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Chapter 1

Introduction

These notes find their origin in courses I taught at a Cattedra Galileiana of
the Scuola Normale Superiore di Pisa (March 2000), the University of Preto-
ria (August 2003), Tokyo University, ETH (2005) and the University of Osaka
(2008). The aim of these lectures was to translate problems from Risk Man-
agement into mathematics and back. In some sense these notes form another
illustration of the fact that problems from applied mathematics and real life,
when properly translated are not that far from pure mathematics. In the
present notes we will mainly use functional analysis and stochastic calculus
to solve problems from Risk Management and Risk Measurement. Because
of its close relation with utility functions, I changed the set-up from the Pisa
lecture notes ([40]) to a set-up that uses the terminology from utility theory.
I also included relations with decision theory as it was developed by Gilboa
and Schmeidler, see e.g. [75] for the main paper, Maccheroni, Marinacci
and Rustichini [102], [103], Machina and Schmeidler [104], Chateauneuf and
Wakker [28], Wakker [129]. In statistics the theory is known as robustness
and many papers are published on this topic, see e.g. Huber’s book as well
as the references given there, [80]. In insurance mathematics, risk measures
can be seen as premium calculation principles. We cite Bühlmann, [25] and
Gerber, [73] for mathematical definitions of premium principles. So called
convex premium principles were introduced by Deprez and Gerber, [51] and
this paper contains concepts that are almost the same as the concepts used
here. The concept of risk measurement as presented in this book is related
to capital requirement for financing institutions. As such it is also related to
risk averseness. A risk measure that goes in the direction of risk averseness
can be found in Aumann-Serrano, [14]. This measure is related to the expo-
nential utility but is different from what we present. It is impossible to cite
all the references that are related to monetary utility functions. I apologise
for not mentioning or better for forgetting references that are considered as
basic. The multiperiod case is much more complex and involves new con-
cepts. Utility theory in this context goes back to Koopmans [89, 90, 91],
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Epstein [62], Epstein and Zin [64], Duffie and Epstein [53], Duffie and Ski-
adas, [54], El Karoui, Quenez, Peng ([61]), Artzner, Delbaen, Eber, Heath,
Ku ([5]) and probably many others. In these notes I only introduce some
of the basic material and for instance relations with Backward Stochastic
Differential Equations (BSDE), see e.g. El Karoui, Quenez, Peng[61], are
not treated at all. Utility theory for stochastic processes is another topic
that is not covered. The reader can find an introduction to these problems
in Artzner, Delbaen, Eber, Heath, Ku [5], Cheridito, Delbaen, Kupper, [29],
Delbaen [41].

Part of the courses was devoted to an analysis of Value at Risk and its
relation to quantiles. A detailed discussion of this can be found in two papers
by Artzner, Delbaen, Eber and Heath, [3] and [4]. It will not be repeated
here. We will rather concentrate on the mathematics behind the concept of
coherent risk measures or coherent utility functions. They were introduced
in the two mentioned papers and the mathematical theory was further devel-
oped in Delbaen (1999), [39] and [40]. Further use of coherent risk measures
can be found in the papers (and their references) by Kalkbrener, Lotter and
Overbeck, [87], Jaschke, [82] and Jaschke and Küchler [83], Tasche, Acerbi
and Tasche [11] and Föllmer-Schied, [68]. Since their introduction around
1995, many researchers have extended the theory and giving a complete bibli-
ography is almost impossible. The reader should consult the web-sites to find
several papers dealing with this subject. The paper by Föllmer and Schied,
[69],[?], introduces a generalisation of coherent risk measures to convex risk
measures. A mathematical trick will allow us to reduce the characterisation
of convex risk measures to the same problem for coherent risk measures.
This trick does not contribute to the presentation but it allows an easier use
of theorems from functional analysis. The name monetary utility functions
was introduced by Föllmer and Schied. Also the word “niveloid” was used
for the same property. The expression money based utility function was also
used.

In chapter 2 we introduce the notation and recall some basic facts from
functional analysis. The reader can consult Diestel’s book, [52], for proofs.
The Krein-Smulian theorem can be found, as an exercise, in Rudin’s book,
[120] or for a generalisation (the so-called Banach-Dieudonné theorem) and
a full proof, see Grothendieck, [74]. We also give a summary of the results
on atomless spaces. These results are well known and are standard (but not
always easy) exercises in advanced probability courses.

Chapter 3 gives a short description of Value at Risk. We give a precise
definition of what is usually called VaR. It is pointed out that VaR is not
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sub-additive. Being sub-additive is the mathematical equivalent of diversi-
fication. Since we changed the concept pf risk measures into the concept
of utility functions we will deal with the a property called super-additivity.
For risk adjusted values or utility functions that are not super-additive it
may happen that diversified portfolios require more regulatory capital than
less diversified portfolios. This observation was made when [3] was prepared
(1993), but it was not made concrete. The first who observed that VaR
posed a problem in practical problems and especially in the area of credit
risk was Albanese, [1]. Especially in the area of Credit Risk the super-
additivity property plays a fundamental role. This was shown in a paper
by Bonti, Kalkbrener, Lotz and Stahl [22] (paper appeared in 2006 but the
results were presented already around 2000). This paper refers to real life
data from Deutsche Bank and it shows that capital allocation methods based
on VaR could produce a negative amount of required capital and later an
amount of economic capital that exceeded the exposure.

Chapter 4 introduces the concept of coherent risk measures and of coher-
ent utility functions. Basically we only deal with coherent utility functions
satisfying the Fatou property. Roughly speaking, a coherent utility function
is defined via the infimum over a family of expected values. The probabili-
ties used to calculate these expectations form a convex closed set, sometimes
referred to as the set of “scenarios” or test probabilities. Stress testing sim-
ply means that the set of scenarios contains probability measures that are
concentrated on “extreme movements in the market”. Examples are given
and relations with weak compact sets of L1 are pointed out. The example on
Credit Risk shows that tail expectation (sometimes called Worst Conditional
Mean, shortfall, CV@R or TailVaR) is better behaved than VaR. The reader
should carefully read the proof given in that chapter. For practical calcula-
tions of TailVaR or CVaR, we refer to Rockafellar and Uryasev, [119]. We do
not discuss more risk averse utility functions, although we could have given
practical examples that show that tail expectation is not yet good enough.
Since there is no best risk measure, I did not pursue this discussion. The
characterisation theorem permits to give many other examples of coherent
utility functions. The interested reader can have a look at Delbaen (1999),
[39], to see how Orlicz space theory [93], can be used in the construction
of coherent risk measures. The relation with Orlicz space theory became
the subject of new research, see Biagini-Frittelli [18], Cheridito-Li, [31], [32].
We also show how convex analysis can be used. The reader familiar with
Rockafellar’s book, [118], and with Phelps’s monograph, [112], can certainly
find much more points in common than the ones mentioned here.
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In Chapter 5 we characterise the utility functions that only depend on the
law of the uderlying random variables. For coherent risk measures this result
is due to Kusuoka, [96]. In [72], Frittelli and Rosazza-Gianin could charac-
terise convex law invariant risk measures. See also Jouini-Schachermeyer-
Touzi,[84] and Tsukahara, [128]. They proved that these law-invariant mea-
sures are necessary Fatou and introduced one-parameter families. The reader
should have a look at these papers.

Chapter 6 explains some basic operations on monetary utility functions.
The two most important operations are the minimum of two utility functions
and the convolution. The latter is usually called “inf-convolution” for convex
functions or convex convolution. For concave functions one needs to change
the “sign”. Operations on utility functions imply, by duality, operations on
the penalty functions or on the scenario sets. We give examples where the
topological properties are not always preserved. The basic mathematical
ingredients can be found in the already cited books, [118] and [112].

In Chapter 7 we mention the connection with convex game theory. The
basic references here are Shapley, [126], Rosenmüller, [117], Schmeidler, [123],
[124], and Delbaen, [37]. The important relation with commonotonicity
(Schmeidler’s theorem) is proved in a way that is different from [124]. We
should also point out that distorted probability measures were first used
by Yaari in decision theory [133] and were used by Denneberg, see [48], to
describe premium calculation principles. The characterisation of extreme
points is based on selection theorems. It is shown that a distorted game is
a convex combination of unanimity games. This result is already present in
[76] but the context here is infinite dimensional and hence more complicated.
This structural result allows to get the extreme points of the core, a result
that goes back to Carlier and Dana [26] and Marinacci et al [7] as well as the
references given therein. The earlier results of Ryff, [121], form the math-
ematical basis of many proofs. We reprove these results in a different way
and give some extensions based on results from functional analysis. Many
developments on game theory were done at the same time by different au-
thors and in different degrees of generality. I apologise if the references are
not always to the original papers.

Chapter 8 shows how coherent utility functions are related to VaR. The
main result is that tail expectation is the biggest coherent utility function,
only depending on the distribution of the underlying random variable, that
is dominated by VaR. Kusuoka, [96] gives another proof of this result. At the
same time one can prove that VaR is the hull of all coherent utility functions
that are smaller than VaR. The two results are not contradictory since to get
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VaR as the hull of coherent utility functions we need utility functions that
are not just law determined. Since VaR is not concave this shows that the
sup of all coherent utility functions, smaller than VaR, is not concave.

Chapter 9 deals with the problem of capital allocation. In my view one of
the most important applications of the theory of monetary utility functions.
In our earlier papers, we emphasized that applications to performance mea-
surement and capital allocation were among the driving forces to develop
the theory. Denault, [47], looks for axiomatics regarding this problem and
wants to characterise the capital allocation via the Shapley value. I tried to
give other approaches, especially the use of Aubin’s result on fuzzy games,
[12] finds a nice interpretation and automatically leads to the introduction
of the subgradient. Here again the duality theory plays a fundamental role.
The main difference between the two approaches is that the Shapley value
leads to a scenario that is in the “middle” of the set of scenarios, whereas
our approach leads to extreme points of the set of scenarios. We also point
out relations with a paper of Deprez and Gerber [51] that relates proper-
ties of coherent utility functions and the derived capital allocation methods
with premium calculation principles. In their paper it is argued that the
premium to be asked for a new insurance contract cannot be handled inde-
pendently of the already existing portfolio. Diversification — or the absence
of diversification — plays a fundamental role in this philosophy. The paper
advocates that premium principles should therefore be defined on random
variables and not only on distributions of these random variables. As a prob-
abilist I cannot agree more with their statement. However it is not clear on
which spaces the premium principle is defined and especially the existence of
derivatives or subgradients is therefore not treated. As an example we will
show in chapter xxx that the bid-price in an incomplete market is nowhere
differentiable. In infinite dimensions the existence of a derivative leads to
non-trivial problems from functional analysis. In our presentation we cannot
avoid to use somewhat more theory, I apologise for it. In this chapter we
show that differentiability of monetary utility functions automatically leads
to weak compactness of the set of scenarios. The proof uses automatic con-
tinuity results, which go back to the work of Banach [15] and which was
developed by Christensen, [35]. Kalkbrener, [86] gives another set of axioms
on capital allocation.

Chapter 10 deals with the definition of coherent utility functions on the
space of all random variables. This extension is not obvious and poses some
mathematical problems. The approach given here is much simpler than the
original approach. We also show that if there a concave utility function is
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defined on a rearrangement invariant space, then this space must be included
in L1. In particular this shows that it is impossible to define a consistent
theory of utility functions on spaces that include Pareto distributed random
variables.

Chapter 11 introduces for the two period model concepts such as time
consistency. Time consistency was introduced by Koopmans, [89, 90, 91].
It has numerous consequences on the structure of the utility function. We
give a presentation that shows that time consistent utility functions (as a
functional defined on L∞) are completely determined by their knowledge (as
a functional) at time 0. The two period model is studied in detail since it
contains the basic facts for applications in finite discrete time, handled in
Chapter 12, and even for applications in continuous time which is not treated
in this monograph. In Chapter 12, we show that time consistent utility
functions are a concatenation of one period utility functions. This result
allows for calcualtions based on dynamic programming principles. The case
of coherent utility functions deserves a special attention. Time consistency or
recursive utility theory is – as mentioned above – covered by many authors.
We cite Detlefsen and Scandalo, [46], Epstein and Schneider, [63], Frittelli
and Rosazza-Gianin, [71], Maccheroni, Marinacci and Rusticini, [102], [103],
Riedel, [114], Föllmer and Penner, [67], Roorda, Schumacher and Engwerda,
[115]. We do not make a connection to the theory of Backward Stochastic
Equations and g-expectations. We plan to do that in another text.

I would like to use this occasion to express my thanks to the Scuola
Normale Superiore for inviting me to hold the Cattedra Galileiana and to
give a series of lectures in 2000. The “Pisa lecture notes” were the start
of a more profound mathematical development. I also would like to thank
the “Departement voor Wiskunde” of the University of Pretoria. Special
thanks go to Professors Johan Swart, Barbara Swart (now at UNISA) and
Anton Ströh, at that time chairman of the department. The discussions
with the students from Pretoria contributed a lot to the presentation. Pisa
and Pretoria were the first to undergo a presentation of the theory. Later
the presentations changed and new topics were introduced. Topics such as
BSDE were introduced when the author was visiting Fudan University in
Shanghai, Shandong University in Weihai and Jinan. Here I could benefit
from discussions with the specialists in BSDE and g-expectations. At a
later stage I gave a similar course at the “Université de Franche-Comté à
Besançon”. Here I had a lot of discussions with Professors Kabanov and
Stricker, these discussions also contributed to a better understanding of the
problems. When visiting Tokyo University (Todai), I had the opportunity
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to discuss with Professor Kusuoka and Dr. Morimoto. Todai organised
a series of lectures with an audience that was a mixture of practitioners
and academic researchers. At the University of Osaka (Handai), I had the
pleasure to discuss with Prof. Nagai, Prof Sekine (Kyoto University, now
in Osaka University) and the other members of the departments of Osaka
and Kyoto. The last guinea pigs were students and staff members of Ajou
University in Suwon (South-Korea). The series of seminars given there are
at the basis of this text. The hospitality in all these institutions is greatly
appreciated. Readers familiar with the older “Pisa Notes” can see that the
theory has changed a lot. I also presented a one semester course on coherent
measures at the ETH. The many discussions with the students, researchers
and colleagues are greatly appreciated.

I also want to thank all those who contributed to these lecture notes and
made a lot of comments on previous versions. In this respect I cannot under-
estimate the value of discussions with Akahori, Bao, Barrieu, Ben-Artzi, S.
Biagini, Carmona, Chen, Cheridito, Coculescu, Dana, Ekeland, El Karoui,
Embrechts, Filipovic, Frittelli, Hu, Koch, Koo, Ku, Kupper, Kusuoka, Lüthi,
Madan, Maignan, Nagai, Nikeghbali, Peng, Pratelli, Rosazza-Gianin, Schacher-
mayer, Sekine, Schweizer, Sung, Tang, Tsukahara, Yan, Zariphopoulou ...
and I apologise to the many others I forgot to mention.

These lectures would never have existed without the many discussions
with the “partners in crime”: Artzner, Eber and Heath. When we started
the theory around 1993–1994, we had no feeling about the impact it would
have. But gradually the theory developed and got more and more attention.
Maybe not always there where it should have gotten attention but that is
the price we must pay when something new is developed.

As always, lectures only make sense if there is an active audience. I
thank the (guinea-pig) students of the Scuola Normale Superiore di Pisa, of
the University of Pretoria, of Todai, of Handai , of Ajou University (Suwon)
and of ETH, as well as the many practitioners for their interest in the subject
and for the many questions they asked.

During the years 1995-2008 I got a grant from Credit Suisse to develop
finance activities at the Department of Mathematics of ETH. This financial
support allowed to appoint researchers and allowed to develop the theory
presented here. Without this grant this work would not have been possible
and I thank Credit Suisse for this important support. In particular I want
to thank Dr. H.U. Doerrig and Dr. H. Stordel who always expressed a firm
interest in the development of these concepts. Of course the work only re-
flects my personal viewpoint.
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Zurich, March 20, 2020

Freddy Delbaen



Chapter 2

Mathematical Preliminaries

2.1 Interpretation of the mathematical con-
cepts

We consider a very simple model in which only two dates (“today” and “to-
morrow”) matter. The multiperiod model will be treated in later chapters,
where we will need the results of the one-period case. For simplicity we
also suppose that all (random) amounts of money available tomorrow, have
already been discounted. This practice is well known in finance (and in in-
surance for more than 300 years) and it avoids a lot of notational problems.
The discounting can take place with an arbitrary asset, provided the price
is strictly positive. So we can use a “sure” bank account with known in-
terest rate at time 0. But we could also use an asset with a return that is
only known at date 1. After discounting, the interest rate disappears from
the calculations and hence the discounting is equivalent to assume that the
interest rate is zero. The reader can consult [6] for a discussion and for a
solution on the choice of the numéraire. The procedure of discounting is well
understood and we will not comment on it anymore, thereby also avoiding
the possible problems it creates. E.g. one can only take “maximal elements”
(see [44]), but these problems are beyond the scope of this book.

We fix once and for all a probability space (Ω,F ,P). All random vari-
ables will be defined on Ω. The positive part of a function ξ is denoted by
ξ+ = max(ξ, 0), the negative part ξ− = −min(ξ, 0). Of course ξ = ξ+ − ξ−.
A random variable represents the “discounted” value of a portfolio (or a po-
sition). Positive outcomes are good, negative outcomes mean that there is
a shortage of money, a bankruptcy, . . . We emphasize that it represents the
outcome and not just the gain (possibly negative) realised with a transaction
or an investment strategy. We will represent such values with bounded ran-
dom variables. There are two reasons. One reason is mathematical: we will
need different probability measures and unbounded random variables might
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cause problems (integrable with respect to one measure but not with respect
to the other measure). The other reason is that we feel that every position
taken in real life will lead to bounded outcomes. Of course there are posi-
tions and losses that are better modelled by unbounded random variables
(e.g. Pareto distributed). In a later chapter we will see how to deal with
such problems.

2.2 Some notation and definitions from inte-
gration theory

The expectation of a random variable ξ with respect to P will be denoted by
E[ξ]. When more than one probability measure is involved, we will explicitly
mention it in the integral and we will write EP[ξ] or P[ξ]. We also identify
random variables that are equal almost surely. So each time we speak about
a random variable we mean in fact the equivalence class of random variables
with respect to equality “almost sure”. This is common practice in proba-
bility theory and in most cases it is harmless. In the chapters on dynamic
utility functions, we will draw special attention to the regularity of stochastic
processes. In these cases there are uncountably many sets of measure zero
involved and the situation is then not so harmless.

In finance, replacing a probability with an equivalent one is quite fre-
quent. From a mathematical point of view, we must pay attention since
theorems and properties which depend on variance, higher moments and in-
tegrability conditions obviously depend on the probability measure one is
working with. There are two spaces that do not depend on the particular
probability measure chosen. The first one is the space of (almost surely)
bounded random variables L∞ endowed with the norm:

‖ξ‖∞ = ess.supω∈Ω|ξ(ω)| ,

where by ess.sup of a random variable η we denote the number min{r |
P[η > r] = 0}. (The reader can check that there is a minimum and not
just an infimum). The second invariant space is L0, this is the space of all
(equivalence classes of) random variables. This space is usually endowed
with the topology of convergence in probability that is

ξn
P→ ξ iff ∀ε > 0 P[|ξn − ξ| > ε]→ 0 ,

or, equivalently, iff
E[|ξn − ξ| ∧ 1]→ 0 ,
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where a ∧ b = min(a, b) denotes the minimum of a and b.
Many theorems in measure theory refer to convergence almost surely, al-

tough they remain valid when convergence a.s. is replaced by convergence
in probability. This is the case for the dominated convergence theorem of
Lebesgue, Fatou’s lemma (properly formulated), etc. We will use these ex-
tensions without further notice.

We will denote by L1(Ω,F ,P) (sometimes L1(P) or simply by L1) the
space of integrable random variables on (Ω,F ,P). The dual space of L1 is
L∞ and the duality (L1, L∞) will play a special role. The dual space of L∞

is ba(Ω,F ,P) or just ba if no confusion can arise. It is the space of bounded
finitely additive measures µ such that P[A] = 0 implies µ(A) = 0. We will
constantly identify measures with their Radon-Nikodym derivatives. So L1

becomes a subspace of ba. The set of sigma-additive probability measures,
absolutely continuous with respect to P can then be identified with the set
{f ∈ L1 | f ≥ 0, E[f ] = 1}. This set will be denoted by P. Its weak∗ closure
in ba, denoted by Pba, is the set of all finitely additive probability measures.

2.3 Some results on atomless spaces

In many cases we need that (Ω,F ,P) is an atomless probability space. The
theorem below shows that this is not a very restrictive assumption. However
the case of finite sets Ω, important in practical calculations, is not covered
by this assumption.

Definition 1 The probability space (Ω,F ,P) is called atomless (or diffuse) if
for every A ∈ F with P[A] > 0, there is a B ⊂ A such that 0 < P[B] < P[A].

The following characterisation of atomless spaces holds.

Theorem 1 For a probability space (Ω,F ,P), the following are equivalent:

1. The probability space (Ω,F ,P) is atomless.

2. There is a family At : t ∈ [0, 1] such that for t ≤ s : At ⊂ As and such
that P[At] = t for all t.

3. There is a random variable ξ, defined on (Ω,F ,P) with a continuous
distribution, i.e. for each x, P[ξ = x] = 0.

4. There is a random variable defined on (Ω,F ,P) with a uniform [0, 1]
distribution.
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5. If C ⊂ B, there is a family {At | t ∈ [P[C],P[B]]} such that for t ≤ s :
At ⊂ As, C = AP[A], B = AP[B] and such that P[At] = t for all t.

6. If (At)t∈I⊂[0,1] is an increasing family of sets with P[At] = t, there is
an increasing family of sets (Bt)t∈[0,1] with P[Bt] = t and where for
t ∈ I: Bt = At.

7. If (At)t∈I⊂[0,1] is an increasing family of sets with P[At] = t, then
there is a random variable ξ with a uniform [0, 1] law and such that
{ξ ≤ t} = At.

8. There is a sequence of independent random variables rn such that
P[rn = +1] = P[rn = −1] = 1/2.

9. For an arbitrary non-degenerate probability distribution µ on R, there
is a sequence of independent identically distributed random variables
(ξn)n defined on (Ω,F ,P) and such that each ξn has the law µ.

If (Ω,F ,P) is atomless and P[A] > 0, then (A,A ∩ F ,P[. | A]) is also atom-
less.

The proof of this theorem is a standard exercise in probability theory. How-
ever the solution is not at all trivial. The proof is essentially based on the
following lemma. We do not include a proof.

Lemma 1 Let B ⊂ A and suppose P[B] < t < P[A], then there is a set
C ∈ F such that B ⊂ C ⊂ A and so that P[C] = t.

Proof. Replacing the set A by A \ B allows us to reduce the problem to
B = ∅. 2

Proposition 1 If P is atomless and ξ ∈ L∞, there exists a sequence (ξn)n
such that:

1. ξ ≤ ξn ≤ ξ + 1
n ;

2. ξn ↓ ξ;

3. each ξn has a continuous distribution.

Proof. The (obvious) details are left to the reader. Let {ak | k ∈ N} be
the discontinuity set of the distribution function Fξ of ξ and let Uk stand
for the set {ξ = ak}. Then P[Uk] > 0 and for each k we can construct a
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variable ηk : Uk → [0, 1] with the uniform distribution under P[·|Uk]. Take
now ξn = ξ + 1

n

∑
k≥1 η

k1Uk . It is easily seen that each ξn has a continuous
distribution and that the sequence (ξn)n has the required properties. 2

2.4 Commonotonicity

Let us start by giving a general definition of commonotonicity. The definition
is not quite standard. We will show it implies the usual definition and it also
has some mathematical beauty. We restrict the definition to the case of two
random variables. In the literature the reader can find more general cases.

Definition 2 Two random variables ξ, η, defined on the same probability
space (Ω,F ,P) are commonotone if on the product space

(Ω× Ω,F ⊗ F ,P⊗ P)

the random variable Z(ω1, ω2) = (ξ(ω1)− ξ(ω2))(η(ω1)− η(ω2)) is a.s. non-
negative.

To make the writing a little bit easier we use the notation ξi(ω1, ω2) = ξ(ωi)
(same for ηi). The random variable Z can then be written as Z = (ξ1 −
ξ2)(η1 − η2). We will keep this notation in the following analysis.

Lemma 2 If ξ and η are commonotone and square integrable, the covariance
Cov (ξ, η) is nonnegative.

Proof. By integrating Z = (ξ1− ξ2)(η1− η2) on the product space we get:

0 ≤
∫
Z d(P⊗ P) = 2

(∫
ξη dP −

∫
ξ dP

∫
η dP

)
.

2

Example 1 If we take a random variable ξ and two increasing functions
f, g : R → R, then the variables f(ξ) and g(ξ) are commonotone. The next
propositions will show that this is the general situation for commonotone
variables. If ξ and η are commonotone then they do not contribute to diver-
sification. Both variables depend in the same way on a common source. So
small values are added to small values and large values are added to large
values. So it was no surprise that the correlation was nonnegative.
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Proposition 2 If ξ and η are commonotone random variables, then there
exists a set Ω′ with P[Ω′] = 1 and such that for all (ω1, ω2) ∈ Ω′ × Ω′ we
have (ξ(ω1)− ξ(ω2))(η(ω1)− η(ω2)) ≥ 0.

Proof. The first step is to show that for two couples of real numbers
a < b and c < d, we necessarily have that either P[ξ ≤ a, η ≥ d] = 0 or
P[ξ ≥ b, η ≤ c] = 0. Indeed if both are strictly positive then on Ω × Ω we
have that (P × P)[ξ1 ≤ a, ξ2 ≥ b, η1 ≥ d, η2 ≤ c] > 0. This shows that
(P× P)[Z < 0] > 0, a contradiction to the assumption. Let us now put

N ′ = ∪a<b,c<d,rational with P[ξ≤a,η≥d]>0{ξ ≥ b, η ≤ c}.

Because of what is just proved, P[N ′] = 0. Let us put

N = N ′ ∪
(
∪a<b,c<d rational with P[ξ≤a,η≥d]=0{ξ ≤ a, η ≥ d}

)
.

Of course we still have P[N ] = 0. For ω1 /∈ N,ω2 /∈ N , we have that
(ξ(ω1) − ξ(ω2))((η(ω1) − η(ω2)) ≥ 0. Indeed suppose that the product is
strictly negative. Then there are rational numbers a, b, c, d such that (maybe
after interchanging ω1, ω2), ξ(ω1) ≤ a < b ≤ ξ(ω2) and η(ω1) ≥ d > c ≥
η(ω2). In case P[ξ ≤ a, η ≥ d] > 0 this will imply ω2 ∈ N ′ ⊂ N , whereas
P[ξ ≤ a, η ≥ d] = 0 would imply ω1 ∈ N . So we may put Ω′ = N c. 2

Theorem 2 If ξ, η are commonotone then there are two non-decreasing
functions f, g such that ξ = f(ξ + η), η = g(ξ + η).

Proof. Take Ω′ as above and look at the set S = {(ξ(ω), η(ω) | ω ∈ Ω′}. For
(x, y) ∈ S and (x′, y′) ∈ S we have (x−x′)(y− y′) ≥ 0. So this remains true
for the closure of S (denoted by D). We now claim that φ : D → R, (x, y)→
φ(x, y) = x+y is one to one. Indeed if (x, y), (x′, y′) ∈ D and x+y = x′+y′

then necessarily x = x′, y = y′ since otherwise (x− x′)(y − y′) < 0. We also
claim that if zn = φ(xn, yn) is a bounded sequence, then necessarily, the se-
quence (xn, yn) is bounded in D. Indeed if xn is unbounded, we can extract
a subsequence – still denoted xn – such that either xn is strictly decreasing to
−∞ or strictly increasing to +∞. Let us suppose that xn → +∞ (the other
case is treated in a symmetric way). Since zn is a bounded sequence we must
have that yn → −∞ and by taking a subsequence we may suppose the con-
vergence is strictly decreasing. But then we have (xn+1−xn)(yn+1−yn) < 0,
a contradiction to the commonotonicity. So we get that (xn, yn) is bounded
as soon as xn+yn is bounded. This is enough to show that the image φ(D) is
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closed and that the inverse function (f, g) : φ(D)→ D; (f, g)(x+ y) = (x, y)
is continuous. Obviously, f and g are non-decreasing and even Lipschitz.
This ends the proof. 2

2.5 Quantiles and Rearrangements

Definition 3 Let ξ be a random variable and α ∈ (0, 1).

- q is called an α–quantile if:

P[ξ < q] ≤ α ≤ P[ξ ≤ q] ,

- the largest α–quantile is:

qα(ξ) = inf{x | P[ξ ≤ x] > α},

- the smallest α–quantile is:

q−α (ξ) = inf{x | P[ξ ≤ x] ≥ α}.

- if no confusion is possible we drop the argument ξ and simple write
qx, q

−
x ,

- in case α = 0, we can define q0 without any problem but we take q−0 =
limx→0,x>0 q

−
x . Similarly for α = 1 we can define q−1 in the usual way

but we take q1 = limx→1,x<1 qx. In this way the quantiles q− and q are
defined on the closed interval [0, 1].

- Quantiles allow to define random variables that have the same proba-
bility law as the given function ξ. Indeed q(ξ) : [0, 1] → R;x → qx(ξ)
is an increasing (better nondecreasing) function that has the same law
as ξ. Sometimes x → qx(ξ) is called the increasing rearrangement of
ξ, the “opposite” x→ q1−x(ξ), is called the decreasing rearrangement.

As easily seen, q−α ≤ qα and q is an α–quantile if and only if q−α ≤ q ≤ qα.
The set of points α where q−α < qα, is at most countable since the (possibly
empty) intervals ]q−α , qα[ are pairwise disjoint. The function q− is therefore
a.s. equal to the increasing rearrangement q.
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Proposition 3 Suppose that the probability space, (Ω,F ,P), is atomless,
then for ξ ∈ L0(Ω,F ,P) there is a uniformly [0, 1]−distributed random vari-
able υ ∈ L0(Ω,F ,P) such that ξ = qυ(ξ).

Proof. Let AP[ξ≤y] = {ξ ≤ y}, then according to Theorem 1 on atomless
spaces there is a [0, 1]−distributed random variable υ such that for all y ∈ R:
{υ ≤ P[ξ ≤ y]} = AP[ξ≤y]. Clearly ξ = qυ(ξ). 2

Remark 1 In the language of the previous section, the two random variables
ξ and υ are commonotone. The variable ξ′ = q1−υ(ξ) has the same law as ξ
but is anti-commonotone with ξ. If η is a uniformly [0, 1]−distributed random
variable, then qη(ξ) has the same law as ξ and every random variable that
has the same law as ξ, is of this form, this is another way of formulating the
previous proposition. The reasoning also shows:

Proposition 4 Suppose that the probability space is atomless. If ξ, η are
random variables, there exist η′, η′′ having the same law as η and such that
ξ, η′ are commonotone and ξ, η′′ are anti-commonotone.

Proof. Take υ as in the previous proposition, i.e. ξ = qυ(ξ), and define
η′ = qυ(η) and η′′ = q1−υ(η). 2

The following lemma is due to Hardy and Littlewood (the reader can see
that it is a modification of [78], theorem 378):

Lemma 3 Suppose that ξ ∈ L∞, 0 ≤ η ∈ L1, let ξ∗ be the increasing rear-
rangement of ξ and η∗ the decreasing rearrangement of η. Then∫

Ω

ξη ≥
∫

[0,1]

ξ∗η∗ =

∫ 1

0

qx(ξ) q1−x(η) dx.

In the same way the increasing rearrangement, η∗, of η satisfies:∫
Ω

ξη ≤
∫

[0,1]

ξ∗η∗ =

∫ 1

0

qx(ξ) qx(η) dx.

2.6 Some basic theorems from functional anal-
ysis

We will frequently make use of the standard duality theory from functional
analysis. When we speak about the dual space we always mean the topologi-
cal dual, i.e. the space of continuous real-valued functionals. The reader can
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find the relevant theorems in Dunford-Schwartz, [55], Grothendieck, [74] or
in Rudin, [120]. We assume that the reader has an introductory knowledge of
this theory and knows how to handle the “separation” theorems. We present
some less known theorems that I consider as basic but nontrivial. The proofs
are omitted. The following theorem is very useful when checking whether
sets in a dual space are weak∗ closed. The theorem is sometimes called the
Banach-Dieudonné theorem, sometimes it is referred to as the Krein-Sḿulian
theorem.

Theorem 3 Let E be a Banach space with dual space E∗. Then a convex
set C ⊂ E∗ is weak∗ closed if and only if for each n, the set Wn = C ∩ {e∗ |
‖e∗‖ ≤ n} is weak∗ closed.

Of course, since convex sets that are closed for the so-called Mackey topology
are already weak∗ closed, it suffices to check whether the sets Wn are Mackey
closed. Most of the time, the description of the Mackey topology is not easy,
but in the case of L∞ we can make it more precise. Without giving a
proof, we recall that on bounded sets of L∞, the so-called Mackey topology
coincides with the topology of convergence in probability. Checking whether
a bounded convex set is weak∗ closed is then reduced to checking whether
is it closed for the convergence in probability. More precisely we have the
following lemma, which seems to be due to Grothendieck, [74].

Lemma 4 Let A ⊆ L∞ be a convex set. Then A is closed for the σ(L∞, L1)
topology if and only if for each n, the set Wn = {ξ | ξ ∈ A, ‖ξ‖∞ ≤ n} is
closed with respect to convergence in probability.

Remark 2 We warn the reader that the above theorem allows to check
whether a set is weak∗−closed. It is of no help in constructing the closure of
a set.

We will use some more theorems that play a fundamental role in convex
analysis, these are the Bishop-Phelps theorem and James’s characterisation
of weakly compact sets (see Diestel’s book, [52], for a proof of these highly
non-trivial results).

Theorem 4 (Bishop-Phelps) Let B ⊂ E be a bounded closed convex set of a
Banach space E. The set {e∗ ∈ E∗ | e∗ attains its supremum on B} is norm
dense in E∗.

Theorem 5 (James) Let B ⊂ E be a bounded closed convex set of a Banach
space E. The set B is weakly compact if and only if each e∗ ∈ E∗ attains its
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supremum on B. More precisely for each e∗ ∈ E∗ there is b0 ∈ B such that
e∗(b0) = supb∈B e

∗(b).

Theorem 6 Suppose that (Ω,F ,P) is atomless. Take α ∈ R. The set {η |
0 ≤ η ≤ 1, EP[η] = α} is σ(L∞, L1)−compact and convex. Its extreme
points are all of the following form: η = 1B with P[B] = α. Consequently
the weak∗−closed convex hull of these indicators is the set {η | 0 ≤ η ≤
1, EP[η] = α}.

For an elegant proof of this result we refer to Lindenstrauss [100].

2.7 The Fenchel-Legendre transform

To define the Fenchel-Legendre transform we need two vector spaces that
are in duality (see [74]). Most of the time these spaces will be a Banach
space E with its topological dual E∗. Of course the special cases of E = R
or E = Rd are among the most important ones. If f : E → R ∪ {+∞} is a
convex function, that is lower semi continuous, then we define the Fenchel-
Legendre transform as

g(x∗) = sup
x∈E

(x ∗ (x)− f(x)) .

Of course g, being a supremum of a family of affine functionals (para-
metrised by x ∈ E), is then convex. If f has a nonempty domain (= {x |
f(x) <∞}), then g is not −∞. So g is a function

g : E∗ → R ∪ {+∞}.

If E∗ is equipped with say the weak∗ topology σ(E∗, E), then g is lower semi-
continuous as well. Of course it is a priori not excluded that g(x∗) = +∞
for all x∗. It is beyond the scope of this book to give a thorough study of
convex functions We refer to [118] and [112].

The following theorem is a consequence of the Hahn-Banach theorem.
We do not give the general proof, which can be found in [118]. In the special
case of E = L∞, E∗ = L1, we will give a proof adapted to the case of
monetary utility functions.

Theorem 7 Suppose that E,E∗ are in a separating duality. Suppose that
f : E → R ∪ {+∞} is convex and lower semi-continuous for the topology
σ(E,E∗). Suppose that f is not identically +∞, then the Fenchel-Legendre
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transform has the same properties g : E∗ → R ∪ {+∞}, is convex, lower
semi-continuous for the topology σ(E∗, E) and it is not identically +∞. Fur-
thermore the Fenchel-Legendre transform of g is f :

f(x) = sup
x∗∈E∗

(x∗(x)− g(x∗)) .

Definition 4 If f is a lower semi-continuous convex function f : E → R ∪
{+∞}, if f(x) <∞, then we define

∂xf = {x∗ ∈ E∗ | for all y ∈ E : f(y)− f(x) ≥ x∗(y − x)}.

∂xf is called the subgradient of f in the point x.

Remark 3 The subgradient generalizes the derivative of f . It is possible
that the subgradient is empty.

We have the following generalisation of Hölder’s inequality, the proof is al-
most straightforward.

Theorem 8 If g is the Fenchel-Legendre transform of a convex, lower semi-
continuous convex function f , then for all x∗ ∈ E∗, x ∈ E

x∗(x) ≤ f(x) + g(x∗),

with equality (in R) if and only if x∗ ∈ ∂xf . In that case we also have
x∗ ∈ ∂x∗g.

Exercise 1 For the following functions, the reader should calculate the
Fenchel-Legendre transform and the subgradient. Write down the inequality
of the preceding theorem.

1. E = R, 1 ≤ p <∞ and f(x) = 1
p |x|

p.

2. E = R, f(x) = x log(x) for x > 0, f(0) = 0 and f(x) = +∞ for x < 0.

3. E = Rd, C ⊂ Rd is a nonempty closed convex set and f is the “in-
dicator” of C defined as f(x) = 0 for x ∈ C and f(x) = +∞ for
x /∈ C.

4. E is a Banach space and f(x) = ‖x‖.

5. E is a Banach space, 1 ≤ p <∞ and f(x) = 1
p‖x‖

p.
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6. E is a Hilbert space and f(x) = 1
2‖x‖

2.

7. E is a Banach space, C ⊂ E is a nonempty closed convex set and f
is the “indicator” function of C defined as f(x) = 0 for x ∈ C and
f(x) = +∞ for x /∈ C.

8. E is a Banach space, E∗ its topological dual, C ⊂ E∗ is a nonempty
weak∗−closed convex set and f : E∗ → R ∪ {+∞}, is the “indicator”
function of C defined as f(x∗) = 0 for x∗ ∈ C and f(x∗) = +∞ for
x /∈ C. See also the remark at the end of this section.

Exercise 2 (Orlicz spaces and Young functions) Take a right contin-
uous, non-decreasing (on the continent called increasing) function φ : R+ →
R+, φ(0) = 0 and limx→+∞ φ(x) = +∞. Let ψ be the inverse of φ defined
as ψ(y) = inf{x | φ(x) > y} for y ≥ 0. ψ : R+ → R+ is right continuous,
non-decreasing and ψ(0) = 0. Also limx→+∞ ψ(x) = +∞. The function

f(x) = f(|x|) =
∫ |x|

0
φ(u) du is then convex, limx→∞

f(x)
|x| = +∞. The Leg-

endre transform of f , here denoted as g, is defined in a similar way as f ,

namely g(y) =
∫ |y|

0
ψ(v) dv. The subgradient of f at a point x > 0 is the

interval [limw→x,w<x φ(w), φ(x)] = [φ(x−), φ(x)]. Sometimes it is good to
suppose that φ(1) = ψ(1) = 1 which implies that f(1) + g(1) = 1. In this
exercise we will make this assumption. With f we can associate the Banach
space, Lf , of random variables (defined on a probability space (Ω,F ,P)):

{ξ | there is α > 0 with E[f(ξ/α)] <∞},

where ‖ξ‖Lf = ‖ξ‖f = inf{α | E[f(ξ/α)] ≤ f(1)}. If φ(1) = 1, then ‖a‖ = a
for all constants a. The spaces Lg and Lf form a dual pair. The inequality
of Theorem 8, page 25, is then

|E[ξη]| ≤ ‖ξ‖f ‖η‖g,

with equality if η ∈ ∂ξf . Here we need that f(1) + g(1) = 1. Essentially it
means that η = φ(ξ) or ξ = ψ(η).

Exercise 3 Explain why this is not completely correct.

The space
L(f) = {ξ | for all λ > 0 : E[f(λξ)] <∞}

can be strictly smaller than Lf . It is always true that Lg is the dual space
of L(f), but the dual space of Lf can be much bigger than Lg. We refer to
[93] for more information on Orlicz spaces and Young functions.



2.8. The transform of a concave function 27

Exercise 4 See what happens with φ(x) = xp−1 for 1 < p < ∞. See what
happens for φ(x) = exp(x)− 1.

Remark 4 Most of the time the norm is defined as inf{α | E[f(ξ/α)] ≤ 1}.
This has the disadvantage that the inequality in Theorem 8 above needs
additional constants and that ‖a‖f is not equal to a. Defining the norm as
we did and asking that φ(1) = ψ(1) = 1 makes live easier – but sometimes
calculations more difficult – and allows to see the Lp spaces as special cases.

Remark 5 Suppose that E is a Banach space, E∗ its topological dual and
E∗∗ its bidual (the dual of E∗ for the norm topology). If f : E∗ → R∪{+∞}
is a convex function with nonempty domain, we can have different topological
notions of lower semi-continuity. In case f is lsc for the weak∗ topology (i.e.
σ(E∗, E), we can look at the pair (E∗, E). In that case g is defined on E.
There is no guarantee that the subgradient is nonempty. In case f is lsc for
the weak topology σ(E∗, E∗∗), we apply the reasoning to the pair (E∗, E∗∗).
The function g is then defined on E∗∗. In that case the Hahn-Banach theorem
shows that ∂x∗f is nonempty if f(x) < ∞. For convex functions the lsc for
σ(E∗, E∗∗) is the same as for the norm topology on E∗. In the case of utility
functions, we will use the duality (L∞, L1) but sometimes we will need the
duality (L∞,ba). We promise and will try not to mix up the two dualities
and we ask the reader to be careful when extrapolating results.

2.8 The transform of a concave function

If h : E → R∪ {−∞} is a σ(E,E∗) upper semi continuous concave function,
the function f(x) = −h(−x) is a lsc convex function. We define the transform
of h as the transform of f . We know that this causes ambiguity when h is
affine but we hope that this confusion does not happen and if it happens,
that the reader will take care of it. We get

g(x∗) = sup
x∈E

(x∗(x)− f(x)) = sup
x∈E

(x∗(x) + h(−x)) = sup
x∈E

(−x∗(x) + h(x))

Exercise 5 Let h : E → R be a linear function h ∈ E∗. Calculate the
Fenchel-Legendre transform of h when seen as a convex function and with
the convention above when seen as a concave function. Do the same for an
affine function h.
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Chapter 3

Value at Risk

3.1 Definition and properties of Quantiles

The philosophy behind the concept of VaR is the following: fix a threshold
probability α (say 1%) and define a position as acceptable if and only if
the probability to go bankrupt is smaller than α. At first sight this seems
to be a good attitude towards risk. However as one can immediately see,
the probability alone is not enough to deal with risky situations. Besides
the probability of going below zero, the economic agent and especially a
supervising authority should also consider what a bankruptcy (if it occurs)
means. VaR does not distinguish between a bankruptcy of, say, 1 Euro or a
bankruptcy of 1 hundred million Euro. Anyway, VaR is still the most widely
(ab)used instrument to “control” risk and in order to study its properties
we need more precise definitions. We can understand that limited liability
plays a role for the shareholder, but the supervisor should be concerned with
the effect of a bankruptcy on Society. By only considering the probability of
ruin and not the amount of ruin, a free option is given to the management.

3.2 Definition of VaR

Definition 5 Given a position ξ and a number α ∈ [0, 1] we define

VaRα(ξ) := −qα(ξ)

and we call ξ VaR-acceptable if VaRα(ξ) ≤ 0 or, equivalently, if qα(ξ) ≥ 0.

We can think of the VaR as the amount of extra-capital that a firm needs
in order to reduce the probability of going bankrupt to α. A negative VaR
means that the firm would be able to give more money to its managers
or to give back some money to its shareholders or that it could change its
activities, e.g. it could accept more risk. We can also say that a position ξ,
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is VaRα-acceptable if P[ξ < 0] ≤ α. So we have two ways to use VaR. Either
we say that VaR is the amount of capital to be added in order to become
acceptable or we look at the quantile qα(ξ) as a quantity that describes how
good the position ξ is.

Remark 6 VaRα has the following properties:

1. ξ ≥ 0 =⇒ VaRα(ξ) ≤ 0,

2. ξ ≥ η =⇒ VaRα(ξ) ≤ VaRα(η),

3. VaRα(λξ) = λVaRα(ξ), ∀λ ≥ 0,

4. VaRα(ξ + k) = VaRα(ξ)− k, ∀k ∈ R.

In particular, we have VaRα(ξ + VaRα(ξ)) = 0. This simply means that if a
position requires some capital, then adding this amount of capital produces
a position that becomes acceptable.

Remark 7 In terms of the quantile qα we can rewrite the preceding as:

1. ξ ≥ 0 =⇒ qα(ξ) ≥ 0,

2. ξ ≥ η =⇒ qα(ξ) ≥ qα(η),

3. qα(λξ) = λqα(ξ), ∀λ ≥ 0,

4. qα(ξ+k) = qα(ξ)+k, ∀k ∈ R. In particular, we have qα(ξ−qα(ξ)) = 0.

3.3 Shortcomings

VaR has the nice property that it is defined on the whole space L0. Therefore
it can, in principle, be calculated for every random variable. The problem
with such a degree of generality is that VaRα necessarily violates convexity
properties. Indeed we know that functionals defined on L0 never have con-
vexity properties. This result going back to Nikodym ([107]), is the mathe-
matical reason why VaR leads to strange situations. In [3] we discussed some
of these issues and warned for the lack of convexity. As an example, consider
the case of a bank which has given a $ 100 loan to a client whose default
probability is equal to 0.008. If α = 0.01, it is easy to see that VaRα(ξ) ≤ 0.
Consider now another bank which has given two loans of $ 50 each and for
both, the default probability is equal to 0.008. In case the default of the
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two loans are independent, VaRα(ξ) is $ 50. Hence we have that diversifi-
cation, which is commonly considered as a way to reduce risk, can lead to
an increase of VaR. Therefore we argue that VaR is not a good measure of
risk. This is the main reason why we are interested in studying other types
of risk measures. Contrary to what is believed, examples such as the credit
example mentioned, not only arise in theory. They also arise in practice and
in a more complicated form, as was presented by Kalkbrenner et al, [87].

Using VaR could even lead to risk appetite (as shown by Leippold, Trojani
and Vanini [101]).

Another problem with VaR is that it completely neglects what happens
below the threshold. The consequence is that VaR neglects problems com-
ing from avalanche effects or domino effects. For instance, we may have a
(tractable) model where the default probability of an agent depends on an
economic factor. For some agents the low default probability will remain low
when the economy is in bad shape but for others the conditional probability
can go up (and even become one) if the economy is in a bad shape. If the
economy remains good, nothing serious happens. In case the economy turns
the wrong side (say with a probability below the VaR-threshold), a very sig-
nificant number of agents will go bankrupt, resulting in an extremely high
loss. VaR will not detect it since such a bad development got a probability
below the threshold. Selling such loans is then encouraged when VaR is used
as a risk measure. We did not and did not even intend to use the politically
loaded expression subprime.

Exercise 6 Build a model based on the previous reasoning.

The calculation of VaR requires the knowledge of the distribution of the
profit and loss function. This is true for most risk measures. The calculation
of this distribution requires a good model for the dependencies between the
credit takers. One cannot take them independent but a complicated depen-
dency leads to impossible calculations. One way out – different from the
one sketched above – is then to use Gaussian copulas. These lead to cal-
culations involving transformations of normally distributed variables. The
problem is that these dependencies have the deficiency that the global law of
the losses is completely determined by the correlation between two agents.
This means that once we know the correlation between each pair of agents,
one can calculate the law of the number of defaults. This again neglects the
possibility of avalanches. The controlling authorities who are concerned by
such developments, should not use VaR and should not allow to use VaR,
see also [82]. Instead of Gaussian copulas there are many alternatives, see
e.g. Schmock, [77].
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Chapter 4

Coherent and Concave Utility

Functions

4.1 Monetary Utility Functions

Before giving precise definitions, let us recall some terminology from decision
theory. We start by recalling that a utility function is simply a function
u : L∞ → R. This is of course a much too general concept. We need to
restrict the definition by adding additional properties.

Definition 6 A utility function u : L∞ → R is quasi-concave if for each α
the set {ξ | u(ξ) ≥ α} is a convex set.

Quasi-concavity is seen as a form of risk-averseness. The combination ξ+η
2

of two payoffs (i.e. random variables ξ and η) for which the economic agent
is indifferent (i.e. u(ξ) = u(η)), is always better than each of the individual
payoffs. This is also the mathematical way of saying that diversification is
considered as better. The utility function is upper semi-continuous if the
previously defined set is closed for each α, of course we need to mention the
topology. We will distinguish between two kinds of topologies on L∞, the
topologies compatible with the duality (L∞, L1) (e.g. weak∗ or σ(L∞, L1),
Mackey or τ(L∞, L1), compact convergence or γ(L∞, L1)) and the norm
topology defined by ‖ ‖∞. The utility function is called (weakly) mono-
tone if for each pair of bounded random variables ξ ≥ η a.s., we have that
u(ξ) ≥ u(η). We remark that our utility functions are defined on spaces
of random variables (with identification of random variables that are equal
almost surely). In some chapters we will study utility functions that are
defined on bigger spaces than L∞. Sometimes the utility functions will take
values in R ∪ {−∞}. But we will avoid utility functions that take the value
+∞. The latter we consider as unrealistic since it would mean that a future
payoff that has a utility equal to +∞ is better than any other claim, it can,
from a utility viewpoint, not be improved. A claim that is given a utility
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equal to −∞ can be part of a realistic model. Indeed such a claim would
be highly undesirable, e.g. a claim that cannot be insured because it is too
risky.

