Turán numbers of sunflowers

Domagoj Bradač

ETH Zürich

Joint work with Matija Bucić ${ }^{1}$ and Benny Sudakov

November 2, 2021
${ }^{1}$ Princeton and Institute for Advanced Study

Definition

A collection of sets A_{1}, \ldots, A_{k} is called a sunflower if the intersection of any two sets equals the intersection of all the sets.

Definition

A collection of sets A_{1}, \ldots, A_{k} is called a sunflower if the intersection of any two sets equals the intersection of all the sets.

Definition

A collection of sets A_{1}, \ldots, A_{k} is called a sunflower if the intersection of any two sets equals the intersection of all the sets.

Erdős-Rado sunflower conjecture

Let $f_{r}(k)$ denote the smallest natural number such that any r-uniform hypergraph with $f_{r}(k)$ edges contains a sunflower with k petals.

Erdős-Rado sunflower conjecture

Let $f_{r}(k)$ denote the smallest natural number such that any r-uniform hypergraph with $f_{r}(k)$ edges contains a sunflower with k petals.

Theorem (Erdős, Rado '60)
$(k-1)^{r} \leq f_{r}(k) \leq(k-1)^{r} r!+1$.

Erdős-Rado sunflower conjecture

Let $f_{r}(k)$ denote the smallest natural number such that any r-uniform hypergraph with $f_{r}(k)$ edges contains a sunflower with k petals.

Theorem (Erdős, Rado '60)
$(k-1)^{r} \leq f_{r}(k) \leq(k-1)^{r} r!+1$.

Conjecture (Erdős, Rado '60)
For any k, there is a constant $C=C(k)$ such that $f_{r}(k) \leq C^{r}$.

Erdős-Rado sunflower conjecture

Let $f_{r}(k)$ denote the smallest natural number such that any r-uniform hypergraph with $f_{r}(k)$ edges contains a sunflower with k petals.

Theorem (Erdős, Rado '60)
$(k-1)^{r} \leq f_{r}(k) \leq(k-1)^{r} r!+1$.

Conjecture (Erdős, Rado '60)
For any k, there is a constant $C=C(k)$ such that $f_{r}(k) \leq C^{r}$.

Theorem (Alweiss, Lovett, Wu, Zhang '19 + Rao '19 + Bell, Chueluecha, Warnke '20)
There is a constant C such that for all $r, k \geq 2$,
$f_{r}(k) \leq(C k \log r)^{r}$.

Fixing the kernel size

Definition

The r-uniform sunflower with kernel of size t and k petals is denoted by $\mathcal{S}_{t}^{(r)}(k)$.

Fixing the kernel size

Definition

The r-uniform sunflower with kernel of size t and k petals is denoted by $\mathcal{S}_{t}^{(r)}(k)$.

Fixing the kernel size

Definition

The r-uniform sunflower with kernel of size t and k petals is denoted by $\mathcal{S}_{t}^{(r)}(k)$.

Question (Duke, Erdős '77)

Determine ex $\left(n, \mathcal{S}_{t}^{(r)}(k)\right)$, that is, the maximum number of edges in an r-uniform hypergraph on n vertices without a copy of $\mathcal{S}_{t}^{(r)}(k)$.

Fixing the kernel size

Definition

The r-uniform sunflower with kernel of size t and k petals is denoted by $\mathcal{S}_{t}^{(r)}(k)$.

Question (Duke, Erdős '77)

Determine ex $\left(n, \mathcal{S}_{t}^{(r)}(k)\right)$, that is, the maximum number of edges in an r-uniform hypergraph on n vertices without a copy of $\mathcal{S}_{t}^{(r)}(k)$.

Reiterated by Füredi '91, Chung '97 and in Polymath 10.

Fixing the kernel size

Definition

The r-uniform sunflower with kernel of size t and k petals is denoted by $\mathcal{S}_{t}^{(r)}(k)$.

Question (Duke, Erdős '77)

Determine ex $\left(n, \mathcal{S}_{t}^{(r)}(k)\right)$, that is, the maximum number of edges in an r-uniform hypergraph on n vertices without a copy of $\mathcal{S}_{t}^{(r)}(k)$.

Reiterated by Füredi '91, Chung '97 and in Polymath 10. Note: unlike the sunflower conjecture, the answer depends on n.

- For $k=2, t=0$, we have an intersecting family and the answer is given by the Erdős-Ko-Rado theorem.
- For $k=2, t=0$, we have an intersecting family and the answer is given by the Erdős-Ko-Rado theorem.
- For $k=2$, this is the restricted intersection problem.
- For $k=2, t=0$, we have an intersecting family and the answer is given by the Erdős-Ko-Rado theorem.
- For $k=2$, this is the restricted intersection problem.
- For $t=0$, we are looking for a matching of size k. The answer is predicted by the Erdős matching conjecture.
- For $k=2, t=0$, we have an intersecting family and the answer is given by the Erdős-Ko-Rado theorem.
- For $k=2$, this is the restricted intersection problem.
- For $t=0$, we are looking for a matching of size k. The answer is predicted by the Erdős matching conjecture.

