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Sunflowers

Definition
A collection of sets A1, . . . , Ak is called a sunflower if the
intersection of any two sets equals the intersection of all the sets.
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Erdős-Rado sunflower conjecture

Let fr(k) denote the smallest natural number such that any
r-uniform hypergraph with fr(k) edges contains a sunflower with k
petals.

Theorem (Erdős, Rado ‘60)

(k − 1)r ≤ fr(k) ≤ (k − 1)rr! + 1.

Conjecture (Erdős, Rado ‘60)

For any k, there is a constant C = C(k) such that fr(k) ≤ Cr.

Theorem (Alweiss, Lovett, Wu, Zhang ‘19 + Rao ‘19 +
Bell, Chueluecha, Warnke ‘20)

There is a constant C such that for all r, k ≥ 2,
fr(k) ≤ (Ck log r)r.
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Fixing the kernel size

Definition
The r-uniform sunflower with kernel of size t and k petals is
denoted by S(r)t (k).

Question (Duke, Erdős ‘77)

Determine ex(n,S(r)t (k)), that is, the maximum number of edges
in an r-uniform hypergraph on n vertices without a copy of S(r)t (k).

Reiterated by Füredi ‘91, Chung ‘97 and in Polymath 10.
Note: unlike the sunflower conjecture, the answer depends on n.
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Special cases

For k = 2, t = 0, we have an intersecting family and the
answer is given by the Erdős-Ko-Rado theorem.

For k = 2, this is the restricted intersection problem.
For t = 0, we are looking for a matching of size k. The answer
is predicted by the Erdős matching conjecture.

Theorem (Frankl, Füredi ‘83)

For fixed r, t, k, ex(n,S(r)t (k)) = Θ(nmax{t,r−t−1}).

For fixed r, t, k, Frankl and Füredi ‘86 conjecture constructions
which are optimal up to lower order terms and prove the optimality
for r ≥ 2t + 3.
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What happens when k grows?

Example: ex(n,S(2)1 (k)) ∼ nk
2 .

Chung, Erdős ‘87: determining ex(n,S(r)t (k)) for growing k is
crucial in the study of so-called unavoidable hypergraphs.

For r = 2 the exact answer is given by Erdős and Kalai ‘61.
For r = 3 Duke, Erdős ‘77 and Frankl ‘78 determine the
answer up to constant factors; Chung and Frankl ‘87
determine S(3)1 (k) precisely when n ≥ O(k3).

The case r = 4 was resolved up to constant factors by Bucić,
Draganić, Sudakov and Tran ‘21.

Conjecture (Bucić, Draganić, Sudakov and Tran ‘21.)

For fixed r, t,

ex(n,S(r)t (k)) =

{
Θ(nr−t−1kt+1) if 2t + 1 ≤ r,

Θ(ntkr−t) if 2t + 1 > r.
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Our result

Theorem (B., Bucić and Sudakov ‘21+.)

For fixed r, t,

ex(n,S(r)t (k)) =

{
Θ(nr−t−1kt+1) if 2t + 1 ≤ r,

Θ(ntkr−t) if 2t + 1 > r.
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Lower bounds

Let V = A ·∪B, where |A| = n− k + 1, |B| = k − 1. Take
H = {e ∈

(
V
r

)
| |e ∩B| = t + 1}.

H has no S(r)t (k), so

ex(n,S(r)t (k)) ≥ |H| =
(
|A|

r − t− 1

)(
|B|
t + 1

)
= Ω(nr−t−1kt+1).

Probabilistic construction inspired by Steiner systems giving
ex(n,S(r)t (k)) = Ω(ntkr−t).

Note that both constructions give the same bound when
r = 2t + 1.
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Upper bound proof outline

Theorem
For fixed r, t,

ex(n,S(r)t (k)) =

{
O(nr−t−1kt+1) if 2t + 1 ≤ r,

O(ntkr−t) if 2t + 1 > r.

Reduce the general problem to the balanced case r = 2t + 1.

Reduce ex(n,S(2t+1)
t (k)) = O(ntkt+1) to non-existence of a

certain set system on [2t + 1].

Prove such a set system does not exist.
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(t+ 1, t)-systems

Definition (Nägele, Sudakov, Zenklusen ‘19)

A set family A ⊆ P([N ]) is said to be a (t + 1, t)-system if:
∀A,B ∈ A we also have A ∩B ∈ A,
any subset of [N ] of size t is contained in some set in A and
for any A ∈ A we have |A| 6≡ N (mod t + 1).

Lemma (Nägele, Sudakov, Zenklusen ‘19)

If t + 1 is a prime power, there is no (t + 1, t)-system.

Lemma (Brakensiek, Gopi, Guruswam ‘19)

If t+ 1 has at least two prime divisors, there exist (t+ 1, t)-systems.

Lemma
For any t, there is no (t + 1, t)-system with N = 2t + 1.
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Non-existence of (t+ 1, t)-systems with N = 2t+ 1.

Lemma
For any t, there is no (t + 1, t)-system with N = 2t + 1.

In other words, such a set system A ⊆ P([2t + 1]) would satisfy:
∀A,B ∈ A, we have A ∩B ∈ A,
any t-subset of [2t + 1] is contained in some set in A and
for any A ∈ A, we have |A| 6∈ {t, 2t + 1}.

The key proof ingredient is the following theorem.

