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Classical Secretary Model

Known number of items n.

Arrival times are uniformly random in [0, 1].

Upon arrival, we must decide to accept or reject the item.
Our choices are immediate and irrevocable.

Value maximization:
Items have positive real values.
Values are chosen adversarially , but before arrival times.
Objective: expected value compared to the maximum.

Probability maximization:
Items only have a relative order.
Objective: probability of choosing the maximum element.
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Classical Secretary Model
Dynkin’s algorithm

Theorem
In the classical secretary setting there is an algorithm that picks the
highest item with probability at least 1/4.

Algorithm:

Do not pick anything until
time t = 1

2 .
Accept the first item that is
larger than everything seen
so far.

t = 0 time t = 1

observe
select first
prefix max
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Classical Secretary Model
Proof of Dynkin’s algorithm

Theorem
In the classic secretary setting there is an algorithm that gets the
highest bid with probability at least 1/4.

t = 0 time t = 1

2nd max
1st max

Pr[we select 1st max] ≥ Pr[2nd max in left half] · Pr[1st max in right half]
= 1/2 · 1/2 = 1/4
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Classical secretary model:
The 1/4 can be improved to 1/e ≈ 0.37. [Dynkin’63]
Simple model.
Lots of generalizations: choosing multiple items, choosing
matroid-independent elements, ...
Application: online ad auctions.

However...

fragile

We assume that all the elements are perfectly
uniform.
Even one non-uniform element can mess up
everything.
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Robust Secretary Model

Do we need random arrivals?

Fully adversarial arrival times −→ 1/n. [Gilbert, Mosteller ’66]

We consider mixed arrivals times.

Robust Secretary
g green items arriving uniformly random in [0, 1]

r red items with adversarially chosen arrival times
all values chosen adversarially before the random arrival times
OPT is the 2nd green max

Green max is unattainable.
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Results

Value maximization:

Theorem (BGSZ ITCS ’20)

Single-item RobSec admits E[ALG] ≥ 1
O(log∗ n)2

E[2nd green max].

Probability maximization:

Theorem (BGSZ ITCS ’20)

Single-item RobSec admits
Pr[ALG gets 2nd green max or better] ≥ 1

O(log n)2
.

Choosing multiple items:

Theorem (BGSZ ITCS ’20)

Knapsack RobSec admits E[ALG] ≥ (1− ε)E[OPT] when
knapsack size

item size ≥ poly(ε−1 log n)

No dependency on r (number of red items). This is very robust!
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Single Item Value Maxizimation – One Interval ALG

There exists a 1
O(log n) -competitive ALG.

t = 0 time t = 1

va
lu
e

n ·OPT

OPT

W.p. 1/3, pick a random item.

−→ max val(e) ≤ n ·OPT

Partition [0, 1] into two halves.
W.p. 1/3, run Dynkin’s secretary in the 1st half

−→ max in 1st half ∈ [OPT, n ·OPT]
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Single Item Value Maxizimation – One Interval ALG

There exists a 1
O(log n) -competitive ALG.

W.p. 1/3, observe the 1st half and let a = max observed.
We know OPT ∈ [a/n, a].

Partition this interval into O(log n) buckets:[
a
n ,

2a
n

)
,
[2a
n ,

4a
n

)
, . . .

[
a
2 , a

]
.

Choose a random bucket and pick the first element with value
in this bucket.

E[ALG] ≥ Pr[correct bucket] · Pr[2nd max in 2nd half] · OPT
2

=
1

log n
· 1
2
· OPT

2
=

1
O(log n)

·OPT
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Improving to 1/O(log∗ n)C -competitive ALG

Tool #4: Done or refine.

Observation:
There exists val(e) ≥ log n ·OPT in 2nd

or max in 2nd is in [OPT , log n ·OPT]

Idea: partition [0, 1] into O(log∗ n) equal
intervals. In each interval we either:

get high value
or refine our estimate of OPT.

t = 0 time t = 1
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Summary

Theorem (BGSZ ITCS’20)

Single-item RobSec admits E[ALG] ≥ 1
O(log∗ n)2

E[2nd green max].

Robust Secretary Model
Semi-random model for the secretary problem.
Our benchmark is the 2nd max green.
Very robust results.

Open problems
Is there a superconstant lower bound?
Can we make the probability maximization algorithm
constructive?
How to extend these results to general packing LPs?

Thank you!
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