Theorem (Frankl, Füredi '83)

For fixed $r, t, k, \operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right)=\Theta\left(n^{\max \{t, r-t-1\}}\right)$.

- For $k=2, t=0$, we have an intersecting family and the answer is given by the Erdős-Ko-Rado theorem.
- For $k=2$, this is the restricted intersection problem.
- For $t=0$, we are looking for a matching of size k. The answer is predicted by the Erdős matching conjecture.

Theorem (Frankl, Füredi '83)

For fixed $r, t, k, \operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right)=\Theta\left(n^{\max \{t, r-t-1\}}\right)$.
For fixed r, t, k, Frankl and Füredi '86 conjecture constructions which are optimal up to lower order terms and prove the optimality for $r \geq 2 t+3$.

What happens when k grows?
Example: $\operatorname{ex}\left(n, \mathcal{S}_{1}^{(2)}(k)\right) \sim \frac{n k}{2}$.

What happens when k grows?
Example: $\operatorname{ex}\left(n, \mathcal{S}_{1}^{(2)}(k)\right) \sim \frac{n k}{2}$.
Chung, Erdős '87: determining $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right)$ for growing k is crucial in the study of so-called unavoidable hypergraphs.

What happens when k grows?
Example: $\operatorname{ex}\left(n, \mathcal{S}_{1}^{(2)}(k)\right) \sim \frac{n k}{2}$.
Chung, Erdős '87: determining $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right)$ for growing k is crucial in the study of so-called unavoidable hypergraphs.

- For $r=2$ the exact answer is given by Erdős and Kalai '61.

What happens when k grows?

Example: $\operatorname{ex}\left(n, \mathcal{S}_{1}^{(2)}(k)\right) \sim \frac{n k}{2}$.
Chung, Erdős '87: determining $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right)$ for growing k is crucial in the study of so-called unavoidable hypergraphs.

- For $r=2$ the exact answer is given by Erdős and Kalai ' 61 .
- For $r=3$ Duke, Erdős '77 and Frankl '78 determine the answer up to constant factors; Chung and Frankl ‘87 determine $\mathcal{S}_{1}^{(3)}(k)$ precisely when $n \geq O\left(k^{3}\right)$.

What happens when k grows?

Example: $\operatorname{ex}\left(n, \mathcal{S}_{1}^{(2)}(k)\right) \sim \frac{n k}{2}$.
Chung, Erdős '87: determining $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right)$ for growing k is crucial in the study of so-called unavoidable hypergraphs.

- For $r=2$ the exact answer is given by Erdős and Kalai ' 61 .
- For $r=3$ Duke, Erdős '77 and Frankl '78 determine the answer up to constant factors; Chung and Frankl ‘87 determine $\mathcal{S}_{1}^{(3)}(k)$ precisely when $n \geq O\left(k^{3}\right)$.
- The case $r=4$ was resolved up to constant factors by Bucić, Draganić, Sudakov and Tran '21.

What happens when k grows?

Example: $\operatorname{ex}\left(n, \mathcal{S}_{1}^{(2)}(k)\right) \sim \frac{n k}{2}$.
Chung, Erdős '87: determining $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right)$ for growing k is crucial in the study of so-called unavoidable hypergraphs.

- For $r=2$ the exact answer is given by Erdős and Kalai ' 61 .
- For $r=3$ Duke, Erdős '77 and Frankl '78 determine the answer up to constant factors; Chung and Frankl ‘87 determine $\mathcal{S}_{1}^{(3)}(k)$ precisely when $n \geq O\left(k^{3}\right)$.
- The case $r=4$ was resolved up to constant factors by Bucić, Draganić, Sudakov and Tran '21.

Conjecture (Bucić, Draganić, Sudakov and Tran '21.)

For fixed r, t,

$$
\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right)= \begin{cases}\Theta\left(n^{r-t-1} k^{t+1}\right) & \text { if } 2 t+1 \leq r \\ \Theta\left(n^{t} k^{r-t}\right) & \text { if } 2 t+1>r\end{cases}
$$

Our result

Theorem (B., Bucić and Sudakov '21+.)
For fixed r, t,

$$
\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right)= \begin{cases}\Theta\left(n^{r-t-1} k^{t+1}\right) & \text { if } 2 t+1 \leq r \\ \Theta\left(n^{t} k^{r-t}\right) & \text { if } 2 t+1>r\end{cases}
$$