Theorem (Frankl, Katona ‘79)

Given m + 1 not necessarily distinct subsets of [m], there are s of
them whose intersection has size s− 1, for some s, 1 ≤ s ≤ m + 1.
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The key lemma

Lemma
Suppose there exists no (t + 1, t)-system with N = 2t + 1. Then,
ex(n,S(2t+1)

t (k)) = O(ntkt+1).

Observation
The link graph of any set of t vertices can be covered by
(k − 1)(t + 1) = O(k) vertices.

12 / 18



The key lemma

Lemma
Suppose there exists no (t + 1, t)-system with N = 2t + 1. Then,
ex(n,S(2t+1)

t (k)) = O(ntkt+1).

Observation
The link graph of any set of t vertices can be covered by
(k − 1)(t + 1) = O(k) vertices.

12 / 18



The key lemma

Lemma
Suppose there exists no (t + 1, t)-system with N = 2t + 1. Then,
ex(n,S(2t+1)

t (k)) = O(ntkt+1).

Observation
The link graph of any set of t vertices can be covered by
(k − 1)(t + 1) = O(k) vertices.

12 / 18



The key lemma

Lemma
Suppose there exists no (t + 1, t)-system with N = 2t + 1. Then,
ex(n,S(2t+1)

t (k)) = O(ntkt+1).

Observation
The link graph of any set of t vertices can be covered by
(k − 1)(t + 1) = O(k) vertices.

12 / 18



The key lemma

Lemma
Suppose there exists no (t + 1, t)-system with N = 2t + 1. Then,
ex(n,S(2t+1)

t (k)) = O(ntkt+1).

Observation
The link graph of any set of t vertices can be covered by
(k − 1)(t + 1) = O(k) vertices.

12 / 18



The key lemma

Lemma
Suppose there exists no (t + 1, t)-system with N = 2t + 1. Then,
ex(n,S(2t+1)

t (k)) = O(ntkt+1).

Observation
The link graph of any set of t vertices can be covered by
(k − 1)(t + 1) = O(k) vertices.

12 / 18



The key lemma

Lemma
Suppose there exists no (t + 1, t)-system with N = 2t + 1. Then,
ex(n,S(2t+1)

t (k)) = O(ntkt+1).

Observation
The link graph of any set of t vertices can be covered by
(k − 1)(t + 1) = O(k) vertices.

12 / 18



The key lemma

For each t-set T fix a cover S(T ) of its link graph with
|S(T )| = O(k).

Enumerate all the edges.
Simple enumeration:

v1, . . . , vt arbitrary → O(nt) ways;
vt+1 ∈ S({v1, . . . , vt}) → O(k) ways;
vt+2, . . . , v2t+1 arbitrary → O(nt) ways.

We obtain ex(n,S(r)t (k)) ≤ O(n2tk).
How to improve? Suppose we chose v1, . . . , vt+1 as before and for
some i, vi 6∈ S ({v1 . . . , vt+1} \ {vi}) . Then we can choose vt+2

from S({v1 . . . , vt+1} \ {vi}). Similarly choose all remaining
vertices.
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The key lemma – grouping edges

Fix an arbitrary ordering of the vertices in each edge.

For an edge e = (v1, . . . , v2t+1) and a t-set I ∈
(
[2t+1]

t

)
, find

an index j such that vj ∈ S({vi | i ∈ I}).
Assign to each edge a function fe :

(
[2t+1]

t

)
→ [2t + 1] which

satisfies fe(I) 6∈ I, ∀I ∈
(
[2t+1]

t

)
.

There are O(1) such functions, so it is enough to fix one of
them and prove there are O(ntkt+1) edges with this function
assigned to them.
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The key lemma

Suppose t = 2 and we wish to enumerate all edges e with fe = f,
where:

f({1, 2}) = 3, f({1, 3}) = 2, f({1, 4}) = 2, f({1, 5}) = 2,

f({2, 3}) = 4, f({2, 4}) = 3, f({2, 5}) = 1, f({3, 4}) = 1,

f({3, 5}) = 2, f({4, 5}) = 3.

Choose v1, v2 arbitrarily; choose v3 from S({v1, v2}); choose
v4 from S({v2, v3}); stuck at {1, 2, 3, 4}.
Choose v1, v5 arbitrarily; choose v2 from S({v1, v5}); choose
v3 from S({v1, v2}); choose v4 from S({v2, v3}).
We enumerated O(ntkt+1) (2t + 1)-tuples containing all edges
with fe = f.
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The key lemma

Suppose we get stuck for any t-set J ∈
(
[2t+1]

t

)
.

Define a set
system A ∈ P([2t + 1]) as follows:

A =

{
S ( [2t + 1] | f(I) ∈ S, ∀I ∈

(
S

t

)}
.

Then, A is a (t + 1, t)-system:

If A,B ∈ A, then for any I ∈
(
A∩B
t

)
, f(I) ∈ A ∩B, so

A ∩B ∈ A.
For any J ∈

(
[2t+1]

t

)
, we get stuck in our enumeration, so J is

contained in some set in A.
S ∈ A =⇒ |S| 6∈ {t, 2t + 1}.
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Conclusion

We determined, up to constant factors, the Turán number of
sunflowers when the uniformity and kernel size are fixed and the
size of the sunflower is allowed to grow with n.

Open problems:

Getting the correct dependence on r.

Determining the extremal number of so-called generalized stars
appearing in the unavoidability problem.
Excluding a subset of kernel sizes T ⊆ {0, . . . , r − 1}. This is
hard even for k = 2.

Resolving the cases T = {0, . . . , t− 1} and T = {`, . . . , r− 1}
with correct dependence on r.
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Thank you!
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