Robust Algorithms for the Secretary Problem

Domagoj Bradac

ETH Zürich

January 11, 2020

Classical Secretary Model

- Known number of items n.

Classical Secretary Model

- Known number of items n.
- Arrival times are uniformly random in $[0,1]$.

Classical Secretary Model

- Known number of items n.
- Arrival times are uniformly random in $[0,1]$.
- Upon arrival, we must decide to accept or reject the item.

Classical Secretary Model

- Known number of items n.
- Arrival times are uniformly random in $[0,1]$.
- Upon arrival, we must decide to accept or reject the item.
- Our choices are immediate and irrevocable.

Classical Secretary Model

- Known number of items n.
- Arrival times are uniformly random in $[0,1]$.
- Upon arrival, we must decide to accept or reject the item.
- Our choices are immediate and irrevocable.

Value maximization:

- Items have positive real values.
- Values are chosen adversarially, but before arrival times.
- Objective: expected value compared to the maximum.

Classical Secretary Model

- Known number of items n.
- Arrival times are uniformly random in $[0,1]$.
- Upon arrival, we must decide to accept or reject the item.
- Our choices are immediate and irrevocable.

Value maximization:

- Items have positive real values.
- Values are chosen adversarially, but before arrival times.
- Objective: expected value compared to the maximum.

Probability maximization:

- Items only have a relative order.
- Objective: probability of choosing the maximum element.

Classical Secretary Model

Classical Secretary Model

Dynkin's algorithm

Theorem

In the classical secretary setting there is an algorithm that picks the highest item with probability at least $1 / 4$.

Algorithm:

Dynkin's algorithm

Theorem

In the classical secretary setting there is an algorithm that picks the highest item with probability at least $1 / 4$.

Algorithm:

- Do not pick anything until time $t=\frac{1}{2}$.

- Accept the first item that is larger than everything seen so far.

Classical Secretary Model
 Proof of Dynkin's algorithm

Theorem

In the classic secretary setting there is an algorithm that gets the highest bid with probability at least $1 / 4$.

$\operatorname{Pr}\left[\right.$ we select $\left.1^{\text {st }} \max \right] \geq \operatorname{Pr}\left[2^{\text {nd }}\right.$ max in left half $] \cdot \operatorname{Pr}\left[1^{\text {st }}\right.$ max in right half $]$

$$
=1 / 2 \cdot 1 / 2=1 / 4
$$

Classical secretary model:

- The $1 / 4$ can be improved to $1 / e \approx 0.37$. [Dynkin'63]
- Simple model.
- Lots of generalizations: choosing multiple items, choosing matroid-independent elements, ...
- Application: online ad auctions.

However...

Classical secretary model:

- The $1 / 4$ can be improved to $1 / e \approx 0.37$. [Dynkin'63]
- Simple model.
- Lots of generalizations: choosing multiple items, choosing matroid-independent elements, ...
- Application: online ad auctions.

However...

- We assume that all the elements are perfectly uniform.
- Even one non-uniform element can mess up everything.

Robust Secretary Model

Do we need random arrivals?

Robust Secretary Model

Do we need random arrivals?
Fully adversarial arrival times $\longrightarrow 1 / n$. [Gilbert, Mosteller '66]

Robust Secretary Model

Do we need random arrivals?
Fully adversarial arrival times $\longrightarrow 1 / n$. [Gilbert, Mosteller '66]
We consider mixed arrivals times.

Robust Secretary

- g green items arriving uniformly random in $[0,1]$
- r red items with adversarially chosen arrival times
- all values chosen adversarially before the random arrival times
- OPT is the $2^{\text {nd }}$ green max

Robust Secretary Model

Do we need random arrivals?
Fully adversarial arrival times $\longrightarrow 1 / n$. [Gilbert, Mosteller '66]
We consider mixed arrivals times.

Robust Secretary

- g green items arriving uniformly random in $[0,1]$
- r red items with adversarially chosen arrival times
- all values chosen adversarially before the random arrival times
- OPT is the $2^{\text {nd }}$ green max

Green max is unattainable.

Results

Value maximization:
Theorem (BGSZ ITCS '20)
Single-item RobSec admits $\mathbb{E}[$ ALG $] \geq \frac{1}{O\left(\log ^{*} n\right)^{2}} \mathbb{E}\left[2^{\text {nd }}\right.$ green max $]$.