Definition 7 We say that a utility function u : L∞ → R is monetary if
u(0) = 0 and if for each ξ ∈ L∞ and each k ∈ R we have

u(ξ + k) = u(ξ) + k.

Remark 8 The term “monetary” was introduced by Föllmer and Schied,
[68]. Previously the property was called money based utility function. In
[3] and [4] it was called translation invariance. The idea is clear: the utility
is measured in money units. Therefore it is numéraire dependent. If we
assume, as a normalisation, that u(0) = 0, then on the one-dimensional
space of constant random variables, the utility function is just the identity,
u(α) = α. This is in contrast to the von Neumann-Morgenstern utility
functions. In the case of monetary utility functions the risk averseness comes
from the concavity property of the function when seen as a functional on the
whole space L∞. In the case of von Neumann-Morgenstern functions, the
concavity on the space L∞ is inherited from the concavity of a function
on the real line. Here we start with utility functions defined on the space
of bounded random variables and not with utility functions defined on the
set of real numbers. The basic concepts are the random variables and not
the lotteries. We will not discuss the differences with the von Neumann-
Morgenstern theory or with its generalisations due to Gilboa-Schmeidler, [75]
and Machina and Schmeidler, [104]The knowledge of the monetary utility
function on the real line does not give any information on the utility for
arbitrary random variables.

Exercise 7 Show that if k ∈ R, then u(k) = k.

Exercise 8 A monetary utility function, u, is characterised by the preferred
set A of 0. Prove that A = {ξ | u(ξ) ≥ 0} and u(ξ) = sup{α ∈ R | ξ−α ∈ A}
and show that the sup is a maximum.

Example 2 Suppose that v is a utility function defined on L∞. Suppose
that v(0) = 0 and suppose also that for every ξ and every ε > 0 we have
v(ξ + ε) > v(ξ). With v we associate the monetary utility function that
has the same preferred set to 0. More precisely we define u(ξ) = sup{α |
v(ξ−α) ≥ 0}. u(ξ) is defined as an implicit function, namely v(ξ−u(ξ)) = 0.
This procedure is not to be confused with the certainty equivalent. The latter
is defined via the equation v(ξ) = v(α).
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Example 3 We can use the preceding procedure when v is a von Neumann-
Morgenstern utility function. Let us start with a concave, strictly increasing
function v : R → R. Let us suppose that v(0) = 0. The utility function u
defined on L∞ is defined through the relation E[v(ξ− u(ξ))] = 0. The set of
acceptable elements is A = {ξ | E[v(ξ)] ≥ 0}. It is easily seen that the set A
is convex. The function u is not of von Neumann-Morgenstern type.

Example 4 Here we analyse in more detail the preceding example for the
exponential utility function vα(x) = 1 − e−αx where α > 0. The function
uα : L∞ → R is then defined as

uα(ξ) = − 1

α
logE[e−αξ].

This function is also used as a premium principle, see Bühlmann, [25] and
Gerber, [73]. Sometimes it is called the cumulant principle. For α → 0,
the utility function uα(ξ) tends to u0(ξ) = E[ξ], whereas for α → +∞, the
function uα(ξ) tends to u∞(ξ) = ess.inf ξ (this is not a trivial exercise). This
gives a clear indication why we call the parameter α the “risk-averseness” of
the agent. The acceptable set is Aα = {ξ | E[e−αx] ≤ 1} = {−η | E[eαη] ≤
1}. For the case α = 0 we put A0 = {ξ | E[ξ] ≥ 0} whereas with the case
α = +∞ could be assigned the set A∞ = {ξ | ξ ≥ 0 a.s. }. The former is
too liberal, the latter too restrictive or too severe. One can see that for all
0 ≤ α ≤ +∞, the set Aα is convex. In order to prepare for duality theory,
we will calculate for any Q� P the quantity

cα(Q) = sup{EQ[−ξ] | ξ ∈ Aα} = sup{EQ[η] | E[eαη] ≤ 1}.

We will use the following well known inequality proved using elementary
calculus or by solving the exercises in chapter 2. For x ≥ 0 and y ∈ R we
have

xy ≤ x log x− x+ ey.

In the case x > 0 we have equality if and only x = ey. This inequality
shows that E[eαη] ≤ 1 implies EQ[η] ≤ E

[
dQ
dP log

(
dQ
dP
)]

. The equality could

be achieved by η = 1
α log dQ

dP but unfortunately this random variable is not
always in L∞. So we need some truncation argument (left as an exercise) to
come to the equality (0 < α <∞):

cα(Q) =
1

α
E
[
dQ
dP

log

(
dQ
dP

)]
.
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Let us observe that cα(P) = 0 meaning that ξ ∈ Aα implies E[ξ] ≥ 0. For
α → 0 we get that cα(P) = 0 but cα(Q) tends to +∞ for Q 6= P. This
limit is indeed the function c0(Q). For α → +∞ we must be more careful.
In this case we have c∞(Q) = 0 for all Q � P. However cα(Q) tends only
to 0 for Q � P with E

[
dQ
dP log

(
dQ
dP
)]
< ∞. This shows that convergence of

utility functions and convergence of the penalty function are related but the
relation is not always that easy.

The analysis can be carried a little bit further. We restrict it to the
case 0 < α < ∞. From the definition of cα(Q) it follows that uα(ξ) ≤
infQ (EQ[ξ] + cα(Q)). If we take ξ such that uα(ξ) = 0, then dQ = e−αξ dP
defines a probability measure and we get EQ[ξ] + cα(Q) = 0 = uα(ξ). So we
proved that

uα(ξ) = inf
Q

(EQ[ξ] + cα(Q)) .

This equality is also a straightforward consequence of general duality argu-
ments, [68]. We invite the reader to do the same analysis for a more general
von Neumann-Morgenstern utility function v. Of course there is no hope to
find closed form formulas.

Example 5 For this example we assume that the probability space (Ω,F ,P)
is atomless. Let us take the von Neumann-Morgenstern utility function de-
fined on R as: v(x) = βx for x ≤ 0 and v(x) = αx for x ≥ 0. In order to
be concave we suppose that 0 < α ≤ β where the case of equality leads to a
trivial situation. The acceptability set is:

A = {ξ | E[αξ+] ≥ E[βξ−]}.

The acceptability set does not change if we multiply v by a scalar, so we
can, without loss of generality, suppose that α = 1 ≤ β. The acceptable
set is a (convex) cone and this implies that u(ξ) is a positively homegeneous
function, i.e. for λ ≥ 0 we have u(λξ) = λu(ξ). The function c therefore
only takes two values: 0 and +∞. We claim that the set of scenarios

{Q | EQ[ξ] ≥ 0 for all ξ ∈ A} = {Q | c(Q) = 0}

is given by

S =

{
Q | a ≤ dQ

dP
≤ βa for some 0 < a

}
.

Indeed if Q ∈ S and ξ ∈ A, we have EQ[ξ] ≥ E[ξ+a−ξ−aβ] ≥ aE[ξ+−βξ−] ≥
0. Therefore c(Q) = 0. Conversely if Q /∈ S we can find ε > 0 as well as
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two sets A and B such that: A ⊂ {dQdP ≤ a}, B ⊂ {dQdP ≥ b}, b/a ≥ β + ε,
B ∩ A = ∅ and 0 < P[A] = P[B]/β. Take now ξ = 1A − 1B . We get
that E[ξ+ − βξ−] = 0 and hence λξ ∈ A for all λ ≥ 0. But EQ[ξ] ≤
aP[A] − bP[B] ≤ aP[A] − (β + ε)aP[A]/β ≤ −εaP[A]/β < 0. Consequently
we have by homogeneity that c(Q) = +∞.

All these utility functions are concave functions. This is no surprise since
we have

Proposition 5 If u : L∞ → R is a quasi-concave, monetary utility function,
then u is concave.

Proof. Let ξ, η be elements in L∞, and let α = u(ξ), β = u(η). Then since
u is monetary, u(ξ − α) = 0 = u(η − β). The quasi-concavity then implies

that u
(
ξ+η

2 −
α+β

2

)
≥ 0. Since u is monetary we get that

u

(
ξ + η

2

)
= u

(
ξ + η

2
− α+ β

2

)
+
α+ β

2
≥ α+ β

2
.

2

Corollary 1 If u is a monetary utility function with preferred set to zero
A, then u is concave if and only if the set A is convex.

Proposition 6 The concave monetary utility function u : L∞ → R is weakly
monotone (i.e. satisfies ξ ≥ η implies u(ξ) ≥ u(η)) if and only if the accept-
able set A contains L∞+ , in other words ξ ≥ 0 implies u(ξ) ≥ 0. In this case
we have the following properties

1. a ≤ ξ ≤ b implies a ≤ u(ξ) ≤ b,

2. u(ξ − u(ξ)) = 0

3. |u(ξ)− u(η)| ≤ ‖ξ − η‖∞.

Proof. The equivalence is not difficult but is tricky. If u is weakly monotone
then clearly L∞+ ⊂ A = {ξ | u(ξ) ≥ 0}. Conversely suppose that ξ ≤ η and
suppose that u(ξ) = 0. We must show that u(η) ≥ 0. Because u is monetary
we only have to deal with the case u(ξ) = 0. Take ε > 0 and take 1 ≤ µ ∈ R
so that µ(η − ξ + ε) + ξ ≥ 0. This is certainly possible and it implies that
µ(η−ξ+ε)+ξ ∈ A. Now take λ = 1/µ ≤ 1 and take the convex combination
λ(ξ+µ(η− ξ+ ε) + (1− λ)ξ. This convex combination is equal to η+ ε and
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it belongs to A since each component belongs to A. Hence by the monetary
property u(η) ≥ −ε. Since ε was arbitrary we get u(η) ≥ 0. The first
statement immediately follows from monotonocity, the second property is
true because u is monetary. The third property is seen as follows. Clearly
ξ ≤ η + ‖ξ − η‖∞ and therefore u(ξ) ≤ u(η + ‖ξ − η‖∞) = u(η) + ‖ξ − η‖∞.
The other inequality is obtained by interchanging the role of ξ and η. 2

Corollary 2 Under the hypothesis of the proposition we have that u is Lip-
schitz continuous and A is a norm closed convex subset of L∞.

Remark 9 From now on we will always assume that concave monetary util-
ity functions are also weakly monotone.

Definition 8 The utility function u : L∞ → R is called coherent if it satis-
fies the following properties

1. u(0) = 0, u(ξ) ≥ 0 for ξ ≥ 0,

2. u(ξ + η) ≥ u(ξ) + u(η),

3. for λ ∈ R, λ ≥ 0 we have u(λξ) = λu(ξ),

4. for α ∈ R we have u(ξ+α) = u(ξ) +α, this means that u is monetary.

We remark that the above properties 2 and 3, imply that a coherent
utility function is necessarily concave. The difference between coherence
and concavity is the homogeneity. Concave monetary utility functions were
studied in [?], Coherent utility functions in [3],[4],[39],[40]. We will show
later how to reduce the more general concave monetary utility functions to
the case of coherent utility functions.

Definition 9 A coherent risk measure is a function ρ : L∞ −→ R such that

1. ξ ≥ 0 =⇒ ρ(ξ) ≤ 0,

2. ρ(λξ) = λρ(ξ), ∀λ ≥ 0,

3. ρ(ξ + k) = ρ(ξ)− k, ∀k ∈ R,

4. ρ(ξ + η) ≤ ρ(ξ) + ρ(η).

As easily seen, ρ is a coherent risk measure if and only if u = −ρ is a coherent
utility function. Point 4 (sub-additivity) is the one which is not satisfied by
VaR, even if it seems to be a reasonable assumption. In fact, subadditivity of



4.2. Characterisation of coherent risk measures 39

a risk measure is a mathematical way to say that diversification leads to less
risk. See [3] and [4] for a discussion of the axiomatics. One interpretation of
a risk measure is the following. If the future financial position is described
by the random variable ξ, then ρ(ξ) is the amount of capital (positive or
negative) that has to be added in order to become acceptable. A position ξ is
acceptable if it does not require extra capital or in terms of utility functions:
if the utility u(ξ) ≥ 0. Although the monetary property is criticised by many
economists, it is a natural property when dealing with capital requirement.

4.2 Characterisation of coherent risk measures

Because coherent utility functions are monetary, the utility function is com-
pletely described by the set of random variables that are preferred to zero.
The following theorem describes how to construct examples of coherent util-
ity functions. We first recall that ba is the dual space of the Banach space
L∞. The space L∞ itself is the dual of L1 but ba is much bigger than L1.

Theorem 9 With each coherent utility function u, we can associate a con-
vex, σ(ba, L∞)−compact set, Sba of normalised, finitely additive, nonnega-
tive measures (also called finitely additive probability measures), such that

u(ξ) = inf{µ(ξ) | µ ∈ Sba} = min{µ(ξ) | µ ∈ Sba}.

Conversely a set of finitely additive probability measures Sba defines via the
relation u(ξ) = inf{µ(ξ) | µ ∈ Sba}, a coherent utility function.

Proof. This is standard duality theory. The polar of the normed-closed
cone A = {ξ | u(ξ) ≥ 0} is the σ(ba, L∞)−closed cone Ao = {µ | µ(ξ) ≥
0 for all ξ ∈ A}. Since A ⊃ L∞+ we get that Ao only contains nonnegative
measures. Therefore Ao is generated by its “base” Sba = {µ | µ(Ω) =
1 and µ ∈ Ao}. The bipolar theorem says that A = (Ao)o. In other words
ξ ∈ A if and only if for all µ ∈ Sba we have µ(ξ) ≥ 0. The relation
u(ξ) = sup{a | ξ − a ∈ A} can therefore be rewritten as:

u(ξ) = inf{µ(ξ) | µ ∈ Sba}.

2

Remark 10 The set Sba is uniquely defined if we require it to be weak∗

compact and convex. There is a one-to-one correspondence between coherent
utility functions and non-empty weak∗ compact convex subsets of Pba. The
set Sba will always denote a weak∗ compact and convex set.
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The previous theorem allows us to give examples of coherent utility functions.
By choosing the set Sba in a special way we get interesting examples. For
a discussion of such examples, we prefer to wait since the more appealing
examples are given by sets which are subsets of L1 and not just subsets of
ba.

4.3 The Fatou Property

To make things more constructive (in the analytic sense), we add a continu-
ity axiom to the definition of a utility function.

Definition 10 (The Fatou property.) We say that a utility function u : L∞ →
R satisfies the Fatou property – we will say that u is Fatou – if for each uni-
formly bounded sequence (ξn)n≥1, supn ‖ξn‖∞ <∞,

ξn
P→ ξ implies u(ξ) ≥ lim supu(ξn)

It is possible to show (in a way similar as in the proof of Fatou’s lemma)
that, at least for monotone utility functions, the Fatou property is equivalent
to a monotonicity property:

sup
n
‖ξn‖∞ <∞, ξn ↓ ξ a.s. implies u(ξn) ↓ u(ξ).

For completeness, let us sketch the details. Let (ξn)n≥1, supn ‖ξn‖∞ < ∞
be a sequence such that ξn → ξ a.s.. Then ηn = supk≥n ξk decreases to ξ.
The property above implies that u(ηn) tends to u(ξ) and since ηn ≥ ξn, we
get that lim supn u(ξn) ≤ limn u(ηn) = u(ξ) as desired.

Exercise 9 Show that the reduction to a.s. convergent subsequences was
allowed.

We can strengthen the previous monotonicity result in the following way.

Proposition 7 For a coherent utility function u, the Fatou property is equiv-
alent to the following statement: for each ξ ∈ L∞ and each sequence of de-
creasing sets An ∈ F , with limn P[An] = 0, we have that u(ξ+ 1An)→ u(ξ).

Proof. Let 1 ≥ ξn ≥ ξ ≥ 0 be a decreasing sequence of random variables
such that ξn ↓ ξ a.s.. Take ε > 0 and let An = {ξn > ξ + ε}. Clearly the
sequence An is decreasing and P[An] ↓ 0. Since obviously ξn ≤ ξ + ε + 1An
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we have that u(ξn) ≤ u(ξ + 1An) + ε and therefore limu(ξn) ≤ u(ξ) + ε.
Since this is true for every ε > 0, the Fatou property follows. 2

Remark 11 We warn the reader that it is not sufficient to require the mono-
tonicity only for the case ξn ↓ 0, i.e. for ξ = 0. This problem will be investi-
gated after the characterisation theorem for Fatou coherent utility functions.

Definition 11 We say that property (WC) is satisfied if for sequences of
random variables

sup ‖ξn‖∞ <∞, ξn ↑ 0 implies u(ξn) ↑ 0.

Proposition 8 Property (WC) implies the Fatou property.

Proof. Let −1 ≤ η ≤ ηn ≤ 1, ηn ↓ η a.s., then u(η) ≥ u(ηn) + u(η − ηn)
implies u(η) ≥ lim supu(ηn) + limu(η − ηn). By property (WC) the second
term tends to zero and the Fatou property holds. 2

Since the superadditivity inequality (used in the proof of the proposition),
does not hold in the other direction, we get that property (WC) might be
strictly stronger than the Fatou property (and as will be shown later, this is
indeed the case).

4.4 Some Examples

Example 6 Let us take a family S of probability measures Q, all absolutely
continuous with respect to P. We identify Q and dQ

dP , the Radon-Nikodym
derivative of Q with respect to P. We can therefore identify S with a subset
of L1(Ω,F ,P). If we define

uS(ξ) = inf{EQ[ξ] | Q ∈ S}

then this uS is a coherent utility function with the Fatou property and with
acceptance cone

A = {ξ | for all Q ∈ S : EQ[ξ] ≥ 0}.

Later we will show that every coherent Fatou utility function has this
form.
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Proof. By Theorem 9 only the Fatou property needs to be verified. If

ξn
P→ ξ and ‖ξn‖∞ ≤ 1 then for every Q ∈ S we have:

EQ[ξ] ≥ lim sup
n

EQ[ξn] ≥ lim sup
n

uS(ξn)

and therefore uS(ξ) ≥ lim supn uS(ξn). 2

In working with a family S, we can replace it with its convex L1-closed hull,
so that, from now on, we will take S to be convex and L1-closed.

Example 7 We consider S = {P}. In this case, uS(ξ) = EP[ξ]. A position
ξ is then acceptable iff its average EP[ξ] is nonnegative. Clearly, such a risk
attitude is too tolerant.

Example 8 Let us consider S = {Q | probability on (Ω,F) ,Q � P} = P.
In this case uS(ξ) = ess.inf(ξ) and uS(ξ) ≥ 0 if and only if ξ ≥ 0 a.s. . Hence
a position is acceptable if and only if it is nonnegative a.s. . The family S
is too large and therefore uS is too risk averse. Anyway this uS provides
an example of a coherent risk measure that satisfies the Fatou property but
does not verify property (WC). If we consider ξn = −e−nx defined on [0, 1]
with the Borel σ-algebra and the Lebesgue measure, we have ξn ↑ 0, almost
surely, while ess.inf(ξn) = −1.

Example 9 (TailVaR) Let us now see what happens for the convex closed
set Sk = {Q | dQdP ≤ k}. Obviously we only need to investigate the case

k > 1; indeed, dQ
dP ≤ 1 implies that Q = P, i.e. S1 reduces to the singleton

{P}. To avoid technicalities we first deal with the case where the law of ξ
is continuous, this means that the distribution function F(x) = P[ξ ≤ x] is
continuous. The case where F might have jumps is done at the end.

Theorem 10 If ξ has a continuous distribution function and α = 1/k, then

uSk(ξ) = EP[ξ | ξ ≤ qα(ξ)] ≤ qα(ξ) = −VaRα(ξ).

Proof. Since ξ has a continuous distribution, we get P[ξ ≤ qα(ξ)] = α =
1/k. Define now Q0 such that dQ0

dP = k1A with A = {ξ ≤ qα(ξ)}. Since
Q0 ∈ Sk and EQ0

[ξ] = EP[ξ | A] we have uSk(ξ) ≤ EP[ξ | ξ ≤ qα(ξ)]. By
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considering now an arbitrary Q ∈ Sk, we have

EQ[ξ]− EQ0 [ξ] = EQ[ξ − qα]− EQ0 [ξ − qα]

= E
[
(ξ − qα)

(
dQ
dP
− dQ0

dP

)]
=

∫
A

(ξ − qα)

(
dQ
dP
− k
)
dP +

∫
Ac

(ξ − qα)
dQ
dP

dP

≥ 0,

where the last inequality follows because both terms are nonnegative. This
ends the proof. 2

In Chapter 8 we will give a relation between this utility function and
Value at Risk.

In case the distribution of ξ has a discontinuity at qα, the probability
measure Q0 such that dQ0

dP = k1{ξ<qα} + β1{ξ=qα} (with a suitably chosen
β, 0 ≤ β ≤ 1) does the job. It implies that

uSk(ξ) =
1

α

(∫
ξ<qα

ξ dP + (α− P[ξ < qα]) qα

)
.

Using the increasing rearrangement of ξ this can also be written as

uSk(ξ) =

∫ α

0

qu(ξ) du.

A similar calculation as above shows that for general ξ and for {ξ < qα} ⊂
A ⊂ {ξ ≤ qα} with P[A] = α = 1/k we have that uSk(ξ) = k

∫
A
ξ dP. But

the calculation shows something more. In case P[ξ ≤ qα] = α, the set A
is uniquely defined and we have for Q 6= Q0,Q ∈ Sk that the inequality∫
ξ dQ0 <

∫
ξ dQ is strict! Indeed on Ac we have that ξ > qα and hence

equality would imply that Q[Ac] = 0. Together with dQ
dP ≤ k this gives

dQ
dP = k1A. The measure Q0 is the unique element in Sk that gives the
quantity uSk(ξ). In case we have P[ξ < qα] = α we get the same result:
the measure Q0 defined as dQ0

dP = k1A with A = {ξ < qα} is the unique
measure for which Q0[ξ] = uSk(ξ). In these cases we say that Q0 is exposed
and that ξ is an exposing functional. This has consequences regarding the
differentiability of u.

In case P[ξ ≤ qα] > α > P[ξ < qα] we have more elements in Sk where
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the infimum is attained. The set where the minimum is attained is given by{
k1{ξ<qα} + h1{ξ=qα} | h ∈ L

∞; 0 ≤ h ≤ k;

∫
{ξ=qα}

h = α− P[ξ < qα]

}
.

In the case where the space is atomless we can do more. The extreme points
of this set are the elements where h = k1B where B ⊂ {ξ = qα} and
P[B] = α− P[ξ < qα]. In case P[ξ ≤ qα] > α > P[ξ < qα] there are infinitely
many choices for the set B.

Example 10 (taken from [40]). This example (with an interpretation in
Credit Risk) shows a bad performance of VaR against uSk . Let us imagine
there is a bank which lends $1 to 150 clients. The clients are supposed
to be independent with the same default probability p of 1.2%. For each
client i let us put Zi = 0 if he/she does not default and Zi = −1 if he/she
defaults. So we suppose (Zi)i are independent Bernoulli random variables
with P[Zi = −1] = 1.2%. The number Z =

∑
i Zi represents the total

number of defaults and therefore the bank’s losses. It has the binomial
distribution 0 ≤ k ≤ 150:

P[Z = −k] =

(
150
k

)
pk(1− p)150−k .

With α = 1% we have V aRα = 5 and tail expectation u1/α(Z) = −6.287.
If we modify the example and suppose that the clients are dependent,

things change. A simple way of obtaining a well-behaved dependence struc-
ture is by replacing P with a new probability measure Q defined as:

dQ = c eεZ
2

dP ,

where Z and P are the same as before, ε is positive and c is a normalising
constant. Now Q[Zi = −1] increases with ε: if we take ε so that Q[Z =
−1] = 1.2% (taking p = 1% and ε = 0.03029314), we obtain V aRα = 6 and
tail expectation u1/α(Z) = −14.5.

We notice that VaR is not able to detect the difference between the two
cases, which are better differentiated by TailVaR.

This can be explained as follows. VaR only looks at a quantile, it does not
tell us how big the losses are. However, TailVaR takes an average over the
worst cases and therefore takes into account the tail distribution of the losses.
The probability Q allows to introduce loans whose defaults are dependent
on a common economic factor. It reflects the situation that if a substantial
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percentage defaults, the conditional probability that others default as well,
is very high. For other dependence structures and the relation with copula
theory and Dirichlet distributions we refer to work of Schmock et al, [77].

Example 11 We could also consider the following family (where k > 1 and
p > 1):

Sp,k =

{
Q |

∥∥∥∥dQdP
∥∥∥∥
p

≤ k

}
The following theorem holds:

Theorem 11 There exists a constant c = 1 ∧ (k − 1) such that for all ξ ∈
L∞, ξ ≥ 0 we have:

c‖ξ‖q ≤ −uSp,k(−ξ) ≤ k‖ξ‖q

where 1
p + 1

q = 1.

Proof. This proof comes from [39]. For each h ∈ Sp,k we have

E[ξh] ≤ ‖h‖p ‖ξ‖q ≤ k‖ξ‖q.

This shows that

−uSp,k(−ξ) = sup
h∈Sp,k

E[hξ] ≤ k‖ξ‖q.

The inequality on the left is more difficult. We suppose that ξ is not iden-
tically zero, since otherwise there is nothing to prove. We then define

η = ξq−1

‖ξ‖q−1
q

. As well known and easily checked, we have ‖η‖p = 1. The

random variable η satisfies E[η] ≤ 1 and E[ξη] = ‖ξ‖q. We now distinguish
two cases:

Case 1: (1 − E[η]) ≤ k − 1. In this case we put h = η + 1 − E[η].
Clearly E[h] = 1 and ‖h‖p ≤ ‖η‖p + 1− E[η] ≤ 1 + k − 1 = k. We also have
E[hξ] ≥ E[ηξ] = ‖ξ‖q.

Case 2: (1− E[η]) ≥ k − 1. (This implies that k ≤ 2). We now take

h = αη + 1− αE[η] where α =
k − 1

1− E[η]
.

Clearly h ≥ 0, E[h] = 1 and ‖h‖p ≤ α+ 1− (k − 1)E[η]/(1− E[η]) ≤ k. But
also E[ξh] ≥ α‖ξ‖q ≥ (k − 1)‖ξ‖q, since 1− E[η] ≤ 1. 2
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Remark 12 If k tends to 1, c tends to 0 and the family Sp,k shrinks to {P}.
That c tends to zero has to be expected since the Lp and the L1 norms are
not equivalent.

Remark 13 Actually, if p = q = 2 we have:∥∥∥∥dQdP − 1

∥∥∥∥2

2

= E

[(
dQ
dP

)2
]
− 1 ≤ k2 − 1

so that the densities go to 1 in L2 as k tends to 1. If p ≥ 2 we can use
the same argument (remember that ‖.‖2 ≤ ‖.‖p) and if p < 2, Clarkson’s
inequality for Lp-norms must be used.

Example 12 This example is related to work of T. Fischer, see [66]. He
suggested, among other constructions, the following coherent utility function.
For ξ ∈ L∞ we define

u(ξ) = E[ξ]− α‖(ξ − E[ξ])−‖p.

The reader can verify that for 0 ≤ α ≤ 1 and 1 ≤ p ≤ ∞, the above formula
defines a coherent utility function. This measure can also be found using a
set of probability measures. So let

S = {1 + α(g − E[g]) | g ≥ 0; ‖g‖q ≤ 1} .

Here of course q = p/(p−1), with the usual interpretation if p = 1,∞. Clearly
the set S is a convex L1−closed set of functions h that have expectation equal
to 1. We still have to check the positivity of such functions. This is easy
since, by g ≥ 0 and α ∈ [0, 1], we have

1 + α(g − E[g]) ≥ 1− αE[g] ≥ 1− ‖g‖q ≥ 0.

We will check that
u(ξ) = inf {E[h(ξ)] | h ∈ S} .

To see this, take h = 1 + α(g − E[g]) where g = ((ξ−E[ξ])−)(p−1)

‖(ξ−E[ξ])−‖(p−1)
p

. This is the

standard way to obtain the p−norm by integrating against a function with
q−norm equal to 1. In case p = 1 and therefore q = ∞, we take for g the
indicator function of the set where ξ < E[ξ]. For this choice of g and h we
get:

E[h ξ] = E[ξ] + E[h (ξ − E[ξ])]

= E[ξ] + E[(h− 1− αE[g])(ξ − E[ξ])] = E[ξ]− α ‖(ξ − E[ξ])−‖p.
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For an arbitrary 1 + α(g − E[g]) = h ∈ S we have, by Hölder’s inequality:

E[h ξ] ≥ E[ξ]− ‖h− 1− αE[g]‖q ‖(ξ − E[ξ])−‖p ≥ E[ξ]− α ‖(ξ − E[ξ])−‖p.

4.5 Characterisation of coherent utility func-
tions with the Fatou property

Let u be a coherent utility function, u : L∞ −→ R and let us assume that
the Fatou property holds. Let A be the set of the acceptable positions, i.e.
A = {ξ | u(ξ) ≥ 0}. We note that A is a convex cone. The next theorem
focuses on the relations between u and A:

Theorem 12 If u satisfies the Fatou property, then A is closed for the
weak* topology σ(L∞, L1). Conversely, if A is a convex cone, closed in the
σ(L∞, L1) topology and containing L∞+ , then ũ(ξ) defined as ũ(ξ) = sup {α |
ξ − α ∈ A} is a coherent utility function with the Fatou property.

Moreover if u is a coherent utility function satisfying the Fatou property,
there is a convex closed set of probability measures S ⊂ L1 such that u(ξ) =
infQ∈S EQ[ξ].

Proof. Let us call W the intersection of A with the unit ball of L∞. By the
Krein-Smulian theorem, if W is closed in the weak* topology, then A is also

closed. We now take a sequence (ξn)n ∈ W such that ξn
P−→ ξ. But then

u(ξ) ≥ lim supu(ξn) ≥ 0 hence ξ ∈W , that is W is closed under convergence
in probability. In order to show the representation formula, we consider the
following:

Ao = {f | f ∈ L1 and ∀ξ ∈ A : E[ξf ] ≥ 0}
which is, by definition, the polar cone of A, taken in L1. Ao is L1 closed
and (because A ⊇ L∞+ ) it is contained in L1

+. We define S to be the closed
convex set {f ∈ Ao |E[f ] = 1}, which is, by the way, a basis of the cone Ao.
This means that Ao = ∪λ≥0λS. The bipolar theorem guarantees that:

A = {ξ | ∀f ∈ Ao : E[ξf ] ≥ 0}
= {ξ | ∀f ∈ S : E[ξf ] ≥ 0}

and therefore:

u(ξ) = sup {α | ξ − α ∈ A}
= sup {α | ∀f ∈ S : E[(ξ − α)f ] ≥ 0}
= sup {α | ∀f ∈ S : E[(ξ)f ] ≥ α}
= inf {E[ξ f ] | f ∈ S}
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2

Exercise 10 Suppose that u is a coherent utility function defined on L∞.
The function u is upper semi continuous for the weak∗ topology σ(L∞, L1) if
and only if it satisfies the Fatou property. In that case the Fenchel-Legendre
transform of u is the indicator function of the set S of Theorem 12.

Remark 14 We have in fact established a one-to-one correspondence be-
tween:
(a) convex closed sets S consisting of probabilities which are absolutely con-
tinuous with respect to P,
(b) σ(L∞, L1)-closed convex cones A containing L∞+ ,
(c) coherent utility functions u with the Fatou property.

4.6 The relation between S and Sba.

For coherent utility functions with the Fatou property we now have two
representations. One with finitely additive measures, the other one with
σ−additive measures. There must be a relation between these two represen-
tations. This relation is described in the following proposition.

Proposition 9 Let u : L∞ → R be a coherent utility function with the Fatou
property. Let S be the closed convex subset of L1 such that u(ξ) = inf{E[f ξ] |
f ∈ S}. Let u also be represented by the weak∗ closed convex set Sba of ba.
Then S is σ(ba, L∞) dense in Sba.

Proof. This is a trivial consequence of the Hahn-Banach theorem. Indeed
we have, for each ξ ∈ L∞:

inf{µ(ξ) | µ ∈ Sba} = u(ξ) = inf{E[f ξ] | f ∈ S}.

2

Corollary 3 Let u be a coherent utility function represented by Sba ⊂ ba,
then u has the Fatou property if and only if Sba∩L1 is weak∗−dense in Sba.

In a previous section we have shown that the Fatou property is equivalent to a
convergence property for decreasing sequences, Section 4.3. We have warned
the reader that it is not sufficient to require the property for sequences that
decrease to 0. The following theorem makes this result precise.



4.6. The relation between S and Sba. 49

Theorem 13 For a coherent utility function, u : L∞ → R, the following are
equivalent

1. For every decreasing sequence of sets (An)n≥1 with empty intersection,
we have that u(1An) tends to zero.

2. sup
{
‖µa‖ | µ ∈ Sba

}
= 1, (where µ = µa + µp is the Yosida–Hewitt

decomposition).

3. The distance from Sba to L1, defined as inf{‖µ − f‖ | µ ∈ Sba, f ∈
L1(P)}, is zero. A particular case is Sba ∩ L1 6= ∅.

Proof. We start the proof of the theorem with the implication that
(2) ⇒ (1). So we take (An)n≥1 a decreasing sequence of sets in F with
empty intersection. We have to prove that for every ε > 0 there is n and
µ ∈ Pba, such that µ(An) ≤ ε. In order to do this we take µ ∈ Sba such
that ‖µa‖ ≥ 1− ε/2. Then we take n so that µa(An) ≤ ε/2. It follows that
µ(An) ≤ ε/2 + ‖µp‖ ≤ ε.

The fact that 1 implies 2 is the most difficult one and it is based on the
following lemma, whose proof is given after the proof of the theorem.

Lemma 5 If K is a closed, weak∗ compact, convex set of finitely additive
probability measures, such that δ = inf{‖νp‖ | ν ∈ K} > 0, then there exists
a non-increasing sequence of sets An, with empty intersection, such that for
all ν ∈ K, and for all n, ν(An) > δ/4.

If (2) were false, then

inf
{
‖µp‖ | µ ∈ Sba

}
> 0.

We can therefore apply the lemma in order to get a contradiction to (1).
The proof that (2) and (3) are equivalent is almost trivial and is left to

the reader. 2

In the proof of the lemma, we will need a minimax theorem. Since there
are many forms of the minimax theorem, let us recall the one we need. It is
not written in its most general form, but this version will do. For a proof, a
straightforward application of the Hahn–Banach theorem together with the
Riesz representation theorem, we refer to [45], page 404.

Theorem 14 (Minimax Theorem) Let K be a compact convex subset of a
locally convex space F . Let L be a a convex set of an arbitrary vector space
E. Suppose that φ is a bilinear function φ : E × F → R. For each l ∈ L we
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suppose that the partial (linear) function φ(l, .) is continuous on F . We then
have

inf
l∈L

sup
k∈K

φ(l, k) = sup
k∈K

inf
l∈L

φ(l, k).

Proof of Lemma 5 If λ is purely finitely additive, nonnegative, then the
Yosida–Hewitt theorem implies the existence of a decreasing sequence of sets,
say Bn (depending on λ!), with empty intersection and such that λ(Bn) =
‖λ‖. Given µ ∈ K, it follows that for every ε > 0, there is a set, A (depending
on µ), such that P[A] ≤ ε and such that µ(A) ≥ δ. For each ε > 0 we now
introduce the convex set, Fε, of functions, f ∈ L∞ such that f is nonnegative,
f ≤ 1 and EP[f ] ≤ ε. The preceding reasoning implies that

inf
µ∈K

sup
f∈Fε

Eµ[f ] ≥ δ.

Since the set K is convex and weak∗ compact, we can apply the minimax
theorem and we conclude that

sup
f∈Fε

inf
µ∈K

Eµ[f ] ≥ δ.

It follows that there is a function f ∈ Fε, such that for all µ ∈ K, we
have Eµ[f ] ≥ δ/2. We apply the reasoning for ε = 2−n in order to find a
sequence of nonnegative functions fn, such that for each µ ∈ K we have
Eµ[fn] ≥ δ/2 and such that EP[fn] ≤ 2−n. We replace the functions fn
by gn = supk≥n fk in order to obtain a decreasing sequence gn such that,
of course, Eµ[gn] ≥ δ/2 and such that EP[gn] ≤ 2−n+1. If we now define
An = {gn ≥ δ/4}, then clearly An is a decreasing sequence, with a.s. empty
intersection and such that for each µ ∈ K we have µ(An) ≥ δ/4. 2

Example 13 This example shows that the equivalent properties of the pre-
ceding theorem do not imply the Fatou property. Take (Ω,F ,P) big enough
to support purely finitely additive probabilities, i.e. L∞(Ω,F ,P) is supposed
to be infinite dimensional. Take µ ∈ ba, purely finitely additive, and let Sba
be the segment (the convex hull) joining the two points µ and P. Obviously
the equivalent properties of the preceding theorem are satisfied. Indeed there
is a σ−additive measure in Sba. But clearly the coherent measure cannot
satisfy the Fatou property since S ∩ L1 = {P} is not dense in Sba. To
find “explicitly” a sequence of functions that contradicts the Fatou prop-
erty, we proceed as follows. The measure µ is purely finitely additive and
therefore, by the Yosida-Hewitt decomposition theorem (see [135]), there is
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a countable partition of Ω into sets (Bn)n≥1 such that for each n, we have
µ(Bn) = 0. Of course we may suppose that P[Bk] > 0 for all k. Now we
define An = B1 ∪ (∪j≥nBj). Clearly An ↓ B1. For ξn = 1An we then get:
ξn → 1B1 , µ(An) = 1, u(ξn) = P[An] → P[B1], u(1B1) = µ(B1) = 0. This
violates the Fatou property.

Example 14 In the previous example, Sba contained a σ−additive prob-
ability measure. The present example is so that the equivalent properties
of the preceding theorem still hold, but there is no σ−additive probability
measure in Sba. In the language of the theorem, this simply means that
the supremum is not a maximum. The set Ω is simply the set of natural
numbers. The σ-algebra is the set of all subsets of Ω and P is a probability
measure on Ω charging all the points in Ω. The space L∞ is then `∞ and L1

can be identified with `1. The set F denotes the convex weak∗-closed set of
all purely finitely additive probabilities µ. That the set F is weak∗−closed
is clear since such measures can be characterised as finitely additive prob-
ability measures such that µ({n}) = 0 for all n ∈ Ω. With δn we denote
the probability measure (in L1) that puts all its mass at the point n, the
so–called Dirac measure concentrated in n. The set Sba is the weak∗ closure
of the set
∑
n≥1

λn
(n+ 1)2

 ν +
∑
n≥1

λn

(
1− 1

(n+ 1)2

)
δn | λn ≥ 0,

∑
n≥1

λn = 1, ν ∈ F

 .

The set is clearly convex and it defines a coherent utility function, u. Since
obviously sup

{
‖µa‖ | µ ∈ Sba

}
= 1, the properties of the theorem hold. The

difficulty consists in showing that there is no σ–additive measure in the set
Sba. Take an arbitrary element µ ∈ Sba. By the definition of the set Sba
there is a generalised sequence, also called a net, µα tending to µ and such
that

µα =

∑
n≥1

λαn
(n+ 1)2

 να +
∑
n≥1

λαn

(
1− 1

(n+ 1)2

)
δn,

where each να ∈ F, where
∑
n λ

α
n = 1 and each λαn ≥ 0. We will select

subnets, still denoted by the same symbol α, so that

1. the sequence
∑
n λ

α
n δn tends to

∑
n κn δn for the topology σ(`1, c0).

This is possible since `1 is the dual of c0. This procedure is the same
as selecting a subnet such that for each n, the net λαn tends to κn. Of
course κn ≥ 0 and

∑
n κn ≤ 1.
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2. from this it follows, by taking subnets, that there is a purely finitely
additive, nonnegative measure ν′ such that∑

n

λαn

(
1− 1

(n+ 1)2

)
δn

tends to ∑
n

κn

(
1− 1

(n+ 1)2

)
δn + ν′

for the topology σ(ba, L∞).

3. By taking a subnet we may also suppose that the generalised sequence
να converges for σ(ba, L∞), to a, necessarily purely finitely additive,
element ν ∈ F.

4. Of course
∑
n
|λαn−κn|
(n+1)2 tends to 0.

As a result we get

µ =
∑
n

κn
(n+ 1)2

ν + ν′ +
∑
n

κn

(
1− 1

(n+ 1)2

)
δn.

If this measure were σ–additive, then necessarily for the non absolutely con-
tinuous part, we would have that ν′ +

∑
n

κn
(n+1)2 ν = 0. But, since these

measures are nonnegative, this requires that all κn = 0 and that ν′ = 0.
This would then mean that µ = ν′ = 0, a contradiction to µ(Ω) = 1.

Example 15 This example shows that in order to represent coherent utility
functions via expected values, some control measure is needed. We will
construct a utility function on a space of bounded measurable functions that
satisfies a continuity property similar to the Fatou property. At the same
time we will see that this utility function cannot be described by a set of σ–
additive probability measures. We start with the measurable space ([0, 1],F),
where F is the Borel σ-algebra. A set N is of first category if it is contained
in the countable union of closed sets with empty interior (relative to [0, 1]).
The class of Borel sets of first category, denoted by N , forms a σ-ideal in F .
For a bounded, Borel measurable function ξ defined on [0, 1], we define u(ξ)
as the “essential” infimum of ξ. More precisely we define (the reader should
prove that there is indeed a maximum in the next formula):

u(ξ) = max {m | {ξ < m} ∈ N} .
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It is clear that u(ξ) defines a coherent utility function. It even satisfies the
Fatou property in the sense that u(ξ) ≥ lim supu(ξn), where (ξn)n≥1 is a
uniformly bounded sequence of Borel functions tending pointwise to ξ. If u
were of the form

u(ξ) = inf
Q∈Sσ

EQ[ξ],

where Sσ is a family of (σ-additive) probability measures, then elements Q
of the family Sσ should satisfy:

Q(N) = 0 for each set N of first category.

Indeed for each set of first category N we have u(1Nc) = 1, hence we have
Q[N c] = 1 for each set N of first category. But if Q is a Borel measure that is
zero on the compact sets of first category, then it is identically zero. Indeed
let A be a Borel set and suppose that Q[A] ≥ ε > 0. Let {qn | n ≥ 1} be
an enumeration of the rationals. Because {qn} is of first category, we have
Q[{qn}] = 0. So we can choose εn > 0 so that Q[ ]qn−εn, qn+εn[ ] ≤ ε2−n−2.
Let O = ∪n]qn − εn, qn + εn[. By the choice of εn we have Q[O] ≤ ε/4.
Because Borel measures are Radon measures, i.e. regular, there is a compact
set K ⊂ A such that Q[K] ≥ ε/2. Now we put N = K \ O. This is a set
of first category (it is closed and has empty interior) and hence Q[N ] = 0.
But Q[N ] ≥ Q[K]−Q[O] ≥ ε/4, a contradiction. However we can prove, in
the same way as for the representation property of coherent utility functions,
that

u(ξ) = inf
µ∈S

Eµ[ξ],

where S is a convex set of finitely additive probabilities on F . The set S does
not contain any σ–additive probability measure, although u satisfies some
kind of Fatou property. Even worse, every element µ in S is purely finitely
additive and satisfies µ(N) = 0 for N ∈ N .

Remark 15 The example can be presented using the Baire σ–algebra de-
fined as

B = {A ⊂ [0, 1] | A = O4N,N is of first category and O is an open set} .

We did not do this because the requirement to be σ–additive on the Baire
sets is stronger than the requirement to be σ–additive on the Borel sets.
Indeed it is well known (and easily proved using monotone class arguments)
that F ⊂ B.
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4.7 Weak compactness of S
We start with a version of the Dunford-Pettis theorem that includes some
excursion to Orlicz-space theory. The theorem is a basic theorem in L1−L∞
duality theory.

Theorem 15 For closed convex sets S ⊂ L1 of probabilities, the following
are equivalent:

1. S is weakly compact;

2. S is weakly sequentially compact;

3. the set {dQdP | Q ∈ S} is uniformly integrable;

4. (de la Vallée-Poussin’s criterion for uniform integrability) there ex-
ists a function Φ : R+ → R, increasing, convex, Φ(0) = 0 such that

limx→∞
Φ(x)
x = +∞ and supQ∈S E

[
Φ
(
dQ
dP
)]
<∞.

The following families of weakly compact sets will play a role.
(a) Φ(x) = xp, p > 1; together with point 4 this implies that Sp,k is a weakly
compact family; we also have that the set Sk is weakly compact. This could
correspond to the function Φ(x) = 1 for x < 1 and Φ(x) = +∞ for x ≥ 1. A
little bit of liberal thinking is required.
(b) Φ(x) = (x+ 1) log(x+ 1)− x; this is another example that can be used
in connection with Orlicz space theory, [93]. See Delbaen, [39] on how to
use this function in risk measure theory. See also [31, 32] and [18]. for more
recent developments. The idea in these papers is that when u is given by
a weakly compact set of measures S, then u can be extended to a utility
function defined on an Orlicz space LΨ. The function Ψ is given by the
Legendre transform of Φ where Φ is obtained out of S via the criterion of de
la Vallée-Poussin.

According to the above, for coherent utility functions u, the following are
equivalent:

1. the set {dQdP |Q ∈ S} is uniformly integrable;

2. S is weakly compact;

3. if (An)n≥1 is a family of measurable sets such that An ↓ ∅, then
u(−1An) ↑ 0 or equivalently supQ∈S Q[An] → 0; this can also be re-
stated as: if (An)n≥1 is a family of measurable sets such that An ↑ Ω,
then u(1An) ↑ 1;
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4. if −1 ≤ ξn ≤ 0 and ξn ↑ 0, then u(ξn) ↑ 0.

Remember that point 4 is stronger than the Fatou property! The reader can
check that the Example 8 used a non-weakly compact set S. We can give
another characterisation of weakly compact sets:

Theorem 16 S is weakly compact if and only if every ξ ∈ L∞ attains its
minimum on S, i.e. there is Q ∈ S such that u(ξ) is exactly Q[ξ].

Proof. . This is James’s theorem translated to the case of coherent utility
functions. 2

Theorem 17 If S is weakly compact then:

‖ξn‖∞ ≤ 1 , ξn
P→ ξ implies u(ξ) = lim

n→∞
u(ξn).

Proof. . A direct application of the property that S is uniformly integrable.
2

Example 16 This example can be seen as an application to a Credit Risk
situation. Suppose that (ξn)n are i.i.d and that ‖ξn‖∞ ≤ 1. The random
variable ξi stands for the loss corresponding to the i-th person (the group is
supposed to be independent and identically distributed ). Let Sn = ξ1+. . .+ξn.
The problem is to calculate the total capital needed to face the risk. We
need ρ(Sn) = −u(Sn) and the capital or premium we will charge to each
person will be 1

nρ(Sn) = ρ(Snn ). Suppose now that S is weakly compact, for
instance the utility function is calculated as in example 9. By the law of
large numbers,

Sn
n

a.s.−→ E[ξ1]

so that

ρ

(
Sn
n

)
−→ ρ(E[ξ1]) ≡ −E[ξ1]

If we do not have independence, but the correlation coefficients tend to zero
when n goes to infinity, the previous result still holds. Indeed if

lim
k→∞

sup
n
|E[ξnξk+n]− E[ξn]E[ξn+k]| → 0,
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then by Bernstein’s theorem, Snn tends to E[ξ1] in probability if n→∞. We
leave the interpretation of this refinement to the reader.

We warn the reader that although the required capital pro capita tends
to the expected loss, the total capital can be substantially different from
nE[−ξ1]. This has to do with the speed of convergence. It can be shown –
using convexity and inverse martingale arguments (left to the reader) – that
ρ(Sn/n) decreases to E[−ξ1]. The difference ρ(Sn)+nE[ξ1] can tend to +∞.

Exercise 11 Fill in the details needed in the previous paragraph. Give an
example where effectively ρ(Sn) + nE[ξ1] tends to +∞.

Example 17 This example is a modification of the previous example. It
shows that if we replace independence by conditional independence, the re-
quired capital pro capita changes, even when a large number of agents are
participating. So we suppose that the sequence ξn is conditionally indepen-
dent with respect to a sigma-algebra I. And we also suppose that conditional
on I all the random variables have the same law. The sigma-algebra I, could
represent the future yet unknown, macro economic situation. Conditionally
on the macro economic situation the credit takers are supposed to be inde-
pendent and identically distributed. However there is a dependence because
of the overall economic situation. In this case the law of large numbers
reads: Sn/n tends to E[ξ1 | I] (almost surely but we only need convergence
in probability). In case S is weakly compact we get u(Sn/n)→ u(E[ξ1 | I]).
Let us see what this means in a credit risk situation. Let us suppose that
ξn takes values 0,−1 and suppose conditional independence with respect to
I. Then p = −E[ξ1 | I] is just the probability of going bankrupt given
the information coming from I. This is a random variable. In case we
take the utility function TailVar with level α, we see that u(Sn/n) tends
to u(−p) = E[−p | p ≥ 1 − qα(p)] (at least when we suppose p to have a
continuous distribution, otherwise use the extension as in example 9). This
means that the amount of capital needed pro capita is entirely given by the
probability law of the macro economic influence.

The example supposed that we had, conditionally on I, identically dis-
tributed random variables. Of course we could have refined the example and
use some kind of stratification. For different groups the sensitivity to the
macro-economic factor could be different (something given by a credit rat-
ing, whatever the word means and wherever it comes from). This would then
lead to different capital requirements for the individual groups. The total
required capital is of course not necessarily the sum of the different individ-
ual required capital per group. We will see that for TailVaR, in such models
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the so-called commonotonicity implies additivity for the required capital.
Maybe something to think about when dealing with mortgages, CDO, ... .
In this context and as said before, the author does not want to use the word
subprime but the temptation to do so was big.

Exercise 12 We invite the reader to calculate VaR, TailVaR when p has a

beta distribution i.e. it has a density (on [0, 1]) of the form Γ(α+β)
Γ(α)Γ(β)x

α−1(1−
x)β−1 with α, β > 0. Depending on the kind of default probability one would
like to model, one could take any fixed ε > 0 and take α, β > 0 so that the
total default probability remains equal to ε. One can then calculate the
values of VaR and TailVaR as a function of β > 0 (or of α as you wish). One
should compare these values with the values for one agent.

