Robust Algorithms for the Secretary Problem

Domagoj Bradac

ETH Zürich

January 11, 2020

Slides based on a deck by Goran Zuzic.

• Known number of items *n*.

- Known number of items *n*.
- Arrival times are uniformly random in [0, 1].

- Known number of items n.
- Arrival times are uniformly random in [0, 1].
- Upon arrival, we must decide to accept or reject the item.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Known number of items n.
- Arrival times are uniformly random in [0, 1].
- Upon arrival, we must decide to accept or reject the item.
- Our choices are immediate and irrevocable.

- Known number of items *n*.
- Arrival times are uniformly random in [0, 1].
- Upon arrival, we must decide to accept or reject the item.
- Our choices are immediate and irrevocable.

Value maximization:

- Items have positive real values.
- Values are chosen adversarially, but before arrival times.

• Objective: expected value compared to the maximum.

- Known number of items *n*.
- Arrival times are uniformly random in [0, 1].
- Upon arrival, we must decide to accept or reject the item.
- Our choices are immediate and irrevocable.

Value maximization:

- Items have positive real values.
- Values are chosen adversarially, but before arrival times.
- Objective: expected value compared to the maximum.

Probability maximization:

- Items only have a relative order.
- Objective: probability of choosing the maximum element.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

イロト イロト イヨト イヨト

◆□> ◆□> ◆三> ◆三> ・三 ・のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Theorem

In the classical secretary setting there is an algorithm that picks the highest item with probability at least 1/4.

Algorithm:

Theorem

In the classical secretary setting there is an algorithm that picks the highest item with probability at least 1/4.

Algorithm:

- Do not pick anything until time t = ¹/₂.
- Accept the first item that is larger than everything seen so far.

Classical Secretary Model Proof of Dynkin's algorithm

Theorem

In the classic secretary setting there is an algorithm that gets the highest bid with probability at least 1/4.

 $\begin{aligned} \Pr[\text{we select } 1^{st} \max] &\geq \Pr[2^{nd} \max \text{ in left half}] \cdot \Pr[1^{st} \max \text{ in right half}] \\ &= 1/2 \cdot 1/2 = 1/4 \end{aligned}$

- The 1/4 can be improved to 1/ $e \approx$ 0.37. [Dynkin'63]
- Simple model.
- Lots of generalizations: choosing multiple items, choosing matroid-independent elements, ...

• Application: online ad auctions.

However...

- The 1/4 can be improved to $1/e \approx 0.37$. [Dynkin'63]
- Simple model.
- Lots of generalizations: choosing multiple items, choosing matroid-independent elements, ...
- Application: online ad auctions.

However...

Robust Secretary Model

Do we need random arrivals?

Robust Secretary Model

Do we need random arrivals? Fully adversarial arrival times $\longrightarrow 1/n$. [Gilbert, Mosteller '66] Do we need random arrivals? Fully adversarial arrival times $\longrightarrow 1/n$. [Gilbert, Mosteller '66]

We consider mixed arrivals times.

Robust Secretary

- g green items arriving uniformly random in [0, 1]
- *r* red items with adversarially chosen arrival times
- all values chosen adversarially before the random arrival times

• OPT is the 2nd green max

Do we need random arrivals? Fully adversarial arrival times $\longrightarrow 1/n$. [Gilbert, Mosteller '66]

We consider mixed arrivals times.

Robust Secretary

- g green items arriving uniformly random in [0, 1]
- r red items with adversarially chosen arrival times
- all values chosen adversarially before the random arrival times
- $\bullet~{\rm OPT}$ is the 2^{nd} green max

Green max is unattainable.

Value maximization:

Theorem (BGSZ ITCS '20)

Single-item RobSec admits $\mathbb{E}[ALG] \geq \frac{1}{O(\log^* n)^2} \mathbb{E}[2^{nd} \text{ green max}].$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Value maximization:

Theorem (BGSZ ITCS '20)

Single-item RobSec admits $\mathbb{E}[ALG] \geq \frac{1}{O(\log^* n)^2} \mathbb{E}[2^{nd} \text{ green max}].$

Probability maximization:

Theorem (BGSZ ITCS '20)

Single-item RobSec admits $\Pr[ALG \text{ gets } 2^{nd} \text{ green max or better}] \ge \frac{1}{O(\log n)^2}.$

Value maximization:

Theorem (BGSZ ITCS '20)

Single-item RobSec admits $\mathbb{E}[ALG] \geq \frac{1}{O(\log^* n)^2} \mathbb{E}[2^{nd} \text{ green max}].$

Probability maximization:

Single-item RobSec admits $\Pr[ALG \text{ gets } 2^{nd} \text{ green max or better}] \ge \frac{1}{O(\log n)^2}.$