Results

Value maximization:

Theorem (BGSZ ITCS '20)

Single-item RobSec admits $\mathbb{E}[A L G] \geq \frac{1}{O\left(\log ^{*} n\right)^{2}} \mathbb{E}\left[2^{\text {nd }}\right.$ green max $]$.
Probability maximization:

Theorem (BGSZ ITCS '20)

Single-item RobSec admits
$\operatorname{Pr}\left[\right.$ ALG gets $2^{\text {nd }}$ green max or better $] \geq \frac{1}{O(\log n)^{2}}$.

Results

Value maximization:

Theorem (BGSZ ITCS '20)

Single-item RobSec admits $\mathbb{E}[A L G] \geq \frac{1}{O\left(\log ^{*} n\right)^{2}} \mathbb{E}\left[2^{\text {nd }}\right.$ green max $]$.
Probability maximization:

Theorem (BGSZ ITCS '20)

Single-item RobSec admits
$\operatorname{Pr}\left[\right.$ ALG gets $2^{\text {nd }}$ green max or better $] \geq \frac{1}{O(\log n)^{2}}$.
Choosing multiple items:
Theorem (BGSZ ITCS '20)
Knapsack RobSec admits $\mathbb{E}[\mathrm{ALG}] \geq(1-\varepsilon) \mathbb{E}[\mathrm{OPT}]$ when $\frac{\text { knapsack size }}{\text { item size }} \geq \operatorname{poly}\left(\varepsilon^{-1} \log n\right)$

Results

Value maximization:

Theorem (BGSZ ITCS '20)

Single-item RobSec admits $\mathbb{E}[A L G] \geq \frac{1}{O\left(\log ^{*} n\right)^{2}} \mathbb{E}\left[2^{\text {nd }}\right.$ green max $]$.
Probability maximization:

Theorem (BGSZ ITCS '20)

Single-item RobSec admits
$\operatorname{Pr}\left[\right.$ ALG gets $2^{\text {nd }}$ green max or better $] \geq \frac{1}{O(\log n)^{2}}$.
Choosing multiple items:
Theorem (BGSZ ITCS '20)
Knapsack RobSec admits $\mathbb{E}[\mathrm{ALG}] \geq(1-\varepsilon) \mathbb{E}[\mathrm{OPT}]$ when $\frac{\text { knapsack size }}{\text { item size }} \geq \operatorname{poly}\left(\varepsilon^{-1} \log n\right)$

No dependency on r (number of red items). This is very robust!

Single Item Value Maxizimation - One Interval ALG

There exists a $\frac{1}{O(\log n)}$-competitive ALG.

Single Item Value Maxizimation - One Interval ALG

There exists a $\frac{1}{O(\log n)}$-competitive ALG.

- W.p. $1 / 3$, pick a random item.

Single Item Value Maxizimation - One Interval ALG

There exists a $\frac{1}{O(\log n)}$-competitive ALG.

- W.p. $1 / 3$, pick a random item. $\longrightarrow \max \operatorname{val}(e) \leq n \cdot$ OPT

Single Item Value Maxizimation - One Interval ALG

There exists a $\frac{1}{O(\log n)}$-competitive ALG.

- W.p. $1 / 3$, pick a random item. $\longrightarrow \max \operatorname{val}(e) \leq n \cdot$ OPT
- Partition $[0,1]$ into two halves.

Single Item Value Maxizimation - One Interval ALG

There exists a $\frac{1}{O(\log n)}$-competitive ALG.

- W.p. $1 / 3$, pick a random item. $\longrightarrow \max \operatorname{val}(e) \leq n \cdot$ OPT
- Partition $[0,1]$ into two halves.
- W.p. $1 / 3$, run Dynkin's secretary in the $1^{\text {st }}$ half

Single Item Value Maxizimation - One Interval ALG

There exists a $\frac{1}{O(\log n)}$-competitive ALG.

- W.p. $1 / 3$, pick a random item. $\longrightarrow \max \operatorname{val}(e) \leq n \cdot$ OPT
- Partition $[0,1]$ into two halves.
- W.p. $1 / 3$, run Dynkin's secretary in the $1^{\text {st }}$ half

Single Item Value Maxizimation - One Interval ALG

There exists a $\frac{1}{O(\log n)}$-competitive ALG.

- W.p. $1 / 3$, pick a random item. $\longrightarrow \max \operatorname{val}(e) \leq n \cdot$ OPT
- Partition $[0,1]$ into two halves.
- W.p. $1 / 3$, run Dynkin's secretary in the $1^{\text {st }}$ half

Single Item Value Maxizimation - One Interval ALG

There exists a $\frac{1}{O(\log n)}$-competitive ALG.