4.8 Concave utility functions, duality results

In this section we use convex duality theory in order to get extra information
on concave monetary utility functions. In the next section we will present
a reduction technique that will allow us to transform the results from the
special case of coherent measures. However we find it useful to present also
the classical approach. The basic facts can be found in [118]. The definition
of Fenchel-Legendre transform has been adapted a little bit, in order to get
the sign right. But this is only a cosmetic change. The theory of concave
utility functions was developed by Föllmer and Schied, [68].

Definition 12 If u : L∞ → R is a monetary concave utility function, then
its Fenchel-Legendre transform (or penalty function) is defined as

c : ba→ R+ ∪ {∞}
c(µ) = sup{−µ(ξ) + u(ξ) | ξ ∈ L∞}

If we only take the supremum over the constant functions we already get

c(µ) ≥ sup
a∈R

a(−µ(1) + 1).

This shows that c takes the value +∞ for measures that have total mass
different from 1. If µ(A) < 0 then we take the functions n1A and we get
c(µ) ≥ −nµ(A)+u(n1A) ≥ −nµ(A), yielding that for non positive measures
we also get a value +∞. As a result we only need to define the Fenchel-
Legendre transform for finitely additive probability measures.
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Exercise 13 Show that the definition of the Fenchel-Legendre transform
coincides with the one given in chapter 2. See what happens with indicators
of convex sets and relate to the exercises given in chapter 2.

Proposition 10 The function c satisfies the following properties

1. c : Pba → R+ ∪ {+∞},

2. c is lower semi-continuous for the weak∗ topology σ(ba, L∞).

3. c is convex

4. c(µ) = sup{−µ(ξ) | ξ ∈ A} = sup{−µ(ξ) | u(ξ) = 0}

5. minµ∈Pba c(µ) = 0.

Proof. Since each function µ→ u(ξ)−µ(ξ) is weak∗ continuous and affine,
we get that the supremum is weak∗ lower semi continuous and convex. Since
u(ξ) − µ(ξ) = −µ(ξ − u(ξ)) and since u(ξ − u(ξ)) = 0 we get also item 4.
Since the convex set A contains the positive cone, it has a non empty interior
for the norm topology. Since obviously 0 cannot be an interior point of A
(because u(a) < 0 for a < 0), we can separate the interior of the set A and
the origin. So we get a nonzero functional µ ∈ ba so that for all ξ ∈ A:
µ(ξ) ≥ 0. This measure µ is nonnegative and we can normalize it to get an
element µ ∈ Pba. Of course we then have c(µ) = 0. 2

Remark 16 In case the utility function u is coherent and given by the weak∗

closed convex set Sba, the penalty function c only takes the two values 0,+∞.
Indeed c(µ) = 0 for µ ∈ Sba and c(µ) = +∞ for µ /∈ Sba. This function is
called the indicator function of the set Sba. Conversely when the function c
is an indicator function of a set Sba, then this set is necessarily convex and
weak∗ compact. The utility u is coherent and given by u(ξ) = infSba µ(ξ).

The importance of the function c lies in the fact that by duality we can find
the function u back, see [118], [112] for more details on duality. We get:

Theorem 18
u(ξ) = min{µ(ξ) + c(µ) | µ ∈ Pba}.

Proof. That u(ξ) = inf{µ(ξ) + c(µ) | µ ∈ Pba} is proved in convex
analysis. For completeness we give a proof. Because of the definition of
c we have u(ξ) ≤ µ(ξ) + c(µ) for all µ ∈ Pba. To prove the converse in-
equality we just have to show that u(ξ) < 0 implies the existence of µ with
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µ(ξ) + c(µ) < 0 Suppose that ξ /∈ A. By the separation theorem there is a
linear functional µ ∈ ba (in case the Fatou property is satisfied we can even
take µ ∈ L1) such that µ(ξ) < inf{µ(η) | η ∈ A}. Because A contains L∞+ ,
we can already conclude that µ ≥ 0. And because µ is not identically zero
we may normalise µ so that we can take µ ∈ Pba. The definition of c(µ)
can be written as c(µ) = − inf{µ(η) | η ∈ A} and so we get µ(ξ) < −c(µ)
or µ(ξ) + c(µ) < 0. We now prove that the inf is a minimum. Take µn
a sequence such that µn(ξ) + c(µn) tends to the infimum. The infimum is
smaller than ‖ξ‖∞ since infµ c(µ) = 0. This shows that c(µn) is a bounded
sequence. By taking, if necessary, a subsequence we may suppose that both
µn(ξ), c(µn) converge. Take a cluster point, say µ, of the sequence µn in the
compact set Pba. This element µ then satisfies c(µ) ≤ lim c(µn) and hence
µ(ξ) + c(µ) = inf{ν(ξ) + c(ν) | ν ∈ Pba}. 2

In case the utility function has the Fatou property we can use the duality
(L1, L∞) and we get that the restriction of c to P is sufficient. However
there is no guarantee that the infimum is a minimum. We get the following
theorem, which we give without proof.

Theorem 19 In case u satisfies the Fatou property we have

1. The set {(Q, β) | β ≥ c(Q)} ⊂ P×R is weak∗ dense in the set {(µ, β) |
β ≥ c(µ)} ⊂ Pba × R.

2. infQ∈P c(Q) = 0

3. u(ξ) = inf{EQ[ξ] + c(Q) | Q ∈ P}.

Remark 17 The first item shows that for µ ∈ Pba there is a generalized
sequence Qα with the property that for the topology σ(ba, L∞), Qα → µ and
limα c(Qα) = c(µ). There is also a converse to the representation theorem.

Theorem 20 If c : P→ R+ ∪ {∞} is a function satisfying the assumptions

1. c is lower semi-continuous on L1.

2. c is convex

3. infQ∈P c(Q) = 0,

then u(ξ) = inf{EQ[ξ] + c(Q) | Q ∈ P} defines a Fatou, monetary concave
utility function with penalty function c.
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Remark 18 If u is a utility function with penalty function c defined on Pba,
then the restriction of c to P defines – according to the previous theorem –
a Fatou utility function u0. We have u = u0 if and only if u is Fatou.

Example 18 Let Φ: R+ → R, be convex such that Φ(1) = 0. If we put
c(Q) = E

[
Φ
(
dQ
dP
)]

then c defines a convex function, lsc and c(P) = 0. If
Φ is strictly convex then this is the only possibility to have c(P) = 0. If
Φ(x) = x2 − 1 or Φ(x) = (x − 1)2, we get the variance of

(
dQ
dP
)
. If we

take Φ(x) = x log(x) we get the entropy. But we could also take Φ(x) =
exp(−(x− 1))− 1 or Φ(x) =

√
1 + (x− 1)2 − 1. For strict convex functions

Φ, we can show that c(Qn) → 0 implies that dQn
dP → 1 in probability, which

implies that ‖Qn − P‖ → 0. The function c can be extended to the set Pba.
There are two ways. The first is to use Theorem 19, item 1 above, the second
one is to define the utility function u and then calculate c(µ). Of course both

methods give the same result. In case Φ(x) satisfies limx→+∞
Φ(x)
x = +∞ we

can easily see that c(µ) < ∞ necessarily implies that µ ∈ P. The function
Φ(x) =

√
1 + (x− 1)2 − 1 has linear growth and for this we can show that

supQ c(Q) = supµ c(µ) <∞ (this is an easy exercise). If in these examples we
want to calculate u(ξ), we have to solve a convex variational problem. This
is well understood and the solution is related to the Legendre transform of Φ.
Those who are familiar with the mathematics of optimisation with respect
to von Neumann-Morgenstern functions should have no difficulty in finding
it. This is beyond the scope of this book.

Exercise 14 For Φ(x) =
√

1 + (x− 1)2 − 1 and c(Q) = E
[
Φ
(
dQ
dP
)]

, first

show that c(Q) <
√

2, hence c(µ) ≤
√

2 for all µ ∈ Pba; then show that if µ
is purely finitely additive c(µ) =

√
2. Use the convexity of c to show that this

characterises the purely finitely additive probability measures. Hint: observe
that Φ(x) ≤ x+

√
2− 1, with strict inequality for x 6= 0.

Example 19 Suppose that the probability space is atomless and let us fix a
countable partition of Ω into a sequence of measurable sets An with P[An] >
0. For µ ∈ Pba we define

c(µ) =
∑
n

µ[An]2.

Remark 19 In what follows one can replace the square by any convex func-
tion f with the properties f(0) = 0, f(x) > 0 for x > 0 and f(1) <∞.
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Proposition 11 The function c of the previous example is a convex func-
tion, minµ∈Pba c(µ) = 0 and it is lower semi-continuous for the weak∗ topol-
ogy on Pba. For each Q ∈ P we have c(Q) > 0. If c(µ) = 0 then µ is purely
finitely additive. The utility function u defined by c is Fatou.

Proof. The first statements are obvious since the mapping µ → µ[An]2

is convex and weak∗ continuous. c is therefore the increasing limit of a
sequence of continuous convex functions and hence is lower semi-continuous
and convex. The existence of elements in Pba such that for all n, µ(An) = 0,
is well known and can be proved using the Hahn-Banach theorem. If c(µ) = 0
then for all n: µ(An) = 0 and this means that µ is purely finitely additive. Of
course we have for µ ∈ Pba:

∑
n µ(An)2 ≤

∑
n µ(An) ≤ 1. If Q ∈ P we have

that at least one of the sets An must satisfy Q[An] > 0, hence c(Q) > 0. The
Fatou property is less trivial. As seen before we must show that for µ ∈ Pba

we can find a generalised sequence or net Qα in P, tending to µ and so that
c(Qα) tends to c(µ). For this it is sufficient to show the following. Given µ,
given ε > 0 and given a finite partition of Ω in non-zero sets B1, . . . , BN we
must find Q ∈ P so that c(Q) ≤ c(µ)+ε and Q(Bj) = µ(Bj) for j = 1, . . . , N .
For a set Bj there are two possibilities: either there is s with Bj ⊂ ∪sn=1An
or there are infinitely many indices n with P[Bj ∩An] > 0. Since all the sets
An have a non-zero measure and since the family (Bj)j forms a partition of
Ω the last alternative must occur for at least one index j. So let us renumber
the sets Bj and let us select s so that

1. for j ≤ N ′ ≤ N there are infinitely many indices with P[An ∩Bj ] > 0,

2. for N ′ < j ≤ N (if any) we have that Bj ⊂ ∪sn=1An.

Fix now an integer L ≥ 1 so that 1/L ≤ ε. We will define the measure Q by
its Radon-Nikodym density. For j ≤ N ′ we find indices as follows, we take L
indices s < n1

1 < n1
2 . . . < n1

L so that P[An1
k
∩B1] > 0. We then take indices

n1
L < n2

1 < n2
2 < · · · < n2

L with P[An2
k
∩ B2] > 0 and so on. We can now

define the density of Q as

dQ
dP

=

N∑
j=1

s∑
k=1

µ(Bj ∩Ak)

P[Bj ∩Ak]
1Bj∩Ak +

N∑
j=1

L∑
p=1

µ(Bj ∩ (∪n>sAn))

L P[Bj ∩Anjp ]
1Bj∩A

n
j
p

.

The reader can convince himself that there is no reason to drop the terms
with denominator zero. For all j ≤ N we have that Q[Bj ] = µ(Bj). Fur-
thermore we have that for n ≤ s : Q[An] = µ(An). For indices n > s there
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is at most one of the N sets Bj ∩An that is chosen. So we get for n > s:

Q[Anjp ] =
1

L
µ(Bi ∩ (∪n>sAn)) and for other indices n we get 0.

Finally we find

c(Q) =
∑
n

Q[An]2 =
∑
n≤s

Q[An]2 +
∑
n>s

Q[An]2

=
∑
n≤s

µ(An)2 +
∑
n>s

Q[An]2

≤ c(µ) +

N∑
j=1

L∑
p=1

1

L2
µ(Bj ∩ (∪n>sAn))2

≤ c(µ) +
1

L

N∑
j=1

µ(Bj)
2

≤ c(µ) + ε.

2

Example 20 We construct u, a Fatou concave utility function satisfying
c(Q) > 0 for all Q ∈ P, but c(µ) = 0 does not imply that µ is purely
finitely additive. We again take a countable partition into nonnegligible
sets, {An;n ≥ 1}. We put

c(Q) =

∫
A1

(
dQ
dP
− 1

)2

dP +
∑
n≥2

Q[An]2.

If Q were a probability measure such that c(Q) = 0, then on A1,we would
have dQ

dP = 1 whereas on Ac1 we would have dQ
dP = 0 since Q[An] = 0 for

n ≥ 2. This is impossible since it gives for Q a total mass P[A1] < 1.
The function c is clearly convex, lsc, and infQ c(Q) = 0. The latter can be
proved exactly in the same way as in the example 19. In the same way we
can show that c(µ) < ∞ implies that µ is sigma addiitive on A1 and then

c(µ) =
∫
A1

(
dµ
dP − 1

)2

dP+
∑
n≥2 µ[An]2. We see that c(µ) = 0 if and only if

µ = P on A1 and µ(An) = 0 for n ≥ 2. This means that µ is purely finitely
additive on Ac1.
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Example 21 Let us take 0 ≤ f ∈ L∞, ess.inf(f) = 0 and define c(Q) =
EQ[f ]. This function satisfies all the requirements and defines a utility func-
tion u(ξ) = infQ EQ[ξ+ f ] = ess.inf(ξ+ f). The set A is a cone but its top is
not the element 0 but is −f . If f > 0 a.s. , then we get another example of
a utility function such that for all Q ∈ P, c(Q) > 0. The elements µ ∈ Pba

with c(µ) = 0 are supported on the tail of the sequence An = {f ≤ n−1} —
meaning that for all n: µ(An) = 1 — hence these are purely finitely additive
since An ↓ ∅. If f = 1A, 0 < P[A] < 1, ξ ∈ A if and only if ξ ≥ −1A.
The function u(α1A) is concave on R, it is zero for α ≥ −1 and is α+ 1 for
α ≤ −1.

4.9 Extension of a Fatou utility function

If u : L∞ → R is a Fatou utility function, we can extend it to the cone of
measurable functions that are bounded above. The procedure is the same as
in measure theory. If η is a random variable that is bounded above we define

u(η) = inf{u(ξ) | ξ ∈ L∞, ξ ≥ η}.

The set of random variables that are bounded above does not form a vector
space, it is only a cone. Algebraically we can describe this cone as L∞−L0

+.
The following properties are obvious

Proposition 12 u satisifes

1. u : L∞ − L0
+ → R ∪ {−∞}

2. If η ≥ η′ then u(η) ≥ u(η′)

3. u is concave and monetary

4. Exactly as in measure theory one can prove: if ηn ↓ η and if η1 is
bounded above, then u(ηn) ↓ u(η).

5. For η ∈ L∞ − L0
+ we have u(η) = infQ∈P (EQ[η] + c(Q))

4.10 Gâteaux differentiability of utility func-
tions, subgradient.

As already seen in Chapter 2, the Fenchel-Legendre transform can also be
used to find the derivative of the concave function u. The general results
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on duality of convex functions can be translated directly. But in Chapter 2,
we promised to give full proofs in the case of utility functions. The reader
familiar with convex duality will immediately recognise the consequences of
the general theory. Let us recall:

Definition 13 The function u is called Gâteaux differentiable at a point
ξ ∈ L∞, if for all η ∈ L∞, the function x → u(ξ + xη) is differentiable at
x = 0 and the derivative defines a continuous linear function of η. In other
words there exists an element µ ∈ ba such that

µ(η) = lim
x→0

u(ξ + xη)− u(ξ)

x
.

The subgradient of u at ξ is defined as

∂ξ(u) = {µ ∈ ba | u(ξ + η) ≤ u(ξ) + µ(η) for all η ∈ L∞} .

The weak∗-subgradient of u at ξ is defined as

∂∗ξ (u) =
{
f ∈ L1 | u(ξ + η) ≤ u(ξ) + E[fη] for all η ∈ L∞

}
.

The set ∂ξ(u) is not empty as shown in the following theorem, but in the
next section we will give a criterion that shows that ∂∗ξ (u) can be empty. Of

course we have ∂∗ξ (u) = ∂ξ(u) ∩ L1.

Theorem 21 Let u be a monetary concave utility function. µ ∈ ∂ξ(u) if
and only if u(ξ) = µ(ξ) + c(µ). Consequently ∂ξ(u) 6= ∅.

Proof. If µ ∈ ∂ξ(u) then we have for all η ∈ L∞:

u(ξ + η) ≤ u(ξ) + µ(η).

If we replace η by −ξ + η we get for all η: u(η) ≤ u(ξ) + µ(−ξ + η) ≤
c(µ) + µ(η). This can be rewritten as u(η) − µ(η) ≤ u(ξ) + µ(−ξ) ≤ c(µ).
Taking sup over all η then gives the equality c(µ) = u(ξ) + µ(−ξ), as de-
sired. The converse is easier. If u(ξ) = c(µ) + µ(ξ), then for all η we have
u(ξ + η) ≤ c(µ) + µ(ξ + η) = u(ξ) + µ(η). 2

Proposition 13 The graph of ∂(u) is closed in the product topology given
by the norm topology on L∞ and the weak∗ topology on Pba.
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Proof. Take a generalised sequence (ξn, µn)n such that ‖ξn − ξ‖∞ → 0 and
µn → µ, weak∗. For all η we have

u(ξ + η) = lim
n
u(ξn + η) ≤ lim

n
u(ξn) + lim

n
µn(η) = u(ξ) + µ(η),

showing that µ ∈ ∂ξ(u) 2

Proposition 14 The monetary utility function u is Gâteaux differentiable
at ξ if and only if ∂ξ(u) is a singleton {µ}. In that case the derivative is µ.

Proof. This is easy and well known. Suppose first that µ1 6= µ2 are two
different elements in ∂ξ(u) and suppose that u is differentiable at ξ. Take η
such that µ1(η) < µ2(η). Now let us calculate the derivative

lim
x→0

u(ξ + xη)− u(ξ)

x
≤ lim
x→0

xµ1(η)

x
= µ1(η)

whereas for −η we find

lim
x→0

u(ξ − xη)− u(ξ)

x
≤ lim
x→0

xµ2(−η)

x
= −µ2(η)

which we can rewrite as

µ1(η) = lim
x→0

u(ξ + xη)− u(ξ)

x
= lim
x→0

u(ξ − xη)− u(ξ)

−x
≥ µ2(η).

This is a contradiction to the choice of η. Conversely if ∂ξ(u) = {µ} we have
for given η and for each x ∈ R the existence of an element µx such that
u(ξ + xη) = µx(ξ) + c(µx). We will show that µx → µ as x → 0. Since
ξ+ xη tends to ξ in norm, the previous proposition shows that every cluster
point of (µx)x must be equal to µ. In the compact space Pba this shows the
convergence of µx to µ. The rest is now easy.

lim sup
x

u(ξ + xη)− u(ξ)

x

≤ lim sup
x

µ(ξ + xη) + c(µ)− (µ(ξ) + c(µ))

x
= µ(η), and

lim inf
x

u(ξ + xη)− u(ξ)

x

≥ lim inf
x

c(µx) + µx(ξ + xη)− (c(µx) + µx(ξ))

x

= lim inf
x

µx(xη)

x
= lim

x
µx(η) = µ(η).
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This shows that the limit exists and that it is equal to µ(η). 2

Example 22 It is not sufficient to suppose that ∂∗ξ (u) is a singleton. We
will give an example where u is even a coherent utility function u. Let
us consider the probability space (N, 2N,P) where N is the set of natural
numbers (including 0) and where P{n} = 1

2n+1 . For S we take the set of all
probabilities on N. We now define ξ in the following way: ξ(0) = −1 and
ξ(n) = −

(
1− 1

n

)
if n ≥ 1. It is immediately seen that u(ξ) = −1 and that

∂∗ξ (u) = {δ0} (i.e. the Dirac measure in 0). If we define η by: η(0) = 0

and η(n) = ξ(n) = −
(
1− 1

n

)
if n ≥ 1, we find that u(ξ + εη) = − (1 + ε)

for all ε > 0. So, u(ξ+εη)−u(ξ)
ε = −1 whereas δ0[η] = 0. The set ∂ξ(u) is

much bigger, it consists of all the convex combinations of δ0 and elements
µ ∈ Pba, satisfying µ(n) = 0 for all n. The latter are probabilities on the
Stone-Čech compactification βN of N, more precisely probability measures
that are supported by βN \ N.

Remark 20 In case the utility function u is coherent (given by the set Sba)
and is Gâteaux differentiable at ξ, then the derivative µ is the unique element
in Sba that minimises ν(ξ)ν∈Sba . In this case we say that µ is an exposed
point of Sba.

Theorem 22 Suppose that u : L∞ → R is a monetary utility function with
the Fatou property. Suppose that u is Gâteaux differentiable at ξ ∈ L∞.
Then ∂ξ(u) ∈ L1.

Proof. Because u satisfies the Fatou property, it is Borel measurable with
respect to the weak∗ topology. Indeed for every k ∈ R, {η | u(η) ≤ k} is
weak∗ closed. We will now show that u′(ξ) = ∂ξ(u) is also Borel measurable.
This is easy since for every η ∈ L∞0 we have

u′(ξ)(η) = lim
n→∞

u(ξ + 1/nη)− u(ξ)

1/n
.

As a limit of a sequence of Borel measurable functions, u′(ξ) is Borel mea-
surable. The results on automatic continuity, see [35], show that necessarily
u′(ξ) ∈ L1. 2

Remark 21 The previous theorem is essential to show that in an incomplete
market, the bid price is nowhere differentiable.
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4.11 A class of examples

We start with a concave utility function u satisfying the Fatou property.
We suppose that it is given by the penalty function c : P → R+. The more
general case where u is not necessarily Fatou is less interesting and is left as
an “exercise”. The set of acceptable elements is A = {ξ | EQ[ξ] + c(Q) ≥
0 for all Q ∈ P}. The set A is convex and weak∗ closed. Now we take
an element η with u(η) = 0. We define a new set A1 = −η + A and use
this as the acceptance set of a new utility function u1. Of course u1(ξ) =
sup{a | ξ − a ∈ A1} = sup{a | ξ + η − a ∈ A} = u(ξ + η). The utility
function is still concave and monetary. Because A1 is weak∗ closed, u1 is
Fatou. This can also be checked directly. The penalty function c1 is defined
as c1(Q) = sup{EQ[−ξ] | ξ ∈ A1} = sup{EQ[−ξ+η] | ξ ∈ A} = c(Q)+EQ[η].
Clearly c1 is convex, lower semi continuous, infQ∈P c

1(Q) = 0. The function
u1 satisfies the weak compactness property if and only if u satisfies the weak
compactness property (see the next section for a definition of this property).
The function u1 is Gâteaux differentiable at 0 if u is Gâteaux differentiable
at η. If u is coherent and given by the closed convex set S, the penalty
function c1 is given by c1(Q) = EQ[η] if Q ∈ S and c1(Q) = +∞ if Q /∈ S.
u1 is no longer coherent. If u is given by the principle as in example 3, the
utility function u1 is not always of the same type (exercise: except when
the von Neumann-Morgenstern function is exponential, where after a change
of measure u1 is again given by the same principle, see example 4). This
is a good argument why we need a wider class than the von Neumann-
Morgenstern functions.

4.12 Concave utility functions, reduction tech-
nique, weak compactness

In this section we reduce the study of monetary concave utility functions to
the case of coherent utility functions. The geometric theorem is formulated
in a rather abstract way so that it can be applied to the general case as well
as to the Fatou case. We start with the definition of the recession cone, also
called asymptotic cone. To fix the notation we will denote by E a locally
convex topological space. This space is either L∞ with the weak∗ topology
(for the Fatou case) or L∞ with the norm topology (general case). The
topological dual of E is denoted by E∗.
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Definition 14 If K ⊂ E is a convex set containing the origin, then the set

Ke =

{
x

∣∣∣∣∣x ∈ E, there exists nets (or generalised sequences)

xα ∈ K,λα ∈ R+, λ
α → 0, such that λαxα → x

}
,

is called the recession cone of K.

Proposition 15 The recession cone Ke of a closed convex set K containing
the origin, is a closed convex cone. More precisely

Ke = ∩ε>0 εK.

Proof. This is standard but for completeness we give a proof. First observe
that ∩ε>0 εK ⊂ Ke. Indeed if x ∈ ∩ε>0 εK then clearly for all ε > 0 there is
xε ∈ K so that x = ε xε, we can apply the definition of Ke. For the converse
we first observe that if 0 < η < ε then ηK ⊂ εK. To see this let us write
x = ηy with y ∈ K. Then we can write x = ε

(
η
ε y + (1− η

ε ) 0
)
. By convexity

and since 0 ∈ K, the expression between brackets is in K. If x ∈ Ke then
x = limα λ

αxα where xα ∈ K and λα → 0. Take now ε > 0. For α big
enough, i.e. in a cofinal set, we get that λα ≤ ε and hence for α big enough
we get λαxα ∈ εK. Since this is true for all α big enough and since K is
closed, we get x ∈ εK. This proves x ∈ ∩ε>0 εK. 2

We now extend the space E in the following way. We put F = E×R and
we endow it with the product topology. For a given convex closed set with
0 ∈ K ⊂ E, we put K1 = K × {1} ⊂ F . The closed convex cone generated
by K1 is the set:

K ′ = ∪t>0(tK × {t}) ∪ (Ke × {0}).

The set K1 is a closed convex subset of K ′, namely K = {x | (x, 1) ∈ K ′}.
Since K ′ is a cone it is easy to characterise it with its polar cone. Now the
dual space of F is precisely E∗ × R with the obvious inproduct defined as
((e∗, β), (e, t)) = e∗(e) + βt. If K ′

o
denotes the dual cone we find that

K ′ = {(x, t) | ∀(x∗, β) ∈ K ′o : x∗(x) + β t ≥ 0}.

In particular, for t = 1, we find the set K :

K = {x | ∀(x∗, β) ∈ K ′o : x∗(x) + β ≥ 0}.

Let us apply this for the case of an acceptance set A that is convex weak∗

closed and such that 0 ∈ A ⊃ L∞+ . The set A is the set {ξ | u(ξ) ≥ 0}, where
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u is a concave monetary utility function defined on L∞ and satisfying the
Fatou property. The space E = L∞ is equipped with the topology σ(L∞, L1).
The dual is then E∗ = L1. The space F = E × R can be seen as the L∞

space on the probability space Ω′ = Ω∪{p}, where p is an extra point added
to Ω, p /∈ Ω. On Ω′ we put the σ–algebra F ′ = {A′ ⊂ Ω′|A′ ∩ Ω ∈ F} and
with the probability P′[A′] = (1/2)P[A′∩Ω]+(1/2) 1A′(p). The probabilities
Q′ defined on Ω′, absolutely continuous with respect to P′ can be identifed
with the pairs (f, β) of nonnegative random variables f defined on Ω and
numbers β ≥ 0 such that E[f ]+β = 2. The construction above gives a weak∗

closed cone L∞+ (Ω′) ⊂ A′ ⊂ L∞(Ω′) that can be seen as the acceptance cone
of a coherent utility function u′ defined on L∞(Ω′). We can therefore apply
the theory of coherent utility functions. The polar of the corresponding set
A′ is

A′o = {(f, β) | ∀ξ ∈ A : E[f ξ] + β ≥ 0 and ∀ξ ∈ Ae : E[f ξ] ≥ 0}.

It follows that (f, β) ∈ A′o implies that f ≥ 0 and β ≥ 0. If the element
f = 0, then β is only restricted to be nonnegative. The representation
Theorems 9, 12, then state that

u′(ξ, t) = inf

{
1

2
(E[fξ] + β t) | (f, β) ∈ A′o;E[f ] + β = 2

}
.

In particular we see that ξ ∈ A (or (ξ, 1) ∈ A′) if and only if for all (f, β) ∈
A′o, we have E[fξ] + β ≥ 0. Of course we only need to use the elements
with f 6= 0. Let us analyse this a little bit further. Let us look at the
closed convex set {(f, β) ∈ A′o | E[f ] = 1}. We find a function denoted by c
(defined for probability measures Q� P), taking values in R+ ∪ {+∞} and
such that (Q, β) ∈ A′o if and only if β ≥ c(Q). The function c(Q) can also
be found as follows. For given Q we get that c(Q) = sup{−EQ[η] | η ∈ A}.
This means that c is up to obvious sign changes, the support functional of
A. It is convex and lower semi-continuous in the sense that {Q | c(Q) ≤ α}
is closed (in L1) and convex for each α ∈ R. Putting things together gives

A = {ξ ∈ L∞ | for all Q probability measure, Q� P : EQ[ξ] + c(Q) ≥ 0}.

Since the concave utility function is normalised so that u(0) = 0, we get that
infQ c(Q) = 0. Since u is monetary we also get

u(ξ) = inf{EQ[ξ] + c(Q) | Q is a probability measure Q� P}.
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Conversely if c is defined for all probability measures Q� P, takes values in
R+∪{+∞}, is lower semi-continuous, convex and satisfies infQ c(Q) = 0, the
above equality defines a concave monetary, Fatou utility function on L∞.

It is not so easy to describe the utility function u′ in terms of the utility
function u. We will not analyse this quantitative relation between u and u′.
Let us just mention that u(ξ) is not necessarily equal to u′(ξ, 1). We will
only need the following relation between u and u′:

Lemma 6 For ξ ∈ L∞(Ω) we have u(ξ) = 0 if and only if u′(ξ, 1) = 0.

Proof. Suppose that u′(ξ, 1) = 0. Since ξ ∈ A by definition of A′, we
already have u(ξ) ≥ 0. But we actually have u(ξ) = 0. Indeed for each
ε > 0 we have (ξ − ε, 1− ε) /∈ A′ and hence ( ξ−ε1−ε , 1) /∈ A′. This means that

u
(
ξ−ε
1−ε

)
< 0. Since ξ−ε

1−ε converges uniformly to ξ we get u(ξ) ≤ 0. Sup-

pose now that u(ξ) = 0, then (ξ, 1) ∈ A and hence u′(ξ, 1) ≥ 0. But since
ξ− ε /∈ A we have (ξ− ε, 1) /∈ A′ and u′(ξ− ε, 1) < 0. If ε converges to zero,
the continuity of u′ for the uniform convergence implies that u′(ξ, 1) ≤ 0. 2

Remark 22 The generalisation of coherent utility functions to concave util-
ity functions was developed by Föllmer and Schied, see [?]. The presentation
in this section is different. There is not much advantage coming from this
homogenisation technique, except that it allows us to use theorems from
functional analysis in an easier way. We leave it up to the reader to rephrase
the theory for monetary utility functions that do not necessarily satisfy the
Fatou property.

Theorem 23 Let u be a concave monetary utility function satisfying the
Fatou property and represented by the lower semi continuous convex function
c(Q). The set

{ξ | there is a probability Q with EQ[ξ] + c(Q) = u(ξ)}

is norm dense in the space L∞.

Proof. This statement follows from the Bishop-Phelps theorem. Let us
take ξ ∈ L∞ such that ‖ξ‖∞ = 1. The Bishop-Phelps theorem is now applied
to the element (ξ, 1) ∈ L∞(Ω′) and the bounded closed convex set

M = {(Q, β) | Q a probability, (Q, β) ∈ A′o and β ≤ 6}.
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For every 1/2 > ε > 0 there is an “inf attaining” element (η, 1− δ) such that
‖ξ − η‖∞ < ε, |δ| < ε. This means that there is a probability measure Q so
that

EQ[η]+(1−δ)c(Q) = inf
(Q′,β)∈M

(EQ′ [η] + (1− δ)β) = inf
Q′

(EQ′ [η] + (1− δ)c(Q′)) .

The second equality follows from the fact that c(Q′) = inf{β | (Q′, β) ∈ A′o}
and the observation that we do not need elements with c(Q′) ≥ 6. We can
rewrite this as follows

EQ

[
1

1− δ
η

]
+ c(Q) = inf

Q′

(
EQ′

[
1

1− δ
η

]
+ c(Q′)

)
.

In other words u
(

1
1−δη

)
= EQ[ 1

1−δη] + c(Q). But as easily seen ‖ξ −
1

1−δη‖∞ ≤ 3ε. 2

Remark 23 The Bishop-Phelps theorem has many applications and “family
members” of it were used in optimisation theory. The variational principle
of Ekeland can be used to get the preceding theorem in a direct way, see [57],
[112].

Let us now see what could be the equivalent property of weak compactness
in the case of concave utility functions. One useful property is that for
uniformly bounded sequences ξn, converging in probability to ξ, we should
have limu(ξn) = u(ξ). Another generalisation could be: the basis of the cone
A′o is weakly compact. We use the same notation as in the section 4.12.

Theorem 24 For a concave monetary utility function u : L∞ → R the
following are equivalent

1. u satisfies the property limu(ξn) = u(ξ) for uniformly bounded se-
quences (ξn)n, converging in probability to a random variable ξ.

2. The basis of A′o defined as {(f, β) ∈ A′o | E[f ] + β = 2} is weakly
compact.

3. The convex function c satisfies: for each ∞ > α ≥ 0, {Q | c(Q) ≤ α}
is weakly compact in L1.

4. For each ξ ∈ L∞ there is a probability Q so that u(ξ) = EQ[ξ] + c(Q).
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Proof. The proof follows the lines 1 ⇒ 2 ⇒ 3 ⇒ 4 ⇒ 2 ⇒ 1. We will
show that the coherent risk measure u′ defined on L∞(Ω′) satisfies property
(WC) of section 4.3. By Theorem 15 this will show the weak compactness
of the basis of A′o. Let us take a uniformly bounded sequence (ξn, tn) that
increases to (0, 0). This means that ξn increases to 0 and tn ↑ 0 For ε > 0
we get that tn + ε ≥ ε/2 for n big enough. Since the variables are increasing
we can pass to a subsequence and hence we may suppose that tn + ε ≥ ε/2
for all n. The sequence ξn+ε

tn+ε tends to 1 and remains uniformly bounded.

This implies that u
(
ξn+ε
tn+ε

)
tends to 1. In other words ξn+ε

tn+ε ∈ A for n big

enough. By definition of the cone A′ this implies that
(
ξn+ε
tn+ε , 1

)
∈ A′ and

hence also (ξn + ε, tn + ε) ∈ A′. In other words u′((ξn + ε, tn + ε)) ≥ 0 and
hence u′(ξn, tn) ≥ −ε. This shows that u′(ξn, tn) tends to zero. In other
words the basis of A′o is weakly compact.

Let us now suppose that the set B = {(f, β) ∈ A′o | E[f ] + β = 2}
is weakly compact. If f = dQ

dP , then the element
(

2f
1+c(Q) ,

2c(Q)
1+c(Q)

)
∈ B

(with the obvious modifications if c(Q) = ∞). Conversely if (f, β) ∈ B and
β < 2 then c( f

2−β ) = β
2−β . In this correspondence the elements Q with

c(Q) =∞ are mapped onto the element (0, 2) ∈ B. It is now clear that the
set {Q | c(Q) ≤ α <∞} is coming from the set {(f, β) | β ≤ β0 = 2α

1+α < 2},
which as a closed set of B is again weakly compact. Since β0 < 2, the
multiplication of the first coordinate f is by a uniformly bounded real number
and hence the set {Q | c(Q) ≤ α <∞} is weakly compact as the image of a
weakly compact set.

Let us now suppose 3 and prove 4. For given ξ ∈ L∞ let Qn be a
sequence such that u(ξ) = lim (EQn [ξ] + c(Qn)). Since the sequence c(Qn)
is eventually bounded, we find that the sequence Qn is taken in a weakly
compact set. So we may suppose that it converges weakly to an element Q.
Since c(Q) ≤ lim inf c(Qn) we get that u(ξ) = EQ[ξ] + c(Q).

Now we prove that 4 implies 2. By James’ theorem we have to show
that every element (ξ, t) attains its minimum on the basis B ⊂ KKo. Of
course may suppose that u′(ξ, t) = 0. This implies that t ≥ 0 and hence
we distinguish two cases t = 0 and t = 1 the latter can be obtained by
normalising the element (ξ, t). The homogeneity of u′ guarantees that we
still have an element u′(ξ, 1) = 0. We first treat the case of (ξ, 0). As
observed above, we have that (0, 2) ∈ B and hence there is an element in
B that realises the infimum of (ξ, 0) on the set B. The case (ξ, 1) is easier.
There is a probability Q so that EQ[ξ] + c(Q) = u(ξ). But u(ξ) = 0 as shown
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in lemma 6. So we get EQ[ξ] + c(Q) = 0. If we divide this expression by
2/(1 + c(Q) we get an element (f, β) ∈ B that realises the minimum.

We now show that 2 implies 1. This is also easy. We suppose that ξn is
a uniformly bounded sequence that converges to ξ in probability. Suppose
that u(ξ) > 0. We have to show that u(ξn) becomes eventually nonnegative.
Since (ξn, 1) tends to (ξ, 1), we have u′(ξn, 1) tends to u′(ξ, 1) as a conse-
quence of weak compactness. But u′(ξ, 1) > 0, as seen from lemma 6. For n
big enough this means u′(ξn, 1) ≥ 0 and therefore ξn ∈ A. Hence u(ξn) ≥ 0 2

Remark 24 The above theorem was first proved by Jouini-Schachermayer-
Touzi [84]. Their proof was more involved and was based on the (rather
complicated) proof of James’s theorem.

4.13 The one-sided derivative

Because of concavity, monetary concave utility functions have a one-sided
derivative at every point ξ ∈ L∞. It is defined as

ϕξ(η) = lim
ε↓0

u(ξ + εη)− u(ξ)

ε
.

If ξ = 0 we get

ϕ(η) = lim
ε↓0

u(εη)

ε
.

Proposition 16 The function ϕ is the smallest coherent utility function
bigger than u.

Proof. Take ψ coherent and ψ ≥ u. Since for each ε > 0 we have
ψ(η) = ψ(εη)/ε ≥ u(εη)/ε ≥ u(η), we get ψ(η) ≥ ϕ(η) ≥ u(η). 2

The acceptance cone for ϕ is easily obtained via the acceptance set A.

Proposition 17 The acceptance cone of ϕ, Aϕ, is given by the ‖.‖∞ closure
of the union ∪nnA

Proof. Suppose first that η ∈ nA, then for ε ≤ 1/n we have by convexity
of A that u(εη) ≥ 0. This shows that ϕ(η) ≥ 0. It follows that ∪nnA ⊂ Aϕ.
Since the latter set is norm closed, it also has to contain the norm-closure
of this union. If ϕ(η) > 0, we have that for ε small enough u(εη) > 0 and
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hence for n big enough we have η ∈ nA. This shows the opposite inclusion. 2

The scenario set – or the polar cone – that defines the coherent utility
function ϕ is given by the following proposition

Proposition 18 With the notation introduced above we have

ϕ(η) = inf
µ∈Sba

µ(η),

where the set Sba = {µ ∈ Pba | c(µ) = 0}.

Proof. Because of the previous proposition, µ ∈ Sba if and only if µ(η) ≥ 0
for all η ∈ A. This is equivalent to saying that c(µ) = 0. 2

Corollary 4 The one-sided derivative ϕ of u at 0 is Fatou if and only if
{Q ∈ P | c(Q) = 0} is weak∗ dense in {µ ∈ Pba | c(µ) = 0}.

Remark 25 For the derivative at a point ξ we use the transformation
uξ(η) = u(ξ + η) − u(ξ). It follows that the derivative at a point ξ is given
by

ϕξ(η) = inf{µ(η) | c(µ) + µ(ξ) = u(ξ)}.

The example 19 shows that for c(µ) =
∑
n µ(An)2 the scenario set of ϕ is

Sba = {µ ∈ Pba | µ(An) = 0 for all n}. Since this set only contains purely
finitely additive probability measures, the one-sided derivative cannot be
Fatou. The results on automatic continuity [35] do not apply to concave
functions.

The coherent utility function ϕ was the smallest coherent utility function
dominating u. Is there also a largest coherent utility function, ψ such that
ψ ≤ u? The answer is given by the following proposition.

Proposition 19 The recesssion cone, Ae of A defines a coherent utility
function ψ that is the largest coherent utility function smaller than u. ψ is
Fatou if u is Fatou.

Proof. If ψ is a coherent function smaller that u then its acceptance cone
is contained in A. Since Ae is the largest cone contained in A, the propo-
sition follows. If u is Fatou we get that Ae = ∩n 1

nA and hence the weak∗

closedness of A implies that also Ae is weak∗ closed. We recall that this
recession cone was also used in the homogenisation technique. 2
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4.14 Relevance: Halmos-Savage theorem

Definition 15 A monetary utility function u is called relevant if ξ ∈ L∞,
ξ ≤ 0 and P[ξ < 0] > 0 imply u(ξ) < 0.

Theorem 25 For a Fatou monetary concave utility function, the following
are equivalent:

1. u is relevant, i.e. for ξ ≥ 0,P[ξ > 0] > 0 we have u(−ξ) < 0.

2. A ∈ F , P[A] > 0, ε > 0 imply u(−ε1A) < 0;

3. For all ξ ≥ 0, E[ξ] > 0 there is Q with c(Q)− EQ[ξ] < 0.

4. For all δ > 0 there exist Q and η > 0 such that for all 1 ≥ ξ ≥ 0,
E[ξ] ≥ δ: c(Q)− EQ[ξ] ≤ −η < 0. Here η is determined by δ, also the
measure Q depends on δ.

5. For all δ > 0 there exist Q ∼ P such that for all 1 ≥ ξ ≥ 0, E[ξ] ≥ δ:
c(Q)− EQ[ξ] < 0.

Proof. 1⇒ 2 is trivial. That 2⇒ 1 is easy. Let ξ be given and take ε > 0
so that P[ξ > ε] > 0. Now ξ ≥ ε1{ξ>ε}, hence u(−ξ) ≤ u(−ε1{ξ>ε}) < 0 by
assumption 2. 1⇔ 3 since u(−ξ) = infQ(c(Q−EQ[ξ]). Now comes the serious
work. 1, 3⇒ 4. This will follow from the separation theorem. Let Kδ = {ξ |
1 ≥ ξ ≥ 0;E[ξ] ≥ δ}. This set is weak∗ compact in L∞. The set −Kδ is
disjoint from the weak∗ closed set A. The separation theorem yields a linear
functional (taken in L1) that separates the two sets. Because A contains
the positive cone, the functional is nonnegative and we can normalise it to a
probability, Q. This yields

sup
ξ∈Kδ

EQ[−ξ] < inf
β∈A

EQ[β] = −c(Q).

This means that there is Q and η > 0 such that

sup
ξ∈Kδ

(c(Q)− EQ[ξ]) ≤ −η.

Let us now show that 4⇒ 5. We have to find Q ∼ P but we do not require
the uniform bound with some η > 0. The proof is as in the Halmos-Savage
theorem, [79]. Define the class:

B =

{{
dQ
dP

> 0

}∣∣∣∣ sup
ξ∈Kδ

(c(Q)− EQ[ξ]) < 0

}
.
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This class is stable for countable unions. Indeed if

sup
ξ∈Kδ

(c(Qn)− EQn [ξ]) < 0

for a sequence Qn, then the measure Q =
∑
n 2−nQn satisfies, by the con-

vexity of c, the same strict inequality. So there is a maximal element, B ∈ B
and let this be given by Q, B =

{
dQ
dP > 0

}
. If A = Bc would be nonnegligible,

we distiguish two cases. First let us suppose that P[A] ≥ δ, then 1A ∈ Kδ

and hence c(Q)−Q[1A] < 0 meaning that A∩B 6= ∅. So we are left with the
second case P[A] < δ. Let us now apply the assumption 4 with δ′ = P[A].
This gives a measure QA such that

sup
ξ∈Kδ′

(c(QA)− EQA [ξ]) < 0.

The class Kδ′ contains Kδ and hence
{
dQA
dP > 0

}
∈ B. But this time we

have c(QA)−QA[A] < 0, showing that again A ∩ B 6= ∅, a contradiction to
the maximality of B. This shows that B = Ω or Q ∼ P. That 5 ⇒ 1 is
straightfoward. Indeed 3 is equivalent to 1 and 5 is obviously stronger. 2

Remark 26 In assumption 4 we used the condition 1 ≥ ξ only to get a
weak∗ compact set. Due to monotonicity the condition is equivalent to

For all δ > 0 there exist Q and η > 0 such that for all ξ ≥ 0, E[ξ] ≥ δ:
c(Q)− EQ[ξ] ≤ −η < 0.

Example 23 Take again Example 21 with 1/2 ≥ f > 0 and ess.inf f = 0.
The function c(Q) = EQ[f ] defines the utility u(ξ) = ess.inf(ξ + f). For
ξ = 1A, P[A] > 0, we find u(−1A) < 0. If we take A = {f > ε} where
P[f > ε] > 0, we get u(−ε1A) ≥ 0. This shows that in the theorem we
cannot restrict to indicators but we have to take multiples of indicators.

Proposition 20 If u is relevant then for all ε > 0 there is Q ∼ P with
c(Q) ≤ ε. Consequently for every Q ∈ P there is a sequence Qn of equivalent
measures such that c(Q) = limn c(Qn).

Proof. Let ε > 0. By item 5 there is Q ∼ P such that c(Q) ≤
inf{EQ[ξ] | ξ ≥ 0;EP[ξ] ≥ ε} ≤ ε. To prove the last assertion, take
Q0 ∼ P with c(Q0) < ∞. Then take Qn = 1

nQ
0 + n−1

n Q. Clearly Qn ∼ P.
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Since c is lower semi continuous we have c(Q) ≤ lim infn c(Qn). The func-
tion c(tQ0 + (1 − t)Q) is convex for t ∈ [0, 1] and convexity implies upper
semi continuity at the end points of the interval [0, 1], consequently also
c(Q) ≥ lim supn c(Qn) and we get c(Q) = limn c(Qn) as desired. 2

Corollary 5 If u is relevant, then u(ξ) = inf{EQ[ξ] + c(Q) | Q ∼ P}.

Example 24 The preceding corollary is false if the utility function is not
relevant. Simply take u(ξ) = ess.inf(1Aξ) where 0 < P[A] < 1. The penalty
function is c(Q) = 0 if Q[A] = 1 and equals +∞ if Q[A] < 1. Every equivalent
measure Q therefore satisfies c(Q) = +∞. Remark that this utility function
is coherent.

From Bion-Nadal, [21] we recall the following definition of non-degenerate
utility functions

Definition 16 A monetary utility function u is called non-degenerate if A ∈
F , P[A] > 0 imply the existence of λ > 0 with u(λ1A) > 0.

Proposition 21 A non-degenerate utility function is relevant.

Proof. Because of concavity a non-degenerate utility function u satisfies
u(ε1A) > 0 for each A with P[A] > 0 and each ε > 0. Now take ε > 0 and
write

0 = u(0) ≥ 1

2
u(ε1A) +

1

2
u(−ε1A).

Because u(ε1A) > 0 we must have u(−ε1A) < 0. 2

Example 25 We take the example 19 where c(Q) =
∑
nQ[An]2 where

An;n ≥ 1 is a given partition of Ω. We also suppose that the probabil-
ity space is atomless. This defines u(ξ) = infQ(c(Q) + EQ[ξ]) as a utility
function. We claim that this utility is relevant. But since c(Q) > 0 for
all Q, we cannot show existence of a probability measure such that for all
ξ ≥ 0,E[ξ] > 0: c(Q) − EQ[ξ] < 0. This shows that in the theorem we need
some restriction on the size of ξ. So we needed to introduce E[ξ] ≥ δ for
some δ > 0. Let us now show that the utility function is relevant. Take
ξ ≥ 0 but not negligible, then there is n such that E[ξ1An ] > 0. Let us take
a probability Q such that for this n: −η = Q[An]2 − EQ[ξ1An ] < 0. This is
certainly possible since we can take Q[An] = εP[An] for ε > 0, small enough.
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The mass of Acn will now be redistributed over the sets Ak, k 6= n such that∑
k 6=nQ[Ak]2 ≤ η/2. This is done in the same way as in example 19. The

construction yields a probability such that c(Q) − EQ[ξ1An ] ≤ −η/2 < 0.
The one-sided derivative ϕ is not relevant since for each An, ϕ(−1An) = 0
whereas P[An] > 0. This example can be made more general.

In [30] Cheridito et al introduced a related concept, called sensitivity to
great losses.

Definition 17 A concave monetary utility function is called sensitive to
great losses if P[ξ < 0] > 0 implies that limλ→+∞ u(λξ) = −∞.

Remark 27 From the definition it immediately follows that if u is coherent
and sensitive to great losses, then necessarily u(ξ) = ess.inf ξ. Indeed if ξ is
acceptable, i.e. u(ξ) ≥ 0, then coherence implies u(λξ) ≥ 0 for all λ ≥ 0.
Hence ξ ≥ 0 a.s. .

Remark 28 In the definition of sensitivity to great losses, it is sufficient to
require that P[ξ < 0] > 0 implies that there is λ > 0 such that u(λξ) < 0.
Indeed the concavity then implies limλ→+∞ u(λξ) = −∞.

Proposition 22 If u is a Fatou, concave, monetary utility function, then
sensitivity to great losses is equivalent to: for each A with P[A] > 0, we have
supc(Q)<∞Q[A] = 1.

Proof Suppose u is sensitive to great losses. For P[A] > 0 and δ > 0
look at the function ξ = 1Ac − δ1A. There exists a λ > 0 such that
u(λξ) < 0. Hence there is Q ∈ P such that λEQ[ξ] + c(Q) < −1. Be-
cause ∞ > c(Q) ≥ 0, we must have Q[Ac] − δQ[A] < 0. This yields
Q[A] ≥ 1

1+δ , proving that supc(Q)<∞Q[A] = 1. Conversely we take ξ
with P[ξ < 0] > 0. Then there is δ > 0 with P[ξ < −δ] > 0. Let
A = {ξ < −δ}. Obviously we have u(ξ) ≤ u(‖ξ‖1Ac − δ1A. Take now
Q such that c(Q) <∞ and Q[A] ≥ 1− ε (with ε > 0 to be fixed). We get for
λ > 0: u(λξ) ≤ λ (‖ξ‖Q[Ac]− δQ[A]) + c(Q) ≤ λ (ε‖ξ‖ − δ(1− ε)) + c(Q).
If ε is chosen small enough so that the first term is negative, we get that
limλ u(λξ) = −∞. 2

For coherent utilities u defined by the closed convex set S ⊂ L1, we get
the following version (a restatement of the Halmos-Savage theorem). We do
not give a proof since it is contained in Theorem 25 (use the observation that
c(Q) = 0 for Q ∈ S and = +∞ for Q /∈ S).
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Theorem 26 For a Fatou coherent utility function, the following are equiv-
alent:

1. u is relevant, i.e. for ξ ≥ 0,P[ξ > 0] > 0 we have u(−ξ) < 0, meaning
there is Q ∈ S with EQ[ξ] > 0.