- Let $V=A \cup B$, where $|A|=n-k+1,|B|=k-1$. Take

$$
H=\left\{\left.e \in\binom{V}{r}| | e \cap B \right\rvert\,=t+1\right\} .
$$

- Let $V=A \cup B$, where $|A|=n-k+1,|B|=k-1$. Take

$$
\begin{aligned}
& H=\left\{\left.e \in\binom{V}{r}| | e \cap B \right\rvert\,=t+1\right\} . H \text { has no } \mathcal{S}_{t}^{(r)}(k) \text {, so } \\
& \operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right) \geq|H|=\binom{|A|}{r-t-1}\binom{|B|}{t+1}=\Omega\left(n^{r-t-1} k^{t+1}\right) .
\end{aligned}
$$

- Let $V=A \cup B$, where $|A|=n-k+1,|B|=k-1$. Take $H=\left\{\left.e \in\binom{V}{r}| | e \cap B \right\rvert\,=t+1\right\} . H$ has no $\mathcal{S}_{t}^{(r)}(k)$, so

$$
\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right) \geq|H|=\binom{|A|}{r-t-1}\binom{|B|}{t+1}=\Omega\left(n^{r-t-1} k^{t+1}\right)
$$

- Probabilistic construction inspired by Steiner systems giving $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right)=\Omega\left(n^{t} k^{r-t}\right)$.
- Let $V=A \cup B$, where $|A|=n-k+1,|B|=k-1$. Take $H=\left\{\left.e \in\binom{V}{r}| | e \cap B \right\rvert\,=t+1\right\} . H$ has no $\mathcal{S}_{t}^{(r)}(k)$, so

$$
\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right) \geq|H|=\binom{|A|}{r-t-1}\binom{|B|}{t+1}=\Omega\left(n^{r-t-1} k^{t+1}\right)
$$

- Probabilistic construction inspired by Steiner systems giving $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right)=\Omega\left(n^{t} k^{r-t}\right)$.
- Note that both constructions give the same bound when $r=2 t+1$.

Upper bound proof outline

Theorem
For fixed r, t,

$$
\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right)= \begin{cases}O\left(n^{r-t-1} k^{t+1}\right) & \text { if } 2 t+1 \leq r \\ O\left(n^{t} k^{r-t}\right) & \text { if } 2 t+1>r\end{cases}
$$

Upper bound proof outline

Theorem

For fixed r, t,

$$
\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right)= \begin{cases}O\left(n^{r-t-1} k^{t+1}\right) & \text { if } 2 t+1 \leq r \\ O\left(n^{t} k^{r-t}\right) & \text { if } 2 t+1>r\end{cases}
$$

- Reduce the general problem to the balanced case $r=2 t+1$.

Upper bound proof outline

Theorem

For fixed r, t,

$$
\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right)= \begin{cases}O\left(n^{r-t-1} k^{t+1}\right) & \text { if } 2 t+1 \leq r \\ O\left(n^{t} k^{r-t}\right) & \text { if } 2 t+1>r\end{cases}
$$

- Reduce the general problem to the balanced case $r=2 t+1$.
- Reduce $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$ to non-existence of a certain set system on $[2 t+1]$.

Upper bound proof outline

Theorem

For fixed r, t,

$$
\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right)= \begin{cases}O\left(n^{r-t-1} k^{t+1}\right) & \text { if } 2 t+1 \leq r \\ O\left(n^{t} k^{r-t}\right) & \text { if } 2 t+1>r\end{cases}
$$

- Reduce the general problem to the balanced case $r=2 t+1$.
- Reduce $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$ to non-existence of a certain set system on $[2 t+1]$.
- Prove such a set system does not exist.

Definition (Nägele, Sudakov, Zenklusen '19)

A set family $\mathcal{A} \subseteq \mathcal{P}([N])$ is said to be a $(t+1, t)$-system if:

- $\forall A, B \in \mathcal{A}$ we also have $A \cap B \in \mathcal{A}$,
- any subset of $[N]$ of size t is contained in some set in \mathcal{A} and
- for any $A \in \mathcal{A}$ we have $|A| \not \equiv N(\bmod t+1)$.

$(t+1, t)$-systems

Definition (Nägele, Sudakov, Zenklusen '19)

A set family $\mathcal{A} \subseteq \mathcal{P}([N])$ is said to be a $(t+1, t)$-system if:

- $\forall A, B \in \mathcal{A}$ we also have $A \cap B \in \mathcal{A}$,
- any subset of $[N]$ of size t is contained in some set in \mathcal{A} and
- for any $A \in \mathcal{A}$ we have $|A| \not \equiv N(\bmod t+1)$.

Lemma (Nägele, Sudakov, Zenklusen '19)
If $t+1$ is a prime power, there is no $(t+1, t)$-system.