- W.p. $1 / 3$, pick a random item. $\longrightarrow \max \operatorname{val}(e) \leq n \cdot$ OPT
- Partition $[0,1]$ into two halves.
- W.p. $1 / 3$, run Dynkin's secretary in the $1^{\text {st }}$ half

Single Item Value Maxizimation - One Interval ALG

There exists a $\frac{1}{O(\log n)}$-competitive ALG.

- W.p. $1 / 3$, pick a random item. $\longrightarrow \max \operatorname{val}(e) \leq n \cdot$ OPT
- Partition $[0,1]$ into two halves.
- W.p. $1 / 3$, run Dynkin's secretary in the $1^{\text {st }}$ half \longrightarrow max in $1^{\text {st }}$ half $\in[\mathrm{OPT}, n \cdot \mathrm{OPT}]$

Single Item Value Maxizimation - One Interval ALG

There exists a $\frac{1}{O(\log n)}$-competitive ALG.

Single Item Value Maxizimation - One Interval ALG

There exists a $\frac{1}{O(\log n)}$-competitive ALG.

- W.p. $1 / 3$, observe the $1^{\text {st }}$ half and let $a=\max$ observed.

Single Item Value Maxizimation - One Interval ALG

There exists a $\frac{1}{O(\log n)}$-competitive ALG.

- W.p. $1 / 3$, observe the $1^{\text {st }}$ half and let $a=$ max observed.
- We know OPT $\in[a / n, a]$.

Single Item Value Maxizimation - One Interval ALG

There exists a $\frac{1}{O(\log n)}$-competitive ALG.

- W.p. $1 / 3$, observe the $1^{\text {st }}$ half and let $a=\max$ observed.
- We know OPT $\in[a / n, a]$.
- Partition this interval into $O(\log n)$ buckets: $\left[\frac{a}{n}, \frac{2 a}{n}\right),\left[\frac{2 a}{n}, \frac{4 a}{n}\right), \ldots\left[\frac{a}{2}, a\right]$.

Single Item Value Maxizimation - One Interval ALG

There exists a $\frac{1}{O(\log n)}$-competitive ALG.

- W.p. $1 / 3$, observe the $1^{\text {st }}$ half and let $a=$ max observed.
- We know OPT $\in[a / n, a]$.
- Partition this interval into $O(\log n)$ buckets: $\left[\frac{a}{n}, \frac{2 a}{n}\right),\left[\frac{2 a}{n}, \frac{4 a}{n}\right), \ldots\left[\frac{a}{2}, a\right]$.
- Choose a random bucket and pick the first element with value in this bucket.

Single Item Value Maxizimation - One Interval ALG

There exists a $\frac{1}{O(\log n)}$-competitive ALG.

- W.p. $1 / 3$, observe the $1^{\text {st }}$ half and let $a=$ max observed.
- We know OPT $\in[a / n, a]$.
- Partition this interval into $O(\log n)$ buckets: $\left[\frac{a}{n}, \frac{2 a}{n}\right),\left[\frac{2 a}{n}, \frac{4 a}{n}\right), \ldots\left[\frac{a}{2}, a\right]$.
- Choose a random bucket and pick the first element with value in this bucket.
$\mathbb{E}[A L G] \geq \operatorname{Pr}[$ correct bucket $] \cdot \operatorname{Pr}\left[2^{\text {nd }} \max\right.$ in $2^{\text {nd }}$ half $] \cdot \frac{O P T}{2}$

$$
=\frac{1}{\log n} \cdot \frac{1}{2} \cdot \frac{O P T}{2}=\frac{1}{O(\log n)} \cdot \mathrm{OPT}
$$

Improving to $1 / O\left(\log ^{*} n\right)^{C}$-competitive ALG

Tool \#4: Done or refine.

Observation:

- There exists $\operatorname{val}(e) \geq \log n \cdot$ OPT in $2^{\text {nd }}$

Improving to $1 / O\left(\log ^{*} n\right)^{C}$-competitive ALG

Tool \#4: Done or refine.

Observation:

- There exists $\operatorname{val}(e) \geq \log n \cdot$ OPT in $2^{\text {nd }}$
- or max in $2^{\text {nd }}$ is in $[O P T, \log n \cdot O P T]$

Improving to $1 / O\left(\log ^{*} n\right)^{C}$-competitive ALG

Tool \#4: Done or refine.