2. A ∈ F , P[A] > 0, imply u(−1A) < 0, meaning there is Q ∈ S with
Q[A] > 0.

3. There exist Q ∈ S;Q ∼ P.

Remark 29 We remark that relevance does not imply strict monotonicity!
For instance, take an atomless space Ω and consider the set S2 = {Q | dQdP ≤
2}. Then u2 is relevant (because P itself belongs to S2) but not strictly
monotone. If A is such that 0 < P[A] < 1

2 , then u2(1A) = inf{Q[A] | Q ∈
S} = 0. To see this equality, simply remark that 1

P[Ac]1Ac is an element of S.

Of course we have u2(1A) = u(0) = 0, a contradiction to strict monotonicity!

Remark 30 The examples defined in Section 4.11 do not always satisfy
the relevance property, even if the original utility function does. We follow
the notation of Section 4.11, i.e. u1(ξ) = u(ξ + η) where u is coherent
and Fatou, u(η) = 0. For u we take the TailVar with level 1 > α > 0.
Clearly u is relevant. For η we take the indicator function of a set B with
probability 1 − α. For A ⊂ B, u1(−1A) = 0 since −1A + η ≥ 0, hence
u1(−1A) = u(−1A + 1B) = 0.

In the following definition we assume that u : L∞ → R is a Fatou, concave,
monetary utility function. This function is extended to u : L∞ − L0

+ →
R ∪ {−∞} as explained in Section 4.9.

Definition 18 An element η ∈ L∞ − L0
+ is called minimal if for all η′ ≤ η

with P[η′ < η] > 0 we have u(η′) < u(η).

Clearly u is relevant if and only if 0 is minimal. Suppose that η ∈ L∞ − L0
+

with u(η) = 0. Define u1 : L∞ → R as u1(ξ) = u(ξ + η). As easily seen u1 is
relevant if and only if η is minimal. The interest comes from the following
result.

Proposition 23 Suppose that u is relevant. If η ∈ L∞ − L0
+ and u(η) = 0

there is η′ ≤ η with u(η′) = u(η) = 0, η′ ∈ L∞ − L0
+ and η′ is minimal.
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Proof. The proof is based on Zorn’s lemma. Because u is relevant we have
the existence of Q ∼ P such that EQ[η]+c(Q) ≤ 2. This implies that there is
Q ∼ P with c(Q) <∞. Let (ηi)i be a completely ordered system (for the re-
lation ≤ a.s. ) with u(ηi) = u(η) = 0 and ηi ≤ η. Because EQ[ηi] + c(Q) ≥ 0
we get that EQ[ηi] ≥ −c(Q) > −∞. Clearly the order on the set (ηi)i is
equivalent to the order given by EQ[ηi]. Take a decreasing sequence ηin
such that limn EQ[ηin ] = infi EQ[ηi]. The element η′ = limn ηin still satisfies
u(η′) = u(η) (since u is Fatou) and η′ ≤ ηi for all i. Furthermore η′ is still
in L∞ − L0

+, since EQ[η′] ≥ −c(Q). Zorn’s axiom now says that there is a
minimal element η′ in the set {ξ ∈ L∞ − L0

+ | u(ξ) = u(η), ξ ≤ η}. 2

Remark 31 Even if η ∈ L∞, there is no guarantee that there is minimal
element η′ ∈ L∞ with η′ ≤ η and u(η′) = u(η).

To check whether an element is minimal is not easy, the following criterion
gives a sufficient condition. To simplify notation let us say that µ ∈ Pba

is equivalent to P, we write µ ∼ P, if P[A] > 0 implies that µ(A) > 0.
Following Yosida-Hewitt, [135], we can decompose µ in its sigma-additive
part, µa, and its purely finitely additive part, µs, i.e. µ = µa+µs. For µs we
can find a countable decomposition of Ω, Ω = ∪nBn, where Bn is a sequence
of pairwise disjoint sets such that µs(Bn) = 0 for all n. It now follows that
µ ∼ P if and only if µa ∼ P in the usual sense of sigma-additive measures.
In one direction this is clear. If µa ∼ P then necessarily P[A] > 0 implies
µ(A) ≥ µa(A) > 0. Conversely if µa is not equivalent to P then there is a
set D such that µa(D) = 0 whereas P[D] > 0. Since µs(Bn ∩ D) = 0 and
since P[D] =

∑
n P[D ∩Bn], we get that there must be at least one index n

such that P[Bn ∩D] > 0. But µ(D ∩Bn) = µa(Bn ∩D) ≤ µa(D) = 0.

Lemma 7 Suppose that ξ ∈ L∞ and suppose there exists µ ∈ Pba such that
µ ∼ P and µ(ξ) + c(µ) = u(ξ). The element ξ is then minimal.

Proof. Take η ≤ ξ and P[η < ξ] > 0. We then have µ(η− ξ) < 0 and hence
u(η) ≤ µ(η) + c(µ) < µ(ξ) + c(µ) = u(ξ). 2

Corollary 6 Let u be a Fatou concave utility function given by the penalty
function c : P→ R+ ∪ {+∞}. Suppose that u(η) = 0 and suppose that there
is ε > 0 and a sequence Qn ∈ P such that dQn

dP ≥ ε and EQn [η] + c(Qn)→ 0.
The element η is then minimal.
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Proof. Let µ ∈ Pba be adherent to the sequence Qn. For all A ∈ F , µ
satisfies µ(A) ≥ εP[A]. Therefore µ ∼ P in the sense of the lemma. 2

Remark 32 We recall that even if u is relevant (but only concave and not
coherent), this does not imply that there is a probability measure Q such that
EQ[ξ] ≥ 0 for all ξ ∈ A. The same remark can be made here. If u(η) = 0 and
η is minimal, this does not imply that there is a probability measure Q such
that EQ[η] + c(Q) = 0. In other words, minimal elements are not necessarily
support points for hyperplanes given by probability measures. One way of
making such examples goes as follows. Let S = {Q | dQdP ≥ 1/2} and let u be
the coherent measure defined by S. The previous corollary implies that every
η ∈ L∞ is minimal. So take η with u(η) = 0 and define u1(ξ) = u(ξ + η).
Because S is not weakly compact, James’s theorem allows us to choose η in
such a way that u(η) = infQ∈S EQ[η] is an infimum that is not attained by
some measure Q ∈ S. The concave utility function u1 is Fatou, is relevant
but there is no supporting hyperplane at ξ = 0.

Proposition 24 The following are equivalent

1. Each ξ ∈ L∞ is minimal.

2. If µ ∈ Pba and ξ ∈ L∞ are such that µ(ξ) + c(µ) = u(ξ), then µ ∼ P.

Proof. It follows from the lemma that the second condition implies the first.
Suppose now that there is ξ ∈ L∞, µ(ξ)+c(µ) = u(ξ) and µ is not equivalent
to P. By definition there exists A such that P[A] > 0 and µ(A) = 0. The
variable η = ξ + 1A then satisfies: u(η) ≤ µ(η) + c(µ) = µ(ξ) + c(µ) = u(ξ).
Consequently u(η) = u(ξ), ξ ≤ η,P[ξ < η] > 0 and η is not minimal. 2

We conclude this section with some extension to relevance for concave
monetary utility functions u, that are not necessarily Fatou. The reader
who believes that these results are not relevant can skip these remarks. The
results could have been proved in the beginning of this section and as the
reader can check — as an exercise — they imply the results for the Fatou
case. However we preferred to treat the case of Fatou utility measures first
since the arguments are less complicated.

The basic ingredient is a minimax theorem of Ky Fan, [98], see also
König, [88] for extensions and relations to ther minimax theorems. We write
the theorem in a way that we can apply it directly. The monetary utility
function u is supposed to be relevant and c denotes its Fenchel-Legendre
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transform or penalty function. The set Pba is equipped with the weak∗

topology σ(ba, L∞), it is then a compact set. The function c is lower semi
continuous for this topology. As we did in previous sections we will suppose
that the probabibility space is atomless.

Theorem 27 Let T be a convex set of lower semi continuous convex func-
tions, defined on Pba and taking values in (−∞,+∞]. Then there is µ0 ∈
Pba with

sup
f∈T

min
µ∈Pba

f(µ) = sup
f∈T

f(µ0).

We apply this theorem in the following way. For each ξ ∈ L∞ we define the
function

fξ(µ) = c(µ)− µ(ξ) = c(µ) + µ(−ξ).
For δ > 0 the set Kδ = {ξ | 1 ≥ ξ ≥ 0,E[ξ] ≥ δ} gives us a convex set
of lower semi continuous functions Tδ. The functions fξ are clearly convex.
Moreover for each ξ we get minµ∈Pba{fξ)(µ) = u(−ξ) and for elements in
Kδ, the outcome is bounded away from 0 as the following lemma shows.

Lemma 8 For each δ > 0 we have

sup
ξ∈Kδ

u(ξ) < 0.

Proof of the lemma Suppose that there is a sequence ηn of elements
in Kδ such that u(−ηn) → 0. We may and do suppose that the sequence
ηn converges σ(L∞, L1) to ξ ∈ Kδ. By taking good convex combinations of
ηn, ηn+1, . . ., we then get a sequence ξn ∈ Kδ such that ξn → ξ in probability.
By Egoroff’s theorem we may take a subsequence (still denoted by ξn) and
a set A of probability P[A] ≥ 1 − δ/2. such that ξn1A converges to ξ1A
in L∞. Of course by monotonicity we still have u(−ξn1A) → 0. But norm
convergene then implies that also u(−ξ1A) = 0. Since u is relevant and
since obviously E[ξ1A] ≥ δ − δ/2 > 0 we must have that u(−ξ1A) < 0, a
contradiction. 2

The minimax theorem now gives the existence of µδ ∈ Pba such that

sup
ξ∈Kδ

(
c(µδ)− µδ(ξ)

)
< 0.

This implies that infξ∈Kδ µ
δ(ξ) > c(µδ). The meaure µδ is now split in its

absolutely continuous part µδa and its purely discontinuous part µδp. We claim
that

inf
ξ∈Kδ

µδ(ξ) = inf
ξ∈Kδ

µδa(ξ).
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Indeed there is partition of Ω into pairwise disjoint setsAn such that µδp(An) =
0 for each n. Let us define Bn = ∪1≤k≤nAk. On each set Bn we have
that µδa = µδ. Because the probability space is atomless there is a set A,
P[A] = δ such that infξ∈Kδ µ

δ
a(ξ) = µδa[A]. For each n we define ηn =

1A∩Bn + δ−P[Bn∩A]
P[Bn\A] 1Bn\A. For n big enough we have that ηn ≤ 1 and we

also have E[ηn] = δ. Since δ−P[Bn∩A]
P[Bn\A] tends to zero we have that

inf
ξ∈Kδ

µδa(ξ) = µδa[A]

≥ µδa(Bn ∩A)

= µδa[ηn]− δ − P[Bn ∩A]

P[Bn \A]
µδa[Bn \A]

= µδ[ηn]− δ − P[Bn ∩A]

P[Bn \A]
µδ[Bn \A]

≥ inf
ξ∈Kδ

µδ[ξ]− δ − P[Bn ∩A]

P[Bn \A]
µδ[Bn \A]

→ inf
ξ∈Kδ

µδ[ξ].

Since µδa ≤ µδ, this shows that infξ∈Kδ µ
δ
a(ξ) = infξ∈Kδ µ

δ(ξ) > c(µδ) ≥ 0.

For each n we now use the previous construction to get a measure µ2−n .
We then take µ =

∑
n 2−nµ2−n . The absolutely continuous part of µ is

denoted by µa and it equals
∑
n µ

2−n

a . The convexity of c then shows that
for 1 ≥ ξ ≥ 0, E[ξ] > 0 we have

µa(ξ) ≥ c(µ) + ∆(E[ξ]),

where ∆ is a strictly positive function defined on (0, 1). In particular we get
µa ∼ P.

4.15 Ordering on utility functions, monotone
convergence

Definition 19 For u1, u2 : L∞ → R two monetary utility functions, we say
that u1 ≤ u2 if for all ξ ∈ L∞: u1(ξ) ≤ u2(ξ).

Proposition 25 Suppose that u1, u2 : L∞ → R are two monetary utility
functions, defined by resp. the functions c1, c2 : P → R+ ∪ {∞}. Then
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u1 ≤ u2 if and only if c1 ≤ c2. If both are coherent and defined by Sba1 ,Sba2 ,
this is equivalent to Sba1 ⊃ Sba2 .

Proof Simply observe that for a concave monetary utility function and
µ ∈ Pba:

c(µ) = sup {u(ξ)− Eµ[ξ] | ξ ∈ L∞} , u(ξ) = inf
{
Eµ[ξ] + c(µ) | µ ∈ Pba

}
.

Proposition 26 Suppose that un : L∞ → R is a decreasing sequence of con-
cave monetary utility functions. Let cn be the corresponding sequence of
penalty functions and let An be the corresponding sequence of acceptance
sets. The limit u(ξ) = limn un(ξ) defines a concave monetary utility func-
tion, its acceptance set is given by A = ∩nAn. If every un is Fatou, then
u is Fatou. The penalty function c of u satisfies c(µ) ≤ cn(µ) but it is not
necessarily equal to limn cn(µ).

Proof Because the sequence un(ξ) is bounded by ‖ξ‖∞, the limit ex-
ists and is finite. The function u is clearly concave and monetary. Since
u(ξ) ≥ 0 if and only if for all n, un(ξ) ≥ 0, we get that A = ∩nAn.
The previous proposition shows the statement on the penalty functions.
That teh function c can be different from limn cn(µ) is seen by the example
un(ξ) = − 1

αn
E[exp(−αnξ)] where αn ↑ ∞. The penalty functions are given

by cn(Q) = 1
αn

E
[
dQ
P log

(
dQ
P
)]

. We have cn(Q) tends to zero or it stays equal
to +∞, whereas c(Q) = 0 for every Q. 2

Remark 33 If we put c(µ) = limn cn(µ), then clearly

u(ξ) = inf
n
un(ξ) = inf

{
Eµ[ξ] + c(µ) | µ ∈ Pba

}
.

Hence c also defines u but there is no guarantee that this function is lower
semi continuous. The function c canbe obtained from c by closing the epi-
graph {(α, µ) | α ≥ c(µ)} in R+ ×Pba. The details are left as an exercise.

Remark 34 If all the functions un are coherent and defined by Sban , then u
is also coherent and is defined by the closure of ∪nSban . The previous remark
can be applied and translates as follows: the union ∪nSban is not necessarily
closed. In case all the coherent functions are Fatou, then we can replace Sban
by Sn = Sban ∩P. We get that S is the closure (in P) of ∪nSn

Proposition 27 Suppose that un : L∞ → R is an increasing sequence of
concave monetary utility functions. Let cn be the corresponding sequence of
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penalty functions. The limit u(ξ) = limn un(ξ) defines a concave monetary
utility function. The penalty function c of u satisfies c(µ) = limn cn(µ) =
supn cn(µ).

Proof It is easily seen that u is a concave monetary utility function. And
we have

c(µ) = sup{u(ξ)− Eµ[ξ] | ξ ∈ L∞} = sup
n

sup{un(ξ)− Eµ[ξ] | ξ ∈ L∞}

= sup
n
cn(µ).

Exercise 15 Rephrase the previous proposition for coherent measures (gen-
eral as well as Fatou) and give corresponding statements for their sets of
scenarios.

Example 26 If every un is Fatou, then u is not necessarily Fatou. Take
Ω = N,F = 2N and equipped with the probability measure P[n] = 2−n. Take
Sn to be the set of all probabilities supported by the set {n+ 1, n+ 2, . . .}.
Clearly un(ξ) = infk>n ξ(k) and u(ξ) = lim infk ξ(k). The function u is
not Fatou and is given by the set F of purely finitely additive measures.
Moreover ∩nSn = ∅,∩nSban = F. This remark almost contains a solution to
the previous exercise.

4.16 Utility functions defined on bigger spaces

Later we will show that there is no possibility to define real valued concave
utility functions for all random variables. But maybe that one can define
good utility functions on smaller spaces than L0. Recently, especially in mod-
elling operational risk, Neslehova, Embrechts and Chavez-Demoulin,[106] got
interested in spaces containing random variables that are Pareto distributed,
or more generally with distributions having fat tails, so that the random vari-
ables are not integrable. The following shows that also on spaces that are
smaller than L0, there is no hope of finding a reasonable finitely valued risk
measure or utility function. The space on which we will prove the impossi-
bility theorem are solid and rearrangement invariant. These spaces include
spaces such as Lp with p < 1.

Throughout this section we will assume that E satisfies

1. E is rearrangement invariant: if ξ ∈ E, if ξ and η have the same law
or distribution then also η ∈ E.
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2. E is solid, i.e. ξ ∈ E and |η| ≤ |ξ| imply that η ∈ E

3. E ⊃ L∞.

Rearrangement invariant spaces satisfy the following stronger property.

Lemma 9 Let (At)t∈J⊂]0,1[ be an increasing family of sets such that P[At] =
t. Let ξ be an element of E. There exists a random variable η having the
same distribution as ξ and such that on At we have η ≤ qt(ξ).

Proof. We complete the system as in Theorem 1. We get a uniformly
]0, 1[ distributed random variable γ such that {γ ≤ t} = At. We then define
η = qγ(ξ). The random variable η has the same law as ξ and satisfies all the
desired properties. 2

The function u satisfies the following properties, in other words u is what
we call a monetary utility function.

1. u : E → R, u(0) = 0,

2. if ξ ∈ E and ξ ≥ 0 then u(ξ) ≥ 0,

3. u is monetary, i.e. for ξ ∈ E and a ∈ R we have: u(ξ + a) = u(ξ) + a,

4. u is concave.

Remark 35 We do not assume any continuity property except that u is
nonnegative for nonnegative random variables. In particular we do not as-
sume that u has the Fatou property and we do not require that u is law
invariant (rearrangement invariant). We only require that u is defined on a
rearrangement invariant, solid space.

We first prove that on these bigger space, the utility function remains in a
special sense, monotone. This is the same as in Proposition 6 but this time
we cannot use the boundedness of the random varables. So we need a more
general proof.

Lemma 10 The function u is monotone in the following sense. If ξ ≤ η
are elements of E, if moreover η ∈ L∞, then u(ξ) ≤ u(η).

Proof. We may suppose that u(ξ) = 0. It is then sufficient to show
that u(η) ≥ 0. Let 1 ≥ ε > 0 and let α ≥ max(2, 2‖η‖∞)/ε. We claim
that α(η − ξ + ε) + ξ ≥ 0. Indeed on the set {ξ ≥ −2‖η‖∞} we have
α(η − ξ + ε) + ξ ≥ 0 since αε ≥ 2‖η‖∞. On the set {ξ ≤ −2‖η‖∞} we have
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α(η − ξ) ≥ α(−‖η‖∞ − ξ) ≥ −ξ since α ≥ 2. Since u is nonnegative for
nonnegative random variables we find that u(α(η − ξ + ε) + ξ) ≥ 0. Since u
is concave we then get for 0 ≤ λ = 1

α ≤ 1: u(η+ ε) = u(λ(α(η− ξ+ ε) + ξ) +
(1− λ)ξ) ≥ λu(α(η− ξ+ ε) + ξ) + (1− λ)u(ξ) ≥ 0. Since ε was arbitrary we
proved u(η) ≥ 0. 2

Remark 36 The proof is a little bit curious. The fact that η ∈ L∞ seems
to be needed. However if u is coherent (hence superadditive), then u(η) ≥
u(η − ξ) + u(ξ) would give a trivial proof.

We now use the representation theorem for monetary utility functions. This
produces a function c : Pba → R+ ∪ {∞} such that for all ξ ∈ L∞, u(ξ) =
inf{µ(ξ) + c(µ) | µ ∈ Pba}.

Remark 37 We remark that the representation theorem is only stated for
bounded random variables. We do not claim any representation for un-
bounded elements of E.

Theorem 28 Suppose that E \ L∞ 6= ∅, then u satisfies

1. For 0 ≤ k <∞ the set {µ ∈ Pba | c(µ) ≤ k} is weakly compact in L1.
Hence c(µ) <∞ implies that µ is sigma-additive and is absolutely con-
tinuous with respect to P, i.e. µ ∈ L1. Furthermore 0 = minµ∈P c(µ).

2. u is continuous from below: for non-decreasing sequences ξn ↑ ξ, uni-
formly bounded in L∞, i.e. sup ‖ξn‖∞ <∞, we have limu(ξn) = u(ξ).
This implies the weaker property that u is continuous from above, i.e.
has the Fatou property.

Proof. Take k a real number 0 ≤ k < ∞ and suppose that the set
{µ ∈ Pba | c(µ) ≤ k} contains a measure that is not sigma-additive. The
Yosida-Hewitt decomposition theorem, [135], allows us to write µ = µa + µs

where µa ∈ L1 and µs is purely finitely additive. Moreover if µs 6= 0, there
is a decreasing sequence of sets, say (An)n such that µs(An) ≥ ε > 0 and
P[An] ↓ 0. Let us now take ξ ∈ E \ L∞. We may suppose that ξ ≤ 0 (since
E is a solid vector space).
Let βn = inf{x | P[ξ ≤ x] ≥ P[An]}. Because ξ is unbounded we have
that βn → −∞. Now by rearrangement – see below – we may suppose
that ξ ≤ βn on the set An. Monotonicity as in the lemma above, implies
u(ξ) ≤ u(βn1An). The representation theorem then implies that the latter
term is bounded by u(βn1An) ≤ µ(βn1An)+c(µ) ≤ βnµs(An)+k ≤ βnε+k.
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Since βn tends to −∞ this would imply that u(ξ) ≤ −∞, a contradiction to
the hypothesis that u is real-valued. So we proved that µs = 0 and conse-
quently the set {µ ∈ Pba | c(µ) ≤ k} is a weakly compact subset of L1. An
easy compactness argument shows that the infimum in 0 = infµ∈Pba c(µ) is
now a minimum. The continuity from below is now a consequence of weak
compactness. 2

Theorem 29 With the above notation we have E ⊂ L1.

Proof. We may suppose that there is ξ ∈ E \L∞ since otherwise E = L∞

and the statement becomes trivial. Take Q ∈ L1 a probability measure such
that c(Q) <∞, we can even take c(Q) = 0 but it does not simplify the proof.
The existence of such a sigma additive probability measure is guaranteed by
the weak compactness property and inf{c(µ) | µ ∈ Pba} = 0. Of course
we have u(η) ≤ EQ[η] + c(Q) for any η ∈ L∞. By the monotonicity and
the Beppo Levi theorem this inequality extends to nonpositive elements of
E. For given ξ ∈ E, ξ unbounded, we have that |ξ| ∈ E and we may by
rearrangement, suppose that there is β > 0 such that {|ξ| ≥ β} ⊂ {dQdP ≥
1/2}. The change of ξ to a rearrangement does not change the problem since
rearrangements have the same integral under P! We then find

−∞ < u(−|ξ|) ≤ EQ[−|ξ|] + c(Q).

In particular we find that EQ[|ξ|] < ∞. This implies that EP[|ξ|1{|ξ|≥β}] <
∞. Hence EP[|X|] <∞. 2

Remark 38 The above theorem is related to the automatic continuity the-
orem for positive linear functionals defined on ordered spaces. From the
continuity of such functionals it is easily derived that the space E cannot be
too big, see [18] and [31, 32] for a discussion. The difference with our result
and the Namioka-Klee theorem is that we replaced the completeness assump-
tion by the hypothesis that the space is rearrangement invariant. Together
with the assumption that the space is solid, this is a convenient substitute
to construct elements of E.

Example 27 Let u be coherent and defined on a space E (rearrangement
invariant and solid) containing an unbounded random variable. The theorem
then says that there is a weakly compact convex set S of probability measures
Q ∈ L1 such that for ξ ∈ L∞: u(ξ) = minQ∈S EQ[ξ]. There is no reason to
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believe that the same representation holds for all elements ξ ∈ E. As the
following example shows this is related to (the failure of) a density property
of L∞ in the space E. Indeed let us recall some facts from chapter 2. The
following conjugate Young functions: Φ(x) = (x+ 1) log(x+ 1)− x,Ψ(y) =
exp(y)− y − 1 define the following Orlicz spaces, see [93] for more details:

LΦ = {ξ ∈ L0 | EP[Φ(|ξ|)] <∞},
LΨ = {ξ | there is α > 0,EP[Ψ(α|ξ|)] <∞},
L(Ψ) = {ξ | for all α > 0,EP[Ψ(α|ξ|)] <∞}.

The latter space is the closure of L∞ in LΨ. It is clear that L(Ψ) 6= LΨ, e.g.
look at a random variable ξ that is exponentially distributed with density
exp(−x)1{x>0}. Furthermore LΦ is the dual of L(Ψ) and LΨ is the dual of LΦ.
Take now ξ exponentially distributed and take µ ∈ (LΨ)∗ so that µ ≥ 0, µ is
zero on L(Ψ) and µ(ξ) 6= 0. Since ξ+LΨ

+ is at a strictly positive distance from

L(Ψ) (prove this as an exercise), the Hahn-Banach theorem gives the existence
of such an element. We now define u(η) = EP[η] + µ(η). The functional u
defined on E = LΨ is linear, positive and monetary. When restricted to
L(Ψ) and hence to L∞, it coincides with the expectation operator. But on
E = LΨ it is different, since µ(ξ) 6= 0. This shows that the representation
theorem does not hold for all elements of E. Of course the reason is that L∞

is not dense in the space E and approximation by bounded random variables
is not possible. We also remark that the utility function u defined on LΨ is
not the extension defined in Section 4.9. Indeed this extension would give
EP[ξ] for ξ ∈ L∞ − L0

+.
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Chapter 5

Law Determined Monetary Utility

Functions

The present section deals with three results. One is due to Jouini, Schacher-
mayer and Touzi [84], and says that a concave utility function that only
depends on the law of the random variable is necessarily Fatou. The second
result due to Kusuoka [96], characterises these law invariant coherent mea-
sures. The third result due to Frittelli and Rosazza-Gianin, [72] characterises
the convex law invariant risk measures.

5.1 The Fatou property

Definition 20 A utility function u : L∞ → R is called law determined if
u(ξ) = u(η) as soon as ξ and η have the same distribution (or law).

Remark 39 Such utility functions have been called law invariant but many
researchers don’t like this expression since it suggests that u does not change
if the law of the variable changes, another expression is law equivariant. The
following theorem was proved by Jouini-Schachermayer-Touzi [84]. Their
proof uses that the probability space is standard. The present proof —
almost the same as the one from [84] — does not use this assumption, see
also [128].

Theorem 30 Let u : L∞ → R be a quasi-concave utility function that is
law-determined. Suppose that u satisfies the semi continuity property: for
each a ∈ R, the set K = {ξ | u(ξ) ≥ a} is norm closed. Then u has the
Fatou property.

Proof. The basic ingredient is the following result



92 Chapter 5. Law Determined Monetary Utility Functions

Lemma 11 Let the probability space (Ω,F ,P) be atomless. Let (ξn)n≥1 be
a uniformly bounded sequence that converges in probability to the random
variable ξ. Then

1. for each n there is a natural number Nn and there are random variables
ξn,1 . . . ξn,Nn , each ξn,j having the same law as ξn,

2. the sequence 1
Nn

(ξn,1 + . . . ξn,Nn) tends to ξ in L∞ norm.

Proof of the Theorem. We will prove the lemma later. For the
moment let us show how it implies the theorem. We have to show that for
each α ∈ R, the convex set K = {η | u(η) ≥ α} is weak∗ closed in L∞. By
the Krein-Smulian theorem it is sufficient to show that uniformly bounded
sequences in K that converge in probability, have a limit that is still in K.
So let us suppose that for each n, ξn ∈ K, suppose that sup ‖ξn‖∞ <∞ and
suppose that ξn tends to ξ in probability. We have to show that u(ξ) ≥ α
or what is the same ξ ∈ K. By the lemma we have the existence of convex
combinations 1

Nn
(ξn,1 + . . . ξn,Nn) — each ξn,j having the same law as ξn —

that converge to ξ in L∞ norm. Since u is law-determined and quasi-concave
we have that each ξn,j ∈ K therefore also 1

Nn
(ξn,1 + . . . ξn,Nn) ∈ K. Because

K is norm closed we get ξ ∈ K as required. 2

Proof of the Lemma. There is no loss in generality to suppose that
‖ξn‖∞ ≤ 1. We first replace ξ by an elementary function η =

∑k
i=1 αi1Ai

in such a way that ‖ξ − η‖∞ ≤ ε, ‖η‖∞ ≤ 1, mini P[Ai] = δ > 0 and the
sets Ai, i = 1, . . . k are disjoint. For n big enough, say n ≥ n0(ε), and for
each i, we will have that P[|ξn − η| > 2ε | Ai] ≤ ε. For such n we will now
construct the variables ξn,1, . . . , ξn,Nn . These variables will be constructed
on each Ai separately. The idea is to construct ξn,1, . . . , ξn,Nn in such a
way that on each Ai, the conditional distribution of ξn,j is the same as the
conditional distribution of ξn. Let us now fix Nn so that 1

Nn
< ε. Take kn

so that kn−1
Nn

≤ ε < kn
Nn

. Remark that this implies that kn
Nn
≤ 2ε. Because

P is atomless we can divide Ai in Nn disjoint sets Ai,j , each having the

probability 1
Nn

P[Ai] and such that {|ξn−αi| > 2ε}∩Ai ⊂ ∪knj=1Ai,j . This is
possible since P[|ξn−η| > 2ε | Ai] ≤ εP[Ai] and by the choice of kn. The sets
Ai,j also depend on n but we drop this index to keep the notation simple.
On each of the sets Ai,kn+1, . . . , Ai,Nn we have that |ξn − η| ≤ 2ε. Let us
now put ξn,1 = ξn. For each j ≥ 2, we use the cyclic permutation that maps
1 to j, 2 to j + 1 etc, more precisely s is mapped to πj(s) = (s + j − 1) if
s ≤ Nn − j + 1 and to πj(s) = (s+ j − 1−Nn) if s > Nn − j + 1. For such
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j we define ξn,j so that on the set Ai,πj(s), the variable ξn,j has the same
conditional distribution as ξn has on the set Ai,s. This is possible because
P is atomless. Because all the sets Ai,s have the same probability, it follows
that the variables ξn,j have the same conditional distribution on Ai as ξn.
This implies that the law of ξn,j is the same as the law of ξn. Let us now look
at the average 1

Nn
(ξn,1 + . . . ξn,Nn) on each set Ai. The difference between

ξn,j and η is for Nn−kn terms bounded by 2ε and for kn terms it is bounded
by ‖ξn,j − η‖∞ ≤ 2. This gives a bound∥∥∥∥ 1

Nn
(ξn,1 + . . . ξn,Nn)− η

∥∥∥∥
∞
≤ Nn − kn

Nn
2ε+

kn
Nn

2 < 2ε+ 4ε = 6ε,

hence ∥∥∥∥ 1

Nn
(ξn,1 + . . . ξn,Nn)− ξ

∥∥∥∥
∞
≤ 7ε.

To finish the proof we continue in a standard way, using some diagonalisation
argument. Let us sketch the details. For each ε of the form ε = 1/k we get
a number n0(ε) = n0(1/k). We may suppose that this sequence is strictly
increasing. For n0(1/k) ≤ n < n0(1/(k + 1)) we perform the construction
above. This ends the proof of the lemma. 2

Remark 40 A careful analysis of the proof shows that the numbers Nn
have to be big enough. This means that we can for each n, take Nn as big
as we want. For the moment we do not see how to use this extra feature.
The idea of the proof is of course the law of large numbers. The symmetry
needed in the law of large numbers is taken over by the cyclic permutations.
We could also have used the set of all permutations of {1, . . . , Nn}, but
the combinatorics are then a little bit more complicated: more counting is
required.

5.2 A Representation of probability measures
as nonincreasing functions

This section deals with some results of measure theory. These results are
independent of the rest of the chapter. The results are probably known but
for completeness we give proofs instead of leaving them as exercises.

Lemma 12 Let η : (0, 1] → R+ be a nonincreasing function, then η′(x) =
limy↓x,y>x η(y) defines a right continuous function on (0, 1). We have η′ = η,
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a.s. . If η1 = η a.s. and if η1 is nonincreasing, then η1 yields the same
function η′.

Exercise 16 The preceding lemma dealt with functions on (0, 1). Give a
definition of “nonincreasing” that is adapted to classes of random variables
(instead of functions). Prove that there is always a right continuous repre-
sentative of such class.

Lemma 13 The set of nonincreasing random variables η : (0, 1)→ R+ such
that

∫
(0,1)

η(x) dx = 1 forms a convex closed set C, in L1[0, 1]. On this set

the weak convergence and the strong convergence are the same. A subset
H ⊂ C is relatively weakly compact if and only if it is strongly relatively
compact and this property is equivalent to: for all ε > 0 there is δ > 0 such
that

sup
η∈H

∫
(0,δ)

η ≤ ε.

Proof Because the elements of C are nonincreasing, the characterisation
of relatively weakly compact sets as uniformly integrable sets (the Dunford-
Pettis theorem), immediately yields the last claim. We still have to show
that if ηn → η, weakly in C, then the convergence is also a norm con-
vergence. By the preceding lemma we may suppose that η, ηn are right
continuous. To show norm convergence it is then sufficient to show that
ηn → η a.s. . Take x ∈ (0, 1) and suppose that x is a continuity point of
η, we will show that ηn(x) → η(x). Because almost every point is a con-
tinuity point, this will complete the proof. For given ε > 0, take δ > 0
such that η(x+ δ) ≥ η(x)− ε and η(x− δ) ≤ η(x) + ε. By weak convergence∫

(x−δ,x)
ηn →

∫
(x−δ,x)

η. By monotonicity and by the choice of δ, we then get

lim sup ηn(x)δ ≤ (η(x) + ε) δ. This proves lim sup ηn(x) ≤ η(x) + ε. In the
same way, by integrating over the interval (x, x+ δ) we prove lim inf ηn(x) ≥
η(x) − ε. Because ε was arbitrary we have shown that lim ηn(x) exists and
is equal to η(x). 2

Lemma 14 If η ∈ C there is a probability measure ν on (0, 1] such that
almost surely

η(x) =

∫
(0,1]

(
1

a
1[0,a)(x)

)
ν(da).

Conversely this formula associates withe every probability measure on (0, 1]
a nonincreasing function η ∈ C.
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Proof We may and do suppose that η is right continuous. Because η is
non-increasing, there is a σ−finite nonnegative measure µ on (0, 1] such that
almost surely η(x) = µ ((x, 1]). We claim that

∫
xµ(dx) = 1 so that ν(du) =

uµ(du) is a probability measure. This follows from Fubini’s theorem, also
called integration by parts. Indeed∫

(0,1]

xµ(dx) =

∫
(0,1]

∫
(0,1]

1{u<x} duµ(dx)

=

∫
(0,1]

du

(∫
(0,1]

1{u<x}µ(dx)

)
=

∫
(0,1]

du η(u) = 1.

We can now write

η(x) =

∫
(0,1]

1x<uµ(du) =

∫
(0,1]

(
1

u
1(0,u)(x)

)
ν(du).

The converse is proved in the same calculations. 2

Exercise 17 If we integrate the variable η and define φ(x) =
∫ 1

x
η(u) du,

we get a representation of nonnegative convex functions φ : [0, 1] → R+,
φ(0) = 1, φ(1) = 0 and with some little extra effort you get a representation
of nonnegative convex functions φ : R+ → R+, φ(0) = 1, limx→∞ φ(x) = 0.
The result is well known and used in probability theory in the theory of
characteristic functions. Try e.g. φ(x) = exp(−|x|), φ(x) = 1

1+x2 .

Remark 41 The fanatic reader can check that the above relation can be un-
derstood by looking at the operator T : C[0, 1]→ C[0, 1] defined as (Tf)(a) =
1
a

∫ a
0
f(x) dx for a 6= 0 and (Tf)(0) = f(0). This operator is continuous, is

not weakly compact, and its transpose is defined by the above relation.

Lemma 15 Let M1
+(0, 1] be the set of all probability measures on (0, 1],

equipped with the weak∗ topology induced by the continuous functions C[0, 1].
With each probability measure ν ∈M1

+(0, 1] we associate the non-increasing
function ην(x) =

∫
(0,1]

(
1
a1[0,a)(x)

)
ν(da). The mapping M1

+(0, 1]→ L1 is a

homeomorphism between the space M1
+(0, 1] and the space C, equipped with

the norm topology.

Remark 42 In probability theory this convergence is usually called weak
convergence (for probability measures), it is the same topology as the one
induced by the continuous and bounded functions on (0, 1], the continuous
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functions on [0, 1] zero at 0 or the functions on [0, 1] that are restrictions
of smooth functions on R. And there are many more ways to define this
topology, see [20] for details and equivalences.

Proof The previous lemma already showed that the mapping is a bijection
between M1

+(0, 1] and C. The definition of the weak∗ topology shows that
if νn → ν, then almost surely ηνn → ην . Since all the elements ην are
nonnegative and have integral equal to 1, the almost sure convergence implies
the convergence in L1 (by Scheffe’s lemma). The converse is proved in the
following way. Let ηn(x) =

∫
(0,1]

(
1
a1[0,a)(x)

)
νn(da) and suppose that ηn →

η in L1, where η(x) =
∫

(0,1]

(
1
a1[0,a)(x)

)
ν(da). We have to show that νn → ν

in the weak∗ topology for measures on (0, 1]. For this it is sufficient to
show that

∫
f(a)νn(da) →

∫
f(a)ν(da) for every smooth function f . But

such a function f can be represented as f(a) = 1
a

∫ a
0
g(u) du where g(x) =

xf ′(x) + f(x). In the language of remark 41 f = Tg. We get∫
f(a)νn(da) =

∫
1

a

∫ a

0

g(x) dx νn(da)

=

∫
g(x)ηn(x) dx→

∫
g(x)η(x) dx =

∫
f(a)ν(da).

2

Corollary 7 With the notation of the above proposition we get that com-
pact sets H of C are in one-to-one correspondence with compact sets K of
M+(0, 1]. A set K ⊂M+(0, 1] is weak∗ compact if and only if for all ε > 0
there is δ > 0 such that sup{ν((0, δ]) | ν ∈ K} ≤ ε.

Remark 43 What happens for the Dirac measure concentrated at 0? Let
us see what happens with the sequence νn where νn is the Dirac measure
concentrated at 1/n. The corresponding function ηn is n1(0,1/n) and this
sequence is not converging in L1[0, 1]. The sequence

∫
ηn(x)qx dx – where

q is the quantile function or increasing rearrangement of a random vari-
able ξ – converges to ess.inf ξ. But we can write the definition of η in
another way. With ν we associate the integral of ην , i.e. the function
Hν(x) =

∫
(0,x]

ην(u) du. The function Hν is then the distribution function of

probability measure with density ην . We can then extend the function Hν

to the measures defined on [0, 1]. The Dirac measure then gets the function
H(x) = 1 for all x ∈ [0, 1] whereas an arbitrary probability measure ν on [0, 1]
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gets the function Hν(0) = ν({0}) and Hν(t) = Hν(0)+
∫

(0,1]
ν(da) 1

a min(a, t)

for t > 0. With a little bit of liberal thinking this can be written as
Hν(t) =

∫
[0,1]

ν(da) 1
a min(a, t) for all t ∈ [0, 1].

Exercise 18 Analyse the continuity properties of the mappingM1
+[0, 1]→

M1
+[0, 1] where the image of ν is the measure with distribution function Hν .

Compare with the remark on the operator T of remark 41.

5.3 Law Determined Utilities

Theorem 31 Suppose that the probability space is atomless. Then the con-
cave monetary utility function is law determined if and only if the penalty

function is law determined, i.e. if dQ
dP and dQ′

dP have the same law, then
c(Q) = c(Q′).

Proof. Suppose that u is law determined. We need to show that if dQ
dP

and dQ′
dP have the same law, c(Q) = c(Q′). We will give the proof when

both c(Q) and c(Q′) are finite. The extension to the general case is done
using the same idea and is left as an exercise. Fix ε > 0 and take λ with
u(λ) = 0, c(Q) ≤ EQ[−λ] + ε. We now use the results of Chapter 2 on non
atomic spaces. There are [0, 1] uniformly distributed random variables υ, υ1

such that dQ
dP = f ◦ υ, λ = l ◦ υ1 and where f, l are nondecreasing. Clearly

we have c(Q) ≤ EQ[−λ] + ε = EQ[−l ◦ (1 − υ)] + ε. But because u is law

determined we have u(l ◦ (1− υ) = u(λ) = 0. Because dQ
dP and dQ′

dP have the

same law, we may write dQ′
dP = f ◦ υ′ where υ′ is [0, 1] uniformly distributed.

Of course l◦(1−υ′) has the same law as λ and hence can be used to estimate
c(Q′). We get c(Q′) ≥ EQ′ [−l ◦ (1− υ′)] = EQ[−l ◦ (1− υ)] ≥ c(Q)− ε. This
shows that c(Q′) ≥ c(Q) and by symmetry we get equality. The converse is
proved along the same ideas. 2

Corollary 8 If the coherent utility u is given by the scenario set S, then u

is law determined if and only if Q ∈ S, dQ
dP and dQ′

dP have the same law, imply
Q′ ∈ S. In other words if and only if the set S is rearrangement invariant.

The idea is to represent law determined utilities with quantiles or better
with the family of TailVar-quantities. We will give the representation of con-
cave utility functions. The result includes Kusuoka’s representation, [96]. as
well as the generalisation due to Frittelli and Rosazza-Gianin, [18]. Because
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the probability space is atomless, we are able to reduce the problem to the
interval [0, 1]. We fix a random variable υ, defined on (Ω,F ,P) such that υ
is uniformly distributed on the interval [0, 1]. The random variable υ then
defines an imbedding ψ : L∞[0, 1]→ L∞(Ω), ψ(ξ) = ξ ◦υ. If u is a law deter-
mined monetary utility function on L∞(Ω), then v(ξ) = u(ψ(ξ)) = u(ξ ◦ υ)
defines a law determined utility function on L∞[0, 1]. If qx denotes the quan-
tile function of a random variable λ ∈ L∞(Ω), then ψ(q) has the same law
as λ, hence v(q) = u(λ). If we can represent v then we can also represent
u. Because v is Fatou we already have that there is a convex, lsc function
c : P[0, 1]→ R+ such that

v(ξ) = inf

{∫
[0,1]

ξ(x)η(x) dx+ c(η) | η ∈ L1[0, 1], η ≥ 0,

∫
[0,1]

η(x) dx = 1

}
.

Suppose now that ξ ∈ L∞[0, 1] is increasing, then it equals its quantile
function. To recover v(ξ) we may suppose that ξ is increasing and because
c(η) = c(η∗), we get

v(ξ) = inf

{∫
[0,1]

ξ(x)η(x) dx+ c(η) | η ∈ P[0, 1], η non-increasing

}
.

Theorem 32 If u : L∞(Ω) → R is a law determined, concave, monetary
utility function then there is a convex, lsc function

c : M1
+(0, 1]→ R+,

such that

1. inf{c(ν) | ν ∈M1
+(0, 1]} = 0

2. for all ξ ∈ L∞ we have

u(ξ) = inf

{∫
ν(dα)uα(ξ) + c(ν) | ν ∈M1

+(0, 1]

}
,

where uα represents the TailVar utility function at level α > 0:

3. If u is coherent then c is the indicator function of a convex set S ⊂
M1

+(0, 1] and we get

u(ξ) = inf

{∫
ν(dα)uα(ξ) | ν ∈ S

}
.
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Proof The utility function v = u ◦ ψ has a penalty function c. Let us put
for ν ∈M1

+(0, 1], c(ν) = c(ην). Because of the continuity, proved above, this
function c is lsc and is certainly convex. We have for ξ ∈ L∞(Ω):

u(ξ) = v(q(ξ))

= inf

{∫
qx(ξ)η(x) dx+ c(η) | η ∈ P[0, 1], η is decreasing

}
= inf

{∫
qx(ξ)

∫
(0,1]

1

a
1(0,a)(x)ν(da) dx+ c(ν) | ν ∈M1

+(0, 1]

}

= inf

{∫
(0,1]

(∫
qx(ξ)

1

a
1(0,a)(x) dx

)
ν(da) + c(ν) | ν ∈M1

+(0, 1]

}

= inf

{∫
(0,1]

ua(ξ) ν(da) + c(ν) | ν ∈M1
+(0, 1]

}
If u is coherent then the penalty function is an indicator of a convex weak∗

closed convex set S ⊂ M1
+(0, 1] and hence the expression can be simplified

to

u(ξ) = inf

{∫
ν(dα)uα(ξ) | ν ∈ S

}
.

2

Theorem 33 If u is a law determined concave utility function, then there
is a convex lsc function c : M1

+[0, 1]→ R+ such that

1. inf{c(ν) | ν ∈M1
+[0, 1]} = 0

2. for all ξ ∈ L∞ we have

u(ξ) = inf

{∫
ν(dα)uα(ξ) + c(ν) | ν ∈M1

+[0, 1]

}
,

where uα represents the TailVar utility function at level α > 0 and
u0(ξ) = ess.inf ξ.

3. If u is coherent then c is the indicator function of a convex set S ⊂
M1

+[0, 1] and we get

u(ξ) = inf

{∫
ν(dα)uα(ξ) | ν ∈ S

}
.
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Proof We use the preceding theorem and we “close” the function c in the
right way. The topology on the set M1

+[0, 1] is – as usual – the weak∗

topology induced by the functions C[0, 1], see [20]. Since c is lsc and convex,
the graph of c: {

(x, ν) | x ∈ R; ν ∈M1
+(0, 1];x ≥ c(ν)

}
is convex and closed. If we take the closure of this set in the space R+ ×
M1

+[0, 1] we get a convex set, that defines a function c. The restriction of c
to M1

+(0, 1] is precisely c. If c was the indicator of a convex set S, then c

is the indicator of the closure S of S in the compact space M1
+[0, 1]. Since

we put u0(ξ) = ess.inf ξ, the functions [0, 1]→ R, α→ uα(ξ) are continuous.
From this it follows that

u(ξ) = inf

{∫
ν(dα)uα(ξ) + c(ν) | ν ∈M1

+[0, 1]

}
.

The rest is trivial. 2

Exercise 19 Prove that the restriction of c toM1
+(0, 1] is indeed c (and not

smaller). The main point in this exercise is to realise that something has to
be proved.

Remark 44 Let us emphasize that S was obtained via the set S. But there
is no guarantee that the set S has a minimal property. Indeed we have

ess.inf ξ =

∫
[0,1]

qx(ξ)µ(dx) where µ is the Dirac measure concentrated at 0

= inf
ν∈M1

+(0,1]

∫
(0,1]

qx(ξ) ν(dx)

= inf
ν∈M1

+[0,1]

∫
[0,1]

qx(ξ) ν(dx).

This can be explained as follows. We got the set S out of the representation
theorem for a utility function, v, on L∞[0, 1]. But to get a representation
for the utility function, u, on L∞(Ω), we only needed the increasing (non-
decreasing) elements of L∞[0, 1]. Of course on this subset the representation
of v can be given by more sets, S, or for concave functions by more functions
c. The function c is not uniquely defined.
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For probability measures µ, ν ∈ M1
+[0, 1] we say that µ � ν if and only

if
∫
f dµ ≥

∫
f dν for every nondecreasing continuous function f . This is

saying that µ is more concentrated to the right than ν. Integration by parts
immediately yields that the property is equivalent to µ[x, 1] ≥ ν[x, 1] for
every x ∈ [0, 1]. In insurance this ordering is called stochastic dominance
of order one and it is one of the many orderings that can be defined using
convex cones of ”test functions”. This procedure is well known in Choquet
theory. In the following theorem the function c or the set S are obtained
by the procedure above. The theorem shows that c or S have a certain
maximality property.

Theorem 34 Let u be law determined and given by the function c : M1
+[0, 1],

then µ � ν implies c(µ) ≤ c(ν). If u would be law determined and coherent
and given by the set S ⊂M1

+[0, 1], then ν ∈ S implies that µ ∈ S.

Proof For a measure ν on [0, 1], the function c(ν) is obtained as

c(ν) = − inf

{∫
[0,1]

ua(ξ) ν(da) | ξ ∈ L∞(Ω);u(ξ) ≥ 0

}
.

Since ua(ξ) is nondecreasing the result immediately follows 2

Exercise 20 Prove the statement about c(ν), check what happens for a = 0
and complete the proof.

5.4 Weak compactness property

Theorem 35 Let c : M1
+(0, 1] → R+ be the penalty function of a law de-

termined utility function u. The function u satisfies the weak compactness
property of Theorem 24 if and only if: for k > 0. ε > 0, there is δ > 0 such
that

sup{ν(0, δ) | c(ν) ≤ k} ≤ ε.

In this case the set

{η | η ∈ P[0, 1], η non-increasing , c(η) ≤ k}

is compact in L1. In the notation of the preceding section, this is the same
as

c(ν) = +∞ if ν({0}) > 0,
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or for coherent utility functions

ν({0}) > 0 implies ν /∈ S.

Remark 45 We warn the reader that this does not imply that the set {η |
η ∈ P[0, 1], c(η) ≤ k} is compact for the norm topology. One can only deduce
that this set is weakly compact in L1 but this of course is already known
since u satisfies the weak compactness property.