$(t+1, t)$-systems

Definition (Nägele, Sudakov, Zenklusen '19)

A set family $\mathcal{A} \subseteq \mathcal{P}([N])$ is said to be a $(t+1, t)$-system if:

- $\forall A, B \in \mathcal{A}$ we also have $A \cap B \in \mathcal{A}$,
- any subset of $[N]$ of size t is contained in some set in \mathcal{A} and
- for any $A \in \mathcal{A}$ we have $|A| \not \equiv N(\bmod t+1)$.

Lemma (Nägele, Sudakov, Zenklusen '19)
If $t+1$ is a prime power, there is no $(t+1, t)$-system.

Lemma (Brakensiek, Gopi, Guruswam '19)

If $t+1$ has at least two prime divisors, there exist $(t+1, t)$-systems.

$(t+1, t)$-systems

Definition (Nägele, Sudakov, Zenklusen '19)

A set family $\mathcal{A} \subseteq \mathcal{P}([N])$ is said to be a $(t+1, t)$-system if:

- $\forall A, B \in \mathcal{A}$ we also have $A \cap B \in \mathcal{A}$,
- any subset of $[N]$ of size t is contained in some set in \mathcal{A} and
- for any $A \in \mathcal{A}$ we have $|A| \not \equiv N(\bmod t+1)$.

Lemma (Nägele, Sudakov, Zenklusen '19)
If $t+1$ is a prime power, there is no $(t+1, t)$-system.

Lemma (Brakensiek, Gopi, Guruswam '19)

If $t+1$ has at least two prime divisors, there exist $(t+1, t)$-systems.

Lemma

For any t, there is no $(t+1, t)$-system with $N=2 t+1$.

Non-existence of $(t+1, t)$-systems with $N=2 t+1$.

Lemma

For any t, there is no $(t+1, t)$-system with $N=2 t+1$.
In other words, such a set system $\mathcal{A} \subseteq \mathcal{P}([2 t+1])$ would satisfy:

- $\forall A, B \in \mathcal{A}$, we have $A \cap B \in \mathcal{A}$,
- any t-subset of [2t+1] is contained in some set in \mathcal{A} and
- for any $A \in \mathcal{A}$, we have $|A| \notin\{t, 2 t+1\}$.

Non-existence of $(t+1, t)$-systems with $N=2 t+1$.

Lemma

For any t, there is no $(t+1, t)$-system with $N=2 t+1$.
In other words, such a set system $\mathcal{A} \subseteq \mathcal{P}([2 t+1])$ would satisfy:

- $\forall A, B \in \mathcal{A}$, we have $A \cap B \in \mathcal{A}$,
- any t-subset of $[2 t+1]$ is contained in some set in \mathcal{A} and
- for any $A \in \mathcal{A}$, we have $|A| \notin\{t, 2 t+1\}$.

The key proof ingredient is the following theorem.

Theorem (Frankl, Katona '79)

Given $m+1$ not necessarily distinct subsets of $[m]$, there are s of them whose intersection has size $s-1$, for some $s, 1 \leq s \leq m+1$.

The key lemma

Lemma

Suppose there exists no $(t+1, t)$-system with $N=2 t+1$. Then, $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$.

Lemma

Suppose there exists no $(t+1, t)$-system with $N=2 t+1$. Then, $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$.

Observation

The link graph of any set of t vertices can be covered by $(k-1)(t+1)=O(k)$ vertices.

Lemma

Suppose there exists no $(t+1, t)$-system with $N=2 t+1$. Then, $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$.

Observation

The link graph of any set of t vertices can be covered by $(k-1)(t+1)=O(k)$ vertices.

Lemma

Suppose there exists no $(t+1, t)$-system with $N=2 t+1$. Then, $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$.

Observation

The link graph of any set of t vertices can be covered by $(k-1)(t+1)=O(k)$ vertices.

Lemma

Suppose there exists no $(t+1, t)$-system with $N=2 t+1$. Then, $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$.

Observation

The link graph of any set of t vertices can be covered by $(k-1)(t+1)=O(k)$ vertices.

Lemma

Suppose there exists no $(t+1, t)$-system with $N=2 t+1$. Then, $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$.

Observation

The link graph of any set of t vertices can be covered by $(k-1)(t+1)=O(k)$ vertices.

Lemma

Suppose there exists no $(t+1, t)$-system with $N=2 t+1$. Then, $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(2 t+1)}(k)\right)=O\left(n^{t} k^{t+1}\right)$.

Observation

The link graph of any set of t vertices can be covered by $(k-1)(t+1)=O(k)$ vertices.

The key lemma

- For each t-set T fix a cover $S(T)$ of its link graph with $|S(T)|=O(k)$.

The key lemma

- For each t-set T fix a cover $S(T)$ of its link graph with $|S(T)|=O(k)$.
- Enumerate all the edges.