Observation:

- There exists $\operatorname{val}(e) \geq \log n \cdot$ OPT in $2^{\text {nd }}$
- or max in $2^{\text {nd }}$ is in $[O P T, \log n \cdot O P T]$

Idea: partition $[0,1]$ into $O\left(\log ^{*} n\right)$ equal intervals. In each interval we either:

- get high value

- or refine our estimate of OPT.

Summary

Theorem (BGSZ ITCS'20)

Single-item RobSec admits $\mathbb{E}[A L G] \geq \frac{1}{O\left(\log ^{*} n\right)^{2}} \mathbb{E}\left[2^{\text {nd }}\right.$ green max $]$.

Summary

Theorem (BGSZ ITCS'20)

Single-item RobSec admits $\mathbb{E}[A L G] \geq \frac{1}{O\left(\log ^{*} n\right)^{2}} \mathbb{E}\left[2^{\text {nd }}\right.$ green max $]$.

- Robust Secretary Model
- Semi-random model for the secretary problem.

Summary

Theorem (BGSZ ITCS'20)

Single-item RobSec admits $\mathbb{E}[A L G] \geq \frac{1}{O\left(\log ^{*} n\right)^{2}} \mathbb{E}\left[2^{\text {nd }}\right.$ green max $]$.

- Robust Secretary Model
- Semi-random model for the secretary problem.
- Our benchmark is the $2^{\text {nd }}$ max green.

Summary

Theorem (BGSZ ITCS'20)

Single-item RobSec admits $\mathbb{E}[A L G] \geq \frac{1}{O\left(\log ^{*} n\right)^{2}} \mathbb{E}\left[2^{\text {nd }}\right.$ green max $]$.

- Robust Secretary Model
- Semi-random model for the secretary problem.
- Our benchmark is the $2^{\text {nd }}$ max green.
- Very robust results.

Summary

Theorem (BGSZ ITCS'20)

Single-item RobSec admits $\mathbb{E}[A L G] \geq \frac{1}{O\left(\log ^{*} n\right)^{2}} \mathbb{E}\left[2^{\text {nd }}\right.$ green max $]$.

- Robust Secretary Model
- Semi-random model for the secretary problem.
- Our benchmark is the $2^{\text {nd }}$ max green.
- Very robust results.
- Open problems

Summary

Theorem (BGSZ ITCS'20)

Single-item RobSec admits $\mathbb{E}[A L G] \geq \frac{1}{O\left(\log ^{*} n\right)^{2}} \mathbb{E}\left[2^{\text {nd }}\right.$ green max $]$.

- Robust Secretary Model
- Semi-random model for the secretary problem.
- Our benchmark is the $2^{\text {nd }}$ max green.
- Very robust results.
- Open problems
- Is there a superconstant lower bound?

Summary

Theorem (BGSZ ITCS'20)

Single-item RobSec admits $\mathbb{E}[A L G] \geq \frac{1}{O\left(\log ^{*} n\right)^{2}} \mathbb{E}\left[2^{\text {nd }}\right.$ green max $]$.

- Robust Secretary Model
- Semi-random model for the secretary problem.
- Our benchmark is the $2^{\text {nd }}$ max green.
- Very robust results.
- Open problems
- Is there a superconstant lower bound?
- Can we make the probability maximization algorithm constructive?

Summary

Theorem (BGSZ ITCS'20)

Single-item RobSec admits $\mathbb{E}[A L G] \geq \frac{1}{O\left(\log ^{*} n\right)^{2}} \mathbb{E}\left[2^{\text {nd }}\right.$ green max $]$.

- Robust Secretary Model
- Semi-random model for the secretary problem.
- Our benchmark is the $2^{\text {nd }}$ max green.
- Very robust results.
- Open problems
- Is there a superconstant lower bound?
- Can we make the probability maximization algorithm constructive?
- How to extend these results to general packing LPs?

Summary

Theorem (BGSZ ITCS'20)

Single-item RobSec admits $\mathbb{E}[A L G] \geq \frac{1}{O\left(\log ^{*} n\right)^{2}} \mathbb{E}\left[2^{\text {nd }}\right.$ green max $]$.

- Robust Secretary Model
- Semi-random model for the secretary problem.
- Our benchmark is the $2^{\text {nd }}$ max green.
- Very robust results.
- Open problems
- Is there a superconstant lower bound?
- Can we make the probability maximization algorithm constructive?
- How to extend these results to general packing LPs?

Thank you!