Proof If for k > 0. ε > 0, there is δ > 0 such that

sup{ν(0, δ) | c(ν) ≤ k} ≤ ε,

we can conclude that {ν | c(ν) ≤ k} is weak∗ compact in M1
+(0, 1] (see

Billingsley, [20]). The image set {ην | c(ν) ≤ k is therefore compact in L1

and hence uniformly integrable. The set {η | c(η) ≤ k} is therefore also
uniformly integrable and hence weakly compact (since convex and closed).
If the condition does not hold we have the existence of k > 0, ε > 0 as
well as the existence of sequences νn ∈ M1

+(0, 1] such that c(νn) ≤ k and
νn(0, 1

n ) ≥ ε. This implies∫
(0, 1n )

ηνn(x) dx =

∫
(0, 1n )

(∫
νn(da)

1

a
1(0,a)(x)

)
dx

=

∫
νn(da)

1

a
min(a,

1

n
) ≥ νn(0,

1

n
) ≥ ε.

The sequence ηνn cannot be uniformly integrable and the weak compactness
property is not fulfilled. 2

Theorem 36 Let u be a coherent law determined utility function satisfying
the weak compactness property. Then u has the following representation:

u(ξ) = inf

{∫
ν(dα)uα(ξ) | ν ∈ S

}
,

where the set S is weak∗ compact in M1
+(0, 1]. This statement is equivalent

to limδ→0 supν∈S ν(0, δ) = 0 or to S is closed in M1
+[0, 1].

Proof The proof follows immediately from the previous theorem since c is
the indicator function of S. 2



Chapter 6

Operations on utility functions

6.1 Minimum of two coherent utility functions.

Let u1 and u2 be two coherent utility functions. Just to give an inter-
pretation, they could stand for two different measures of risk calculated as
ρ1 = −u1 and ρ2 = −u2. One of the utility functions (or risk measure) could
be the manager’s or the supervisor’s utility, the other the shareholder’s. If
both groups must be pleased (a new phenomenon in management behaviour),
it is natural to ask for a risk measure which is more severe than each of the
two, that is:

ρ ≡ ρ1 ∨ ρ2

We leave it to the reader to check that ρ is indeed a coherent risk measure
that also satisfies the Fatou property if ρ1 and ρ2 do. Taking the max of
two risk measures is the same as taking the minimum of the coherent utility
functions. For simplicity we only treat the more complicated case of utility
functions that have the Fatou property.

If we call A1, A2, A the accceptance sets (the first describing u1, the
second u2 and the third u = min(u1, u2) respectively) and we define S1, S2

and S to be the related families of probabilities, we have:

A = A1 ∩ A2

S = conv (S1,S2)

Actually:

A = {ξ | u(ξ) ≥ 0} = {ξ | u1(ξ) ≥ 0 andu2(ξ) ≥ 0} = A1 ∩ A2.

Since the acceptance set characterises the risk measure, we can find the
corresponding set S:

ξ ∈ A ⇔ ξ ∈ A1 and ξ ∈ A2

⇔ ∀Q1 ∈ S1 : Q1[ξ] ≥ 0 and ∀Q2 ∈ S2 : Q2[ξ] ≥ 0

⇔ ∀Q ∈ S : Q[ξ] ≥ 0
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We still have to prove that S = conv(S1,S2) is closed.

Let (Yn)n be a sequence in S converging in L1−norm to a certain Y
(remember that we identify probabilities with their densities). By definition
there exist Pn ∈ S1 and Qn ∈ S2 and tn ∈ [0, 1] such that Yn = tnPn +
(1 − tn)Qn. We may suppose that tn → t ∈ [0, 1] (if not, take a converging
subsequence).

There are now two possible cases:
a) if tn or 1 − tn tends to 0, then we have either Qn → Y or Pn → Y and
then Y ∈ S1 or Y ∈ S2.
b) 0 < t < 1. By dropping a finite number of terms, we may suppose that
there is a number c ∈ (0, 1) such that c ≤ tn ≤ 1− c. Now:

Pn[A] ≤ 1

tn
Yn[A] ≤ 1

c
(Yn[A])

and therefore the sequence
(
dPn
dP
)
n≥1 is dominated by the strongly convergent

sequence
(
dYn
dP
)
n. It is therefore uniformly integrable and hence a relatively

weakly compact sequence. We may, by selecting a subsequence, suppose that
Pn → P0 weakly σ(L1, L∞) and since S1 is convex closed, we have P0 ∈ S1.
Similarly we get Q0 ∈ S2. Finally Y = tP0+(1−t)Q0 belongs to conv(S1,S2).
2

6.2 Minimum of concave utility functions

We will now do the same analysis for two concave utility functions, u1, u2.
They define resp. the acceptance sets A1,A2. The new set is A = A1 ∩ A2.
The set A is weak∗ closed if both sets A1,A2 are weak∗ closed. In general
A is norm closed as the intersection of norm closed sets. But we will only
do the Fatou case, the other case being similar – up to small topological
technicalities which we leave (with pleasure) to the reader. The convex
penalty functions are resp. c1, c2. So we have ξ ∈ A if and only if for all
Q: min(c1(Q), c2(Q)) + EQ[ξ] ≥ 0. However the function min(c1(Q), c2(Q))
is not convex. In the previous section we also had to replace the union of
the two sets S1,S2 by their convex hull. In this case we replace the function
min(c1(Q), c2(Q)) by the largest convex function, smaller than both c1(Q)
and c2(Q)). This function is constructed as follows. The epigraph is simply
the convex hull of the union of the two epigraphs, {(Q, α) | α ∈ R;α ≥
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ci(Q)}. So we look at the set

C = {λ(Q1, α1) + (1− λ)(Q2, α2) | αi ≥ ci(Qi), 0 ≤ λ ≤ 1}.

We proceed as in the previous section and show that this set is closed. Let
0 ≤ λn ≤ 1 and let (Q1

n, α
1
n), (Q2

n, α
2
n) be selected in the epigraphs of resp

c1, c2. Furthermore let λnQ1
n+(1−λn)Q2

n → Q and λnα
1
n+(1−λn)α2

n → α.
We have to show that (Q, α) ∈ C. We may – eventually we take a subsequence
– suppose that λn → λ. If λ = 0 or 1 things are easy. Say λ = 1, the other
case is similar. Then

α = α1 = lim(λnα
1
n + (1− λn)α2

n)

≥ lim inf(λnc1(Q1
n) + (1− λn)c2(Q2

n))

≥ lim inf λnc1(Q1
n)

≥ c1(Q1) = c1(Q) since Q = Q1.

In case 0 < λ < 1 we get – as in the previous section – that the sequences
Q1
n,Q2

n are uniformly integrable. So we may suppose that they converge
weakly to resp. Q1,Q2. Of course Q = λQ1 + (1 − λ)Q2. We remark that
the penalty functions, being convex, are also lower semi continuous for the
weak topology σ(L1, L∞) – this is a good exercise. So we now get

α = limλnα
1
n + (1− λn)α2

n

≥ lim inf(λnc1(Q1
n) + (1− λn)c2(Q2

n))

≥ lim inf λnc1(Q1
n) + lim inf(1− λn)c2(Q2

n)

≥ λc1(Q1) + (1− λ)c2(Q2).

This proves that (Q, α) ∈ C as desired. Analytically we define

c(Q) = inf{α | (Q, α) ∈ C}
= inf{λc1(Q1) + (1− λ)c2(Q2) | Q = λQ1 + (1− λ)Q2}.

Since C is closed and is the epigraph of c, we have that c is lower semi
continuous and convex. Of course infQ c(Q) ≤ min(infQ c1(Q), infQ c2(Q)) =
0. So it defines a utility function. To see that it defines the utility function
u, we show that c(Q) = sup{EQ[−ξ] | ξ ∈ A}. This is almost the definition
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of c.

ξ ∈ A ⇔ ξ ∈ A1 and ξ ∈ A2

⇔ for all Q1,Q2 : EQ1 [ξ] + c1(Q1) ≥ 0 and EQ2 [ξ] + c2(Q1) ≥ 0

⇔ for all 0 ≤ λ ≤ 1 for all Q,Q1,Q2 with Q = λQ1 + (1− λ)Q2 :

EQ[ξ] + λnc1(Q1
n) + (1− λn)c2(Q2

n) ≥ 0

⇔ for all Q : EQ[ξ] + c(Q) ≥ 0.

Remark 46 In convex analysis, the construction above is known as the inf-
convolution or convex convolution, see [118]. It is denoted c = c12c2. More
on this in the next section.

6.3 Inf Convolution of coherent utility func-
tions

With the obvious notation, if u1 and u2 are given coherent utility functions,
both having the Fatou property with their corresponding sets: A1, S1, Sba1 ,
S1 = Sba1 ∩ L1 and A2, S2, Sba1 , S2 = Sba2 ∩ L2. We can construct other
utility functions by taking S = S1 ∩ S2, Sba0 = Sba1 ∩ Sba2 or by taking A =

conv (A1,A2)
σ(L∞,L1)

= A1 +A2
σ(L∞,L1)

or evenA0 = conv (A1,A2)
‖ ‖∞

=

A1 +A2
‖ ‖∞

. The closure is either taken in the norm topology or in the
weak∗ topology σ(L∞, L1). If we take the closure in the norm topology we
only get a coherent utility function. If we take the closure in the weak∗

topology we get a coherent utility function with the Fatou property. We
will study both cases and relate them to a familiar construction from convex
analysis. We will also show that both constructions can be different. We
first show that A and S correspond:

Proposition 28 A and S correspond, i.e. S = SA, where

SA = {Q | Q� P a probability such that for all ξ ∈ A : EQ[ξ] ≥ 0}
= {Q | Q� P a probability such that for all ξ ∈ A1 +A2 : EQ[ξ] ≥ 0}

The coherent utility function constructed from A (or what is the same from
S) is denoted by u. The utility function u satisfies the Fatou property.

Proof. We first show that S ⊃ SA. If ξ /∈ A then by the Hahn Banach
theorem (remember that the dual space of L∞ with the weak* topology is
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exactly L1) there exists an f ∈ L1 such that E[fξ] < 0 and E[fη] ≥ 0 for
every η ∈ A. Since A contains 1A for every A ∈ F , f will be nonnega-
tive a.s. . Now, f can be assumed to be normalized, so we have obtained
a Q ∈ S1 ∩ S2, dQ = f dP, which is strictly negative on ξ. Now we show
that S ⊂ SA. If ξ ∈ A we have to prove that for every Q ∈ S: EQ[ξ] ≥ 0.
Let us start with ξ ∈ conv (A1,A2) = A1 + A2, where the equality holds
because the Ai are convex cones. Then if Q ∈ S, Q belongs to both Si
and taking into account that ξ can be written as η + ζ with η ∈ A1 and
ζ ∈ A2, we have that EQ[ξ] ≥ 0. Rewritten, this means that 0 ≤

∫
ξ dQdP dP

for every ξ ∈ conv (A1,A2) and for every Q ∈ S. By fixing Q, the set
{η ∈ L∞ | EQ[η] ≥ 0} is weak∗ closed and contains conv (A1,A2): therefore
it contains the weak∗ closure of the latter set, that is, it contains A. 2

Remark 47 In case S1 ∩ S2 = ∅ we get that A1 + A2 is dense in L∞ for
the weak∗ topology. We will see by an example that this does not imply
that L∞ = A1 +A2. Throughout this section the function u will always be
constructed using the set S1 ∩S2. Of course it only makes sense if S1 ∩S2 is
nonempty.

Proposition 29 A0 and Sba0 correspond, i.e.

Sba0 = {µ | µ ∈ Pba such that for all ξ ∈ A0 : µ(ξ) ≥ 0}
= {µ | µ ∈ Pba such that for all ξ ∈ A1 +A2 : µ(ξ) ≥ 0}.

The coherent utility function constructed from A0 (or what is the same from
Sba0 ) is denoted by u0.

Proof. . The proof is a copy of the proof for the Fatou case. The difference
lies in the fact that the set A0 is only norm closed and therefore we can only
work with elements of ba. 2

Remark 48 The reader can check that if A ⊂ L∞ is a cone such that
A ⊃ L∞+ , then the two expressions

sup{α | ξ − α ∈ A}

and

sup{α | ξ − α ∈ A‖‖̇∞},
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(meaning that we take the closure of A for the L∞ norm), are the same.

This is easily seen because ξ − α ∈ A‖.‖∞ implies that for every ε > 0, we
have that ξ − α + ε ∈ A. We also remark that, even for finite Ω (starting
with 3 points), the set A = A1 +A2 need not be closed.

Proposition 30 Suppose S1 ∩ S2 6= ∅. Let ū be a coherent utility function
having the Fatou property and let it be bigger than u1 and u2, then ū ≥ u.

Proof. . Let ū be given by S. Then S ⊂ S1 and S ⊂ S2, because ū ≥ u1

and ū ≥ u2. Therefore S ⊂ S1 ∩ S2 and hence ū ≥ u. 2

Remark 49 Of course the proposition does not make sense if S1 ∩ S2 = ∅.
In this case there will be no coherent utility function that satisfies the Fatou
property and that is bigger than both u1 and u2. This is the same as saying
that A1 +A2 is dense in L∞ for the weak∗ topology.

If we would like to define a coherent utility function (not necessarily hav-
ing the Fatou property) ũ, with the property that it is the smallest coherent
utility function such that ũ ≥ u1 ∨ u2, we can take a similar construction as
in the previous section:

ũ(ξ)

= sup{tu1(ξ1) + (1− t)u2(ξ2) | ξ = tξ1 + (1− t)ξ2; ξ1, ξ2 ∈ L∞; 0 ≤ t ≤ 1}
= sup{u1(tξ1) + u2((1− t)ξ2) | ξ = tξ1 + (1− t)ξ2; ξ1, ξ2 ∈ L∞; 0 ≤ t ≤ 1}
= sup{u1(η) + u2(ξ − η) | η ∈ L∞}

The construction can be explained by looking at the hypographs of u1

and u2, i.e. the sets {(ξ, α) | α ≤ ui(ξ)}. The hypograph {(ξ, s) | ũ(ξ) ≥ s}
is constructed as the closed convex hull of the hypographs of u1 and u2.
This utility function is usually denoted by u12u2 and it is called the convex
(or should we say concave?) convolution of u1 and u2 In convex function
theory,[118], this convolution is also referred to as the inf-convolution or
infimal convolution. For concave functions it should then be called the sup-
convolution but we are not so fundamentalist on these nomenclature. The
convex convolution of coherent utility functions can be characterised using
the duality (L∞,ba). It is an easy exercise to see that the coherent utility
function ũ is given by Sba1 ∩ Sba2 and hence it is equal to u0. From the
previous proposition we conclude that u12u2 has the Fatou property if and
only if the following holds (where the bar indicates σ(ba, L∞) closure):

Sba1 ∩ Sba2 ∩ L1 = Sba1 ∩ Sba2 .
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This is equivalent to: S1 ∩ S2 = Sba1 ∩ Sba2 , where again, the bar indicates
σ(ba, L∞) closure. So we get:

Proposition 31 u and u0 = u12u2 coincide if and only if u12u2 has the
Fatou property. This is the case when for instance S1 (or S2) is weakly
compact. xxxx include 2019 result with Orihuela!

Remark 50 If we would write the coherent functions with their penalty
functions we get

1. u0 is represented by the function c0 : Pba → R+ : c(µ) = c1(µ)+ c2(µ),

2. u is represented by the function c : P→ R+ : c(Q) = c1(Q) + c2(Q),

3. the lsc extension of c to Pba — defined as c(µ) = supξ∈A µ(−ξ) — is
not necessarily equal to c0. It is the case if and only if u0 is Fatou.

Remark 51 If S1 is the set of all probability measures absolutely continuous
with respect to P, then for every Fatou coherent utility function u2 we have
u12u2 = u2 and hence satisfies the Fatou property. This is easily seen by the
equalities S1 ∩S2 = S2 and Sba1 ∩Sba2 = Sba2 . In this case u1(ξ) = ess.inf(ξ)
and u12u2 = u2 for every (not necessarily Fatou) coherent utility function.

Example 28 Let (An)n≥1 be a measurable partition of Ω into sets with

P[An] > 0. For each n, let en be the measure with density
1An
P[An] . The sets

S1 and S2 are defined as follows:

S1 = conv (e1, e3, e4, . . .)

S2 = conv

(
e1,

(
e2 + nen

1 + n

)
n≥3

)
.

Clearly, S1 ∩ S2 = {e1} and Sba1 ∩ Sba2 contains, besides the vector e1, the
adherent points in ba of the sequence (en, n ≥ 1). The measure u12u2 is
therefore not the same as u and u12u2 does not have the Fatou property.

Example 29 We take the same sequences as in the previous example but
this time we define:

S1 = conv (e3, e4, . . .)

S2 = conv (
e2 + nen

1 + n
, n ≥ 3) .

Clearly, S1 ∩ S2 = ∅ and A1 + A2 is σ(L∞, L1) dense in L∞. However,
A1 +A2 is not norm dense in L∞, since Sba1 ∩ Sba2 6= ∅.
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Example 30 We consider a finite Ω (to avoid topological difficulties) and
we suppose the regulator agreed that the positions η1, . . . , ηn are acceptable.
In this context positions are just vectors in RΩ. The minimal convex cone
Ai containing L∞+ = {ξ ≥ 0} and ηi is the set {ξ + ληi | λ ≥ 0; ξ ≥
0}: the purpose is to construct a risk measure under which each of the
originally given positions (ηi)

n
i=1, is still acceptable. Therefore we take A =

conv (Ai; i ≤ n) so that our utility function u will be u12 · · ·2un. As an
exercise we write the rest of the remark in terms of risk measures. The reader
should of course adapt the definition of the convex convolution!!

We have:

ρ(ξ) = inf

{
ρ1(ξ1) + . . . ρn(ξn) | ξ =

n∑
i=1

ξi

}

= inf

{
α1 + . . .+ αn | ∃λi ∈ R+,∃fi ∈ RΩ

+ αi + ξi = fi + λiηi, ξ =

n∑
i=1

ξi

}

= inf

{
α | ξ + α ≥

n∑
i=1

λiηi where λi ≥ 0

}
We notice that the specification of the values of ρ(ηi) is not required and
that the risk measure can be equal to −∞ (which is the case if ∩i≤nSi = ∅).
The problem of calculating ρ(ξ) can be restated as a linear program:

maxQ EQ[−ξ] subject to∑
ω Q(ω) = 1 ,Q(ω) ≥ 0

EQ[ηi] ≥ 0

and the preceeding equality is the usual dual-primal linear program relation.

Remark 52 The relation between primal and dual program can be worked
out for the case of general Ω and it yields an example of the duality gap. Let
us illustrate this as follows. Consider the primal program:

minQ[ξ]

subject to Q ∈ L1 a probability measure ,∀η ∈ A1 +A2 : EQ[η] ≥ 0.

The dual program is

maxα

subject to ξ − α ∈ A1 +A2.
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The dual program of this, written in ba is then

minµ(ξ)

subject to µ ∈ Pba such that for all η ∈ A1 +A2 : µ(η) ≥ 0.

The second and the third program yield the value u0(ξ) = (u12u2)(ξ)
whereas the first (primal program) yields the possibly much smaller value
u(ξ). It can even happen that the first program is not feasible (since S1∩S2 =
∅ as in Example 29, whereas the second and third program remain feasible
(since Sba1 ∩ Sba2 6= ∅).

6.4 The inf convolution of concave utility func-
tions

The idea is the same as in the previous section but we need to work with the
penalty functions. So we start with u1,A1, c1 and u2,A2, c2. We suppose
that an agent has the possibility to split an element ξ ∈ L∞ into two parts
η + ζ = ξ. With the first one he gets a utility u1(η), with the second one
u2(ζ). Of course he wants to do this as good as possible. So she looks for

(u12u2)(ξ) = sup{u1(η1) + u2(η2) | η1 + η2 = ξ}.

This can also be described as follows. The hypograph of ui is defined as
Gi = {(ξ, α) | α ≤ ui(ξ)}. Because u1 and u2 are concave, the sets Gi are
convex. The hypograph of u12u2 is more or less the sum of the hypographs,
G1 + G2. This sum is convex and it defines a function with value at ξ given
by sup{u1(η1) + u2(η2) | η1 + η2 = ξ}. So it defines u12u2. Of course we
should prove that this function is well defined, that it is concave etc. We
will do that in the same way as for coherent functions. Before we start let us
recall that if u1, u2 both are Fatou, this does not imply that u12u2 has the
Fatou property! This explains why we do the analysis for general concave
monetary utility functions. When we use the penalty functions c1, c2, we
systematically work on the set Pba.

Lemma 16 The function u12u2 : L∞ → R∪{+∞} is concave and hence it
is either identically +∞ or it is finite everywhere.

Proof. Standard in convex analysis, let us give a proof – for completeness.
Clearly u12u2(ξ) > −∞. Take ξ, ξ′, 0 < λ < 1. Take k < u12u2(ξ), k′ <



112 Chapter 6. Operations on utility functions

u12u2(ξ′). We have the existence of η1, η
′
1, η2, η

′
2 such that u1(η1)+u2(η2) >

k and u1(η′1) + u2(η′2) > k′. Concavity of u1, u2 implies

u1(λη1 + (1− λ)η′1) + u2(λη2 + (1− λ)η′2)

≥ λu1(η1) + (1− λ)u1(η′1) + λu2(η2) + (1− λ)u2(η′2)

≥ λk + (1− λ)k′.

This shows that

(u12u2)(λξ + (1− λ)ξ′) ≥ λ(u12u2)(ξ) + (1− λ)(u12u2)(ξ′).

Concave functions u : L∞ → R ∪ {+∞} either are identically +∞ or are
finite everywhere. This is seen as follows. Take a point ξ where u(ξ) < +∞
and a point η where u(η) = +∞. Look at the concave function φ : t →
u(tξ + (1 − t)η). On the real line we have that this function is finite for
t = 1 and infinite for t = 0. By concaviy φ(1) ≥ 1

2 (φ(0) + φ(2)) = +∞, a
contradiction. So either u ≡ +∞ or u < +∞ everywhere. 2

Proposition 32 Are equivalent

1. For all ξ ∈ L∞: u12u2(ξ) <∞

2. u12u2(0) <∞

3. A1 +A2 6= L∞

4. A1 +A2 is not norm dense in L∞

Proof. Suppose that A1 +A2 is norm dense in L∞. Then for ξ ∈ L∞ there
exists η such that ‖ξ − η‖ ≤ 1 and η ∈ A1 +A2. Because A1 +A2 + L∞+ ⊂
A1 + A2 this means: ξ + 1 ∈ A1 + A2. Hence we get A1 + A2 = L∞. If
A1 +A2 = L∞ then for k ≥ 1 we have η1 ∈ A1, η2 ∈ A2 with η1 + η2 = −k,
hence u12u2(0) ≥ u1(η1) + η2(η2 + k) ≥ k, proving that u12u2(0) = +∞.
The other implications are trivial or proved in the previous lemma. 2

Proposition 33 Suppose u12u2 is well defined (A1 +A2 6= L∞) then

1. u12u2 : L∞ → R

2. u12u2 is monetary
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3. u12u2(ξ) ≥ 0 if ξ ≥ 0 and ξ ≥ η implies u12u2(ξ) ≥ u12u2(η), so we
also get |u12u2(ξ)− u12u2(η)| ≤ ‖ξ − η‖∞

4. u12u2 is concave

5. The set {ξ | u12u2(ξ) ≥ 0} is the norm closure of A1 + A2, more
precisely u12u2(ξ) > 0 if and only of there are elements η1 ∈ A1,
η2 ∈ A2, u1(η1) > 0 , u2(η2) > 0 and ξ = η1 + η2.

6. u12u2(0) = 0 if and only if the set {µ ∈ Pba | c1(µ) = 0} ∩ {µ ∈ Pba |
c2(µ) = 0} 6= ∅. In this case u12u2 defines a concave utility function
on L∞.

Proof. Points 1 and 4 have been proved above. Points 2, 3 can be proved
using the definition, point 5 again follows from the definition. Point 6 requires
more attention. If c1(µ) = c2(µ) = 0 we have for ξ ∈ A1 + A2: µ(ξ) ≥ 0.
This shows that for ε < 0 we must have ε /∈ A1 +A2. Hence also for all ε < 0
we must have ε /∈ A1 +A2. Hence u12u2(ε) < 0. But then u12u2(0) ≤ 0 by
continuity. Since the other equality was shown above we get u12u2(0) = 0.
Conversely, suppose that {µ ∈ Pba | c1(µ) = 0}∩{µ ∈ Pba | c2(µ) = 0} = ∅.
Since both sets are weak∗ compact and convex we can strictly separate them.
This gives the existence of η with

−min{µ(−η) | c1(µ) = 0} = max{µ(η) | c1(µ) = 0} < min{µ(η) | c2(µ) = 0}.

The study of the one sided derivative showed that min{µ(η) | c2(µ) = 0} =

limε↓0
u2(εη)
ε and similarly for u1. As a result the element η satisfies for ε

small enough:
u1(−εη) + u2(εη) > 0.

This implies u12u2(0) > 0. 2

Example 31 Suppose that f satisfies 0 < f < 1 a.s. with ess.inf f =
0, ess.sup f = 1, e.g. f is uniformly distributed over [0, 1]. Let c1(Q) = EQ[f ]
and c2(Q) = EQ[1 − f ]. Clearly c1 + c2 = 1 and u12u2(0) = 1. We leave it
to the reader to find an example in the case where Ω consists of two points.
Hint: look at A1 = {(x, y) | x ≥ 0, y ≥ 0 or − 1 ≤ x ≤ 0, y ≥ − 1

4x} and for
A2 interchange the role of x and y.

Proposition 34 The penalty function c of u12u2, is equal to c(µ) = c1(µ)+
c2(µ). Consequently u12u2 is well defined if and only if dom(c1)∩ dom(c2) 6=
∅. The hypograph of u12u2 is the norm closure of the set G1+G2. u12u2(0) =
min{c1(µ) + c2(µ) | µ ∈ Pba}.



114 Chapter 6. Operations on utility functions

Proof. This is done by straightforward calculation, it is even valid when
A1 +A2 = L∞. Let A be the norm closure of A1 +A2. Then

c(µ) = sup
ξ∈A

µ(−ξ) = sup
ξ∈A1+A2

µ(−ξ)

= sup
η1∈A1

µ(−η1) + sup
η2∈A2

µ(−η2) = c1(µ) + c2(µ).

Now by the Hahn-Banach theorem, A 6= L∞ if and only if there is µ ∈ Pba

with c(µ) <∞. The domain of a convex function is defined as {µ | c1(µ) <
∞} and hence u12u2 is well defined if and only if dom(c1) ∩ dom(c2) 6= ∅.
The last line should be obvious. By definition G1 + G2 ⊂ G = {(ξ, α) |
α ≤ u12u2(ξ)}. The latter set is closed by continuity if u12u2 < ∞
and trivially if u12u2 ≡ +∞, hence G1 + G2 ⊂ G. But by construction
of u12u2, we must have G ⊂ G1 + G2 so they must be equal. The value
u12u2(0) = minµ c(µ) = minµ (c1(µ) + c2(µ)). 2

Remark 53 The function u12u2 is not equal to the smallest concave func-
tion that is greater than both u1 and u2. The latter would be given by
the convex hull of the union of the hypographs G1,G2. That both can be
different can be seen on the following trivial example. Take u concave and
monetary with acceptance set A. The convolution u2u has the acceptance
set A +A = 2A (since A contains 0 and is convex). In case u2u would be
the smallest utility function greater than u than we would have u2u = u or
2A = A. This would imply that A is a cone, i.e. u is coherent.

Remark 54 If u2 is coherent and given by the scenario set S2, then

sup
ξ∈L∞

{u1(ξ)− sup
ν∈Sba

ν(ξ)} = u12u2(0) = min
ν∈Sba

c1(ν).

We leave the interpretation of this equality to the reader.

Remark 55 If both u1, u2 are Fatou, there is no guarantee that u12u2 is
Fatou. See [40] for an example. But the reader can already guess where the
difficulties are. For the penalty function c = c1 + c2 we should show that for
every µ there is a net of elements Qα such that c(µ) = lim c(Qα). For each i
we can find nets Qαi that give ci(µ) = ci(Qαi ) but there is no reason why we
should be able to find the same net for both penalty functions.

We will see by examples that A1 +A2 is not always closed. In fact we can
show that
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Proposition 35 A1 +A2 is closed if and only if the sum of the hypographs
is closed. This is equivalent to: for all ξ there are elements η1, η2 such that
η1 + η2 = ξ and u12u2(ξ) = u1(η1) + u2(η2).

Proof. First suppose that G1 + G2 is closed. Then it is equal to the hypo-
graph G of u = u12u2. Let ξ ∈ A = {η | u(η ≥ 0} be such that u(ξ) = 0.
Then (ξ, 0) ∈ G. Since G = G1+G2 we can find two elements (η1, α1), (η2, α2)
such that η1+η2 = ξ, α1 ≤ u1(η1), α2 ≤ u2(η2) and α1+α2 = 0. This implies
ξ = η1 −α1 + η2 −α2 with η1 −α1 ∈ A1 and η2 −α2 ∈ A2. But this implies
u1(η1) ≥ α1 and u2(η2) ≥ α2 Since u1(η1) + u2(η2) ≤ u(ξ) = 0, we must
have u1(η1) = α1 and u2(η2) = α2. Conversely suppose that A1 +A2 = A is
closed. Take (ξ, α) ∈ G. We have ξ − α ∈ A and hence we find two elements
η1, η2 with u1(η1) ≥ 0, u2(η2) ≥ 0 and ξ−α = η1 +η2. This can be rewritten
as ξ = η1 + (η2 + α). But then (η1, 0) ∈ G1 and (η2 + α, α) ∈ G2 since
u2(η2 + α) = u2(η2) + α ≥ α. So (ξ, α) ∈ G1 + G2. 2

The existence of the elements η1, η2 such that η1 + η2 = ξ and u12u2(ξ) =
u1(η1) + u2(η2) means that we can actually solve the optimisation problem.
In case u(ξ) = 0, we can select the solution in such a way that η1 + η2 = ξ
and u1(η1) = 0 = u2(η2). Unfortunately the set A1 + A2 is not always
closed, not even in nice examples. This is not just an infinite dimensional
feature. Even in R2, i.e. for Ω having two points, the sum of two closed
convex sets need not be closed and one can find (as an exercise) two concave
utility functions u1, u2 such that the sum A1 + A2 is not closed. However
this will give u12u2(0) > 0, R2 is simply too small to have better examples.
But in R3, one can find two coherent utility functions (hence u12u2(0) = 0)
such that A1 +A2 is not closed. These are good exercises in geometry.

Exercise 21 Give examples as described in the last paragraph.

6.5 Product of coherent utility functions

Let (Ω1,F1,P1) and (Ω2,F2,P2) be two probability spaces. We consider the
product space (Ω,F ,P) = (Ω1 × Ω2,F1 ⊗ F2,P1 ⊗ P2) and we would like
to define a coherent utility function, the most liberal one, given two utility
functions u1 and u2, defined on Ω1 and Ω2 respectively.

For a probability measure Q on Ω, we define Q1 and Q2 to be the marginal
probabilities of Q on Ω1 and Ω2 (that is, Q1[A1] = Q[A1×Ω2] and similarly
for Q2). If as usual, Si and Ai represent the family of probabilities and the
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set of acceptable positions for ui, we define:

S̃1 = {Q | Q� P;Q1 ∈ S1}
S̃2 = {Q | Q� P;Q2 ∈ S2}.

We suppose for simplicity that u1 and u2 are relevant, the general case is left
to the reader. If f ∈ A1, a “reasonable” request is that f̃(ω1, ω2) = f(ω1)
should be acceptable; the same should hold for g ∈ A2. So we put

Ã1 = {f + h | f ∈ A1, h ∈ L∞(Ω,F ,P), h ≥ 0}
Ã2 = {g + h | g ∈ A2, h ∈ L∞(Ω,F ,P), h ≥ 0}
A = Ã1 + Ã2.

Clearly the set A is a convex cone. However, it is also σ(L∞, L1) closed. To
see this – less trivial statement – we use the Krein-Smulian theorem. So let
us suppose (φn)n ⊂ A, ‖φn‖∞ ≤ 1 and φn

P−→ φ. We have to show that
φ ∈ A. Each φn can be written as φn = fn + gn + hn, where fn ∈ A1,
gn ∈ A2 and hn ≥ 0. Take Q1 ∈ S1, Q2 ∈ S2, Q1 ∼ P1, Q2 ∼ P2 and
let Q = Q1 ⊗ Q2. Of course, Q ∈ S̃1 ∩ S̃2. Furthermore Q1 and Q2 are
the marginal probabilities of Q, so that there is no conflict in the notation.
We clearly have 1 ≥ EQ[fn + gn + hn] ≥ EQ1 [fn] + EQ2 [gn]. Both terms are
nonnegative since fn ∈ A1 and gn ∈ A2. Therefore, EQ1 [fn] and EQ2 [gn]
are between 0 and 1. We may and do suppose that EQ1

[fn] and EQ2
[gn]

converge (if not, we take a subsequence). Since fn + gn + hn ≤ 1, we also
get fn + gn ≤ 1 and hence fn + EQ2

[gn] ≤ 1. Indeed for Q, fn and gn
are independent and the inequality results by taking conditional expectation
with respect to F1 ⊗ {∅,Ω2}. Since EQ2 [gn] ≥ 0, we get fn ≤ 1. Similarly,
we get gn ≤ 1. We now replace fn and gn by respectively fn ∨ (−2) and
gn∨ (−2). Necessarily we have fn∨ (−2) ≥ fn and therefore fn∨ (−2) ∈ A1,
also gn ∨ (−2) ∈ A2. But this requires a correction of hn. So we get:

φn = fn ∨ (−2) + gn ∨ (−2) + hn − (−2− fn)+ − (−2− gn)+ .

The function hn− (−2− fn)+− (−2− gn)+ is still nonnegative. To see this,
we essentially have the following two cases.

On the set {fn < −2} ∩ {gn < −2} we have:

hn − (−2− fn)+ − (−2− gn)+ = (hn + fn + gn) + 4 ≥ −1 + 4 > 0 .
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On the set {fn ≥ −2} ∩ {gn < −2} we have:

hn − (−2− fn)+ − (−2− gn)+ = hn + 2 + gn

= (hn + fn + gn) + (2− fn)

≥ −1 + 1 ≥ 0.

The other cases are either trivial or similar.
So we finally may replace the functions as indicated and we may suppose

that φn = fn+gn+hn, where −2 ≤ fn ≤ 1, −2 ≤ gn ≤ 1, fn ∈ A1, gn ∈ A2,
hn ≥ 0.

Since the sequences (fn)n and (gn)n are bounded, we can take convex
combinations of them, (still denoted by the same symbols), that converge
in probability. So finally we get fn → f , gn → g in probability. Of course
this implies f ∈ A1 and g ∈ A2. But then we necessarily have that hn =
φn − fn − gn converges in probability, say to a function h. Of course, h ≥ 0.
So finally we get φ = f + g + h with f ∈ A1, g ∈ A2 and h ≥ 0.

The polar cone of A can be described by the sets S̃1 and S̃2. Indeed

S = {Q | Q a probability and ∀u ∈ A Q[u] ≥ 0}
= {Q | Q a probability and ∀f ∈ A1 Q[f ] ≥ 0 and ∀g ∈ A2 Q[g] ≥ 0}
= {Q | Q a probability and ∀f ∈ A1 Q1[f ] ≥ 0 and ∀g ∈ A2 Q2[g] ≥ 0}
= {Q | Q1 ∈ S1 , Q2 ∈ S2}
= S̃1 ∩ S̃2.

Moreover

u(ξ) = sup{α | −α+ ξ ∈ A}
= sup{α | ∃f ∈ A1 , ∃g ∈ A2 ξ − α ≥ f + g}.

The previous lines also imply that the sets Ã1 and Ã2 are σ(L∞, L1) closed.
Their polars are precisely given by S̃1 and S̃2 respectively. Indeed:

{Q | Q proba. and for all u ∈ Ã1 : Q[u] ≥ 0}
= {Q | Q proba. and for all u ∈ A1 : Q[u] ≥ 0}

and the latter is equal to {Q | ∀f ∈ A1 Q1[u] ≥ 0}, which is exactly S̃1.
Therefore we get that: Ã1 = {φ | ∀Q ∈ S̃1 Q[φ] ≥ 0}.

Remark 56 Even if S1 and S2 consist of a single point, the family S can be
very “big”. For instance, let’s take Ω1 = Ω2 = T, where T is the one dimen-
sional torus (that is the circle S1). On T we consider the Borel σ-algebra and



118 Chapter 6. Operations on utility functions

as reference probability we take the normalized Lebesgue measure m, while
S1 and S2 will coincide with {m}. If we take the product space T × T and
we consider the set Aε = {(eiθ, eiφ) | |eiθ− eiφ| ≤ ε} then limε→0m(Aε) = 0;
and by taking Qε equal to the uniform distribution on Aε we have that Qε
belongs to S, for each ε. But the family (Qε)ε is not uniformly integrable:
therefore S is not at all small, it isn’t even weakly compact! It is still an
unsolved problem to characterise the extreme points of the convex set of
measures on T× T so that the marginals are m.



Chapter 7

Convex games and utility functions

The aim of this chapter is to investigate the relations between convex games
and coherent risk measures. The theory of convex games was developed by
Shapley, [126] and David Schmeidler [123]. There were definitions related to
submodular functions and hence relations to convex games in [56] and the
theory of submodular functions goes at least back to Bergmann (1925). The
theory is also related to the theory of capacities, [33], [27] and see [81]. We
start with a couple of definitions.

Definition 21 Let (Ω,F ,P) be a probability space. A convex game on (Ω,F)
is a function v : F → R+ such that:

v(∅) = 0

for all A,B ∈ F : v(A) + v(B) ≤ v(A ∩B) + v(A ∪B)

We say that v is continuous with respect to P if

P(A) = 1 implies v(A) = 1

We say that v is Fatou if

An ↓ A implies v(An) ↓ v(A) .

Remark 57 In capacitytheory the convexity relation is called 2-alternating,
see [33, 81]. The Fatou property is a continuity property which will enable
us to use the duality (L1, L∞) instead of (L∞,ba). It is related to the Fatou
property of an associated coherent utility function.

The idea is that we need to distribute an amount of money v(Ω), over the
players (the elements of Ω). Players can form coalitions described by the
structure F . Each coalition has an intrinsic value, an amount of money that
they can get by playing on their own. Convex games are such that synergies
are obtained when coalitions join. For properties of convex games, we refer
to Schmeidler, [123], and Delbaen, [37].
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Definition 22 For a convex game v we define the core of v as

C(v) = {µ | µ ∈ ba, µ(Ω) = v(Ω) and for all A ∈ F : µ(A) ≥ v(A)} .

The σ−core is defined as:

Cσ(v) = {f | f ∈ L1,E[f ] = v(Ω) and for all A ∈ F : E[f1A] ≥ v(A)} .

Again the idea is to distribute an amount of money over the different
players. The influence of the players is over the coalitions they can form. So
in order to be fair the allocation of the money, described by a finitely additive
measure µ should be such that all coalitions are happy, i.e. µ(A) ≥ v(A).
Otherwise there is no reason for them to joint the others. The sigma-core is
the intersection of the core with the space L1. It was studied by [108] and
[39].

7.1 Non-emptiness of the core

In this section we will show that the core of a convex game is non-empty. Of
course this is well known ([?] for finite games and[123]) but the proof allows
to explain the relation with utility theory. The associated coherent utility
function u will satisfy an extra property that has a nice interpretation in risk
management. The basic ingredient is (again) a theorem of Schmeidler [124],
for which we will also give a complete proof.

Lemma 17 If v is a convex game then for B ∈ F , vA(B) = v(A∩B) defines
a convex game on the space (A,A ∩ F).

Lemma 18 Let v be a convex game and let A ∈ F . Define wA(B) = v(A ∪
B) − v(A). Then wA : Ac ∩ F → R is again a convex game defined on the
space (Ac, Ac ∩ F).

Proof. For B1, B2 ⊂ Ac we have

wA(B1) + wA(B2) = v(A ∪B1)− v(A) + v(A ∪B2)− v(A)

≤ v(B1 ∪B2 ∪A) + v((B1 ∩B2) ∪A)− 2v(A)

≤ wA(B1 ∪B2) + wA(B1 ∩B2).

2
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Lemma 19 Let A ∈ F and let wA be defined as in the previous lemma. Let
µ ∈ C(vA) and let ν ∈ C(wA), then λ ∈ ba defined as λ(B) = µ(A ∩ B) +
ν(A ∩Ac) defines an element of C(v).

Proof. This is easy since obviously λ(Ω) = v(Ω) and

λ(B) = µ(A ∩B) + ν(B ∩Ac)
≥ v(A ∩B) + v((B ∩Ac) ∪A)− v(A)

≥ v(A ∩B) + v(B ∪A)− v(A) ≥ v(B)

2

Theorem 37 If v is a convex game then C(v) 6= ∅.

Proof. We first prove the result for F finite and then proceed using a
compactness argument. In case F is finite we may replace Ω by a finite set
and take F = 2Ω. So let us suppose that Ω = {1, 2, . . . , N}. We will use
induction on N . Clearly there is nothing to prove when N = 1. So suppose
that the core is non-empty for N − 1. Define A = {1} and use the previous
lemma. The induction hypothesis gives an element ν ∈ C(wA) and trivially
an element µ ∈ C(vA). The element λ constructed in the previous lemma is
then in C(v).

For general F we use a compactness argument. First we recall that the
restriction mapping

ba+(Ω,F)→ ba+(Ω,F ′),
is onto. This is a straightforward consequence of the Hahn-Banach theorem
in its analytic form. Suppose that ν ∈ ba+(Ω,F ′) then it defines a linear
form on L∞(Ω,F ′) of norm ‖ν‖ = ν(Ω). The Hahn-Banch theorem allows
to find an extension µ to a linear form on L∞(Ω,F) of the same norm. This
equality in norm shows that µ ≥ 0 (prove this as an exercise!). For each
finite subalgebra F ′ ⊂ F we define

C(F ′) = {µ ∈ ba(Ω,F) | for each B ∈ F ′ : µ(B) ≥ v(B)}.

The onto character of the restriction map as well as the fact that for finite
games the core is non-empty, shows that these sets are non-empty. They are
weak∗ compact since they are weak∗ closed sets of the ball of radius v(Ω)
in ba(Ω,F). The collection of sets {C(F ′) | F ′ finite} have the finite inter-
section property and hence their intersection is non-empty. Obviously their
intersection is C(v). 2
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Theorem 38 Let v be a convex game and let A ∈ F , then there is an
element µ ∈ C(v) such that µ(A) = v(A).

Proof. This is easy. Take µ ∈ C(vA) and ν ∈ C(wA). The previous theo-
rem shows that both sets are non-empty. The Lemma 19 then produces an
element λ ∈ C(v) with λ(A) = v(A). 2

A more refined application of the same lemma yields

Theorem 39 Let v be a convex game. Let A1 ⊃ A2 ⊃ . . . An be a finite
chain of elements of F . Then there is an element λ ∈ C(v) such that for all
i: λ(Ai) = v(Ai).

Proof. We use induction on n. For n = 1 this is the previous theorem. Sup-
pose the theorem is proved for n− 1. Then we can find elements µ ∈ C(vA2

)
with µ(Ai) = v(Ai) for i ≥ 2. There is also an element ν ∈ C(wA2

) such that
ν(A1 \ A2) = wA2

(A1 \ A2) = v(A1)− v(A2). Lemma xx produces λ ∈ C(v)
with λ(Ai) = v(Ai) for all i ≥ 1. 2

Theorem 40 Let v be a convex game and let {Ai | i ∈ I} be a totally ordered
set of elements of F . Then there is an element µ ∈ C(v) such that for all
i ∈ I: µ(Ai) = v(Ai).

Proof. Follows from the preceding theorem by a compactness argument. 2

From now on we suppose that the convex game v is normalised, i.e.
v(Ω) = 1. The core then consists of finitely additive probability measures.
For simplicity we also suppose that the game is continuous with respect to P.
This is not really needed but it brings us immediately in the scope of coherent
utility functions defined on L∞ instead of defining them on spaces of random
variables. The reader can pursue the analysis without this assumption if she
wants to do so. The core C(v) is then a subset of ba(Ω,F ,P).

Theorem 41 Let v be a convex game and let A1 ⊃ A2 ⊃ . . . An be a
chain of elements of F . Let α1, α2, . . . , αn be nonnegative numbers. Let
ξ =

∑n
i=1 αi1Ai . We have

uv(ξ) = inf{µ(ξ) | µ ∈ C(v)} =
∑
i

αiv(Ai)

=

∫ +∞

0

v(ξ ≥ x) dx =

∫ +∞

0

v(ξ > x) dx.
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Proof. By definition of the core we have uv(ξ) ≥
∑
i αiv(Ai). But since

there is an element µ ∈ C(v) with µ(Ai) = v(Ai) we necessarily get equality.
Also∫ +∞

0

v(ξ > x) dx =

∫ +∞

0

v(ξ ≥ x) dx =

∫ α1

0

+

∫ α1+α2

α1

+ . . . =
∑
i

αiv(Ai).

2

Remark 58 These equalities, basically due to Choquet [33], can be found
in Schmeidler [123] and Delbaen [37]. Just for convenience of the reader let
us rephrase the equality above for indicator functions: uv(1A) = v(A). The
knowledge of the utility function on the indicator functions therefore allows
to calculate the utility functions for bounded random variables. The formula
of the theorem can easily be extended to all bounded random variables. The
positivity of ξ can be overcome by replacing ξ by ξ + ‖ξ‖∞ and then using
the monetary property.

Theorem 42 Let v be a convex game, we have for nonnegative random
variables ξ:

uv(ξ) =

∫ +∞

0

v(ξ ≥ x) dx =

∫ +∞

0

v(ξ > x) dx.

Proof. Let us take a sequence of random variables ξn such that ξn ↓ ξ,
ξn only takes a finite number of values and 1 ≥ εn = ‖ξn − ξ‖∞ → 0. We
clearly have that v(ξn ≥ x) ≥ v(ξ ≥ x) This shows that∫ +∞

0

v(ξn ≥ x) dx ≥
∫ +∞

0

v(ξ ≥ x) dx.

But we also have that ξ ≥ ξn − εn and hence v(ξ ≥ x) ≥ v(ξn ≥ x + εn).
Therefore∫ +∞

0

v(ξ ≥ x) dx =

∫ ‖ξ‖∞
0

v(ξ ≥ x) dx

≥
∫ ‖ξ‖∞

0

v(ξn ≥ x+ εn) dx

=

∫ ‖ξ‖∞+εn

εn

v(ξn ≥ x) dx

≥
∫ ‖ξn‖∞

0

v(ξn ≥ x) dx− εn =

∫ ∞
0

v(ξn ≥ x) dx− εn
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So we have that

uv(ξ) = lim
n
uv(ξn) = lim

n

∫ +∞

0

v(ξn ≥ x) dx =

∫ +∞

0

v(ξ ≥ x) dx.

2

Theorem 43 With the notation of the previous theorems we have that uv
is Fatou if and only if v is Fatou.

Proof. If uv is Fatou then we must have v(An) = uv(1An) decreases to
uv(1A) = v(A) if An ↓ A. The converse is also true. If ξn ↓ ξ ≥ 0, then
{ξn ≥ x} ↓ {ξ ≥ x} and hence for all x ≥ 0:

v(ξn ≥ x) ↓ v(ξ ≥ x).

From this it follows that

uv(ξn) =

∫ ‖ξ1‖∞
0

v(ξn ≥ x) dx ↓
∫ ‖ξ1‖∞

0

v(ξ ≥ x) dx = uv(ξ).

2

Theorem 44 If v is a convex game then v satisfies the Fatou property if
and only if the sigma core Cσ(v) is weak∗ dense in the core C(v).

Proof. The core C(v) is weak∗ compact and hence the utility function uv
is given by this set. But as seen before in Section 4.6, uv is Fatou if and only
if Cσ(v) = C(v) ∩ L1 is weak∗ dense in C(v). 2

In this case we can be more precise:

Theorem 45 Suppose that v is a convex game with the Fatou property. If
A1 ⊃ A2 . . . ⊃ An is a finite non-increasing family, there exists Q ∈ Cσ(v)
with Q(Ai) = v(Ai) for all i ≤ n.

Proof. . The proof of this theorem is not easy. It relies on the theorem of
Bishop-Phelps. We take ξ =

∑n
i=1 1Ai . We now take an arbitrary 0 < ε < 1

8 .
By the Bishop-Phelps theorem there is η ∈ L∞, with ‖ξ − η‖∞ < ε and η
attains its infimum on Cσ(v). Of course we may replace η by η+ε and hence
we get η ≥ 0. This means that there exists Q0 ∈ Cσ(v) such that:

EQ0 [η] = inf{EQ[η] | Q ∈ Cσ(v)} =

∫ ∞
0

v(η > α) dα
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This also implies
∫∞

0
Q0(η > α) dα =

∫∞
0
v(η > α) dα. Since Q0 ∈ Cσ(v)

we have Q0(η > α) ≥ v(η > α) and therefore for almost every α we nec-
essarily have Q0(η > α) = v(η > α). Now for each 0 ≤ k < n we take
k + 1

4 < α < k + 3
4 where α has the above property and, since for such

α we necessarily have {η > α} = Ak+1, we get Q0[Ak+1] = v(Ak+1) for
k = 0 . . . n− 1. 2

Remark 59 The conclusion of the theorem was already known for µ ∈ C(v)
(see Delbaen, [37]). The sigma core was studied by J. Parker, [108]. The
results here – due to the author – extend her results, see also [39] for extra
features. The next proposition, not contained in [39], is even better.

Proposition 36 If (An)n≥1 is a sequence in F , if An ↓ A and if v is Fatou,
there is an element Q ∈ Cσ(v) such that for all n: Q[An] = v(An).