The key lemma

- For each t-set T fix a cover $S(T)$ of its link graph with $|S(T)|=O(k)$.
- Enumerate all the edges.
- Simple enumeration:

The key lemma

- For each t-set T fix a cover $S(T)$ of its link graph with $|S(T)|=O(k)$.
- Enumerate all the edges.
- Simple enumeration:
- v_{1}, \ldots, v_{t} arbitrary $\rightarrow O\left(n^{t}\right)$ ways;

The key lemma

- For each t-set T fix a cover $S(T)$ of its link graph with $|S(T)|=O(k)$.
- Enumerate all the edges.
- Simple enumeration:
- v_{1}, \ldots, v_{t} arbitrary $\rightarrow O\left(n^{t}\right)$ ways;
- $v_{t+1} \in S\left(\left\{v_{1}, \ldots, v_{t}\right\}\right) \rightarrow O(k)$ ways;
- For each t-set T fix a cover $S(T)$ of its link graph with $|S(T)|=O(k)$.
- Enumerate all the edges.
- Simple enumeration:
- v_{1}, \ldots, v_{t} arbitrary $\rightarrow O\left(n^{t}\right)$ ways;
- $v_{t+1} \in S\left(\left\{v_{1}, \ldots, v_{t}\right\}\right) \rightarrow O(k)$ ways;
- $v_{t+2}, \ldots, v_{2 t+1}$ arbitrary $\rightarrow O\left(n^{t}\right)$ ways.
- For each t-set T fix a cover $S(T)$ of its link graph with $|S(T)|=O(k)$.
- Enumerate all the edges.
- Simple enumeration:
- v_{1}, \ldots, v_{t} arbitrary $\rightarrow O\left(n^{t}\right)$ ways;
- $v_{t+1} \in S\left(\left\{v_{1}, \ldots, v_{t}\right\}\right) \rightarrow O(k)$ ways;
- $v_{t+2}, \ldots, v_{2 t+1}$ arbitrary $\rightarrow O\left(n^{t}\right)$ ways.

We obtain $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right) \leq O\left(n^{2 t} k\right)$.

- For each t-set T fix a cover $S(T)$ of its link graph with $|S(T)|=O(k)$.
- Enumerate all the edges.
- Simple enumeration:
- v_{1}, \ldots, v_{t} arbitrary $\rightarrow O\left(n^{t}\right)$ ways;
- $v_{t+1} \in S\left(\left\{v_{1}, \ldots, v_{t}\right\}\right) \rightarrow O(k)$ ways;
- $v_{t+2}, \ldots, v_{2 t+1}$ arbitrary $\rightarrow O\left(n^{t}\right)$ ways.

We obtain $\operatorname{ex}\left(n, \mathcal{S}_{t}^{(r)}(k)\right) \leq O\left(n^{2 t} k\right)$.
How to improve? Suppose we chose v_{1}, \ldots, v_{t+1} as before and for some $i, v_{i} \notin S\left(\left\{v_{1} \ldots, v_{t+1}\right\} \backslash\left\{v_{i}\right\}\right)$. Then we can choose v_{t+2} from $S\left(\left\{v_{1} \ldots, v_{t+1}\right\} \backslash\left\{v_{i}\right\}\right)$. Similarly choose all remaining vertices.

The key lemma - grouping edges

- Fix an arbitrary ordering of the vertices in each edge.

The key lemma - grouping edges

- Fix an arbitrary ordering of the vertices in each edge.
- For an edge $e=\left(v_{1}, \ldots, v_{2 t+1}\right)$ and a t-set $I \in\binom{[2 t+1]}{t}$, find an index j such that $v_{j} \in S\left(\left\{v_{i} \mid i \in I\right\}\right)$.

The key lemma - grouping edges

- Fix an arbitrary ordering of the vertices in each edge.
- For an edge $e=\left(v_{1}, \ldots, v_{2 t+1}\right)$ and a t-set $I \in\binom{[2 t+1]}{t}$, find an index j such that $v_{j} \in S\left(\left\{v_{i} \mid i \in I\right\}\right)$.
- Assign to each edge a function $f_{e}:\binom{[2 t+1]}{t} \rightarrow[2 t+1]$ which satisfies $f_{e}(I) \notin I, \forall I \in\binom{[2 t+1]}{t}$.

The key lemma - grouping edges

- Fix an arbitrary ordering of the vertices in each edge.
- For an edge $e=\left(v_{1}, \ldots, v_{2 t+1}\right)$ and a t-set $I \in\binom{[2 t+1]}{t}$, find an index j such that $v_{j} \in S\left(\left\{v_{i} \mid i \in I\right\}\right)$.
- Assign to each edge a function $f_{e}:\binom{[2 t+1]}{t} \rightarrow[2 t+1]$ which satisfies $f_{e}(I) \notin I, \forall I \in\binom{[2 t+1]}{t}$.
- There are $O(1)$ such functions, so it is enough to fix one of them and prove there are $O\left(n^{t} k^{t+1}\right)$ edges with this function assigned to them.

