 0.37. [Dynkin'63]
@ Simple model.

@ Lots of generalizations: choosing multiple items, choosing
matroid-independent elements, ...

@ Application: online ad auctions.

However...

@ We assume that all the elements are perfectly
uniform.

@ Even one non-uniform element can mess up
everything.
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Robust Secretary Model

Do we need random arrivals?
Fully adversarial arrival times — 1/n. [Gilbert, Mosteller '66]

We consider mixed arrivals times.

Robust Secretary

@ g green items arriving uniformly random in [0, 1]

@ r red items with adversarially chosen arrival times
o all values chosen adversarially before the random arrival times
@ OPT is the 2" green max
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Do we need random arrivals?
Fully adversarial arrival times — 1/n. [Gilbert, Mosteller '66]

We consider mixed arrivals times.

Robust Secretary

@ g green items arriving uniformly random in [0, 1]

@ r red items with adversarially chosen arrival times
o all values chosen adversarially before the random arrival times
@ OPT is the 2" green max

Green max is unattainable.



Results

Value maximization:
Theorem (BGSZ ITCS '20)

Single-item RobSec admits E[ALG] > O(Io—;*n)zE[?d green max].
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Results

Value maximization:
Theorem (BGSZ ITCS '20)

Single-item RobSec admits E[ALG] > E[2" green max].

1
O(log™ n)2

Probability maximization:

Theorem (BGSZ ITCS '20)

Single-item RobSec admits

Pr[ALG gets 2" green max or better] > m-

Choosing multiple items:

Theorem (BGSZ ITCS '20)

Knapsack RobSec admits E[ALG] > (1 — ¢)E[OPT] when
71(";’;5”‘3?22’28 > poly(¢~ ! log n)

No dependency on r (number of red items). This is very robust!
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There exists a O(Iog ) -competitive ALG.
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There exists a O(Iog ) -competitive ALG.
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e W.p. 1/3, pick a random item. — maxval(e) < n- OPT
e Partition [0, 1] into two halves.
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Single Item Value Maxizimation — One Interval ALG

There exists a O(Iog o) -competitive ALG.

o R,
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e Partition [0, 1] into two halves.
e W.p. 1/3, run Dynkin's secretary in the 1 half
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Single Item Value Maxizimation — One Interval ALG

There exists a O(Iog o) -competitive ALG.

o R,

e W.p. 1/3, pick a random item. — maxval(e) < n- OPT
e Partition [0, 1] into two halves.

e W.p. 1/3, run Dynkin's secretary in the 1% half
— max in 1% half € [OPT, n- OPT]
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There exists a m-competitive ALG.

e We know OPT € [a/n, a].

o Partition this interval into O(log n) buckets:
[3 g) [23 4a
n’> n/>?
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e W.p. 1/3, observe the 1%t half and let a = max observed.
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@ Choose a random bucket and pick the first element with value
in this bucket.



Single Item Value Maxizimation — One Interval ALG

There exists a m—competitive ALG.

@ W.p. 1/3, observe the 1 half and let a = max observed.
e We know OPT € [a/n, a].
e Partition this interval into O(log n) buckets:
2.2),[2.9) ... [2.4
n*n)oln>n)o L2 .

@ Choose a random bucket and pick the first element with value
in this bucket.

E[ALG] > Pr[correct bucket] - Pr[2nd max in 2" half] - ﬂ

1 1 oPT 1
logn 2 2 O(logn)

-OPT



Tool #4: Done or refine.

Observation:

o There exists val(e) > logn- OPT in 2™
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Improving to 1/O(log" n)€-competitive ALG

Tool #4: Done or refine. J

Observation:
o There exists val(e) > logn- OPT in 2"
@ or max in 2" is in [OPT,log n- OPT]

Idea: partition [0, 1] into O(log™ n) equal
intervals. In each interval we either: Do b .

@ get high value t=0 time t=

@ or refine our estimate of OPT.
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Summary

Theorem (BGSZ ITCS'20)

Single-item RobSec admits E[ALG] > WE[T’d green max].

@ Robust Secretary Model
e Semi-random model for the secretary problem.
o Our benchmark is the 2"¢ max green.
o Very robust results.

@ Open problems

o Is there a superconstant lower bound?

o Can we make the probability maximization algorithm
constructive?

o How to extend these results to general packing LPs?

Thank youl!