Proof. Replacing the game v by wA which is still Fatou (prove it as an
exercise), we may reduce the problem to A = ∅. Afterwards we may glue
such an element in Cσ(wA) with a sigma additive measure in the core of the
Fatou game vA. So we suppose An ↓ ∅ and remark that the Fatou property
now implies that v(An) tends to 0. We put A0 = Ω. For eack k ≥ 0 we
define a game vk on the set Ak \ Ak+1. The game is for B ⊂ Ak \ Ak+1

given by the expression vk(B) = v(B ∪ Ak+1)− v(Ak+1). This game is still
Fatou and therefore we may find an element Yk ∈ Cσ(vk). Of course Yk
is supported on Ak \ Ak+1. Also ‖Yk‖1 = v(Ak) − v(Ak+1). Let us put
Q =

∑
Yk. This sum converges in L1 and defines a sigma additive measure

of total mass equal to
∑
k≥0 (v(Ak)− v(Ak+1)) = 1. Clearly Q[Ak] = v(Ak)

for all k ≥ 0. We still have to check that Q ∈ C(v). For each K we take an
element µK+1 ∈ C(vAK+1

). A repeated application of Lemma 19 shows that∑
j≤k≤K Yk+µK+1 ∈ C(vAj ), hence

∑
0≤k≤K Yk+µK+1 ∈ C(v). Since µK+1

has total mass equal to vAK+1
the sequence tends to 0. Hence Q =

∑
k≥0 Yk

being the limit of sequence in C(v) is also in C(v). Since Q is already sigma-
additive, the proof is complete. 2

Exercise 22 The same ideas as above allow to prove a more difficult version.
Suppose again that v is Fatou and convex. Let β be a countable ordinal and
let (Aα)α≤β be a non-increasing family of sets. Show that there is an element
Q ∈ Cσ(v) such that for all α ≤ β: Q[Aα] = v(Aα).

Remark 60 As the following theorem shows, the statement of the proposi-
tion is not always true for increasing sequences.
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Theorem 46 Let v be a convex game then C(v) ⊂ L1 if and only if Cσ(v)
is weakly compact. This happens if and only if An ↑ Ω implies v(An) ↑ 1.

Proof. Fairly easy since Cσ(v) is weakly compact if and only if it is uni-
formly integrable. This is the case if and only if An ↑ Ω implies v(An) =
infQ∈Cσ(v) Q(An) ↑ 1. 2

Corollary 9 Suppose v has the weak compactness property from the previous
theorem. The following holds:

1. If An ↑ A then v(An) ↑ v(A)

2. If {Ai | i ∈ I} is totally ordered then there is probability Q ∈ C(v) such
that for all i ∈ I: Q(Ai) = v(Ai).

Conversely each of these properties implies that v has the weak com-
pactness property

Proof. The direct implications are rather trivial since the first follows from
the uniform integrability of the set C(v) ⊂ L1 and the second is a restate-
ment of Theorem 40 and Cσ(v) = C(v). The converse is less easy. The first
item implies weak compactness since this only requires the case A = Ω. For
the second item let An ↑ Ω. The family {An | n ≥ 1} is totally ordered.
Therefore there is Q ∈ Cσ(v) with Q[An] = v(An) for all n, hence v(An) ↑ 1.
2

Remark 61 The above corollary was already present in [37] and in [81]
with a slight correction as in their subsequent paper in 1974. We remark
that the conditions in [81], especially their condition (4) implies that the
core of the associated game is weakly compact in the topology σ(L1, L∞).
This compactness condition is stronger than the “tightness” condition as e.g.
in [20]. The reader should not confuse these different notions of compactness.

Example 32 If 1 ≤ β ≤ +∞ then v(A) = P(A)β defines a convex game. If
β =∞, the σ-core is the whole family of absolutely continuous probabilities,
whereas if β = 1, Cσ is the singleton {P}. We also have for nonnegative ξ:
u(ξ) =

∫∞
0

P({ξ > x})β dx. These utility functions, or better their related
risk measures, were studied by Delbaen, [39],[48] and many others, see [26]
and the references therein.
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Proposition 37 If f : [0, 1]→ [0, 1] is a convex function such that f(0) = 0
and f(1) = 1, then v(A) = f(P(A)) defines a convex game. The set Cσ is
weakly compact iff f is continuous at 1. Conversely if (Ω,F ,P) is atomless,
then the game v(A) = f(P[A]) is convex if and only if f is convex.

Proof. Let us show that such a convex function f indeed defines a con-
vex game. Let A,B be given an define γ = P[A ∩ B], α = P[A \ (A ∩
B)], β = P[B \ (A ∩ B)], then P[A ∪ B] = α + β + γ. We have to show
that f(α + γ) + f(β + γ) ≤ f(α + β + γ) + f(γ). Let µ be the derivative
of f , i.e. the nonnegative measure defined as µ([0, x]) = f(x). Because
f is convex we have that µ]x, x + y] is a non-decreasing function of y. So
f(α+γ)−f(γ) = µ]γ, α+γ]) ≤ µ(]β+γ, α+β+γ]) = f(α+β+γ)−f(β+γ).
This is precisely what we needed to prove. The weak compactness follows
immediately from Theorem 46. Conversely suppose that we work in an
atomless space and suppose that f(P[A]) = v(A) defines a convex game.
This means that f(0) = 0 and f(1) = 1. Let α1, α2, α3 be three nonneg-
ative numbers such that α1 + α2 + α3 ≤ 1. Convexity of v implies that
f(α1 + α2 + α3) + f(α3) ≥ f(α1 + α3) + f(α2 + α3). Here we use that
the space is atomless since then we can realise these numbers as proba-
bilities of sets A \ (A ∩ B), B \ (A ∩ B), A ∩ B. If we put α3 = 0 we
get f(α1 + α2) ≥ f(α1) + f(α2). This already implies that f is mono-
tone and hence it is a Borel measurable function. If we take α1 = α2 we
get f(2α1 + α3) + f(α3) ≥ 2f(α1 + α3) We can rewrite this as f(x+y

2 ) ≤
1
2 (f(x) + f(y)) for all 0 ≤ x, y ≤ 1. Because of monotonicity this is enough
to prove convexity. (The latter part is left to the reader as an exercise: first
prove that the convexity inequality holds for diadic numbers, then extend). 2

Example 33 An example of such a function is:

f(x) =

{
0 for x ≤ 1− 1

k

k
(
x−

(
1− 1

k

))
for 1− 1

k ≤ x ≤ 1 ,

where of course k ≥ 1. We will check that Cσ is Sk of Example 9. (We remark
that the sets Sp,k cannot be obtained via convex games, the related risk
measures are not commonotone, see [39] for a proof). The utility functions
related to such “distorted” probability measures were introduced by Yaari
[133] and Denneberg, see [48]. Denneberg used them as premium calculation
principles. Later Denneberg extended the theory of non-linear expectations,
also called Choquet integrals, see [49]. In Section 7.3, we will give a more
detailed analysis of these distorted probabilities.
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Proposition 38 If f = (x − s)+/(1 − s) and if the space is atomless, the
core is the set of all probability measures Q with dQ

dP ≤
1
s .

Proof. An element Q is in the core if and only if for P[A] ≥ 1− s we have

Q[A] ≥ P[A]−s
1−s . This can be rewritten as Q[B] ≤ 1

1−sP[B] for all B with
P[B] ≤ s. Since the space is atomless, any set can be written as the disjoint
union of sets of measure smaller than 1 − s, hence we get Q[B] ≤ 1

1−sP[B]

for all sets B. This is equivalent to dQ
dP ≤

1
1−s . The converse is easier and

can be done by direct calculation.

7.2 Commonotone utility functions

According to its behaviour with respect to commonotone variables we define

Definition 23 A coherent utility function u is called commonotone if u(ξ+
η) = u(ξ) + u(η) for every commonotone couple (ξ, η).

Remark 62 We could have given the definition of commonotonicity for con-
cave utility functions. However such concave utility functions are then neces-
sary positively homogeneous since for all ξ we would have u(2ξ) = u(ξ+ξ) =
u(ξ) + u(ξ) = 2u(ξ). If u is concave, this relation implies that u is positively
homogeneous.

Theorem 47 If v is a convex game then the coherent utility function uv is
commonotone.

Proof. Let ξ, η be commonotone and let µ ∈ C(v) be an element such that
for all x ∈ R: µ(ξ + η ≥ x) = v(ξ + η ≥ x). Because ξ, η are monotone
functions of ξ + η we have that each set of the form {ξ ≥ y} is of the form
{ξ+ η ≥ x} for some x. So we have that µ(ξ ≥ y) = v(ξ ≥ y) (and the same
applies to η). So we have that

µ(ξ) = uv(ξ), µ(η) = uv(η), µ(ξ + η) = uv(ξ + η).

This implies uv(ξ + η) = uv(ξ) + uv(η) as desired. 2

The converse is also true as shown by David Schmeidler, [124].

Theorem 48 A coherent utility function u originates from a convex game
iff u is commonotone.
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Proof. Let u be commonotone and let it be defined by the convex, weak∗

compact set S ⊂ Pba. Let us put for A ∈ F : v(A) = u(1A). Take two
sets A,B ∈ F . Because 1A∩B and 1A∪B are commonotone and because u is
coherent we have

u(1A) + u(1B) ≤ u(1A + 1B) = u(1A∩B + 1A∪B) = u(1A∩B) + u(1A∪B).

The game v is therefore convex. Let us denote its core by C(v). We have
to show that C(v) = S or what is the same u = uv. Because both functions
are continuous for the norm topology on L∞, we only need to check this
for random variables ξ taking a finite number of values. Because both are
monetary we may suppose that ξ =

∑n
1 αi1Ai , where αi > 0 and A1 ⊃ A2 ⊃

. . . ⊃ An. By commonotonicity of both u and uv we have

u(ξ) =
∑
i

αiu(1Ai) =
∑
i

αiv(Ai) = uv(ξ)

2

Corollary 10 Suppose that the probability space is atomless. Let u be com-
monotone and law determined, then there is a convex function f : [0, 1] →
[0, 1] with f(0) = 0, f(1) = 1 such that the game f ◦ P describes u.

Proof. This is a particular case of Kusuoka’s theorem, [96], see also [128].
It can be proved as follows. Because u is commonotone, Schmeidler’s theo-
rem says that it is given by the core of a convex game v. Because it is law
determined, the value v(A) is given by a function f(P[A]). Because the game
is convex, the function f must be convex by Proposition 37. 2

Remark 63 We refer to [48] and [49] for another proof of the preceding
corollary. Older versions were due to Yaari, [133].

Proposition 39 Suppose that the probability space contains at least three
non negligible disjoint sets (this is certainly the case if it is atomless). If u is
Gâteaux differentiable at nonconstant elements ξ ∈ L∞ and is commonotone,
then u is linear, i.e. it is given by u(ξ) = µ[ξ] for some finitely additive prob-
ability measure µ ∈ ba. If u is also Fatou, then necessarily µ is σ−additive
and is absolutely continuous with respect to P.
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Proof. Since u is commonotone, we may apply Schmeidler’s theorem.
This shows that for ξ ≥ 0, u(ξ) =

∫∞
0
v({ξ ≥ x}) dx, where v is a con-

vex game. Take a set A such that 0 < P[A] < 1. Since u is differ-
entiable at 1A, we have that there is a unique element µ ∈ C(v) with
µ(A) = v(A). If B ⊂ A or A ⊂ B, we have the existence of an element
ν ∈ C(v) with both ν(A) = v(A) and ν(B) = v(B). But then we must have
ν = µ. From here we deduce that for two disjoint elements B1 and B2 such
that P[B1 ∪ B2] < 1 have the existence of an element µ ∈ C(v) such that
µ(B1 ∪B2) = v(B1 ∪B2) and therefore also µ(B1) = v(B1), µ(B2) = v(B2).
This shows that v(B1)+v(B2) = µ(B1)+µ(B2) = µ(B1∪B2) = v(B1∪B2).
In case P[B1∪B2] = 1 we can, by hypothesis, split at least one of the two sets
in two strictly smaller non negligible sets, say C1∪C2 = B1. Then we have the
existence of a unique element µ ∈ C(v) that must satisfy µ(C1) = v(C1). This
element then satisfies µ(B1) = v(B1) and hence also µ(C2) = v(C2). But µ
must also satisfy v(B2 ∪ C1) = µ(B2 ∪ C1) and hence also v(B2) = µ(B2).
As a conclusion we get that v(B1) + v(B2) = µ(B1) + µ(B2) = 1. So v is
additive, concluding the proof. 2

Remark 64 The previous theorem was observed by Sebastian Maass, see
[?]. The proof shows that we only used differentiability at non constant
indicator functions. It shows that differentiability and commonotonicity are
not very compatible. This will have an influence on the solution of the
capital allocation problem. In [51], Deprez and Gerber used functions that
were Gâteaux differentiable. The previous results show that the ideas in
their paper must be applied with care.

7.3 Distortion

We already looked at games of the form v(A) = f(P[A]). Such games coming
from “distorted” probabilities play an important role. They characterise the
commonotone law determined utility functions. We now analyse the repre-
sentation from Chapter 4 with the extra information that u is commonotone.
In doing so we get a relation with TailVaR. We use the notation v = f ◦ P
where f : [0, 1] → [0, 1] is convex, f(0) = 0, f(1) = 1. For 0 ≤ k ≤ 1 we
define fk : [0, 1]→ [0, 1] as fk(x) = 0 for 0 ≤ x < k, fk(x) = (x− k)/(1− k)
for k ≤ x < 1. This definition yields f0(x) = x, f1(x) = 0 for x < 1. The
corresponding games are denoted by vk. So C(vk) is defining TailVaR for the
level 1− k.
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Proposition 40 Every convex function f : [0, 1]→ [0, 1], f(0) = 0, f(1) = 1
can be written as a mixture of the functions fk. More precisely there is a
probability measure λ on [0, 1] such that f =

∫
[0,1]

fk λ(dk). f is continuous

at 1 if and only if λ({1}) = 0.

Proof. If f is not continuous at 1, then we define g(x) = f(x)/f(1−) for
x < 1 and g(1) = 1. We find that f = f(1−)g+ (1− f(1−))f1. This reduces
the problem to continuous functions f . Elementary properties of integration
theory and the almost sure differentiability of f – in one dimension saying
that the left and right derivatives exist – then yields:

f(x) =

∫ x

0

f ′(u) du for 0 ≤ x < 1

=

∫ x

0

µ[0, u] du where µ[0, u] = f ′(u) is the right derivative

=

∫ x

0

∫
[0,u]

µ(ds) du

=

∫
[0,1[

µ(ds)

∫
s≤u≤x

du

=

∫
[0,1[

µ(ds)(x− s)+

=

∫
[0,1[

µ(ds)(1− s)fs(x)

=

∫
[0,1[

λ(ds)fs(x) where dλ = (1− s) dµ.

2

Remark 65 The above formula is a special case of the more general result
of Kusuoka, [96] as we already pointed out in Chapter 5.

Every distorted probability v = f ◦P defines a Fatou utility function u. The
above shows that

u(ξ) =

∫
[0,1]

λ(ds)us(ξ) where us is TailVaR with level 1− s.
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This formula can be proved as follows. We suppose that ξ is nonnegative.

u(ξ) =

∫ ∞
0

v(ξ ≥ x) dx =

∫ ∞
0

f(P[ξ ≥ x] dx

=

∫ ∞
0

∫
[0,1]

fs(P[ξ ≥ x]) dλ dx

=

∫
[0,1]

∫ ∞
0

fs(P[ξ ≥ x]) dx dλ

=

∫
[0,1]

us(ξ) dλ.

Since the quantile functions qα allow to write TailVaR we get, at least for
functions f that are continuous at 1:

u(ξ) =

∫
[0,1]

λ(ds)us(ξ)

=

∫
[0,1]

λ(ds)
1

1− s

∫ 1−s

0

qα(ξ) dα

=

∫
[0,1]

µ(ds)

∫ 1−s

0

qα(ξ) dα

=

∫
[0,1]

dα qα(ξ)µ[0, 1− α]

=

∫
[0,1]

dα qα(ξ)f ′(1− α).

These are of the form
∫
dα qαφ(α) where φ is a non-increasing function. See

Kupper et al [2] for the investigation of a wider class of such functions. We
invite the reader to extend this formula to the case where f has a discontinu-
ity at 1, more precisely when we need a Dirac measure at 1 for the derivative
of f . Hint: remember that q0 = ess.inf.

Proposition 41 Let f be a continuous distortion function and let f ′(1) be
its left derivative at 1 (this can be +∞). Then for 1− k = 1/f ′(1), we have
by convexity of f , that f ≥ fk. It follows that the utility function associated
with f is bigger than TailVaR at level 1− k

The proof is already contained in the statement, so we omit the details.

Remark 66 As already mentioned above, typical examples for distortion
are f(x) = xp, where 1 ≤ p ≤ ∞, the case p = 1 gives the expected value,
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the case p = ∞ gives the case ess.inf. For p an integer we can write the
utility function in a different way. Suppose that ξ ≥ 0 and let ξ1, . . . , ξn
be independent copies of ξ. We have that u(ξ) =

∫∞
0
f(P[ξ > x]) dx =∫∞

0
(P[ξ > x])n dx =

∫∞
0

P[min(ξ1, . . . , xn) > x] dx. This means that u(ξ) =
E[min(ξ1, . . . , ξn)] = E[ξ[1]], where ξ[1] is the first order statistic (we drop the
fixed value n), i.e. the smallest among n values. The previous proposition
now gives E[min(ξ1, . . . , ξn)] ≥ u′(ξ), where u′ is TailVar at level 1/n. We
leave the economic interpretation to the reader. Other examples of distortion
functions are f(x) = 1−(1−x)s where 0 < s < 1. They have a sharp increase
at x = 1.

Remark 67 The other order statistics (ξ[2] . . . , ξ[n]), do not define utility
functions since the distortion function f defined by the relation f[j](P[ξ ≥
x]) = P[ξ[j] ≥ x] (for all ξ ∈ L∞), is not a convex function for j ≥ 2. This can
be expected since the n-th order statistic is the maximum among n values
and this is certainly not a cautious value.

Exercise 23 Find f[j] and prove that it is not convex. You may suppose
that the probability space is atomless.

From now on and until the end of this chapter, we will make the assumption
that the probability space is atomless.

Proposition 42 Let w be a convex game such that C(w) is a weakly compact
set of L1. Let v1 be defined as above, i.e. v1(A) = 0 if P[A] < 1 and
v1(A) = 1 if P[A] = 1. Let 0 ≤ t < 1 and let v = t w + (1− t)v1. The game
v is Fatou but Cσ(v) has no extreme points. One can write

Cσ(v) = {tµ+(1−t)Q | µ ∈ C(w);Q� P an arbitrary probability measure}.

Proof. Clearly

Cσ(v) ⊃ {tµ+(1−t)Q | µ ∈ C(w);Q� P an arbitrary probability measure}.

Furthermore the right hand side is convex and closed in L1. If we calculate
for ξ ≥ 0:

inf{Eν [ξ] | ν = tµ+ (1− t)Q;µ ∈ C(w);Q ∈ P},

we find

t uw(ξ) + (1− t) ess.inf(ξ)

=

∫ ∞
0

t w(ξ > x)dx+

∫ ∞
0

(1− t) v1(ξ > x)dx =

∫ ∞
0

v(ξ > x)dx = uv(ξ).
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It is well known – and an easy exercise – that the set of all absolutely con-
tinuous probability measures on an atomless space has no extreme points.
This ends the proof. 2

This means that for distortions we may limit the study to functions f
that are continuous at 1. In this case there are enough extreme points since
the core is weakly compact. In [37] we studied the extreme points for such
games but since then much better is known, see e.g. Carlier and Dana,[26],
Marinacci and Montrucchio [?], Brüning and Denneberg, [24] and the refer-
ences given in these papers. Many of the results given in these papers rest
on the classic papers of Ryff,[121]. The rest of this section is devoted to the
study of extreme points of the core. The presentation is different from [26]
and uses a little bit more functional analysis. The reader not familiar with
these concepts can skip the proofs. Along the road, we give a – maybe new
– proof of Ryff’s theorem.

The first step consists in giving a description of the core of the game
v = f ◦P. Since v is a mixture of TailVaR at different levels, we expect that
the core is a similar mixture, in other words we are aiming for a generalisation
of Proposition 40.

Theorem 49 Let f be continuous at 1 and let v be described as v(A) =∫
dλ vs(A) where vs describes TailVaR at level (1− s). We have

C(v) =

{∫
dλQs | s→ Qs is Bochner measurable and λ a.s. Qs ∈ C(vs)

}
In other words the operator

T :L1([0, 1]× Ω, λ× P)→ L1(Ω,P)

(T (φ))(ω) =

∫
[0,1]

φ(s, ω) dλ(s) = E [φ | {∅, [0, 1]} × F ] ,

maps the set

D = {φ | 0 ≤ φ(s, ω) ≤ 1

1− s
,

∫
Ω

φ(s, .) dP = 1, λ a.s. }

onto C(v). The set D is weakly compact in L1(λ× P).

Proof. A direct calculation shows T (D) ⊂ C(v). The set T (D) is clearly
convex. For each ξ having a continuous law, we have the existence of an
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element Qs ∈ C(vs) such that uvs(ξ) = EQs [ξ]. The element Qs is given in
an explicit way, φ(s, .) = 1

1−s1ξ≤q1−s(ξ). This means that s→ Qs is Bochner
measurable. But then we have

u(ξ) ≤ uT (D)(ξ) ≤
∫
dλQs(ξ) =

∫
dλus(ξ) = u(ξ).

Since random variables with continuous laws are norm dense in L∞ we get
the equality u(ξ) = uT (D)(ξ) for all elements in L∞. This shows that C(v) is
contained in the closure of T (D). So it remains to show that T (D) is norm
closed in L1. This follows from the weak compactness property of D. It
is clear that the set D is convex and closed in L1(λ × P). To prove weak
compactness or uniform integrability we need to find a function K : R+ →
R+ such that limx→∞

K(x)
x = +∞ and such that supφ∈D Eλ×P[K(φ)] <

∞. We will find a function K under the form K(x) = x p(x) where p is
nondecreasing and tends to∞ at∞. We take p(x) so that p is increasing and∑
n λ([1−2−n, 1−2−(n+1)))p(2n+1) <∞. This is possible since

∑
n≥0 λ([1−

2−n, 1−2−(n+1))) = 1. The function K is then convex. Stochastic dominance
or Choquet theory (or a good application of Jensen’s inequality) shows that
for every s we have∫

Ω

K(φ(s, .)) dP ≤ K
(

1

1− s

)
(1− s).

From here we get for every φ ∈ D:

Eλ×P[K(φ)] =

∫
[0,1]

λ(ds)

∫
Ω

dPK(φ(s, ω))

≤
∫

[0,1]

λ(ds)K

(
1

1− s

)
(1− s)

≤
∫

[0,1]

λ(ds) p

(
1

1− s

)
≤
∑
n≥0

λ([1− 2−n, 1− 2−(n+1))) p(2n+1) <∞.

2

Exercise 24 If λ is supported on a set [0, u] with u < 1, then D consists
of functions that are bounded by 1

1−u . For general λ, use an approximation

argument to show that elements in D can be truncated by 1
1−u in a uniform

way. Hint: simply make us of the fact that λ([u, 1))→ 0.



136 Chapter 7. Convex games and utility functions

Exercise 25 This exercise or remark is only for the fanatics. We used
Bochner measurability (i.e. limit of a sequence of random variables tak-
ing only finitely many values in L1), to get jointly measurable functions.
However one can show that if Qs is only Pettis measurable, i.e. for every
ξ ∈ L∞, s→

∫
ξ dQs is measurable, then for every jointly measurable func-

tion g(s, ω), the function s →
∫
dQs g(s, .) is still measurable. So we may

define
∫

[0,1]
dλ(s)

∫
dQsg(s, .). This defines a measure that is absolutely con-

tinuous with respect to λ × P and its RN-derivative φ, satisfies, for almost
every s: φ(s, .) = dQs

dP . As long as we are only concerned about integrals, we
may replace Pettis measurability by Bochner measurability.

Theorem 50 We use the notation of Theorem 49. The extreme points of
the set D are precisely the functions φ with the property φ(s, ω) is either 0
or φ(s, ω) = 1

1−s . If φ is not an extreme point of D, then T (φ) is not an
extreme point of C(v). Consequently for an extreme point Q ∈ C(v), there
is exactly one point φ ∈ D such that T (φ) = Q. The point φ is an extreme
point of D and hence is of the form φ(s, ω) = 1

1−s1E where the sections
Es = {ω | (s, ω) ∈ E} satisfy P[Es] = 1− s.

Proof Only the first part has to be proved. Take φ ∈ D and suppose that the
set E = {(s, ω) | 0 < φ(s, ω) < 1

1−s} has strictly positive measure. We will
show that φ is not extreme in D and that T (φ) is not extreme in C(v). The
function s→ P[Es] is not negligible and by making the set E smaller we get
a nonzero set such that either P[Es] = 0 or P[Es] ≥ δ > 0 and E ⊂ {(s, ω) |
0 < ε < φ(s, ω) < 1

1−s (1 − ε)}, where δ, ε are chosen small enough. Let E∗

be set {s | P[Es] > 0}. The injection L1(E∗, λ)→ L1(E, λ× P); k → k(s)1E
is an isomorphism into (since δ > 0) and hence the image is closed. Let η
be a [0, 1] uniformly distributed random variable defined on Ω. Clearly η1E
is not in the image of L1(E∗). By the Hahn-Banach theorem there is a non
trivial element h ∈ L∞(E, λ× P), ‖h‖∞ = 1 such that for all k ∈ L1(E∗):∫

E

k(s)h(s, ω) dλ dP = 0,

and
∫
E
η(ω)h(s, ω) dλ dP 6= 0. This implies that for λ almost all s, the inte-

gral
∫
Es
h(s, ω) dP = 0 but it also implies that

∫
dλ(s)h(s, ω) is not identically

zero. The functions φ+ εh and φ− εh are both in D and are different from
φ. This shows that φ is not extreme. The elements

∫
dλ(s) (φ(s) + εh(s, ω))

and
∫
dλ(s) (φ(s)− εh(s, ω)) are different, are in C(v) proving that T (φ) is

not extreme in C(v). 2
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Definition 24 We say that a point Q ∈ C(v) is exposed if there is ξ ∈ L∞
such that Q[ξ] = uv(ξ) but for all other elements Q′ ∈ C(v) we have EQ[ξ] <
EQ′ [ξ]. We say that ξ is an exposing functional.

Since C(v) is weakly compact, the exposed points are enough to recover the
whole set. We have that the set of exposed points is weakly dense in the set
of extreme points, see [52].

In the next paragraphs we will show that the extreme points of C(v) are
exposed and we will describe their structure. The plan is the following. We
already know that an extreme point of C(v) necessarily is the integral of
extreme points of C(vs). Then we will see that for exposed points something
more can be said. Since exposed points are dense in the extreme points, we
can use a limit result and finally we will then show that an extreme point is
exposed. This result goes back to Ryff, see [121].

So let Q =
∫
dλQs ∈ C(v), where of course we suppose that Qs ∈ C(vs).

In case Q is extreme we must have that for λ almost all s, the element Qs is
extreme in C(vs) and hence defined by a set Bs of probability 1− s.

The next step is to show that for an exposed point Q we know more
about the sets Bs. Suppose that ξ ≥ 0 is an exposing functional for the
exposed point Q. We then have for some Bochner measurable mapping Qs
with Qs ∈ C(vs):

uv(ξ) = Q[ξ] =

∫
dλQs[ξ] ≥

∫
dλuvs(ξ) = uv(ξ).

Hence for λ almost all s we have Qs[ξ] = uvs(ξ) =
∫∞

0
vs(ξ ≥ x) dx. This

implies that for all x ≥ 0: Qs[ξ ≥ x] = vs(ξ ≥ x). But for λ almost all s we
must then have that Qs is an exposed point of C(vs). If it would not be the
case, then the minimising probability Qs is not the unique element in C(vs)
that allows to calculate the value uvs(ξ). This implies that the quantile q1−s,
at level 1− s satisfies P[ξ < q1−s(ξ)] < 1− s < P[ξ ≤ q1−s(ξ)]. This can only
happen for a countable number of points s. Furthermore one of these points
must then have a positive λ-measure. Take one of these points say t. For
this t we replace Qt by a different measure Q′t still minimising in the sense
uvt(ξ) = EQ′t [ξ]. From the discussion on TailVaR we know that on the set
{ξ < q1−t} the measures Qt and Q′t have density 1/(1 − t) and on the set
{ξ > q1−t}, their densities are both 0. Take now the integral

Q′ =

∫
s6=t

dλQs + λ{t}Q′t
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This measure is different from Q since it is different from it on the set {ξ ≤
q1−t} \ {ξ < q1−t}. The description of the core gives us that Q′ ∈ C(v) and
EQ[ξ] = EQ′ [ξ] by construction. This is a contradiction to the fact that Q
was exposed.
So we get that for λ almost all s, the measure Qs is either supported by
{ξ < q1−s} or by {ξ ≤ q1−s}. This means that the sets {dQsdP > 0} form a
decreasing family of sets. We can express this by saying that the functions
(indicator functions!) (1− s)dQsdP are decreasing.

If Q ∈ C(v) there is a sequence of convex combinations of exposed points
that tends to Q. By taking more convex combinations, we get for Q a
representation Q =

∫
dλQs with (1 − s)dQsdP decreasing. This property is

valid for all elements of the core C(v).
In case Q is an extreme point this allows us to write Q =

∫
dλQs where

dQs
dP = 1

1−s1Bs ,P[Bs] = 1 − s and where the system Bs is now decreasing.
Since the space (Ω,F ,P) is atomless, we have the existence of a random
variable ξ such that for λ almost all s: {ξ < q1−s} = Bs = {ξ ≤ q1−s}.
This ξ exposes the point Q in C(v) and also shows the first lines of the next
theorem.

Theorem 51 If v is a distortion game v = f ◦P where f is continuous at 1,
then all extreme points of C(v) are exposed. Exposed points are characterised
as Q =

∫
dλQs where dQs

dP = 1
1−s1Bs ,P[Bs] = 1 − s and where the system

Bs is decreasing. A random variable η ∈ C(v) is an exposed point if and only
if it has the same law as the function f ′ : [0, 1] → R+. The set of extreme
points, ∂C(v), is a closed Gδ set in C(v).

Proof. Only the last sentence has to be proved. If η = dQ
dP is an exposed

point, we can write η =
∫
dλ 1

1−s1Bs where Bs is decreasing and is of the form
Bs = {ξ ≤ 1−s} where ξ has a uniform law on [0, 1]. Because dλ = (1−s) dµ
where µ[0, x] = f ′(x) we can rewrite the integral as

∫
dµ1{ξ≤1−s} = µ([0, 1−

ξ]) = f ′(1 − ξ). Of course 1 − ξ is uniformly distributed over the interval
[0, 1]. Conversely if η has the same law as f ′, then, because the probability
space is atomless, we can find a random variable ξ uniformly distributed
over [0, 1] and such that φ = f ′ ◦ (1 − ξ). The sets Bs = {ξ ≤ 1 − s} form
a decreasing system and φ =

∫
dµ1{ξ≤1−s}. This shows that η is exposed

and the random variable ξ is an exposing functional. To show that ∂C(v) is
closed we observe that

∂C(v)

=

{
Q ∈ C(v) | for all x ∈ R : EP

[
exp

(
ix
dQ
dP

)]
=

∫ 1

0

exp (ixf ′(s)) ds

}
.
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To see that is a Gδ set observe that

∂C(v)

= ∩n≥1,q rational

{
Q |

∣∣∣∣EP

[
exp

(
iq
dQ
dP

)]
−
∫ 1

0

exp (iqf ′(s)) ds

∣∣∣∣ < 1

n

}
.

2

Remark 68 The above result does not imply that for arbitrary ξ ∈ L∞

we necessarily have that ξ is an exposing functional. We do have that ξ
attains its minimum in an exposed point Q ∈ C(v) but this does not mean
that the random variable ξ is an exposing functional. In order to make sure
that ξ attains its minimum in a uniquely defined point of the core, we need
extra hypothesis on ξ. If ξ is an exposing functional, then u is Gâteaux
differentiable at ξ. We have seen that for convex games, the differentiability
of the utility function cannot be guaranteed at all indicator functions.

Ryff’s paper also shows a connection with stochastic dominance.

Definition 25 Let ξ, η be integrable random variables, not necessarily de-
fined on the same probability space, we say that η dominates ξ, denoted ξ � η
if for all convex functions φ : R→ R we have E[φ(ξ)] ≤ E[φ(η)].

We remark that both integrals are defined since ξ−, η− are integrable. By
taking φ(x) = x and φ(x) = −x we get that E[ξ] = E[η]. Stochastic dom-
inance is important in insurance mathematics, risk theory and the theory
of decisions under uncertainty. Its importance comes from the relation with
Choquet theory, see Phelps [111]. Most of the theory can be obtained by clev-
erly applying Choquet theory. For instance the famous theorem of Cartier-
Fell-Meyer, Strassen, [111] says that ξ � η if and only if there are random
variables ξ′, η′, defined on the same probability space, ξ and ξ′ have the
same law, η and η′ have the same law and E[η′ | ξ′] = ξ′. This statement is
then used to construct martingales and it is also used in finance.

The study of stochastic dominance requires some small introduction to
the theory of convex functions. If φ : R → R is a convex function, its
derivative exists except in a countable number of points. We will – as
we did above – use the right derivative. The second derivative of it is a
nonnegative measure φ′′. For each a ∈ R the convex function φa(x) =
φ(a) + φ′(a)(x− a) +

∫
(a,∞)

φ′′(ds)(x− s)+ is smaller than φ and for x ≥ a

coincides with it. It follows that φa ↑ φ as a → −∞. Also this family
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of convex functions (for a ≤ 0) is bounded below by the affine function
φ(0) + φ′(0)x. The idea is that every non-decreasing convex function is a
positive combination of functions of the form (x − s)+. This means that
properties for convex functions can be shown by first showing them for these
functions and then proceeding to the limit.

Proposition 43 ξ � η if and only if E[ξ] = E[η] and the increasing rear-
rangements q(ξ), q(η) satisfy:

for all 0 ≤ x ≤ 1 :

∫
[0,x]

qu(ξ) du ≥
∫

[0,x]

qu(η) du.

Proof. We may suppose that ξ, η are defined on [0, 1] and are increasing.
This allows to replace the quantiles by the functions and it makes the no-
tation easier. Suppose that ξ � η, we will show

∫ x
0
ξ(s) ds ≥

∫ x
0
η(s) ds or

what is the same since E[ξ] = E[η],
∫ 1

x
ξ(s) ds ≤

∫ 1

x
η(s) ds. The indicator

function of the interval [x, 1] is not the limit of convex functions so we need
something better and in fact the monotonicity of the functions will play a
role. Take x ∈ [0, 1] and take the convex function (ξ − ξ(x))+. We have

∫ 1

0

(ξ − ξ(x))+ ds =

∫ 1

x

ξ ds− ξ(x)(1− x),∫ 1

0

(ξ − ξ(x))− ds = −
∫ x

0

ξ ds+ ξ(x)(x)

= −
∫ 1

0

ξ ds+

∫ 1

x

ξ ds+ ξ(x)(x),

the same holds for η.
Suppose first that ξ(x) ≤ η(x), we get that

∫ 1

x

ξ ds−
∫ 1

x

η ds =

∫ 1

0

(ξ − ξ(x))+ ds−
∫ 1

0

(η − η(x))+ ds+ (ξ(x)− η(x))(1− x)

≤
∫ 1

0

(ξ − ξ(x))+ ds−
∫ 1

0

(η − ξ(x))+ ds+ (ξ(x)− η(x))(1− x)

≤ (ξ(x)− η(x))(1− x) ≤ 0.
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In case ξ(x) ≥ η(x) we use the other equalities:∫ 1

x

ξ ds−
∫ 1

x

η ds =

∫ 1

0

(ξ − ξ(x))− ds−
∫ 1

0

(η − η(x))− ds

+

∫ 1

0

ξ ds−
∫ 1

0

η ds− (ξ(x)− η(x))(x)

≤
∫ 1

0

(ξ − ξ(x))− ds−
∫ 1

0

(η − ξ(x))− ds− (ξ(x)− η(x))(x)

≤ −(ξ(x)− η(x))(x) ≤ 0.

In either case we found
∫ 1

x
ξ ds ≤

∫ 1

x
η ds.

Conversely, for each s ∈ R we have the existence of u ∈ [0, 1] such that
ξ(u−) ≤ s ≤ ξ(u) and we then get by the hypothesis on ξ and η:

E[(ξ − s)+] =

∫ 1

u

(ξ(y)− s) dy ≤
∫ 1

u

(η(y)− s) dy

≤
∫ 1

u

(η(y)− s)+ dy ≤ E[(η − s)+].

If φ is a convex function then integrating with respect to φ′′ and using that
E[ξ] = E[η], gives for each a ∈ R:

E[φa(ξ)] ≤ E[φa(η)].

If a→ −∞ the Beppo Levi theorem gives E[φ(ξ)] ≤ E[φ(η)], as desired. 2

Proposition 44 An element Q is in the core of v = f ◦ P if and only if
dQ
dP � f

′.

Proof. Suppose dQ
dP � f ′, then for each A ∈ F with probability P[A] = x

we have

Q[A] =

∫
A

dQ
dP

dP ≥
∫ x

0

qu

(
dQ
dP

)
du ≥

∫ x

0

f ′(u) du = f(x) = v(A).

Conversely if Q ∈ C(v) we have that for any x ∈ [0, 1], any A with P[A] = x
and such that

{
dQ
dP < qx

(
dQ
dP
)}
⊂ A ⊂

{
dQ
dP ≤ qx

(
dQ
dP
)}

:∫ x

0

qu

(
dQ
dP

)
du =

∫
A

dQ
dP

dP = Q[A] ≥ v(A) = f(x) =

∫ x

0

f ′(u) du.

2
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Corollary 11 If h ∈ L1 and h � f ′ then h can be written as an integral over
the extreme points of C(v). In other words there is a probability measure µ on
C(v), supported by the exposed points ∂C(v) of C(v) such that h =

∫
∂C(v)

Q dµ

Remark 69 The measure µ is necessarily supported by ∂C(v) since this is a
Baire set, even a closed Gδ. Hence µ(∂C(v)) = 1, see [111]. The separability
of the support follows from results in functional analysis — the so called
study of Eberlein compact sets, see [8]. In this case it could be proved by
hand using the fact that dQ

dP is already measurable for a separable atomless
sigma algebra and hence we can restrict everything to the case of L1 being
separable. We leave the details to the reader.

Corollary 12 If h ∈ L1 and h � f ′ then h is the limit of convex combina-
tions of random variables, equal to f ′ in law.

Remark 70 The previous reasoning gives an alternative proof of Ryff’s the-
orem, [121]

7.4 Strongly exposed points

For convex sets there is a stronger notion than exposed points.

Definition 26 If C is a convex bounded closed set in a Banach space E,
then we say that x ∈ C is strongly exposed if there is a linear functional
x∗ : E → R such that for every sequence yn;n ≥ 1 in C, the convergence of
x∗(yn)→ x∗(x) implies ‖x− yn‖ → 0.

Of course this implies that x is an exposed point and that x∗ is an exposing
functional. It is known that for a weakly compact set in a Banach space,
say C, the convex closed hull of the strongly exposed points is equal to C,
[?],[?]. Because of the special nature of the core of a distorted probability,
we can guess that the extreme points are not only exposed, they are even
strongly exposed. Indeed all the extreme points are of the same nature (up
to some isomorphisms of the probability space — if the topological nature
of Ω would allow it). This means that they all have the same properties.
So they all should be strongly exposed. In this special case one can give a
direct proof using the characterisation of the extreme points. We suppose
that v(A) = f(P[A]) is a convex game and that the distortion f is continuous
at 1.

Proposition 45 All extreme points of C(v) are strongly exposed.
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Proof. Let us recall that if Q is an extreme point, there is a random variable
ξ having a uniform law [0, 1] and such that ξ is exposing. This means that for
all other elements, Q′ of the core C(v) we have EQ[ξ] < EQ′ [ξ]. What we need
to show is that for a sequence Qn in C(v), limn EQn [ξ] = EQ[ξ] implies that
Qn → Q in L1-norm. From the discussion on the structure of the extreme
points, Theorem 50, we recall that Q can be written as Q =

∫
Qs λ(ds)

where Qs is given by dQs = 1
1−s1Bs dP with Bs = {ξ ≤ 1− s}. At the same

time we can write Qn =
∫
Qns λ(ds), where Qns is in the core of the game

vs, i.e.
dQns
dP ≤

1
1−s . The random variable ξ satisfies (at least in λ measure):

EQns [ξ] → EQs [ξ]. Indeed EQn [ξ] =
∫
EQns [ξ] dλ →

∫
EQs [ξ] dλ. But for each

s we have EQns [ξ] ≥ EQs [ξ]. Hence EQns [ξ] → EQs [ξ] for almost every s.
Now Qs is an exposed point of C(vs) and we will show that it is strongly
exposed, meaning that ‖Qns − Qs‖1 → 0. This will imply ‖Qn − Q‖1 ≤∫
dλ ‖Qns − Qs‖1 → 0. In other words our representation of the core C(v)

allows to reduce the problem to the special case of TailVar. We now go back
to the calculations in Example 9. There it was shown that for k = 1

1−s and
α = 1− s:

EQns [ξ]− EQs [ξ] =

∫
Bs

(ξ − α)

(
dQns
dP
− k
)
dP +

∫
Bcs

(ξ − α)
dQns
dP

dP.

Since the left side tends to 0 and since both terms on the right are non-
negative we get that each of them tends to zero. This implies that both

(ξ − α)
(
dQns
dP − k

)
1Bs and (ξ − α)

dQns
dP 1Bcs tend to zero. Since P[ξ = α] = 0

we have that 1Bcs
dQns
dP and

(
dQns
dP − k

)
1Bs tend to zero. In other words

dQns
dP → k1Bs , all convergences taking place in probability. Because Qns and
Qs are probabilities, Scheffé’s lemma implies ‖Qns −Qs‖1 → 0. 2
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Chapter 8

Relation with VaR

In this chapter we deepen on the relation between r utility functions and
VaR. We recall that if α belongs to the interval (0, 1) the family S1/α =

{Q | dQdP ≤ 1/α} is well defined; the corresponding uα is such that if P is
atomless and if the distribution of ξ is continuous, uα(ξ) = E[ξ| ξ ≤ qα(ξ)].
Recall that qα(ξ) is the α-quantile of ξ, defined as inf{x | P[ξ ≤ x] > α}. We
defined the Value at Risk as −qα(ξ). In case the law of ξ is not necessarily
continuous, i.e. in general, we have uα(ξ) = 1

α

∫ α
0
qu(ξ) du.

8.1 VaR and TailVaR

Let us now come back to the relation between utility functions and VaR.
The utility functon uα is maximal in the sense that it is the maximum in the
class of coherent utility functions, only depending on the distribution and
smaller than qα. More precisely the following theorem holds:

Theorem 52 Suppose that P is atomless; let u be a coherent utility function
verifying the additional property that if ξ and η are identically distributed,
then u(ξ) = u(η). If for every ξ ∈ L∞, u(ξ) is smaller than qα(ξ), then
u ≤ uα.

Proof. . We first observe that utility functions that only depend on the
distribution of the random variables have the Fatou property, see Section
5.1. We now prove that for every ξ, u(ξ) ≤ E[ξ | ξ ≤ qα(ξ) + ε]. Let
A = {ω | ξ(ω) ≤ qα(ξ) + ε}, by definition of qα we have the strict inequality
P[A] > α. Let η be the random variable equal to ξ on Ac and equal to the
number E[ξ | A] on A. qα(η) is then equal to E[ξ | A] and we deduce from
qα(η) ≥ u(η), that E[ξ | A] ≥ u(η). Let us call ν the distribution of ξ given A,
where A is equipped with the inherited σ algebra {A∩B | B ∈ F} and with
the conditional probability P[ . | A]. The hypothesis of the absence of atoms
in Ω implies in particular the absence of atoms in A. This fact guarantees
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the existence on A of a sequence, say Zn of independent (for P[ . | A]),
ν-distributed random variables. Let us denote by ξn the random variable
coinciding with the n-th element Zn on A and with ξ (and therefore with η)
outside A. The (ξn)n have the same distribution, equal to the distribution
of ξ. By the law of large numbers, ξ1+···+ξn

n converges almost surely to η.
Remembering that the Fatou property holds, we finally obtain:

u(η) ≥ lim sup
n→∞

u

(
ξ1 + . . . ξn

n

)
≥ lim sup

n→∞

1

n

n∑
i=1

u(ξi) = u(ξ)

Thus we get u(ξ) ≤ u(η) ≤ E[ξ | ξ ≤ qα(ξ) + ε]. If ξ has a distribution
function continuous at qα, we can pass to the limit, obtaining u(ξ) ≤ uα(ξ).
What if the distribution of ξ is not continuous? In this case, we can find an
approximating sequence ξn as in Proposition 1 and we have that both u(ξn)
and uα(ξn) tend to u(ξ) and uα(ξ) respectively (because coherent utility
functions are continuous with respect to the uniform L∞ topology). Pass-
ing to the limit in the already established inequality u(ξn) ≤ uα(ξn), gives
u(ξ) ≤ uα(ξ) for all ξ ∈ L∞. 2

Remark 71 Kusuoka could characterise the coherent risk measures that are
law invariant. His characterisation gives an alternative proof of the above
result, see [96]. See also Chapter 5.

8.2 VaR as an envelope of coherent utilities

As a general result, under the hypotheses of absence of atoms, there is no
smallest coherent risk measure that dominates VaR. As usual we say that ρ
dominates VaR if for all η ∈ L∞ we have that ρ(η) ≥ VaRα(η) or what is
the same u(η) ≤ qα(η).

Theorem 53 If P is atomless we have, for each 0 < α < 1:

qα(ξ) = sup {u(ξ) | u coherent with the Fatou property and u ≤ qα} .

Remark 72 The theorem says that if we take the supremum over all coher-
ent utility functions that dominate VaR (and not only the ones depending
just on distributions) we obtain VaR, wich as we already saw, is not a coher-
ent risk measure (remember, it’s not subadditive). This shows that there is
no smallest convex risk measure that dominates VaR. The proof taken from
[39], is quite technical, it can be omitted.
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We start the proof with the lemma that characterises the utility functions
that are dominated by a quantile. We remark that we always take the right
(or largest) quantile. For the left quantile there are difficulties as can be seen
from [39]

Lemma 20 A coherent utility function u, defined by Sba is dominated by
qα if and only if for each set B with P[B] > α and for each ε > 0, there is a
measure µ ∈ Sba such that µ(B) > 1− ε.

Proof of the lemma We first prove necessity. Take ε > 0 and a set B
such that P[B] > α. Since qα(ξ) = −1 for the random variable ξ = −1B , we
conclude from the inequality u ≤ qα, that there is a measure µ ∈ Sba such
that µ(B) ≥ 1 − ε. For the sufficiency we take a random variable ξ as well
as ε > 0 and we consider the set B = {ξ ≤ qα + ε}. By definition of qα,
we have P[B] > α. By assumption there exists a measure µ ∈ Sba with the
property µ(B) ≥ 1− ε. This gives the inequality

u(ξ) ≤ µ[ξ] ≤ µ[ξ1B ] + ε‖ξ‖∞ ≤ (qα(ξ) + ε) + ε‖ξ‖∞.

Since the inequality holds for every ε > 0, we get the result u ≤ qα. 2

Proof of the Theorem We only have to show that for ξ given, we can find
a coherent utility dominated by qα and with the property that u(ξ) ≥ qα(ξ).
For each ε > 0, the set C = {ξ ≤ qα + ε} has measure P[C] > α. But
the definition of qα implies that P[ξ < qα] ≤ α. It follows that the set
D = {qα ≤ ξ ≤ qα + ε} has strictly positive measure. Take now an arbitrary
set B with measure P[B] > α. Either we have that P[B ∩ Cc] 6= 0, in which
case we take hB = 1B∩Cc

P[B∩Cc] or we have that B ⊂ C. In this case and because

P[ξ < qα] ≤ α we must have that P[B ∩D] > 0. We take hB = 1B∩D
P[B∩D] . The

Fatou coherent utility function is then defined as u(η) = infP[B]>α EP[ηhB ].
By the lemma we have that u is dominated by qα but for the variable ξ
we find that EP[ξhB ] is always bounded below by qα, i.e. u(ξ) ≥ qα(ξ). It
follows that u(ξ) = qα(ξ). 2

Remark 73 We will not continue the study of the relation between coherent
utility functions and VaR. The examples on credit risk see Chapter 4, can
be used as further illustrations. We leave it to the intelligent reader to draw
his/her conclusions on the use of VaR as an institutional risk measure.
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Chapter 9

The Capital Allocation Problem

Let, as before, u : L∞ → R be a coherent utility function with the Fatou
property. With u we associate the coherent risk measure ρ(ξ) = −u(ξ).
Imagine that a firm is organised as N trading units and let their future
wealth be denoted by ξ1, . . . , ξN , all belonging to L∞. With these individual
positions we need to associate an amount of economic capital. The idea is
that the economic capital of the firm – associated to ξ1 + . . . + ξN – has to
be divided among the individual contributions ξi. The total capital required
to face the risk is ρ(

∑N
i=1 ξi) and we have to find a “fair” way to allocate

k1, . . . , kN so that k1 + . . . + kN = ρ(
∑N
i=1 ξi). Because the risk measure is

subadditive, the individual business units can benefit from the diversification.
Another point of view of the allocation problem is to distribute the gain of
diversification over the different business units of a financial institution. The
reason why we have to solve this problem comes from problems such as the
calculation of risk adjusted returns, the correct charge of the capital costs,
etc.. We will present two solutions of the capital allocation problem. Both
are related to a game theoretic approach.

Here is another interpretation of the capital allocation problem. Suppose
that an insurance company has issued contracts for which the claims are
described by the random variables ξ1, . . . , ξn. We assume that the claims
are denoted by positive numbers. The company now wants to charge a fair
premium to each of this contracts. Of course these numbers will be aug-
mented by the cost of capital, the overhead costs, coffee for the secretaries,
... The total future position before premium income is −(ξ1 + . . .+ ξn). This
requires a premium income equal to −u(−(ξ1 + . . .+ ξn)). This is precisely
ρ (−(ξ1 + . . .+ ξn)). The solution of the capital allocation problem allows
us to find a fair allocation to each of the individual contracts. Of course this
means that the premium of a contract will depend on the other contracts in
the portfolio. This is not a new issue. We refer to Deprez and Gerber [51]
where this was discussed.
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9.1 Simple game theoretic approach.