Choosing multiple items:

Theorem (BGSZ ITCS '20)

Knapsack RobSec admits
$$\mathbb{E}[ALG] \ge (1 - \varepsilon)\mathbb{E}[OPT]$$
 when
 $\frac{knapsack \ size}{item \ size} \ge poly(\varepsilon^{-1} \log n)$

Value maximization:

Theorem (BGSZ ITCS '20)

Single-item RobSec admits $\mathbb{E}[ALG] \geq \frac{1}{O(\log^* n)^2} \mathbb{E}[2^{nd} \text{ green max}].$

Probability maximization:

Single-item RobSec admits $\Pr[ALG \text{ gets } 2^{nd} \text{ green max or better}] \ge \frac{1}{O(\log n)^2}.$

Choosing multiple items:

Theorem (BGSZ ITCS '20)

Knapsack RobSec admits
$$\mathbb{E}[ALG] \ge (1 - \varepsilon)\mathbb{E}[OPT]$$
 when
 $\frac{knapsack \ size}{item \ size} \ge poly(\varepsilon^{-1} \log n)$

No dependency on r (number of red items). This is very robust!

There exists a $\frac{1}{O(\log n)}$ -competitive ALG.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• W.p. 1/3, pick a random item.

• W.p. 1/3, pick a random item. $\longrightarrow \max \operatorname{val}(e) \leq n \cdot \operatorname{OPT}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのの

W.p. 1/3, pick a random item. → max val(e) ≤ n · OPT
Partition [0,1] into two halves.

- W.p. 1/3, pick a random item. $\longrightarrow \max \operatorname{val}(e) \leq n \cdot \operatorname{OPT}$
- Partition [0, 1] into two halves.
- W.p. 1/3, run Dynkin's secretary in the 1st half

- W.p. 1/3, pick a random item. $\longrightarrow \max \operatorname{val}(e) \leq n \cdot \operatorname{OPT}$
- Partition [0, 1] into two halves.
- \bullet W.p. 1/3, run Dynkin's secretary in the 1st half

- W.p. 1/3, pick a random item. $\longrightarrow \max \operatorname{val}(e) \leq n \cdot \operatorname{OPT}$
- Partition [0, 1] into two halves.
- W.p. 1/3, run Dynkin's secretary in the 1st half

- W.p. 1/3, pick a random item. $\longrightarrow \max \operatorname{val}(e) \leq n \cdot \operatorname{OPT}$
- Partition [0, 1] into two halves.
- W.p. 1/3, run Dynkin's secretary in the 1st half

- W.p. 1/3, pick a random item. $\longrightarrow \max \operatorname{val}(e) \leq n \cdot \operatorname{OPT}$
- Partition [0, 1] into two halves.
- W.p. 1/3, run Dynkin's secretary in the 1st half \rightarrow max in 1st half \in [OPT, $n \cdot$ OPT]

There exists a
$$\frac{1}{O(\log n)}$$
-competitive ALG.

There exists a
$$\frac{1}{O(\log n)}$$
-competitive ALG.

• W.p. 1/3, observe the 1st half and let $a = \max$ observed.

There exists a
$$\frac{1}{O(\log n)}$$
-competitive ALG.

• W.p. 1/3, observe the 1st half and let $a = \max$ observed.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• We know $OPT \in [a/n, a]$.

There exists a
$$\frac{1}{O(\log n)}$$
-competitive ALG.

• W.p. 1/3, observe the 1st half and let $a = \max$ observed.

- We know $OPT \in [a/n, a]$.
- Partition this interval into $O(\log n)$ buckets: $\left[\frac{a}{n}, \frac{2a}{n}\right), \left[\frac{2a}{n}, \frac{4a}{n}\right), \dots \left[\frac{a}{2}, a\right].$

There exists a
$$\frac{1}{O(\log n)}$$
-competitive ALG.

- W.p. 1/3, observe the 1st half and let $a = \max$ observed.
- We know $OPT \in [a/n, a]$.
- Partition this interval into $O(\log n)$ buckets: $\left[\frac{a}{n}, \frac{2a}{n}\right), \left[\frac{2a}{n}, \frac{4a}{n}\right), \dots \left[\frac{a}{2}, a\right].$
- Choose a random bucket and pick the first element with value in this bucket.

◆□ > ◆□ > ◆三 > ◆三 > ○ ○ ○ ○ ○

There exists a
$$\frac{1}{O(\log n)}$$
-competitive ALG.