The key lemma

Suppose $t=2$ and we wish to enumerate all edges e with $f_{e}=f$, where:

$$
\begin{aligned}
& f(\{1,2\})=3, f(\{1,3\})=2, f(\{1,4\})=2, f(\{1,5\})=2, \\
& f(\{2,3\})=4, f(\{2,4\})=3, f(\{2,5\})=1, f(\{3,4\})=1, \\
& f(\{3,5\})=2, f(\{4,5\})=3 .
\end{aligned}
$$

Suppose $t=2$ and we wish to enumerate all edges e with $f_{e}=f$, where:

$$
\begin{aligned}
& f(\{1,2\})=3, f(\{1,3\})=2, f(\{1,4\})=2, f(\{1,5\})=2, \\
& f(\{2,3\})=4, f(\{2,4\})=3, f(\{2,5\})=1, f(\{3,4\})=1, \\
& f(\{3,5\})=2, f(\{4,5\})=3 .
\end{aligned}
$$

- Choose v_{1}, v_{2} arbitrarily;

Suppose $t=2$ and we wish to enumerate all edges e with $f_{e}=f$, where:

$$
\begin{aligned}
& f(\{1,2\})=3, f(\{1,3\})=2, f(\{1,4\})=2, f(\{1,5\})=2, \\
& f(\{2,3\})=4, f(\{2,4\})=3, f(\{2,5\})=1, f(\{3,4\})=1, \\
& f(\{3,5\})=2, f(\{4,5\})=3 .
\end{aligned}
$$

- Choose v_{1}, v_{2} arbitrarily; choose v_{3} from $S\left(\left\{v_{1}, v_{2}\right\}\right)$;

Suppose $t=2$ and we wish to enumerate all edges e with $f_{e}=f$, where:

$$
\begin{aligned}
& f(\{1,2\})=3, f(\{1,3\})=2, f(\{1,4\})=2, f(\{1,5\})=2, \\
& f(\{2,3\})=4, f(\{2,4\})=3, f(\{2,5\})=1, f(\{3,4\})=1, \\
& f(\{3,5\})=2, f(\{4,5\})=3 .
\end{aligned}
$$

- Choose v_{1}, v_{2} arbitrarily; choose v_{3} from $S\left(\left\{v_{1}, v_{2}\right\}\right)$;

Suppose $t=2$ and we wish to enumerate all edges e with $f_{e}=f$, where:

$$
\begin{aligned}
& f(\{1,2\})=3, f(\{1,3\})=2, f(\{1,4\})=2, f(\{1,5\})=2, \\
& f(\{2,3\})=4, f(\{2,4\})=3, f(\{2,5\})=1, f(\{3,4\})=1, \\
& f(\{3,5\})=2, f(\{4,5\})=3 .
\end{aligned}
$$

- Choose v_{1}, v_{2} arbitrarily; choose v_{3} from $S\left(\left\{v_{1}, v_{2}\right\}\right)$; choose v_{4} from $S\left(\left\{v_{2}, v_{3}\right\}\right)$;

Suppose $t=2$ and we wish to enumerate all edges e with $f_{e}=f$, where:

$$
\begin{aligned}
& f(\{1,2\})=3, f(\{1,3\})=2, f(\{1,4\})=2, f(\{1,5\})=2, \\
& f(\{2,3\})=4, f(\{2,4\})=3, f(\{2,5\})=1, f(\{3,4\})=1, \\
& f(\{3,5\})=2, f(\{4,5\})=3 .
\end{aligned}
$$

- Choose v_{1}, v_{2} arbitrarily; choose v_{3} from $S\left(\left\{v_{1}, v_{2}\right\}\right)$; choose v_{4} from $S\left(\left\{v_{2}, v_{3}\right\}\right)$;

Suppose $t=2$ and we wish to enumerate all edges e with $f_{e}=f$, where:

$$
\begin{aligned}
& f(\{1,2\})=3, f(\{1,3\})=2, f(\{1,4\})=2, f(\{1,5\})=2, \\
& f(\{2,3\})=4, f(\{2,4\})=3, f(\{2,5\})=1, f(\{3,4\})=1, \\
& f(\{3,5\})=2, f(\{4,5\})=3 .
\end{aligned}
$$

- Choose v_{1}, v_{2} arbitrarily; choose v_{3} from $S\left(\left\{v_{1}, v_{2}\right\}\right)$; choose v_{4} from $S\left(\left\{v_{2}, v_{3}\right\}\right)$; stuck at $\{1,2,3,4\}$.