In the previous setting, we define k1, . . . , kN to be a fair allocation if:

1.
∑N
i=1 ki = u(

∑N
i=1 ξi)

2. ∀J ⊆ {1, . . . , N} we have
∑
j∈J kj ≥ u(

∑
j∈J ξj).

The existence of a fair allocation is in fact equivalent to the non-emptiness of
the core of a “balanced” game. So it is no surprise that the following theorem
uses the same technique as the Bondareva-Shapley theorem in game theory.
For completeness and becaude it is instructive, we include a proof.

Theorem 54 (Bondareva-Shapley theorem for risk measures) If u is coher-
ent then there exists a fair allocation.

Proof. . Let m = 2N and let φ : RN → Rm be the following linear map:

φ((ki)i) =


∑
j∈J

kj


∅6=J⊆{1,...,N}

,

− N∑
j=1

kj




We have to find k = (k1, . . . , kN ) ∈ RN so that for each ∅ 6= J ⊂ {1, . . . , N}
we have φ(k)J ≥ u(

∑
j∈J ξj) and so that

∑
i≤N ki = u(

∑
i≤N ξi).

Let P =
{

((xJ)J , x) | xJ ≥ u
(∑

j∈J ξj

)
, x ≥ −u

(∑
i≤N ξi

)}
. The prob-

lem is reduced to showing that φ(RN ) ∩ P is non empty. If it were empty,
by the separating hyperplane theorem, there would be ((αJ)J , α) such that:

1.
∑
J αJ (

∑
j∈J kj) − α

∑
i≤N ki = 0;

2.
∑
J αJ u(

∑
j∈J ξj)− αu(

∑
i≤N ξi) > 0;

3. αJ ≥ 0, α ≥ 0.

Condition 1 can be written as: for each j, we have
∑
J3j αJ = α. If α = 0,

then all the αJ would be 0 but this is impossible by point 2. Therefore we
can normalize: we may suppose α = 1. Hence we have found positive (αJ)J
such that

∑
J3j αJ = 1 and verifying

∑
J αJ u(

∑
j∈J ξj) > u(

∑
i≤N ξi). By
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coherence, it is a contradiction, since we may write:

u

∑
i≤N

ξi

 = u

∑
j

∑
J∈j

αJ

 ξj


= u

∑
J

αJ

∑
j∈J

ξj


≥
∑
J

αJ u

∑
j∈J

ξj

 .

So there is a fair allocation. 2

Remark 74 One can see that concavity alone is not sufficient to give a
solution to the capital allocation problem. Indeed if we take two “players”,
each having the same random variable ξ, we need to find two numbers k1, k2

such that ki ≥ u(ξ) and k1 + k2 = u(2ξ). This is only possible if u(2ξ) ≥
2u(ξ). This implies that u must be coherent.

Remark 75 There is a case where the solution of the capital allocation
problem becomes trivial. Suppose that u is commonotone, i.e. given by the
core of a convex game. Suppose that ξ1, ξ2, . . . , ξN are commonotone, i.e.
nondecreasing functions of one random variable. Then the only fair solution
is ki = u(ξi). Indeed we have by commonotonicity that u(ξ1 + . . . + ξN ) =∑
i u(ξi) and hence we must have ki = u(ξi).

9.2 A stronger concept of fairness

The basic papers regarding this approach are Aubin, [12], Artzner-Ostroy,
[9] and Billera-Heath, [19]. An allocation k1, . . . , kN with k = k1 + . . . kN =

u(
∑N
j=1 ξj) is now called fair (or fair for fuzzy games) if ∀αj , j = 1, . . . , N ,

0 ≤ αj ≤ 1 we have:
N∑
j=1

αjkj ≥ u

 N∑
j=1

αjξj

 .

The expression “fuzzy games” comes from the fact that we can see a vector
(α1, . . . , αN ) as a representation of a coalition that uses the proportion αi
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of business unit i. This requirement of being fair is therefore much stricter
than the one from the previous section. It has the advantage that it is
robust for “reorganisations of the firm”. The cited papers as well as the
paper by Deprez and Gerber, see [51], relate this problem to the existence
of derivatives.

Theorem 55 Suppose that ξ1, . . . , ξN are given. Let ξ = ξ1 + . . .+ ξN . The
allocation k1, . . . , kN is fair if and only if there is µ ∈ ∂ξ(u) with ki = µ(ξi).

Proof. Suppose that µ ∈ ∂ξ(u). Define ki = µ(ξi). Obviously
∑
i µ(ξi) =

µ(ξ) = u(ξ). But for given 0 ≤ αi ≤ 1 we also have
∑
i αiµ(ξi) = µ(

∑
i αiξi) ≥

u(
∑
i αiξi). Conversely let k1, . . . , kN be fair. Set C = {(x1, . . . , xN ) |

xi ≤ ki} ⊂ RN . Consider the mapping Φ : Sba → RN given by Φ(µ) =
(µ(ξ1), . . . , µ(ξN )). The image, K, is convex and compact. Suppose that
K ∩C = ∅. Then we can strictly separate the two sets. This gives a nonzero
vector (α1, . . . , αN ) such that

sup
x∈C

α.x < min
µ∈Sba

α.Φ(µ).

This implies that for all i we must have αi ≥ 0. We can therefore divide
by the maximum of αi and get 0 ≤ αi ≤ 1. The supremum on the left is
attained for (x1, . . . , xN ) = (k1, . . . , kN ). The right side gives the minimum
of µ(

∑
i αiξi), which is u(

∑
i αiξi). We get

∑
i

αiki < u

(∑
i

αiξi

)
,

a contradiction to fairness. So we proved that C ∩K 6= ∅. In other words
we found µ ∈ Sba with µ(ξi) ≤ ki for all i. If we sum we get

µ

(∑
i

ξi

)
=
∑
i

µ(ξi) ≤
∑
i

ki = u

(∑
i

ξi

)
≤ µ

(∑
i

ξi

)
.

But this shows that all inequalities are equalities and hence for all i: µ(ξi) =
ki, but it also shows that u (

∑
i ξi) = µ (

∑
i ξi), proving that µ ∈ ∂ξ(u) 2

Corollary 13 In case u is differentiable at ξ, i.e. ∂ξ(u) = {µ}, we have
that

ki = lim
ε→0

u(ξ + εξi)− u(ξ)

ε
.
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Remark 76 The corollary also shows that we can see the capital allocated
to ξi as a marginal contribution. In the total wealth ξ = ξ1 + . . . + ξN we
increase the contribution of business unit i with εξi and see how the total
utility changes. Then we calculate the partial derivative. This procedure
was, based on heuristic arguments, introduced by [17] and it was called the
Euler principle. The above proposition explains why it works and why it
gives good and fair allocations. We also remark that when u is Fatou, then
the derivative, if it exists, is necessarily an element of L1, see Theorem 22.

Example 34 Another illustration of this has been given by Uwe Schmock
in a paper written for Swiss Reinsurance, [125]. He proposed to use E[ξi |
ξ ≤ qα(ξ)] as a capital allocation method. The previous theory shows that
this is a very natural way. Indeed the risk measure corresponds to the weakly
compact set S1/α of Example 9. If ξ has a continuous distribution, or more
generally when P[ξ ≤ qα(ξ)] = α, then ∂ξ(u) = {1/α1A}, where A = {ξ ≤
qα(ξ)}. So this example fits in the above framework of differentiability. The
differentiability here is on the space L∞. If only differentiability is required
on the linear span of the random variables ξ1, . . . , ξn, things change. For
more information on this topic the reader should consult the paper by Tasche,
[127].

Remark 77 In Deprez and Gerber’s paper [51], the reader will find a lot
of similarities with the reasoning above. Their paper is full of ideas and
relations between different properties. In some sense a forerunner of “risk
measures” and of the gradient principle or Euler principle. The paper is from
the mathematical viewpoint not so precise and therefore does not give the
same results as above. For instance there is no discussion on the existence
of the derivative, neither of the uniqueness of the subgradient. One can
prove that the so-called bid price in an incomplete market defines a utility
function that is nowhere Gâteaux differentiable. In Kalkbrener’s paper,
[86], there is an axiomatic approach to the capital allocation problem. We
should also mention the paper by Denault, [47]. The axiomatics there are
a little bit different. The idea of using game theoretic ideas is present, but
Denault wants to get something that is related to the Shapley value. Since
the Shapley value is – for convex games – somewhere in the “middle” of the
core, the solution is not related to our presentation.
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Chapter 10

The extension of risk measures to L0

10.1 L0 and utility functions

As we already said in the introduction, L0 is invariant under a change of
probability measure and the definition of risk measures or utility functions
on it deserves special attention. The following theorem shows that there is
not much hope.

Theorem 56 If P is atomless, there exists no functional u : L0 → R such
that:

1. u(ξ + a) = ρ(ξ) + a ∀a ∈ R ;

2. u(ξ + η) ≥ u(ξ) + u(η) ;

3. u(λξ) = λu(ξ) ∀λ ∈ R+;

4. ξ ≥ 0→ u(ξ) ≥ 0 .

This is a consequence of the analytic version of the Hahn-Banach theorem
and of the fact that a continuous linear functional on L0 must be necessarily
null if P is atomless. We do not give the details. The proof is essentially the
same as the proof of Nikodym’s theorem, [107].

Corollary 14 If P is atomless, then the quantiles qα (defined for 0 < α < 1)
cannot be superadditive. Consequently VaR is not subadditive.

Proof. The proof is quite easy. A quantile qα satisfies properties 1, 3 and
4. Since there is no utility function satisfying all 4 properties, qα cannot
satisfy property 2. We remark that this proof is structural and we invite
the reader to find (easy) counterexamples different from the ones given in
the credit risk section. We also remark that the quantiles satisfy a Fatou
property. Also this is left as a (not so easy) exercise. 2
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10.2 Coherent functions defined on L0

If E is a solid, rearrangement invariant vector space containing non-integrable
random variables, and if we want to define a utility function on E, we need
to consider a utility function u that takes infinite values. Of course we would
like to have functions u such that +∞ is avoided as this does not make eco-
nomic sense, see [39] and [40]. A value u(ξ) = +∞ is indeed meaningless,
because it implies that any sum of money can be taken away without be-
coming unacceptable. Such a random variable would represent the dream
of many risk managers or traders. It would allow them to get an enormous
commission on the trade. On the contrary, u(ξ) = −∞ makes sense: it rep-
resents a risky position, which no amount of money can cover. In insurance
terms, the risk leading to the position ξ would not be insurable, at least not
by a prudent insurance company.

So let us consider u : L∞ → R defined by S ⊂ L1. We first define for
arbitrary random variables ξ ∈ L0:

u(ξ ∧ n) = inf
Q∈S

EQ[(ξ ∧ n)] .

We remark that the truncation is necessary to prevent the integral from
being +∞ (in practice, we want to avoid the influence of “too optimistic”
large benefits). We then define:

u(ξ) = lim
n→+∞

u(ξ ∧ n) .

Of course for random variables in L∞ this definition yields the same value,
therefore there is no need to introduce a new notation. Unfortunately, u(ξ)
can for some ξ ∈ L0, turn out to be +∞. For instance, one could take ξ ≥ 0
but non integrable, so that every u(ξ ∧ n) is finite, while the limit is not.

We note that the following implications hold:(
∀ξ ∈ L0 : u(ξ) < +∞

)
⇔ ∀ξ ∈ L0, ξ ≥ 0 implies lim

n→+∞
inf
Q∈S

EQ[ξ∧n] < +∞.

If the first inequality holds, obviously the second one is true. To prove the
converse, we note that the newly defined u is monotone and that ξ+ = ξ+ξ−

then implies that u(ξ) ≤ u(ξ+) < +∞.
So we have already proved the equivalence between the first two points

of the following theorem:

Theorem 57 The following conditions are equivalent:
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1. ∀ξ ∈ L0 : u(ξ) < +∞;

2. ∀ξ ≥ 0, φ(ξ) = limn→+∞ infQ∈S EQ[ξ ∧ n] < +∞;

3. ∃γ > 0 such that A ∈ F P[A] ≤ γ implies infQ∈S Q[A] = 0;

4. ∀f ≥ 0 ∃Q ∈ S such that EQ[f ] < +∞;

5. ∃γ > 0 such that ∀A ∈ F ,P[A] ≤ γ, ∃Q ∈ S with Q[A] = 0;

6. ∃γ > 0, ∃k such that ∀A ∈ F , with P[A] ≤ γ ∃Q ∈ S with the proper-
ties: 

Q[A] = 0

dQ
dP ≤ k .

Proof. We need to prove the equivalences from point 2 to point 6 and the
scheme is:
3⇔2 ⇒ 6 ⇒ 5 ⇒ 4 ⇒ 2.
(2 ⇒ 3)
By contradiction, if 3 is false then for every n we can find An with P[An] ≤
2−n so that infQ∈S Q[An] ≥ εn > 0. Then we define f =

∑
n≥1 1An

n
εn

. By
Borel-Cantelli’s lemma the sum is finite almost surely. Now we can write:

EQ

[
f ∧ N

εN

]
≥ EQ

[(
1AN

N

εN

)
∧ N

εN

]
≥ N

and therefore infQ∈S EQ[f∧ N
εN

] ≥ N ; lettingN tend to infinity, we contradict
2.
(3 ⇒ 2)
Let’s fix a positive f : since it is real valued, there exists K such that P[{f >
K}] < γ and taking n > K we get

inf
Q∈S

EQ[f ∧ n] ≡ inf
Q∈S

EQ[(f ∧ n)1{f>K} + (f ∧ n)1{f≤K}]

≤ inf
Q∈S

(EQ[(f ∧ n)1{f>K}] +K) ≤ K

The implications 6 ⇒ 5 ⇒ 4 ⇒ 2 are easy exercises. The real challenge is
proving the implication 3 ⇒ 6. Let k > 2

γ and let A, satisfying P[A] < γ
2 ,

be given. We will show 6 by contradiction. So let us take Hk = {f | |f | ≤
k, f = 0 on A}. If Hk and S were disjoint we could, by the Hahn-Banach
theorem, strictly separate the closed convex set S and the weakly compact



158 Chapter 10. The extension of risk measures to L0

convex set Hk. This means that there exists an element ξ ∈ L∞, ‖ξ‖∞ ≤ 1
so that

sup {E[ξf ] | f ∈ Hk} < inf {EQ[ξ] | Q ∈ S} . (10.1)

We will show that this inequality implies that ‖ξ1Ac‖1 = 0. Indeed if not,
we would have P[{1Ac |ξ| > 2

γ ‖ξ1Ac‖1}] ≤
γ
2 and hence for each ε > 0 there

is a Q ∈ S so that EQ[A ∪ {|ξ| > 2
γ ‖ξ1Ac‖1}] ≤ ε. This implies that the

right side of (10.1) is bounded by 2
γ ‖ξ1Ac‖1. However, the left side is pre-

cisely k‖ξ1Ac‖1. This implies k‖ξ1Ac‖1 < 2
γ ‖ξ1Ac‖1, a contradiction to the

choice of k. Therefore ξ = 0 on Ac. But then property 3 implies that the
right side is 0, whereas the left side is automatically equal to zero. This is a
contradiction to the strict separation and the implication 3 ⇒ 6 is therefore
proved. 2

Remark 78 For Lp with p < 1, there are utility functions u : Lp → R ∪
{−∞} that do not satisfy the conditions of the above theorem. For instance
we can take the distorted probability v(A) = P[A]2 and then show that for
p > 1/2 the utility function is defined on Lp, i.e. it will never take the value
+∞. Of course it will take the value −∞ for some random variables.

Exercise 26 We leave it as an exercise to show that for ξ ∈ Lp, we have
u(ξ) = −∞ if and only if ξ− /∈ L1.
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Dynamic utility functions in a two

period model

11.1 Notation for the two period case

We first look at the situation were we have two periods and we will restrict
the discussion to utility functions having some kind of Fatou property. This
means that we have the sigma-algebras F0 supposed to be trivial, the un-
certainty modelled by F1 at time 1 and the final uncertainty modelled by
F2. Many of the features of more period models and even of continuous time
are already present in this case. Because of the revelation of uncertainty
at the intermediate time, we need to distinguish between variables known
at date 1 and variables known only at date 2. We therefore introduce the
following notation. The space L∞(F1) is the space of (classes) of bounded
random variables measurable with respect to F1. The utility of an element
ξ ∈ L∞(F2) at time 0 is given by the monetary concave utility function
u0. At the intermediate time, the economic agent having the information
F1, can have a different idea about ξ than at time 0. The knowledge that
unfavourable events have happened might influence his appreciation. So at
time 1 the utility is measured by an F1 measurable function, u1(ξ). We
suppose that u1 is monetary and concave which in this case means

1. u1 : L∞(F2)→ L∞(F1)

2. u(0) = 0 and for ξ ≥ 0 we have u1(ξ) ≥ 0

3. for η ∈ L∞(F1) we have u1(ξ + η) = u1(ξ) + η

4. for λ ∈ L∞(F1), 0 ≤ λ ≤ 1, ξ1, ξ2 ∈ L∞(F2) we have
u1(λξ1 + (1− λ)ξ2) ≥ λu1(ξ1) + (1− λ)u1(ξ2)

5. if ξn ↓ ξ, all elements taken in L∞(F2), then u1(ξn) ↓ u1(ξ).
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The assumptions are clear. The monetary assumption should be taken at
time 1, using the information available at time 1. The same for the concavity.
Remark that we do not make any assumption about the relation between u0

and u1. This will be done later. Exactly as in the one period case we can
prove that ‖u1(ξ) − u1(η)‖∞ ≤ ‖ξ − η‖∞. And we also have that ξ ≤ η
implies u1(ξ) ≤ u1(η). The set A1 = {ξ | u1(ξ) ≥ 0} is a convex set, it is
weak∗ closed because of the Fatou property and it contains the cone L∞+ (F2)
of nonnegative elements from L∞(F2).

The convexity allows us to prove that u1(ξ) can be “localised”.

Proposition 46 If A ∈ F1 then for all ξ: u1(ξ1A) = 1Au1(ξ)

Proof. For ξ ∈ L∞(F2) we have by concavity:

u1(ξ1A)1A + u1(ξ1Ac)1Ac ≤ u1(ξ1A1A + ξ1Ac1Ac) = u1(ξ).

This implies that u1(ξ1A)1A ≤ u1(ξ)1A. But the cocavity also implies
that u1(ξ)1A = u1(ξ)1A + u1(0)1Ac ≤ u1(ξ1A). Multiplying with 1A gives
u1(ξ)1A ≤ u1(ξ1A)1A, hence u1(ξ1A) = 1Au1(ξ). 2

Corollary 15 For ξ ∈ L∞(F2) and A ∈ F1, we have u1(ξ) ≥ 0 on A if and
only if ξ1A ∈ A1.

Proposition 47 Let An;n ≥ 1 be a partition of Ω into F1−measurable
sets, let ξ ∈ L∞. Then ξ ∈ A1 if and only if ξ =

∑
n ξ

n1An where for each
n : ξn ∈ A1

Proof. If ξ ∈ A1 then for A ∈ F1: ξ1A ∈ A1 So ξn = ξ1An defines
a sequence in A1 with ξ =

∑
n ξ

n1An . Conversely, if ξ =
∑
n ξ

n1An with
ξn ∈ F1 then for all n we can write u1(ξ)1An = u1(ξ1An) = u1(ξn1An) =
u1(ξn)1An ≥ 0. So u1(ξ) ≥ 0 a.s. , proving that ξ ∈ A1. 2

The representation theorem takes almost the same form as for the one
period case. Of course we need to introduce conditional expectations. So we
introduce

c1(Q) = ess.sup{EQ[−ξ | F1] | u1(ξ) ≥ 0}.

We remark that the function c1(Q) is defined up to sets of Q measure zero.
This makes it difficult to compare and compose c1−functions for measures
that are not equivalent to P. We will avoid this problem by restricting,
there where possible, to probabilities that are equivalent to P on the sigma
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algebra F1. This class is still bigger than the class of probability measures
that are equivalent to P on the bigger sigma-algebra F2. The measures that
are equivalent to P on F1 have then the same F1−measurable zero sets as P
and inequalities of the form a.s. are then well defined. In calculating c1(Q)
we take the essential supremum over an uncountable set of functions. That
such a random variable exists is a standard exercise in probability theory.
We can also avoid the zero-set problem as follows. For a measure Q ∈ P, let

us write Z2 = dQ
dP and Z1 = EP[Z2 | F1] = dQ

dP
∣∣
F1

= d(Q|F1)
d(P|F1) . Then we can

define

c1(Q) = ess.inf{η : Ω→R+ ∪ {+∞} | η is F1 measurable

and for all ξ ∈ A1 : E[−ξZ2 | F1] ≤ ηZ1}.

That this formula defines c1(Q) follows from Bayes’ rule. It has the advantage
that we only use conditional expectations with respect to P. On the set
{Z1 = 0} it returns the value 0 for c1(Q) which is not in contradiction with
the previous definition since this set has Q−measure 0. We will not always
use this extension for c1(Q). In some case it can lead to wrong expressions.
So for the moment we only see this extension as another way of defining
c1(Q).

In the following chapters we will frequently use the following properties
of the function c1. Since each of them requires some technical changes when
compared to the one-period case, we prefer to separate them in different
propositions. We start with the continuity. We have the following continuity
property for the function c1.

Proposition 48 Let
∑
n ‖Qn−Q‖1 <∞. With the same notation as above

we then have Zn2 → Z2 and Zn1 → Z1, both convergences a.s. . We also have
c1(Q) ≤ lim inf c1(Qn).

Proof. We remark that the statement about the a.s. convergence holds.
We have for every ξ ∈ L∞, limn E[−ξZn2 | F1] = E[−ξZ2 | F1], a.s. . Now
take ξ ∈ A. For each n we have that E[−ξZn2 | F1] ≤ c1(Qn)Zn1 . By tak-
ing limits gives E[−ξZ2 | F1] ≤ lim infn (c1(Qn)Zn1 ). The latter is equal to
(lim infn c1(Qn))Z1 on the set {Z1 > 0} whereas the former is equal to 0 on
the set {Z1 = 0}. So we get E[−ξZ2 | F1] ≤ lim inf c1(Qn)Z1 a.s. . This
shows that c1(Q) ≤ lim inf c1(Qn). 2

Remark 79 In case the convergence of Qn is slower than we required in
the proposition, the result maybe wrong. We can give an example where
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lim infn c(Qn) = 0 but c1(Q) = +∞. This has to do with the way one
calculates lim inf. This is defined pointwise and that is the reason. In case we
would change the definition into something like “lim inf −P”, the proposition
would hold for converging sequences of measures. The basic fact is that even
when fn is a uniformly integrable sequence tending to f a.s. , we cannot
necessarily conclude that E[fn | F1] → E[f | F1] a.s. . The existence of
such sequences is a well known exercise in advanced probability courses. To
do this operation of interchanging conditional expectations and convergence
a.s. , we need a dominated convergence. We do not want to pursue this
discussion.

Definition 27 or Notation The set of probability measures that coincide
with P on the sigma-algebra F1 is denoted by P1.

The set P1 has a nice stability property that we can use to paste together
several measures. We will use the construction each time we need to show
that some set has a lattice property. We will use the device without men-
tioning it. Let An be a partition of Ω into F1 measurable sets. Let Qn be
a sequence in P1, then Q[B] =

∑
nQn[B ∩ An] defines a measure in P1.

The convexity property of the function c1 is proved as in the one-period case
except that we need to take some precautions. So we only use the function
c1 on the set P1. On this set we can make convex combinations in a wider
sense. Indeed if Q1,Q2 ∈ P1 and if 0 ≤ λ ≤ 1 is an F1−measurable function,
we can define the measure λ ·Q1 + (1− λ) ·Q2 as the measure with density
λZ1

2 + (1− λ)Z2
2 . Since E[Zi2 | F1] = 1, the outcome is indeed an element of

P1.

Proposition 49 The function c1 : P1 → L0(Ω,F1,P; [0,+∞]) is convex in
the sense that for F1−measurable functions λ with 0 ≤ λ ≤ 1, the convexity
inequality holds (we put (+∞).0 = 0):

c1
(
λ ·Q1 + (1− λ) ·Q2

)
≤ λc1(Q1) + (1− λ)c1(Q2).

Proof. Let ξ ∈ A1. We have

E[−ξ(λZ1
2 + (1− λ)Z2

2 ) | F1] = λE[−ξZ1
2 | F1] + (1− λ)E[−ξZ2

2 | F1]

≤ λc1(Q1) + (1− λ)c1(Q2).

2
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Remark 80 It is precisely the equality

E[ξZ2 | F1] = EQ[ξ | F1]

that forces us to use the set P1. The conditional expectation operator EQ[· |
F1] is only affine with respect to Q on the set P1 and not on the set P

Proposition 50 Let Q be equivalent to P on F1, let Z2 = dQ
dP and Z1 =

EP[Z2 | F1] = dQ
dP
∣∣
F1

= d(Q|F1)
d(P|F1) . Let Q′ be the measure defined as dQ′ =

Z2

Z1
dP. The measure Q′ coincides with P on the sigma algebra F1, in our

notation Q′ ∈ P1 and c1(Q′) = c1(Q).

Proof. This obvious but useful statement follows immediately from Bayes’s
rule: EQ[ξ | F1] = EQ′ [ξ | F1]. 2

The proposition has an extension to arbitrary elements Q ∈ P.

Proposition 51 Let Q ∈ P and define dQ′ =
(
Z2

Z1
1{Z1>0} + 1{Z1=0}

)
dP.

Then Q′ ∈ P1 and we have

1. for all ξ ∈ L∞ : EQ[ξ | F1]1{Z1>0} = EQ′ [ξ | F1]1{Z1>0}, more precisely

EQ′ [ξ | F1] = EQ[ξ | F1]1{Z1>0} + EP[ξ | F1]1{Z1=0},

2. c1(Q′)1{Z1>0} = c1(Q)1{Z1>0} more precisely

c1(Q′) = c1(Q)1{Z1>0} + c1(P)1{Z1=0}.

Proof. Again an application of Bayes’s rule. 2

Proposition 52 The set {EQ[−ξ | F1] | u1(ξ) ≥ 0} is a lattice. This means
that if η1, η2 ∈ {EQ[−ξ | F1] | u1(ξ) ≥ 0} then max(η1, η2) ∈ {EQ[−ξ | F1] |
u1(ξ) ≥ 0}. As a consequence there is an increeasing sequence ηn ∈ {EQ[−ξ |
F1] | u1(ξ) ≥ 0} such that ηn ↑ c1(Q), Q−a.s. .

Proof. If ηi = EQ[−ξi | F1] with ξi ∈ A1, let A = {η1 > η2}. The set A ∈
F1 and hence ξ = 1Aξ1 + 1Acξ2 ∈ A1. Clearly EQ[−ξ | F1] = max(η1, η2).
Now take a function φ : R →] − 1, 1[ that is bijective and increasing. For
instance we could take φ = 2

π arctan. Then the set B = {φ(η) | η = EQ[−ξ |
F1]; ξ ∈ A1} is still a lattice. Let α = supf∈B EQ[f ]. Let fn be a sequence
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in B such that EQ[fn] → α. By the lattice property we may suppose that
the sequence fn is nondecreasing. Its limit f exists Q−a.s. and satisfies
EQ[f ] = α. It is easy to see that for all g ∈ B we must have g ≤ f, Q−a.s. .
We can now take ηn = φ−1(fn) and c1(Q) = φ−1(f) where φ−1(1) = +∞.
2

Proposition 53 sup{EQ[−ξ] | ξ ∈ A1} = EQ[c1(Q)].

Proof. This follows immediately from the preceding result. Take ηn as in
the previous proposition. We have EQ[ηn] ↑ EQ[c1(Q)]. 2

Remark 81 We repeat that we did not claim any relation with c0(Q) =
sup{EQ[−ξ] | ξ ∈ A0}, where A0 = {ξ | u0(ξ) ≥ 0}. This will be done in the
discussion on time consistency.

Theorem 58 For an element ξ ∈ L∞(F2) the following are equivalent

1. ξ ∈ A1

2. for every Q ∈ P: EQ[ξ] + EQ[c1(Q)] ≥ 0.

3. for every Q ∈ P: EQ[ξ | F1] + c1(Q) ≥ 0, Q a.s. .

4. for every Q ∈ P1: EQ[ξ | F1] + c1(Q) ≥ 0, P a.s. .

Proof The first two items are equivalent by the theory of the one period
case. Item 3 clearly implies item 2. We now show that item 1 (or 2) imply
item 3. Take Q ∈ P and take any η ∈ L∞(F1) with EP[η] = 1. The measure
Q”with density

dQ”

dP
= η

(
Z2

Z1
1{Z1>0} + 1Z1=0}

)
is a new probability and for every ξ ∈ L∞(F2) we have

Q a.s. : EQ[ξ | F1] = EQ”[ξ | F1] and c1(Q”) = c1(Q).

If we take η arbitrary but supported on the set {Z1 > 0} and observe that

EQ”[(EQ”[ξ | F1] + c1(Q”))] = EP[η (EQ[ξ | F1] + c1(Q))] ≥ 0,

we get that Q a.s. EQ[ξ | F1] + c1(Q) ≥ 0. Clearly item 3 implies item 4
and we can prove that item 4 implies 3. In case EQ[ξ | F1] + c1(Q) is not
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everywhere nonnegative we get the existence of a set A ⊂ {Z1 > 0} such
that on A: EQ[ξ | F1] + c1(Q) < 0. We now replace Q by the measure Q′
(as in Proposition 51) and we get the existence of a measure Q′ ∈ P1 with
EQ′ [ξ | F1] + c1(Q′) < 0 on A. 2

Theorem 59 The following parametrised duality equality is valid:

u1(ξ) = ess.inf {EQ[ξ | F1] + c1(Q) | Q ∈ P1} .

In fact we have the slightly stronger statement: for every strictly positive F1

measurable function ε ≤ 1, there is Q ∈ P1 such that

EQ[ξ | F1] + c1(Q) ≤ u1(ξ) + ε Q a.s. .

Proof The proof uses an exhaustion argument as well as the lattice prop-
erties. To prove the theorem we may suppose that u1(ξ) = 0, otherwise we
replace it by ξ−u1(ξ). Take ε ≤ 1 a strictly positive F1 measurable function.
We will show that there is Q ∈ P1 such that EQ[ξ | F1] + c1(Q) ≤ ε a.s. .
This will end the proof. We start with the following lemma.

Lemma 21 Let η ∈ L∞ be such that u1(η) < 0 a.s. . Then for every B ∈ F1

with P[B] > 0, there is a measure Q ∈ P1 and a set A ∈ F1, A ⊂ B, P[A] > 0
such that on the set A: EQ[η] + c1(Q) < 0.

Proof of the lemma This is straightforward since η1B is not in A1 and
hence item 4 of the previous theorem gives the desired measure and a set A
with EQ[η1B | F1] + c1(Q) < 0 on A. Of course we must have A ⊂ B since
EQ[η1B | F1] + c1(Q) ≥ 0 on Bc 2

We now look at the class

C = {C ∈ F1 | there is Q ∈ P1 with EQ[ξ | F1] + c1(Q) < ε on C} .

This class is stable for countable unions and hence has a maximal element,
say C0. If P[C0] < 1, then we can apply the lemma to ξ−ε and the set Cc0 to
get a set A disjoint of C0 and belonging to the class C. This is a contradiction
to the maximality of C0. 2

Corollary 16 For every ε ≤ 1, a strictly positive F1 measurable function,
we have the existence of Q ∈ P1 with c1(Q) ≤ ε, a.s. .
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Proof Just repeat the proof of the theorem for ξ = 0. 2

Remark 82 The previous theorem can also be proved in a different way. In
the one period case it is just an application of the Hahn-Banach theorem.
The situation here is different in the sense that we have a sigma-algebra
F1. Instead of using desintegration of measures (which needs topological
properties of the space Ω), we could try to use the Hahn-Banach theorem
in a parametrised way. This idea was developed by Filipovic, Kupper and
Vogelpoth, see [65] for details and more information on this technique.

Exactly as in the one period case we can give conditions under which
we can restrict calculations to equivalent measures. We recall that if ξ ∈
L∞+ (F2), then the set {EQ[ξ | F1] > 0} is the same for all equivalent measures
Q and is the smallest set in F1 that contains {ξ > 0}. The appropriate
definition of relevance is

Definition 28 The function u1 is called relevant if ξ ∈ L∞+ (F2) implies that
u1(−ξ) < 0 on the set {E[ξ | F1] > 0}.

Exercise 27 Suppose u1 is relevant . Show that for ξ ∈ L∞+ (F2): {u1(−ξ) <
0} = {E[ξ | F1] > 0}.

Exercise 28 Show that the following two statements are equivalent

1. u1 is relevant.

2. For every ε > 0, A ∈ F2, u1(−ε1A) < 0 on the set {E[1A | F1] > 0}.

Proposition 54 Suppose that u1 is relevant. Then for every F1 measurable
function, 1 ≥ ε > 0, there is an equivalent measure Q ∈ P1 such that
c1(Q) ≤ ε.

Proof The proof uses exhaustion. Take P[A] > 0, then for ε > 0 we
have u1(−ε1A) < 0 on {E[1A | F1] > 0}. Hence there is Q ∈ P1 with
εEQ[−1A | F1] + c1(Q) ≤ u1(−ε1A) + ε ≤ ε. This shows that c1(Q) ≤
ε+ εEQ[1A | F1] ≤ 2ε and EQ[ε1A] ≥ EP[−u1(−ε1A)] > 0, hence Q[A] > 0.
Using exhaustion we get a measure Q ∈ P1 such that Q ∼ P and c1(Q) ≤ ε.

Proposition 55 Suppose that u1 is relevant. If Q ∈ P1, there is a sequence
Qn ∈ Pe

1 such that c1(Q) = lim c1(Qn).
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Proof. Take Q0 ∈ Pe
1 such that c1(Q0) < ∞ a.s. . By the Propo-

sition 54 above, this is possible. Define for n ≥ 1 the measure Qn =
1
n2Q0 + n2−1

n2 Q. Clearly Qn ∈ Pe
1 and

∑
n ‖Qn − Q‖ < +∞. We there-

fore have that c1(Q) ≤ lim inf c1(Qn). But the convexity relation implies

c1(Qn) ≤ 1
n2 c1(Q0) + n2−1

n2 c1(Q). This implies that c1(Q) ≥ lim sup c1(Qn).
From here we get the equality c1(Q) = lim c1(Qn). 2

Theorem 60 Suppose that u1 is relevant, then for each element ξ in L∞

we have
u1(ξ) = ess.inf{EQ[ξ | F1] + c1(Q) | Q ∈ Pe}

= ess.inf{EQ[ξ | F1] + c1(Q) | Q ∈ Pe
1}

Proof. The proof follows from the duality relation and the previous propo-
sition. The reader can fill in the details if she wants. 2

11.2 Time Consistency

We use the same notation as in the previous section. A two period model
with filtration (F0,F1,F2) and concave utility functions u0, u1. The function
u2 is simply the identity. Their penalty functions are denoted by c0, c1

Definition 29 We call (u0, u1) time consistent (or when confusing can arise
time consistent with respect to (F0,F1,F2)) if for all pairs ξ, η, u1(ξ) ≤ u1(η)
a.s. implies u0(ξ) ≤ u0(η).

Remark 83 This definition, in a little bit different context, was introduced
by Koopmans, [89], [90], [91].

We need the following notation

A0 = {ξ | u0(ξ) ≥ 0}
A1 = {ξ | u1(ξ) ≥ 0}
A0,1 = {ξ | ξ ∈ L∞(F1);u0(ξ) ≥ 0} = L∞(F1) ∩ A0

c0,1(Q) = sup{EQ[−ξ] | ξ ∈ A0,1}.

We can now give an equivalence theorem for time consistency.

Theorem 61 With the notation above, are equivalent
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1. (u0, u1) is time consistent

2. for all ξ ∈ L∞(F2) : u0(u1(ξ)) = u0(ξ) (recursivity)

3. A0 = A0,1 +A1 (decomposition property)

4. for all Q: c0(Q) = c0,1(Q) + EQ[c1(Q)] (cocycle property).

If (u0, u1) is time consistent and u0 is relevant then u1 is also relevant and
we have A1 = {ξ | for all A ∈ F1 : ξ1A ∈ A0}.

Proof. 1 ⇒ 2. Let ξ ∈ L∞(F2). Since u1(ξ) ≤ u1(u1(ξ)) and u1(ξ) ≥
u1(u1(ξ)), the definition of time consistency gives u0(u1(ξ)) = u0(ξ). 2⇒ 1.
Let ξ, η be given and suppose that u1(ξ) ≤ u1(η), then the monotonicity of u0

implies u0(u1(ξ)) ≤ u0(u1(η)) and recursivity gives u0(ξ) ≤ u0(η). 1, 2⇒ 3.
Take ξ ∈ A0 then we have u1(ξ) ∈ A0,1. But ξ = ξ−u1(ξ)+u1(ξ) and trivially
ξ − u1(ξ) ∈ A1 so we get ξ ∈ A1 + A0,1. Let now ξ = η + ζ with η ∈ A1

and ζ ∈ A0,1. We will show that ξ ∈ A0. We have u1(ξ) = u1(η) + ζ ≥ ζ
and hence u1(ξ) ∈ A0,1. From here we see that u0(ξ) = u0(u1(ξ)) ≥ 0 and
hence ξ ∈ A0. This proves that A0 = A0,1 + A1. 3 ⇒ 1, 2. Let us suppose
that u0(ξ) = 0. We can write ξ = η + ζ where η ∈ A1 and ζ ∈ A0,1.
We may suppose that u1(η) = 0 since we can replace the decomposition by
ξ = η − u1(η) + (ζ + u1(η)). We then get u1(ξ) = ζ and we have to show
that u0(ζ) = 0. If this is not true then we have u0(ζ) > 0 (u0(ζ) ≥ 0 since
ζ ∈ A0,1) and ξ − u0(ζ) = η + ζ − u0(ζ) ∈ A1 + A0,1 ⊂ A0. This gives
u0(ξ − u0(ζ)) ≥ 0, of course a contradiction to u0(ξ) = 0. 3 ⇒ 4. Because
A0 = A1 +A0,1 we have for all Q

sup
ξ∈A0

EQ[−ξ] = sup
η∈A1

EQ[−η] + sup
ζ∈A0,1

EQ[−ζ]

= EQ[c1(Q)] + c0,1(Q).

4⇒ 2. For measures Q ∈ Pe, Qa ∈ P1, let us introduce two other measures,
defined through the density process Z1, Z2 of Q. The measure Q1 has density
Z1, it coincides with Q for elements that are F1−measurable. The second
measure, Q2 has density Z2

Z1
1{Z1>0} + dQa

dP 1{Z1=0} and on {Z1 > 0} it yields
the same conditional expectation (with respect to F1) as the measure Q. We
observe that for every Qa ∈ P1 we have EQ[ξ] = EQ1

[EQ2
[ξ | F1]]. If Q runs

through the set Pe and Qa runs through the set P1, then Q2 describes the
set of all elements in P1. We know that c1(Q)1{Z1>0} = c1(Q2)1{Z1>0}.
Conversely if Q1 is a measure with density Z1 > 0 that is measurable with
respect to F1, if Q2 is a measure in P1 with density L2 ≥ 0, then the
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measure defined with the density Z1L2 is a measure in P. This multiplicative
decomposition of measures allows to write the following

u0(ξ) = inf
Q�P

(EQ[ξ) + c0(Q))

= inf
Q�P,Qa∈P1

(EQ[ξ] + c0,1(Q1) + EQ1 [c1(Q2)])

= inf
Q�P,Qa∈P1

(EQ1
[EQ2

[ξ | F1]] + EQ1
[c1(Q2)] + c0,1(Q1))

= inf
Q�P

(EQ1 [EQ2 [ξ | F1] + c1(Q2)] + c0,1(Q1))

and because the set {EQ2 [ξ | F1] + c1(Q2) | Q2 ∈ P1} is a lattice

= inf
Q,Qa

(
EQ1

[
inf

Q2∈P1

(EQ2
[ξ | F1] + c1(Q2))

]
+ c0,1(Q1)

)
= inf

Q1

(EQ1 [u1(ξ)] + c0,1(Q1)) = u0(u1(ξ)).

Suppose now that (u0, u1) is time consistent and that u0 is relevant. We
will show that also u1 is relevant. Take ξ ≥ 0 and suppose that the set
A = {E[ξ | F1] > 0} ∩ {u1(−ξ) = 0} has positive probability. We may
replace ξ by ξ1A to get an element ξ such that u1(−ξ) = 0 a.s. . Because u0

is relevant we get
0 > u0(−ξ) = u0(u1(ξ)) = 0,

a contradiction. The last line is proved as follows:

ξ ∈ A1 ⇔ u1(ξ) ≥ 0

⇔ ∀A ∈ F1 : u0(u1(ξ)1A) ≥ 0 because of relevance)

⇔ ∀A ∈ F1 : u0(u1(ξ1A)) ≥ 0

⇔ ∀A ∈ F1 : u0(ξ1A) ≥ 0

⇔ ∀A ∈ F1 : ξ1A ∈ A0.

2

Remark 84 The last line of the theorem is very important. It states that
for a given filtration and if u0 is relevant, there is at most one utility function
u1 such that the system becomes time consistent. So in a time consistent
framework, u0 defines the intermediate utility function. Of course not every
u0 allows for such a time consistent construction! An alternative way to
develop the theory would be to start with A0, then define A1 as above, then
use the decomposition property to define time consistency and afterwards
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define u1. In doing so the theory gets closer to the theory of conditional
expectations and it was precisely this idea that was used when the theory of
g−expectations was introduced, see for instance Peng, [109].

Remark 85 Let us see what happens with a coherent utility function u0

defined by A0 and the scenario set S. For simplicity let us suppose that
u0 is relevant so that Se = S ∩ Pe is dense in S and we can work with
equivalent measures. We identify the measure with the densities Z1, Z2. Let
us define A1 = {ξ | for all A ∈ F1 : ξ1A ∈ A0}. Clearly ξ ∈ A0 if and
only if for all A ∈ F1 and all Q ∈ S: EQ[ξ1A] ≥ 0. This is equivalent to
EP[Z2ξ1A] ≥ 0. This can be rewritten as E[Z2ξ | F1] ≥ 0 for all Q ∈ S.
This in turn is equivalent to EQ[ξ | F1] ≥ 0 for all Q ∈ Se and this means
that E[Z2

Z1
ξ | F1] ≥ 0 for all Q ∈ Se. This leads us to the introduction of

u1(ξ) = ess.infQ∈Se E[Z2

Z1
ξ | F1]. To check whether such a random variable is

in A0 (a necessary condition since u0(ξ) = u0(u1(ξ))) we need to check that
for all Q′ we now have E[Z ′1u1(ξ)] ≥ 0. Because of the lattice property of
{EQ[ξ | F1] | Q ∈ Se}, this means

inf
Z′1

inf
Z1,Z2

E[Z ′1
Z2

Z1
ξ] ≥ 0.

In terms of the scenario set this means Z ′1
Z2

Z1
whenever Q′,Q ∈ Se. This

property was called rectangularity, see [63], Riedel, [114] or m-stability, [41].
So for coherent measures we need the condition that S is m-stable. This
condition is necessary and sufficient. So for TailVar we immediately see that
— in general — the utility function is NOT time consistent since Z ′1, Z1, Z2 ≤
k do not imply that Z ′1

Z2

Z1
≤ k.



Chapter 12

Finite and discete Time

12.1 Time Consistency

The finite and discrete time case is almost the same as the two period case
but because there are several intermediate times, it offers a couple of extra
properties. The revelation of uncertainty is given by a filtration (Ft)0≤t≤T .
Time only takes the values 0, 1, . . . , T . The sigma-algebra F0 is supposed
to be trivial. We suppose that there is monetary concave, relevant utility
function

u0 : L∞(FT )→ R.

Instead of introducing intermediate utility functions ut and then discussing
time consistency, we will right away construct the intermediate acceptance
sets and then use Theorem 61. We therefore define for 0 ≤ s ≤ t ≤ T :

As = {ξ ∈ L∞(FT ) | for all A ∈ Fs : ξ1A ∈ A0}
As,t = {ξ ∈ L∞(Ft) | for all A ∈ Fs : ξ1A ∈ A0}
us(ξ) = ess.inf{η ∈ L∞(Fs) | ξ − η ∈ As}

Definition 30 We say that the system (ut)0≤t≤T is time consistent (or sim-
ply that u0 is time consistent) if for all 0 ≤ s ≤ v ≤ t ≤ T

As,t = As,v +Av,t.

Proposition 56 In order to be time consistent it is necessary and sufficient
that for all 0 ≤ t ≤ T :

A0 = A0,t +At.

Proof. The necessity if obvious. The sufficiency must be checked. We
have that A0 = A0,v + Av and hence we can apply Theorem 61. This
means that we get that for every η ∈ A0 automatically uv(η) ∈ A0 and
η − uv(η) ∈ Av. Suppose now that ξ ∈ As,t ⊂ A0 then ξ − uv(ξ) ∈ Av. But
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then we also have ξ − uv(ξ) ∈ Av,t because ξ is Ft measurable. For every
A ∈ As we also have 1Aξ ∈ A0 and hence 1Auv(ξ) = uv(1Aξ) ∈ A0. This
implies that uv(ξ) ∈ As and because uv(ξ) is Fv measursable we also have
uv(ξ) ∈ As,v. The decomposition ξ = uv(ξ) + (ξ − uv(ξ)) now shows that
As,t ⊂ As,v +Av,t. The converse inequality is proved in a similar way. For
each A ∈ Fs we have 1A (As,v +Av,t) = 1AAs,v +1AAv,t ⊂ A0,v +Av ⊂ A0

and hence As,v + Av,t ⊂ As. Because As,v + Av,t ⊂ L∞(Ft) we then get
As,v +Av,t ⊂ As,t. 2

Example 35 We again use the Example 4.11. We suppose that u is time
consistent and relevant. Let η be minimal with u0(η) = 0. Define u1

0(ξ) =
u0(ξ + η). The acceptance set of u1

0 is −η + A0. The function u1
0 is time

consistent and u1
t (ξ) = ut(ξ + η − ut(η)). There are different ways to see

this. One way is to leave it as an exercise. Another way is to check the
decomposition property. For a stopping time σ we could define A1

σ,T as

−(η − uσ(η)) + Aσ,T , then check the decomposition property A1
0 = −η +

A0 = (−(uσ(η) +A0,σ) + (−(η − uσ(η)) +Aσ,T ). The only thing to verify is
that (−(uσ(η) +A0,σ) = (−η +A0) ∩ L∞(Fσ). But for an Fσ−measurable
element ξ we have u1

0(ξ) = u0(ξ + η) = u0(uσ(ξ + η)) = u0(ξ + uσ(η))
hence ξ ∈ (−η +A0)∩L∞(Fσ) if and only if ξ+ uσ(η) ∈ A0 or equivalently
ξ ∈ (−(uσ(η) +A0,σ). We could also check it via the algebraic properties of
u. This goes as follows (we do not give the arguments to go from one line to
the next, they are left as an exercise)

ξ ∈ A1
σ ⇔ for all A ∈ Fσ : 1Aξ ∈ A1

0

⇔ for all A ∈ Fσ : u0(1Aξ + η) ≥ 0

⇔ for all A ∈ Fσ : uσ(1Aξ + η) ∈ A0

⇔ for all A ∈ Fσ : 1Auσ(ξ + η) + 1Acuσ(η) ∈ A0

⇔ for all A ∈ Fσ : 1A(ξ + η − uσ(η)) + uσ(η) ∈ A0

⇔ for all A ∈ Fσ : 1Auσ(ξ + η − uσ(η)) + η ∈ A0

⇔ for all A ∈ Fσ : 1Auσ(ξ + η − uσ(η)) ∈ A1
0

⇔ uσ(ξ + η − uσ(η)) ≥ 0

⇔ ξ ∈ −(η − uσ(η)) +Aσ.

The above characterisation of time consistent utility functions can be trans-
lated into a condition for the penalty functions c. We introduce for each
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Q ∼ P and for s ≤ t:

cs,t = ess.sup{EQ[−ξ | Fs] | ξ ∈ As,t}
ct = ess.sup{EQ[−ξ | Ft] | ξ ∈ At}.

Using the two period model with times 0 ≤ s ≤ t we see that for ξ ∈ L∞(Ft)

us(ξ) = ess.infQ∼P EQ[ξ | Fs] + cs,t(Q).

It is clear that {EQ[−ξ | Fs] | ξ ∈ As,t} is a lattice and we can therefore
permute expected values and the ess.sup operation. We get:

Proposition 57 Let u0 be relevant, then the following are equivalent.

1. u0 is time consistent

2. for each 0 ≤ s ≤ v ≤ t ≤ T and each Q ∼ P, we have the cocycle
property:

cs,t(Q) = cs,v(Q) + EQ[cv,t(Q) | Fs],

3. for each 0 ≤ t ≤ T we have

c0(Q) = c0,t(Q) + EQ[ct(Q)],

Remark 86 The cocycle property was introduced in Bion-Nadal, see [21]
and independently by H. Föllmer and Irene Penner, see [67]. It is the gener-
alisation to concave utility functions of m-stability or rectangularity, [41], in
the coherent case. Other and earlier characterisations were given by Epstein
and Schneider [63], Riedel, [114], Maccheroni, Marinacci and Rusticini [102],
[103].