- W.p. 1/3, observe the 1st half and let $a = \max$ observed.
- We know $OPT \in [a/n, a]$.
- Partition this interval into $O(\log n)$ buckets: $\left[\frac{a}{n}, \frac{2a}{n}\right), \left[\frac{2a}{n}, \frac{4a}{n}\right), \dots \left[\frac{a}{2}, a\right].$
- Choose a random bucket and pick the first element with value in this bucket.

$$\mathbb{E}[\text{ALG}] \ge \Pr[\text{correct bucket}] \cdot \Pr[2^{\text{nd}} \text{ max in } 2^{\text{nd}} \text{ half}] \cdot \frac{OPT}{2}$$
$$= \frac{1}{\log n} \cdot \frac{1}{2} \cdot \frac{OPT}{2} = \frac{1}{O(\log n)} \cdot \text{OPT}$$

Improving to $1/O(\log^* n)^C$ -competitive ALG

Tool #4: Done or refine.

Observation:

• There exists $val(e) \ge \log n \cdot OPT$ in $2^{nd} \checkmark$

Improving to $1/O(\log^* n)^C$ -competitive ALG

Tool #4: Done or refine.

Observation:

• There exists $val(e) \ge \log n \cdot OPT$ in $2^{nd} \checkmark$

• or max in 2^{nd} is in $[OPT, \log n \cdot OPT]$

Improving to $1/O(\log^* n)^C$ -competitive ALG

Tool #4: Done or refine.

Observation:

- There exists $val(e) \ge \log n \cdot OPT$ in $2^{nd} \checkmark$
- or max in 2^{nd} is in $[OPT, \log n \cdot OPT]$

Idea: partition [0, 1] into $O(\log^* n)$ equal intervals. In each interval we either:

- get high value
- or refine our estimate of OPT.

Theorem (BGSZ ITCS'20)

Single-item RobSec admits $\mathbb{E}[ALG] \geq \frac{1}{O(\log^* n)^2} \mathbb{E}[2^{nd} \text{ green max}].$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem (BGSZ ITCS'20)

Single-item RobSec admits $\mathbb{E}[ALG] \geq \frac{1}{O(\log^* n)^2} \mathbb{E}[2^{nd} \text{ green max}].$

- Robust Secretary Model
 - Semi-random model for the secretary problem.

Theorem (BGSZ ITCS'20)

Single-item RobSec admits $\mathbb{E}[ALG] \geq \frac{1}{O(\log^* n)^2} \mathbb{E}[2^{nd} \text{ green max}].$

- Robust Secretary Model
 - Semi-random model for the secretary problem.
 - Our benchmark is the 2nd max green.

Theorem (BGSZ ITCS'20)

Single-item RobSec admits $\mathbb{E}[ALG] \ge \frac{1}{O(\log^* n)^2} \mathbb{E}[2^{nd} \text{ green max}].$

- Robust Secretary Model
 - Semi-random model for the secretary problem.
 - Our benchmark is the 2nd max green.
 - Very robust results.

Single-item RobSec admits $\mathbb{E}[ALG] \ge \frac{1}{O(\log^* n)^2} \mathbb{E}[2^{nd} \text{ green max}].$

- Robust Secretary Model
 - Semi-random model for the secretary problem.
 - Our benchmark is the 2nd max green.
 - Very robust results.
- Open problems

Single-item RobSec admits $\mathbb{E}[ALG] \ge \frac{1}{O(\log^* n)^2} \mathbb{E}[2^{nd} \text{ green max}].$

- Robust Secretary Model
 - Semi-random model for the secretary problem.
 - Our benchmark is the 2nd max green.
 - Very robust results.
- Open problems
 - Is there a superconstant lower bound?

Single-item RobSec admits $\mathbb{E}[ALG] \ge \frac{1}{O(\log^* n)^2} \mathbb{E}[2^{nd} \text{ green max}].$

- Robust Secretary Model
 - Semi-random model for the secretary problem.
 - Our benchmark is the 2nd max green.
 - Very robust results.
- Open problems
 - Is there a superconstant lower bound?
 - Can we make the probability maximization algorithm constructive?

Single-item RobSec admits $\mathbb{E}[ALG] \ge \frac{1}{O(\log^* n)^2} \mathbb{E}[2^{nd} \text{ green max}].$

- Robust Secretary Model
 - Semi-random model for the secretary problem.
 - Our benchmark is the 2nd max green.
 - Very robust results.
- Open problems
 - Is there a superconstant lower bound?
 - Can we make the probability maximization algorithm constructive?
 - How to extend these results to general packing LPs?

Single-item RobSec admits $\mathbb{E}[ALG] \ge \frac{1}{O(\log^* n)^2} \mathbb{E}[2^{nd} \text{ green max}].$

- Robust Secretary Model
 - Semi-random model for the secretary problem.
 - Our benchmark is the 2nd max green.
 - Very robust results.
- Open problems
 - Is there a superconstant lower bound?
 - Can we make the probability maximization algorithm constructive?
 - How to extend these results to general packing LPs?

Thank you!