Suppose $t=2$ and we wish to enumerate all edges e with $f_{e}=f$, where:

$$
\begin{aligned}
& f(\{1,2\})=3, f(\{1,3\})=2, f(\{1,4\})=2, f(\{1,5\})=2, \\
& f(\{2,3\})=4, f(\{2,4\})=3, f(\{2,5\})=1, f(\{3,4\})=1, \\
& f(\{3,5\})=2, f(\{4,5\})=3 .
\end{aligned}
$$

- Choose v_{1}, v_{2} arbitrarily; choose v_{3} from $S\left(\left\{v_{1}, v_{2}\right\}\right)$; choose v_{4} from $S\left(\left\{v_{2}, v_{3}\right\}\right)$; stuck at $\{1,2,3,4\}$.
- Choose v_{1}, v_{5} arbitrarily;

Suppose $t=2$ and we wish to enumerate all edges e with $f_{e}=f$, where:

$$
\begin{aligned}
& f(\{1,2\})=3, f(\{1,3\})=2, f(\{1,4\})=2, f(\{1,5\})=2, \\
& f(\{2,3\})=4, f(\{2,4\})=3, f(\{2,5\})=1, f(\{3,4\})=1, \\
& f(\{3,5\})=2, f(\{4,5\})=3 .
\end{aligned}
$$

- Choose v_{1}, v_{2} arbitrarily; choose v_{3} from $S\left(\left\{v_{1}, v_{2}\right\}\right)$; choose v_{4} from $S\left(\left\{v_{2}, v_{3}\right\}\right)$; stuck at $\{1,2,3,4\}$.
- Choose v_{1}, v_{5} arbitrarily; choose v_{2} from $S\left(\left\{v_{1}, v_{5}\right\}\right)$;

Suppose $t=2$ and we wish to enumerate all edges e with $f_{e}=f$, where:

$$
\begin{aligned}
& f(\{1,2\})=3, f(\{1,3\})=2, f(\{1,4\})=2, f(\{1,5\})=2, \\
& f(\{2,3\})=4, f(\{2,4\})=3, f(\{2,5\})=1, f(\{3,4\})=1, \\
& f(\{3,5\})=2, f(\{4,5\})=3 .
\end{aligned}
$$

- Choose v_{1}, v_{2} arbitrarily; choose v_{3} from $S\left(\left\{v_{1}, v_{2}\right\}\right)$; choose v_{4} from $S\left(\left\{v_{2}, v_{3}\right\}\right)$; stuck at $\{1,2,3,4\}$.
- Choose v_{1}, v_{5} arbitrarily; choose v_{2} from $S\left(\left\{v_{1}, v_{5}\right\}\right)$; choose v_{3} from $S\left(\left\{v_{1}, v_{2}\right\}\right)$;

Suppose $t=2$ and we wish to enumerate all edges e with $f_{e}=f$, where:

$$
\begin{aligned}
& f(\{1,2\})=3, f(\{1,3\})=2, f(\{1,4\})=2, f(\{1,5\})=2, \\
& f(\{2,3\})=4, f(\{2,4\})=3, f(\{2,5\})=1, f(\{3,4\})=1, \\
& f(\{3,5\})=2, f(\{4,5\})=3 .
\end{aligned}
$$

- Choose v_{1}, v_{2} arbitrarily; choose v_{3} from $S\left(\left\{v_{1}, v_{2}\right\}\right)$; choose v_{4} from $S\left(\left\{v_{2}, v_{3}\right\}\right)$; stuck at $\{1,2,3,4\}$.
- Choose v_{1}, v_{5} arbitrarily; choose v_{2} from $S\left(\left\{v_{1}, v_{5}\right\}\right)$; choose v_{3} from $S\left(\left\{v_{1}, v_{2}\right\}\right)$; choose v_{4} from $S\left(\left\{v_{2}, v_{3}\right\}\right)$.

Suppose $t=2$ and we wish to enumerate all edges e with $f_{e}=f$, where:

$$
\begin{aligned}
& f(\{1,2\})=3, f(\{1,3\})=2, f(\{1,4\})=2, f(\{1,5\})=2, \\
& f(\{2,3\})=4, f(\{2,4\})=3, f(\{2,5\})=1, f(\{3,4\})=1, \\
& f(\{3,5\})=2, f(\{4,5\})=3 .
\end{aligned}
$$

- Choose v_{1}, v_{2} arbitrarily; choose v_{3} from $S\left(\left\{v_{1}, v_{2}\right\}\right)$; choose v_{4} from $S\left(\left\{v_{2}, v_{3}\right\}\right)$; stuck at $\{1,2,3,4\}$.
- Choose v_{1}, v_{5} arbitrarily; choose v_{2} from $S\left(\left\{v_{1}, v_{5}\right\}\right)$; choose v_{3} from $S\left(\left\{v_{1}, v_{2}\right\}\right)$; choose v_{4} from $S\left(\left\{v_{2}, v_{3}\right\}\right)$.
We enumerated $O\left(n^{t} k^{t+1}\right)(2 t+1)$-tuples containing all edges with $f_{e}=f$.

The key lemma

Suppose we get stuck for any t-set $J \in\binom{[2 t+1]}{t}$.

Suppose we get stuck for any t-set $J \in\binom{[2 t+1]}{t}$. Define a set system $\mathcal{A} \in \mathcal{P}([2 t+1])$ as follows:

$$
\mathcal{A}=\left\{S \subsetneq[2 t+1] \mid f(I) \in S, \forall I \in\binom{S}{t}\right\}
$$

The key lemma

Suppose we get stuck for any t-set $J \in\binom{[2 t+1]}{t}$. Define a set system $\mathcal{A} \in \mathcal{P}([2 t+1])$ as follows:

$$
\mathcal{A}=\left\{S \subsetneq[2 t+1] \mid f(I) \in S, \forall I \in\binom{S}{t}\right\}
$$

Then, \mathcal{A} is a $(t+1, t)$-system:

Suppose we get stuck for any t-set $J \in\binom{[2 t+1]}{t}$. Define a set system $\mathcal{A} \in \mathcal{P}([2 t+1])$ as follows:

$$
\mathcal{A}=\left\{S \subsetneq[2 t+1] \mid f(I) \in S, \forall I \in\binom{S}{t}\right\}
$$

Then, \mathcal{A} is a $(t+1, t)$-system:

- If $A, B \in \mathcal{A}$, then for any $I \in\binom{A \cap B}{t}, f(I) \in A \cap B$, so $A \cap B \in \mathcal{A}$.

Suppose we get stuck for any t-set $J \in\binom{[2 t+1]}{t}$. Define a set system $\mathcal{A} \in \mathcal{P}([2 t+1])$ as follows:

$$
\mathcal{A}=\left\{S \subsetneq[2 t+1] \mid f(I) \in S, \forall I \in\binom{S}{t}\right\} .
$$

Then, \mathcal{A} is a $(t+1, t)$-system:

- If $A, B \in \mathcal{A}$, then for any $I \in\binom{A \cap B}{t}, f(I) \in A \cap B$, so $A \cap B \in \mathcal{A}$.
- For any $J \in\binom{[2 t+1]}{t}$, we get stuck in our enumeration, so J is contained in some set in \mathcal{A}.

Suppose we get stuck for any t-set $J \in\binom{[2 t+1]}{t}$. Define a set system $\mathcal{A} \in \mathcal{P}([2 t+1])$ as follows:

$$
\mathcal{A}=\left\{S \subsetneq[2 t+1] \mid f(I) \in S, \forall I \in\binom{S}{t}\right\} .
$$

Then, \mathcal{A} is a $(t+1, t)$-system:

- If $A, B \in \mathcal{A}$, then for any $I \in\binom{A \cap B}{t}, f(I) \in A \cap B$, so $A \cap B \in \mathcal{A}$.
- For any $J \in\binom{[2 t+1]}{t}$, we get stuck in our enumeration, so J is contained in some set in \mathcal{A}.
- $S \in \mathcal{A} \Longrightarrow|S| \notin\{t, 2 t+1\}$.

Conclusion

We determined, up to constant factors, the Turán number of sunflowers when the uniformity and kernel size are fixed and the size of the sunflower is allowed to grow with n.

Conclusion

We determined, up to constant factors, the Turán number of sunflowers when the uniformity and kernel size are fixed and the size of the sunflower is allowed to grow with n.

Open problems:

Conclusion

We determined, up to constant factors, the Turán number of sunflowers when the uniformity and kernel size are fixed and the size of the sunflower is allowed to grow with n.

Open problems:

- Getting the correct dependence on r.

Conclusion

We determined, up to constant factors, the Turán number of sunflowers when the uniformity and kernel size are fixed and the size of the sunflower is allowed to grow with n.

Open problems:

- Getting the correct dependence on r.
- Determining the extremal number of so-called generalized stars appearing in the unavoidability problem.

Conclusion

We determined, up to constant factors, the Turán number of sunflowers when the uniformity and kernel size are fixed and the size of the sunflower is allowed to grow with n.

Open problems:

- Getting the correct dependence on r.
- Determining the extremal number of so-called generalized stars appearing in the unavoidability problem.
- Excluding a subset of kernel sizes $T \subseteq\{0, \ldots, r-1\}$. This is hard even for $k=2$.

Conclusion

We determined, up to constant factors, the Turán number of sunflowers when the uniformity and kernel size are fixed and the size of the sunflower is allowed to grow with n.

Open problems:

- Getting the correct dependence on r.
- Determining the extremal number of so-called generalized stars appearing in the unavoidability problem.
- Excluding a subset of kernel sizes $T \subseteq\{0, \ldots, r-1\}$. This is hard even for $k=2$.
- Resolving the cases $T=\{0, \ldots, t-1\}$ and $T=\{\ell, \ldots, r-1\}$ with correct dependence on r.

Thank you!