Proposition 58 If u0 is relevant and time consistent then for all 0 ≤ t ≤
T − 1: ut(ut+1(ξ)) = ut(ξ)

Proof. This can be done using the cocycle property, exactly in the same
way as in Theorem 61. But we can also give a proof using the sets A.
First let us observe that if η ∈ A0, then using the two period model with
times 0, t, T we get from Theorem 61 that ut(η) ∈ A0,t for all t. Now take
ξ ∈ FT . Since for all A ∈ Ft, 1A(ξ − ut(ξ)) ∈ At ⊂ A0, we can apply the
previous statement with t + 1 and get 1Aut+1(ξ − ut(ξ)) ∈ A0,t+1. This
means that for all A ∈ Ft: 1A (ut+1(ξ)− ut(ξ)) ∈ A0,t+1. In other words
we get ut+1(ξ) − ut(ξ) ∈ At and hence we get ut(ut+1(ξ)) − ut(ξ) ≥ 0,
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proving ut(ut+1(ξ)) ≥ ut(ξ). The other inequality goes as follows. We have
ξ−ut+1(ξ) ∈ At+1 and ut+1(ξ)−ut(ut+1(ξ)) ∈ At,t+1. Since At,t+1+At+1 =
At, we conclude ξ−ut(ut+1(ξ)) ∈ At. But this implies ut(ξ)−ut(ut+1(ξ)) ≥ 0
or ut(ξ) ≥ ut(ut+1(ξ)) 2

We conclude with a consequence of the preceding analysis. In discrete
time this is just an inductive application of Theorem 61. We leave the details
to the reader.

Proposition 59 Suppose that u0 is relevant, then it is time consistent if
and only if

A0 = R+ +A0,1 +A1,2 + . . .+AT−1,T .

We observe that R+ + A0,1 = A0,1, so the first term is only present for
cosmetic reasons. One possible decomposition is given by

ξ = u0(ξ) +

T−1∑
0

(ut+1(ξ)− ut(ξ)).

Remark 87 The idea to have a similar decomposition in continuous time,
replacing sums by integrals and time steps by infinitesimal increments, leads
to Backward Stochastic Differential Equations or BSDE. However the anal-
ogy is not straightforward. Let us for the moment limit the analysis to
the discrete time equivalent of the BSDE. We can rewrite the decompo-
sition in another way. Let us suppose that there is Q ∼ P such that
EQ[ξ] + c0(Q) = u0(ξ). Then for all t we have

EQ[ut+1 | Ft] + ct,t+1(Q) = ut(ξ).

The conditional expectation with respect to Q will now be replaced by a
conditional expectation with respect to P. We introduce Zt the density
process of Q and put Lt+1 = Zt++1

Zt
. We can then rewrite the optimality of

Q as
EP[ut+1(ξ)Lt+1 | Ft] + ct,t+1(Q) = ut(ξ)

or using the covariance operator

covt(η1, η2) = EP[η1η2 | Ft]− EP[η1 | Ft]EP[η2 | Ft]
EP[ut+1(ξ) | Ft] + covt(ut+1(ξ), Lt+1) + ct,t+1(Q) = ut(ξ).

Let us put −η = ut+1(ξ)− EP[ut+1(ξ) | Ft]. For convenience we introduce

Y = {Y | Y > 0;Y ∈ L1(Ft+1);EP[Y | Ft] = 1},
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and for Y ∈ Y, ct,t+1(Y ) simply denotes ct,t+1(Y) for the measure dY =
Y dP. The optimality of Q can be rewritten as

g(η) = ess.sup{covt(η, Y )− ct,t+1(Y ) | Y ∈ Y}
= covt(η, Lt+1)− ct,t+1(Lt+1) = covt(ut+1(ξ), Lt+1)− ct,t+1(Lt+1).

This allows to write:

EP[ut+1(ξ) | Ft]− g(η) = ut(ξ),

or (and this is the discrete time BSDE)

ut+1(ξ)− ut(ξ) = −η + g(η).

Given ut+1(ξ) we can first solve the convex optimisation problem (a calcu-
lation of some kind of Fenchel-Legendre transform)

g(η) = sup{covt(ut+1(ξ), Y )− ct,t+1(Y ) | Y ∈ Y},

then we can write ut(ξ) = EP[ut+1(ξ) | Ft]− g(η) to get by backward recur-
sion the next element ut(ξ).

12.2 Supermartingale property, potentials, sub-
martingales

The analysis in the previous section will now be extended and will bring us
to the introduction of potentials. Of course in finite discrete time this is
rather trivial but later we will profit from the analysis.

Proposition 60 Let u0 be relevant and time consistent. For each Q ∼ P
with c0(Q) <∞, there is an increasing process (αt(Q))0≤t≤T such that

1. α0(Q) = 0 and α(Q) is predictable, i.e. αt(Q) is Ft−1 measurable,

2. ct(Q) defines a nonnegative Q−supermartingale with cT (Q) = 0, a so-
called potential,

3. ct(Q) = EQ[αT (Q)− αt(Q) | Ft],

4. for each ξ, the process (ut(ξ) + αt(Q))t is a Q−submartingale.
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Proof. That cT (Q) = 0 is obvious since AT = L∞+ (FT ) (the reader should
check it because it uses that u0 is relevant). The process c(Q) is a Q−super-
martingale. Indeed, from the cocycle property it follows that all random
variables are integrable and for s ≤ t, A ∈ Fs we have∫

A

cs(Q) dQ =

∫
A

(cs,t(Q) + ct(Q)) dQ ≥
∫
A

ct(Q) dQ.

The existence of the process α is precisely the representation of the potential
c. We define inductively, α0(Q) = 0 and

αt(Q) = αt−1(Q) + EQ[ct−1(Q)− ct(Q) | Ft−1]

= αt−1(Q) + ct−1,t(Q) by the cocycle property.

The process α(Q) is clearly predictable. It satisfies:

αT (Q) =

T∑
1

EQ[ct−1(Q)− ct(Q) | Ft−1]

and

EQ[αT (Q)− αt(Q) | Ft] =

T∑
t+1

EQ[cs−1(Q)− cs(Q) | Ft]

= EQ[ct(Q)− cT (Q) | Ft] = ct(Q).

Let us now show the submartingale property. We have that

EQ[ut+1(ξ) + αt+1(Q) | Ft]
= EQ[ut+1(ξ) | Ft] + αt+1(Q)

= EQ[ut+1(ξ) | Ft] + ct,t+1(Q) + αt+1(Q)− ct,t+1(Q)

≥ ut(ut+1(ξ)) + αt+1(Q)− ct,t+1(Q)

= ut(ξ) + αt(Q).

2

Proposition 61 In case there is Q ∼ P with u0(ξ) = EQ[ξ] + c0(Q) the
process (ut(ξ) + αt(Q))0≤t≤T is a Q−martingale.

Proof. In the preceding proof we see that all the inequalities patch together
in u0(ξ) ≤ EQ[ξ + αT (Q)]. But c0(Q) = EQ[αT (Q)] so that we get u0(ξ) ≤
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EQ[ξ] + c0(Q). But this is an equality by the hypothesis on Q. Hence all the
inequalities in the preceding proof must be equalities, resulting in

EQ[ut+1(ξ) + αt+1(Q) | Ft] = ut(ξ) + αt(Q).

2

Remark 88 The Bishop-Phelps theorem or Ekeland’s variational principle
shows that for a dense set ξ ∈ L∞ there is Q with u0(ξ) = EQ[ξ] + c0(Q).
However there is no guarantee that Q ∼ P. In fact one can show that for the
bid price in an incomplete continuous market, either ξ is marketable or the
minimising element is not equivalent. We do not pursue this theory since
it requires a big portion of stochastic analysis. This is beyond the scope of
these lectures.

12.3 Refinement for the case Q� P.

For measures Q � P we can still define the process ct(Q). However this
is only defined up to sets of Q−measure 0. The same can be said for the
representation ct(Q) = EQ[αT (Q)−αt(Q) | Ft]. Also the submartingale and
martingale properties remain valid. But from the Proposition 61, we cannot
draw any conclusion regarding the behaviour of ut(ξ) under the measure
P. The best we can do is the following. We introduce the density process
Zt = EP[dQdP | Ft] and we put σ = inf{t | Zt = 0}. Strictly before time σ,
i.e. on the set {t < σ}, we have that Q ∼ P. In case u0(ξ) = EQ[ξ] + c0(Q),
the calculation of EQ[ξ + αT (Q) | Ft] allows to find ut(ξ) but only for times
t < σ.
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Chapter 13

Stochastic notation

13.1 General Results and Notation

To discuss dynamic utility functions we will need a set-up where the rev-
elation of uncertainty is part of the model. This requires concepts of the
general theory of stochastic processes. We will work with a filtered proba-

bility space, denoted as
(

Ω,F∞, (Ft)t≥0 ,P
)

. The timeintervalis chosento be

[0,+∞). The reader can check that this is the most general case. By using
suitable imbeddings it covers the case of discrete, finite as well as infinite
time sets. Nevertheless in many cases we will explicitly restrict it to a finite
interval and in at least one chapter we will even use a discrete time set. The
filtration F is supposed to satisfy the usual assumptions, iėṫhe filtration is
right continuous and F0 contains all the null sets of the complete σ−algebra
F∞. For notions from the general theory of stochastic processes, we refer
the reader to [45]. If X is a stochastic process and T is a stopping time,
the process XT is defined through XT

t = XT∧t. It is called the process X
stopped at T . There is also a process that starts at T and it is defined as
TXt = 0 for t ≤ T and TXt = Xt −XT for t ≥ T .

Since stochastic intervals play a special role, let us recall from [45] some of
these notions. If T ≤ S are two stopping times, then the stochastic intervals
are defined as follows

[[T, S]] = {(t, ω) | t ∈ R+ and T (ω) ≤ t ≤ S(ω)} .

The other intervals are defined in a similar way. In case T = S we simply
write [[T, S]] = [[T ]] = {(t, ω) | T (ω) <∞}. If T is a stopping time and if
A ∈ FT , then TA denotes the stopping time defined as TA = T on the set A
and TA = ∞ on the set Ac = Ω \ A. In particular for t ∈ R+ and A ∈ Ft
we have [[tA]] = {t} × A. With the given filtration we will construct the
σ−algebras of predictable and optional sets. The predictable σ−algebra,
denoted by P, is the smallest σ−algebra on R+×Ω that contains sets of the
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form [[0A]] = {0} × A with A ∈ F0, as well as for each stopping time T , the
stochastic interval

[[0, T ]] = {(t, ω) | t ≤ T (ω) and t <∞}.

The optional σ−algebra, denoted by O, is the smallest σ−algebra on R+×Ω
that contains sets of the form {0} × A with A ∈ F0, as well as for each
stopping time T , the stochastic interval

[[0, T [[= {(t, ω) | t < T (ω)}.

We remark that the indicator functions of elements of the generating set of
P are left continuous adapted processes and that the indicator functions of
elements of the generating sets of O are right continuous adapted processes.
It can easily be checked that P ⊂ O. Let us recall that the class of predictable

sets
{[[0A]] | A ∈ F0} ∪ {]]T, S]] | T ≤ S stopping times} ,

forms a semi–algebra that generates S. The Boolean algebra generated by
this class is simply

A =
{

[[0A]]∪ ]]T0, T1]]∪ ]]T1, T2]] . . . ∪ ]]Tn−1, Tn]]

| n ≥ 1;A ∈ F0 and 0 ≤ T0 ≤ T1 ≤ . . . Tn ≤ +∞ are all stopping times
}
.

The importance of this class lies in the following density result from general
measure theory. The proof of the lemma is included in the proof of the
Carathéodory extension theorem.

Lemma 22 Let µ be a nonnegative finite σ−additive measure on P, then
for each ε > 0 and for each set B ∈ P, there is a set A ∈ A such that
µ(A∆B) ≤ ε.

Since the filtration satisfies the usual assumptions, we will suppose that all
the (sub–, super–, semi–) martingales are càdlàg, meaning they are right
continuous and have left limits. When we deal with the construction of the
Snell envelope, we will pay attention to this continuity property and the
reader will notice similar difficulties as in the work of Mertens see [105] and
[45], appendix, see also [58]. Although we treat the case of supermartingales
with respect to a family of measures, there is no essential difference with
the case of a fixed probability measure. As before we will identify, through
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the Radon–Nikodym theorem, finite measures ν on F∞, that are absolutely
continuous with respect to P, with their densities dν

dP , i.e. with functions in
L1. Furthermore we will sometimes identify this measure with the càdlàg
martingale Zt = EP

[
dν
dP | Ft

]
. We hope that these identifications will not

cause too many problems. If Q ∼ P then the martingale Zt = E
[
dQ
dP | Ft

]
has the property inft∈R+ Zt > 0, P a.s. (see [45] page 85). If Q ∼ P, Bayes’

rule implies that EQ[f | FT ] = EP[f Z∞
ZT
| FT ], here T denotes a stopping

time.

If X is a (for us automatically càdlàg ) semi-martingale then the square
bracket of X is defined as

[X,X]t = lim
ε→0

(
X2

0 +

n∑
i=0

(
XTi+1

−XTi

)2)
,

where the sequence of stopping times Ti satisfies 0 = T0 ≤ T1 ≤ . . . Tn = t
and maxi (Ti+1 − Ti) ≤ ε. One can show that this limit exists and that it
does not depend on the way we divide the interval [0, t]. The process [X,X] is
nondecreasing and it is right continuous. The jumps are related to the jumps
of X, ∆[X,X] = (∆(X))

2
. In case X is continuous, the process [X,X] is

also continuous.

IfM is a continuous local martingale, then the process [M,M ] = 〈M,M〉 =
〈M〉 is the unique predictable process such that 〈M〉0 = M2

0 and M2 − 〈M〉
is again a local martingale. In case M0 = 0, the process exp

(
M − 1

2 〈M〉
)

is
also a local martingale, called the stochastic exponential of M . Even if M
is a uniformly integrable martingale Mt = E[M∞ | Ft], the exponential does
not have to be uniformly integrable. Conversely if the stochastic exponential
is uniformly integrable, the martingale M does not have to be uniformly inte-
grable. The stochastic exponential is denoted by E(M) and it is the solution
of the stochastic differential equation or SDE: dXt = Xt dMt with initial
condition X0 = 1. If X is a strictly positive continuous local martingale,
X0 = 1, then we can write it as an exponential, namely X = E(M), where
dMt = 1

Xt
dXt defines the stochastic logarithm, sometimes denoted by L(X).

In case Q ∼ P and the density process Z starts at Z0 = 1, being the case if
F0 is trivial, we can write Z as a stochastic exponential Z = E(M).

In case Q1 and Q2 are two probabilities equivalent to P with continuous
densities Z1, Z2, we can write them as stcochastic exponentials wrt M1,M2.
For a stopping time T we can then define the concatenation at time T . The
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density is defined as
Zt = Z1

t for t ≤ T

Zt = Z1
T

Z2
t

Z2
T

for t ≥ T .

We can write Z = E(M) where M = (M1)T + TM2. In exponential writing
the concatenation is just the sum of a stopped process and a process that
starts at the time of concatenation. The interpretation is that we have two
models Q1,Q2 and that until time T we use the first model whereas after
time T we use the second model. The reader can easily see that Z is a
martingale defining an equivalent measure Q ∼ P. The theory of dynamic
utility functions will make use of this concatenation.

13.2 The Case of a Brownian Motion

In many cases the filtration will come from a d−dimensional Brownian Mo-
tion W . In this case we have the representation property for local martin-
gales, see [122]. For the density (Z) of an equivalent probability measure
Q, this leads to the existence of a d−dimensional predictable process q such
that Z = E(q ·W ). Here we use the standard notation for the stochastic
integral

(q ·W )t =

∫ t

0

qu dWu.

The density process Z is the the solution of the SDE dZt = Ztqt dWt. This is
some liberal use of vector calculus notation since we used the scalar product
between q and dW . The concatenation of two measures defined by the
processes q1, q2 is then given by the new process q = q11[[0,T ]] + q21]]T,∞[[.
The convex combination of two measures Q1,Q2 can also be written as a
stochastic exponential. But this time the outcome is more difficult. Let us

see what happens with Q = Q1+Q2

2 , its density process is given by Zt = Z1+Z2

2
but the process q defined as Z = E(q ·W ), comes from:

Ztqt dWt = dZt =
1

2
(dZ1

t + dZ2
t )

=
1

2

(
Z1
t q

1
t dWt + Z2

t q
2
t dWt

)
= Zt

(
Z1
t q

1
t + Z2

t q
2
t

2Zt

)
dWt.

This gives

qt =
Z1
t q

1
t + Z2

t q
2
t

Z1
t + Z2

t

,
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for later use we note that for every t and every ω ∈ Ω, qt(ω) is a convex
combination of q1

t (ω) and q2
t (ω).

The representation property for measures Q � P is a little bit more
tricky. One can show that there is a predictable process such that the density
process Zt looks like

Zt = E(q ·W )t on the set {t < σ}.

Here σ = inf{t | Zt = 0} is the first time the density becomes 0. The set
{Z∞ = 0} is given by

∫ σ
0
|qt|2 dt = +∞. The process q is not unique since

after time σ, we can continue it with any predictable process.

13.3 Some BMO results

We now present some results on the decomposition of semimartingales. Again
we suppose that the filtration comes from a Brownian Motion. A more
general presentation is possible but is beyond the scope of this book. Let us
introduce the following space

SBMO =


X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X is a continuous semi-martingale, X0 = 0

X = A+M,A0 = 0, is the Doob-Meyer decomposition

A is of finite total variation

M is a continuous BMO−martingale

there is C such that for all t : E
[∫ ∞

t

|dAu| | Ft
]
≤ C <∞


The space S can be given a norm ‖X‖ = C + ‖M‖BMO2

. The space is a
Banach space and using the martingale convergence theorem, one can show
that both A and M converge when t→∞. An equivalent norm is

sup{‖E[ |(θ ·X)∞ − (θ ·X)t| | Ft]‖∞},

where the sup is taken over all t and all predictable θ with |θ| ≤ 1. This is
not trivial but can be proved as follows. For each ε > 0 there is a predictable
process θ, |θ| ≤ 1 such that |θ · A| ≤ ε. This allows to give an estimate for
‖M‖BMO1

norm. Once you know that M is BMO, one can choose θu such
that θ dAu = |dAu|. Then you get the bound for E

[∫∞
t
|dAu| | Ft

]
. From

here the rest is trivial. The mapping

SBMO → BMO;X →M,
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is of course continuous. For applications in utility theory we need an estimate
based on the supremum of the process. But even for deterministic processes
there is a big difference between the quantity ‖X‖ and expressions such
as supt |Xt|. Nevertheless the martingale part can be estimated using the
supremum of the process.

Lemma 23 Let X be a continuous bounded submartingale bounded by a
constant c. Suppose that X has the continuous Doob-Meyer decomposi-
tion X = A + M , then the martingale part M is in BMO, more precisely
‖M‖BMO2

≤ 2c and ‖X‖SBMO ≤ 4c. Consequently A∞ has exponential
moments of some order.

Proof. The process A satisfies E[
∫∞
t
|dAu| | Ft] = E[X∞ −Xt | Ft] ≤ 2c.

This already shows that X ∈ SBMO. However this only yields a bound for
the BMO1 norm and the bound is not the best. We prefer to give a direct
proof. First observe that the process Y = (c−X)2 is given by the differential
equation

dYt = 2(c−Xt)dAt + d〈M,M〉t + 2(c−Xt) dMt.

Since the coefficient c−Xt is nonnegative, the process Y is also a bounded
submartingale and taking conditional expectations gives

E
[∫ ∞

t

d〈M,M〉u | Ft
]
≤ E[Y∞ − Yt | Ft] ≤ E[Y∞ | Ft].

Consequently

E
[∫ ∞

t

d〈M,M〉u | Ft
]
≤ 4c2.

Hence ‖M‖BMO ≤ 2c. Because M is BMO it has – by the John-Nirenberg
inequality, see [?] xxx – exponential moments. Because X is bounded also
A∞ must have exponential moments. 2

Lemma 24 For X ∈ SBMO and X bounded, we have

‖M‖2BMO2
≤ 8‖ sup

t
|Xt|‖2∞ + 8‖ sup

t
|Xt| ‖∞‖X‖

Proof. Let c = ‖ supt |Xt|‖∞. The following inequalities are now straight-
forward. If needed one can use a localisation argument by stopping the
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processes when they reach a level.

E[(M∞ −Mt)
2 | Ft] ≤ 2E[(X∞ −Xt)

2 | Ft] + 2E[(A∞ −At)2 | Ft]

≤ 8c2 + 4E
[∫ ∞

t

(Au −At)dAu | Ft
]

≤ 8c2 + 4E
[∫ ∞

t

(Au −At)dXu | Ft
]

≤ 8c2 + 4E
[∫ ∞

t

(X∞ −Xu)dAu | Ft
]

≤ 8c2 + 8cE
[∫ ∞

t

|dAu| | Ft
]
.

This shows the bound on ‖M‖BMO2
. 2

Corollary 17 If Xn is a sequence in SBMO, supn ‖Xn‖ <∞, if ‖ supt |Xn
t −

Xt| ‖∞ → 0, then X ∈ SBMO and the martingale parts of the Doob-Meyer
decompositions satisfy Mn −M → 0 in BMO.

Proof. Only the statement that X ∈ SBMO needs to be shown. By the
inequality we get that limn,m→∞(Mn −Mm) → 0 in BMO. So the Cauchy
sequence converges to M ∈ BMO. The finite variation part then also con-
verges to a process A in the sense that supt |Ant − At| tends to zero at least
in probability. That E

[∫∞
t
|dAu| | Ft

]
≤ supn ‖Xn‖ is straightforward. So

X ∈ SBMO, ‖X‖ ≤ supn ‖Xn‖. 2

Remark 89 Of course we did not make a statement on norm convergene in
the space SBMO. As already observed above, even for deterministic bounded
variation processes, the convergence in sup-norm is not the same as the
convergence in variation norm.

Corollary 18 If Xn is a uniformly bounded sequence of submartingales
|Xn

t | ≤ c, if ‖ supt |Xt − Xn
t |‖∞ tends to 0, then the Doob-Meyer decom-

positions Xn = An +Mn, X = A+M satisfy Mn tends to M in BMO.

Proof. The previous corollary shows that ‖Xn‖ ≤ C (where C only de-
pends on c). The convergence of the martingale parts now follows. 2
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Chapter 14

Continuous time dynamic utility

functions

14.1 The model

We will develop the theory for a finite time horizon, [0, T ]. Some of the
properties remain valid for the time interval [0,∞) as well (the reader can
find out where the difficulties are when working with an open end interval).
The probability space is (Ω,FT ,P) is supposed to be atomless. The revelation
of uncertainty is given by the filtration F = (Ft)0≤t≤T . We make the usual
assumptions:

1. A ⊂ B ∈ FT ,P[B] = 0 implies A ∈ F0.

2. The filtration is right continuous: Ft = ∩s>tFs whenever t < T .

3. The sigma algebra F0 is up to sets of measure zero, trivial. This is not
part of the usual “usual assumptions” but we will nevertheless include
it.

We will assume that there is a relevant monetary concave utility function
defined on L∞(FT ). This function u0 is supposed to have the Fatou property.
The acceptance sets are introduced in the same way as in the discrete case.
So A0 = {ξ | u0(ξ) ≥ 0} and

for a stopping time σ : Aσ = {ξ ∈ L∞(FT ) | for all A ∈ Fσ : 1Aξ ∈ A0}
if σ ≤ τ are two stopping times: Aσ,τ = Aσ ∩ L∞(Fτ )

if Q ∼ P: cσ,τ (Q) = ess.sup{EQ[−ξ | Fσ] | ξ ∈ Aσ,τ}
cσ,T (Q) is simply denoted by cσ(Q)

uσ(ξ) = ess.sup{η ∈ L∞(Fσ) | ξ − η ∈ Aσ}

From the theory in discrete time we copy the following.
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Definition 31 The utility function is called time consistent if for all pairs
of stopping times σ ≤ τ and all pairs of bounded random variables ξ, η,
uτ (ξ) ≤ uτ (η) implies uσ(ξ) ≤ uσ(η).

As in the discrete time case, this time applied to the (stopping) times 0 ≤
σ ≤ τ ≤ ν ≤ T we get that time consistency is equivalent to some algebraic
properties for the sets A.

Proposition 62 For a relevant concave monetary utility function u0 the
following are equivalent

1. u0 is time consistent

2. for stopping times σ ≤ τ ≤ ν: Aσ,ν = Aσ,τ +Aτ,ν

3. for all Q ∼ P: cσ,ν(Q) = cσ,τ (Q) + EQ[cτ,ν(Q) | Fσ]

4. for stopping times σ: A0 = A0,σ +Aσ

5. for stopping times σ and Q ∼ P: c0(Q) = c0,σ(Q) + EQ[cσ(Q)]

6. for stopping times σ ≤ τ : uσ(uτ (ξ)) = uσ(ξ).

Let σ ≤ τ be two stopping times. If ξ ∈ L∞(Fτ ) then

uσ(ξ) = ess.infQ∼P{EQ[ξ + cσ,τ (Q) | Fσ]}

For the moment, the random variables uσ(ξ) and cσ(Q) are not glued to-
gether to form a nicely behaved stochastic process. They are just a family
of random variables or better of classes modulo equality a.s. . Of course we
have some continuity properties such as ‖uσ(ξ) − uσ(η)‖∞ ≤ ‖ξ − η‖∞ but
these are not with respect to time.

14.2 Regularity for the processes u and c

We start this section by showing that there is a càdlàg version for the “sys-
tem” cσ(Q). The next step is the representation for the potential ct(Q).
Once this is accomplished we can prove that also the system uσ(ξ) has a
càdlàg version. The presentation is different from the classical results ob-
tained by [?, ?, ?] xxxx. The only standing hypothesis we need is that u0 is
relevant. We will frequently use the following construction, called concatena-
tion at a stopping time. Let Q1,Q2 be two probability measures equivalent
to P. Let Z1, Z2 be their density processes (we take the càdlàg versions).
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For a stopping time σ we define a new density as follows: for t < σ we take

Zt = Z1
t , for t ≥ σ we take Zt = Z1

σ
Z2
t

Z2
σ

. As already observed before, it is

easily seen that Z is the density process of a probability measure equivalent
to P. This measure will be denoted by Q1 ?σ Q2. Obviously the measures
Q1 and Q1 ?σ Q2 coincide on the sigma algebra Fσ.

Lemma 25 Let Q ∼ P with c0(Q) < ∞. Let τn be a sequence of stopping
times such that P[τn < T ]→ 0. Then cτn(Q)→ 0 in L1(Q).

Proof. From proposition xxx in the two period model 0, τn, T we deduce
that for each n we can find a measure Qn ∼ P such that cτn(Qn) ≤ n−1

a.s. . We now define a new measure, Yn = Q ?τn Qn which is the concate-
nation of Q and Qn at time τn. Because P[τn < T ] → 0, we have that
Yn → Q in L1. By the cocycle property we have that c0(Yn) = c0,τn(Q) +
EQ[cτn(Qn)] ≤ c0,τn(Q) + n−1. But we also have that Yn → Q and hence
lim inf c0(Yn) ≥ c0(Q). So we already deduce that c0(Q) ≤ lim inf c0,τn(Q).
The cocycle property also implies c0(Q) = c0,τn(Q) + EQ[cτn(Q)]. These
inequalities imply that lim inf EQ[cτn(Q)] = 0. But this is valid for every
subsequence, so we get limEQ[cτn(Q)] = 0. 2

Corollary 19 Under the hypothesis Q ∼ P with c0(Q) < ∞, we have: for
all ε > 0 there is δ > 0 such that for a stopping time σ, P[σ < T ] ≤ δ implies
EQ[cσ(Q)] ≤ ε.

Proposition 63 Suppose c0(Q) <∞. The family

{cσ(Q) | σ is a stopping time 0 ≤ σ ≤ T}

is Q−uniformly integrable. It satisfies the supermartingale inequality: for
stopping times σ ≤ τ :

cσ(Q) ≥ EQ[cτ (Q) | Fσ].

Proof. The supermartingale property follows from the discrete time anal-
ysis. The uniform integrability has to be shown. We will make a uniform
estimate (i.e. not depending on σ) of EQ

[
cσ1{cσ>n}

]
. We have nQ[cσ(Q) >

n] ≤ EQ[cσ(Q)] ≤ c0(Q) and hence Q[cσ(Q) > n] ≤ c0(Q)/n. Given ε > 0
we can find by the preceding corrolary, a δ > 0 such that P[τ < T ] ≤ δ
implies EQ[cτ (Q)] ≤ ε. Since Q ∼ P, we can find n big enough so that
Q[A] ≤ c0(Q)/n implies P[A] ≤ δ. Put now τ = σ if cσ(Q) > n and τ = T if
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cσ(Q) ≤ n. τ is a stopping time since cσ(Q) is Fσ−measurable. With this
notation: P[τ < T ] ≤ δ and hence EQ

[
cσ1{cσ>n}

]
= EQ[cτ (Q)] ≤ ε. 2

Lemma 26 Let Q ∼ P and c0(Q) < ∞. Let σ ≤ τ ≤ ν be three stopping
times. Let ε > 0 and let ξ ∈ Aσ,ν be chosen so that cσ,ν(Q) ≤ EQ[−ξ | Fσ]+ε,
which is the same as cσ,ν(Q)+EQ[ξ | Fσ] ≤ ε. Then also cσ,τ (Q)+EQ[uτ (ξ) |
Fσ] ≤ ε.

Proof We decompose ξ as follows ξ = uτ (ξ)+(ξ−uτ (ξ)). The second term
is in Aτ,ν and the first is in Aσ,τ . This allows to write

ε ≥ cσ,ν(Q) + EQ[ξ | Fσ]

= (cσ,τ (Q) + EQ[uτ (ξ) | Fσ])

+ EQ[cτ,ν(Q) + (ξ − uτ (ξ)) | Fσ]

= (cσ,τ (Q) + EQ[uτ (ξ) | Fσ])

+ EQ[EQ[cτ,ν(Q) + (ξ − uτ (ξ)) | Fτ ] | Fσ].

The inner conditional expectation in the second term is nonnegative, meaning
that the second term is nonnegative. But also the first term is nonnegative.
So both terms must be smaller than ε. 2

Proposition 64 Let Q ∼ P and c0(Q) <∞. If σk is a sequence of stopping
times decreasing to σ, then cσ,σk(Q) ↓ 0.

Proof. That the sequence cσ,σk(Q) is decreasing follows from the definition
and Aσ,σk ⊂ Aσ,σk+1

for all k. Let us now take ε > 0 and let ξ ∈ Aσ,σ1 be
chosen to satisfy cσ,σ1(Q) + EQ[ξ | Fσ] ≤ ε. Then by the preceding lemma,
we have for all k: cσ,σk(Q) + EQ[uσk(ξ) | Fσ] ≤ ε. Let us now take convex
combinations ηk ∈ conv{uσl(ξ) | l ≥ k} that converge almost surely to an
element η. This is possible since the sequence uσk(ξ) is uniformly bounded
by ‖ξ‖∞. The same convex combinations will be taken on the decreasing
sequence cσ,σk(Q). Since ηk ∈ Aσ,σk we have that uσ(ηk) ≥ 0 and hence also
uσ(η) ≥ 0. But the limit η belongs to L∞(Fσ) and hence uσ(η) = η showing
that η ≥ 0. This results in limk cσ,σk(Q)+η ≤ ε and since η ≥ 0 we must have
limk cσ,σk(Q) ≤ ε. Because ε > 0 was arbitrary, we have limk cσ,σk(Q) = 0. 2

Proposition 65 Let Q ∼ P and c0(Q) <∞. If σk is a sequence of stopping
times decreasing to σ, then cσk(Q)→ cσ(Q) in L1 and a.s. .
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Proof. The system (cσk(Q),Fσk ; k ≥ 1) forms a uniformly integrable
supermartingale and hence cσk(Q) converges a.s. and in L1. The limit
η = lim cσk(Q) is Fσ−measurable and by the supermartingale property we
also have that η ≤ cσ(Q). But by the cocycle property cσ(Q) = EQ[cσk(Q) |
Fσ] + cσ,σk(Q) and as shown above the latter term tends to 0, so we have
a.s. : limEQ[cσk(Q) | Fσ] = cσ(Q). So we have EQ[η] = limEQ[EQ[cσk(Q) |
Fσ]] = EQ[cσ(Q)], resulting in η = cσ(Q). 2

Theorem 62 Let Q ∼ P and c0(Q) < ∞. There is a càdlàg process V
such that for all stopping times Vσ = cσ(Q). The process V is a Q−super-
martingale and is a potential of class D. In the future it will be denoted by
c.(Q). There a predictable càdlàg process α(Q) so that ct(Q) = EQ[αT (Q)−
αt(Q) | Ft], if we normalise α(Q) with α0(Q) = 0, the process α(Q) is
uniquely defined.

Proof. The family ct(Q) is a supermartingale with t → EQ[ct(Q)] be-
ing right continuous. By the modification theorem for supermartingales see
[45], there is a càdlàg version, called V . For every t, the process V satisfies
Vt = ct(Q) a.s. . We still have to check the property for stopping times. For
σ having rational values, we deduce from the the previous equalities that
Vσ = cσ(Q). If the stopping σ takes arbitrary values, then we choose a de-
creasing sequence of stopping times (σk)k, only taking rational values with
σk ↓ σ. For each k we have Vσk = cσk(Q) a.s. . Since Vσk → Vσ (a.s. ) by
right-continuity and cσk(Q) → cσ(Q) (in L1), by proposition xxx, we find
that Vσ = cσ(Q) a.s. . By proposition xxx the process V is a potential of
class D. According to Rao’s theorem, see [45], there is a uniquely defined
predictable càdlàg process α(Q) so that Vt = EQ[αT (Q)− αt(Q) | Ft]. 2

We can now start the proof of the modification of u.(Q). The next lem-
mata form the basic ingredient of the proof.

Lemma 27 For two stopping times σ ≤ τ and for measures Q ∼ P with
c0(Q) <∞ the utilities satisfy the submartingale inequality

EQ[uτ (ξ) + ατ (Q) | Fσ] ≥ uσ(ξ) + αt(Q).

Proof. By definition EQ[ξ | Fσ] + cσ,τ ≥ uσ(ξ). But the cocycle property
says that cσ(Q) = cσ,τ + EQ[cτ (Q) | Fσ]. With the representation of the
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process c.(Q) we can transform this into

cσ,τ (Q) = cσ(Q)− EQ[cτ (Q) | Fσ]

= EQ[αT (Q)− ασ(Q) | Fσ]− EQ [EQ[αT (Q)− ατ (Q) | Fτ ] | Fσ]

= EQ[ατ (Q)− ασ(Q) | Fσ].

The above can now be used in the inequality EQ[uτ (ξ) | Fσ] + cσ,τ (Q) ≥
uσ(ξ). This yields

EQ[uτ (ξ) + ατ (Q) | Fσ] ≥ uσ(ξ) + αt(Q).

2

Lemma 28 Let u0 be relevant. Let σn be a decreasing sequence of stopping
times such that σn ↓ σ. For every ξ ∈ L∞(FT ), the utilities satisfy uσn(ξ)→
uσ(ξ), a.s. .

Proof. Fix ε > 0 and take a measure Q ∼ P such that

EQ[uσ1
(ξ) | Fσ] + cσ,σn(Q) ≤ uσ(ξ) + ε.

Concatenating at Q with a measure Q′ such that c0(Q′) < ∞ and Q′ ∼ P
allows to assume that c0(Q) <∞. The system (uσn(ξ) + ασn(Q),Fσn) forms
an inverse Q−submartingale (moreover it is uniformly integrable) and hence
it converges a.s. by the martingale convergence theorem. Since ασn(Q) ↓
ασ(Q) (a.s. ) this implies that also uσn(ξ) → η (a.s. ), where η ∈ L∞(Fσ).
The submartingale property implies that η ≥ uσ(ξ). Taking conditional
expectations with respect to Fσ then gives EQ[uσn(ξ) | Fσ] → η (a.s. ).
Since uσ(uσn(ξ)) = uσ(ξ) we get by lemma xxx and by the choice of Q:

uσ(ξ) ≤ EQ[uσn(ξ) | Fσ] + cσ,σn(Q) ≤ uσ(ξ) + ε.

Taking limits as n→∞ and using cσ,σn(Q), then gives: uσ(ξ) ≤ η ≤ uσ(ξ)+ε
(a.s. ). Since this is true for all ε > 0, we conclude η = uσ(ξ), a.s. . So we
conclude that uσn(ξ) → uσ(ξ) a.s. . Before we continue we emphasize that
the a.s. convergence of the submartingale(s) was taken for Q but that since
Q ∼ P, it is a.s. for the measure P as well. 2

Theorem 63 Let u0 be relevant. For ξ ∈ L∞(FT ), there is a càdlàg process
V such that for every stopping time σ: Vσ = uσ(ξ). In the sequel we will
denote this process by u.(ξ). If c0(Q) <∞, the process (Vt +αt(Q))0≤t≤T is
a Q−submartingale.
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Proof. The proof is now a standard application of the modification the-
orem. Take Q ∼ P with c0(Q) < ∞. The mapping t → EQ[ut(ξ) + αt(Q)]
is right continuous (by lemmaxxx above) and forms a Q−submartingale (by
lemma xxx above). By the modification theorem, see [45], there is a right
continuous version. Because α(Q) is càdlàg , we get a right continuous ver-
sion V , for (ut(ξ))0≤t≤T . As with the process c we only have to check that
the a.s. equality for each t extends to an a.s. equality for each stopping time
σ. This is done in the same way as for the process c.(Q) but we use lemma
xxx above. 2

Remark 90 The existence of a càdlàg modification was shown in [?] for
coherent measures under the hypothesis that there is an equivalent measure
Q ∼ P in the scenario set S. In Bion-Nadal this was extended to the case
of concave utility functions under the assumption that there is Q ∼ P with
c0(Q) = 0. In this presentation, where we first investigate the process c
and then the process u, we do not need this assumption. It is replaced by
the weaker property that u0 is relevant. The existence of a càdlàg modi-
fication for the processes c.(Q) was first shown in Delbaen-Peng-Rosazza-
Gianin, citeDPRxxx but again under the assumption that there is Q ∼ P
with c0(Q) = 0. In fact in that paper the standing assumption that c0(P) = 0
was used. The proof was different from the one above and the existence of a
càdlàg modification for u.(ξ) (i.e. Bion-Nadal’s result) was used. Apparently
we only need that u0 is relevant. The reader familiar with the construction of
Snell’s envelope certainly saw a big analogy. For more details we refer to [45]
for an explanation on Snell’s envelope and the technical problems involved.

14.3 Construction of time consistent utilities

We will work with a Brownian filtration generated by a d−dimensional Brow-
nian Motion denoted by W . For a measure Q ∼ P we write the density
process as a stochastic exponential, E(q ·W ). This uniquely defines the pre-
dictable process q. For each (t, ω) ∈ [0, T ] × Ω we give a convex function,
denoted by ft (remark that – according to bad stochastic practice – we do
not write the ω):

ft : Rd → R+.

We require the following properties

1. infx∈Rd ft(x) = 0
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2. ft is lower semi continuous, i.e. for each k, the set {x ∈ Rd | ft(x) ≤ k}
is convex and closed.

3. for each ε > 0, we require the existence of a “selection” q that is
predictable, that satisfies E(q ·W ) is uniformly integrable and ft(qt) ≤
ε. Moreover we require that the probability measure dQ = E(q ·W )T dP
is equivalent to P or what is the same

∫ T
0
|qt|2 dt <∞ a.s. .

Now we define:

c0(Q) = EQ

[∫ T

0

ft(qt) dt

]
and for s ≤ u ≤ T

cs,u(Q) = EQ

[∫ u

s

ft(qt) dt | Fs
]
.

We will show that this defines a time consistent utility function and in a
later chapter we will show that in a BM framework and under an extra
assumption, every time consistent utility function is of this form. Let us
verify the basic properties of the function c0.

Proposition 66 The function c0 is convex.

Proposition 67 The function c0 satisfies infQ∼P c0(Q) = 0.

Proposition 68 The function c0 is lower semi-continuous.

Proposition 69 The function c0 can be extended in a natural way to the
set of all probabilities Q� P.

The set Aσ can now be characterised as follows:

Aσ =

{
ξ | EQ

[
ξ +

∫ T

σ

ft(qt) dt | Fσ

]
≥ 0 for all Q ∼ P

}
.

14.4 The time independent case

Here we study in greater detail the description of the previous section. We
suppose that the function f only depends on the “control” variable q, i.e.
f : Rd → R+. In this case we can be more precise.

Lemma 29 Suppose qn;n ≥ 1 is a sequence of elements in Rd such that

limn |qn| = +∞ and limn
f(qn)
|qn|2 = 0. Suppose that εn → 0 satisfies
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1. εnf(qn)→ 0

2. tn = εn|qn|2 → +∞

Suppose that ]]σn, τn]] are stochastic intervals of length εn and define the
measures Qn as

dQn

dP
= E

((
qn1]]σn,τn]]

)
·W
)
T
.

The sequence Qn satisfies

1. dQn
dP → 0 in probability.

2. c0(Qn) = EQn
[∫ T

0
f(qnu1σn<u≤τn) du

]
→ 0.

Proof. Because
∫ T

0
qnu1σn<u≤τn du is deterministic, the stochastic exponen-

tials define probability measures Qn. Since Brownian Motion starts afresh
from σn, the densities dQn

dP have the same law as exp(
√
tnN − tn/2) (where

N is a standard normal variable) and hence tends to 0 in probability. Since∫ T
0
f(qnu1σn<u≤τn) du = εnf(qn) is deterministic and tends to 0, we have

c0(Qn)→ 0. The existence of a sequence εn > 0 with the properties needed,
is a trivial exercise. 2

Proposition 70 The following are equivalent

1. lim inf |q|→∞
f(q)
|q|2 > 0

2. for each k <∞, the set {Q | c0(Q) ≤ k} is weakly compact.

Proof. In case lim inf |q|→∞
f(q)
|q|2 = 0, we can find a sequence qn as in the

previous lemma. The measures Qn defined there cannot form a uniformly

integrable sequence, but c0(Qn)→ 0. In case lim inf |q|→∞
f(q)
|q|2 > 0, there is

a constant c > 0 such that for all q ∈ Rd: f(q) ≥ −c + c|q|2 and hence we
get

EQ

[∫ T

0

f(qu) du

]
≥ −cT + cEQ

[∫ T

0

|qu|2 du

]
.

An easy application of the Girsanov–Maruyama formula shows:

EQ

[∫ T

0

1

2
|qu|2 du

]
= E

[
dQ
dP

log

(
dQ
dP

)]
,
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hence for given k <∞:

sup
c0(Q)≤k

E
[
dQ
dP

log

(
dQ
dP

)]
<∞.

A simple application of the criterion of de la Vallée-Poussin shows that the
set {Q | c0(Q) ≤ k} is then weakly compact (remember it is already closed
and convex). 2

14.5 The coherent case

From the example in section xxx, we can find the structure of the co-
herent time consistent utility functions. Of course this is a little prema-
ture because we did not yet prove that the example exhausts all time con-
sistent utility functions. This will be done in the next chapter. So let

c0(Q) = EQ[
∫ T

0
ft(qt) dt] with ft(0) = 0 to make sure that c0(P) = 0. ft

is convex and takes values in R+. To be coherent, the penalty function c0
only takes values 0,+∞ and hence an application of the measurable selec-
tion theorem shows that also ft only takes the values 0,+∞. Translated
in sets this means that we have a set C ⊂ [0, T ] × Ω × Rd such that for all
(t, ω) : (t, ω, 0) ∈ C. The set C is in the product sigma algebra given by the
predicatble sets on [0, T ] × Ω and the Borel sigma algebra on Rd. The sets
{q | (t, ω, q) ∈ C} are convex and closed and the set of scenarios is given by
the closure of

Se =

{
Q | dQ

dP

∣∣∣∣
FT

= exp

(∫ T

0

qu dWu −
1

2

∫ T

0

|qu|2 du

)
; (u, ω, qu(ω)) ∈ C

}
.

Of course we only take selections q that are predictable and that produce
uniformly integrable exponential martingales. We do NOT claim that all
selections produce uniformly integrable martingales! This kind of structure
was introduced and studied in [?] m-stable.

Example 36 Here we will give an example of an m-stable set such that S
is not weakly compact but every element in it satisfies dQ

dP > 0 a.s. . We
work on the interval [0,∞] but using a time transformation, this can be
transformed in the interval [0, 1]. We suppose that the probability space
carries a one-dimensional Brownian Motion W and that the filtration is the
natural filtration of W . For more information on Bessel processes and local
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martingales, we refer to [122]. The process R defined by R0 = 1 and dRt =
1
Rt
dt + dWt is a Bes3 process. It will never reach 0 and limt→∞Rt = +∞

a.s. . Let us now take Lt = 1
Rt

. Of course we have dLt = −L2
t dWt and we

know that L is a strict local martingale with E[Lt] < 1 for all t > 0. The
process R satisfies dRt = Lt dt+ dWt, trivial but useful as we shall see later.
Let τ = inf{t | Lt = 1/2}. Since limt→∞ Lt = 0 we conclude that τ < ∞
a.s. . The set of strategies is defined as

S =

E(q ·W )τ

∣∣∣∣∣∣∣
E(q ·W ) is uniformly integrable and

|qt| ≤ Lt for all t ≤ τ
and qt = 0 for t > τ

 .

By construction S is m-stable, convex, closed and hence defines a coherent
time consistent utility function u. All elements in S are equivalent to P.
Indeed if E(q · W ) ∈ S, then

∫ τ
0
|qu|2 du ≤

∫ τ
0
L2
u du < ∞ a.s. and hence

E(q ·W )τ > 0 a.s. . The element qu = −Lu1]]0,τ ]] does not define a probability
measure. Indeed E(q ·W ) = Lτ is not uniformly integrable since E(q ·W )τ =
1/2. If we define τn = inf{t | Lt ≥ n} ∧ τ , then Lτn ∈ S, Lτn → Lτ and this
shows that S is not weakly compact.

By James’s theorem, see xxx, we know that there is an element η such
that u(η) = 0 but EQ[η] > 0 for all Q ∈ S. The idea to construct such an
element is the following. We try to find η in such a way that the candidate
measure is given by qu = −Lu1]]0,τ ]].

xxxxxx use the BMO results

Lemma 30 Let η ∈ L∞(Fτ ) and suppose that the utility process is ut(η) =∫ t
0
Lu|Zu| du −

∫ t
0
Zu dWu. If there is Q ∈ S such that EQ[η] = 0, then

Lu|Zu| = quZu, i.e. qu = Lu sign(Zu) on {Z 6= 0}.

Proof. For a measure Q ∈ S given by the process q we have

EQ[η] = EQ

[∫ τ

0

(Lu|Zu| − quZu) du

]
.

This needs to be verified. The integrand is nonnegative and therefore we can
use a stopping time argument using

σk = inf

{
t | E(q ·W )t ≥ k or

∫ t

0

Lu|Zu| du ≥ k
}
∧ τ.
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By the preceding result we have that
∫ τ

0
Lu|Zu| du < ∞ a.s. , therefore

P[σk = τ ] → 1. The boundedness of all processes involved now allows to
affirm that

EQ[uσk(η)] = EQ

[∫ σk

0

(Lu|Zu| − quZu) du

]
.

Since |uσk(η)| ≤ ‖η‖∞, the left side converges to EQ[η] and the right side
converges to EQ

[∫ τ
0

(Lu|Zu| − quZu) du
]

by Beppo Levi’s theorem. Passing
to the limit therefore completes the verification. The rest of the proof is now
easy. For all Q ∈ S the expression is nonnegative and if EQ[

∫ τ
0

(Lu|Zu| −
quZu) du] = 0, then – because Q ∼ P – necessarily (Lu|Zu| − quZu) = 0 on
]]0, τ ]]. 2

We could now try to use Zu = −1. This is not good since this results
in the outcome η = Rτ − R0 = 1, the process 1 = ut(1) is not given by∫ t

0
Lu|Zu|du−

∫ t
0
Zu dWu. So we must be more careful.

Lemma 31 Suppose that η =
∫ τ

0
Lu|Zu| du−

∫ τ
0
Zu dWu ∈ L∞, suppose that

Lu|Zu| = q0
uZu on ]]0, τ ]] and suppose that E(q0 ·W ) is uniformly integrable.

Then

ut(η) =

∫ t

0

Lu|Zu| du−
∫ t

0

Zu dWu.

Proof. The proof is almost contained in the proof of the previous lemma.
As in the previous lemma we get for Q ∈ S

EQ[η | Ft] =

∫ t

0

Lu|Zu| du−
∫ t

0

Zu dWu + EQ

[∫ τ

t

(Lu|Zu| − quZu) du | Ft
]

≥
∫ t

0

Lu|Zu| du−
∫ t

0

Zu dWu.

For the measure with density E(q0 ·W ) we get equality. 2

Corollary 20 Let τn = inf{t | Lt ≥ n} ∧ τ and let ηn = Rτn+1 −Rτn . Then

ut(ηn) =

∫ τn+1∧t

τn∧t
Lu du+

∫ τn+1∧t

τn∧t
dWu.

Proposition 71 Let Z =
∑
n−2−n1]]τn,τn+1]], then η =

∑
2−nηn satisfies:

ut(η) =

∫ t

0

Lu|Zu| du−
∫ t

0

Zu dWu.

But there is no measure Q ∈ S with EQ[η] = 0.
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Proof. As the previous lemma shows: for each n we have

ut

(
k=n∑
k=1

2−kηk

)
=

∫ t∧τn+1

0

Lu|Zu| du−
∫ t∧τn+1

0

Zu dWu.

Since
∑k=n
k=1 2−kηk tends to η in the L∞ norm we get the desired result.

From lemma xxx we know that the only candidate to have EQ[η] = 0 is given
by the stochastic exponential Lτ . However this does not define a probability
measure. 2

We are now ready to prove that there are relevant time consistent utility
functions with c0(Q) > 0 for all Q.

Theorem 64 The element η of the preceding proposition is minimal, u0(η) =
0 and consequently u1(ξ) = u(ξ + η) defines a relevant utility function.
The utility function u1 is time consistent. The penalty function satisfies:
c10(Q) = EQ[η] > 0 for all Q ∈ S and c10(Q) = +∞ for Q /∈ S.

Proof. The preceding propositions show that u0(η) = 0. Since the se-
quence Lτn is in S and since Lτn ≥ 1/2, the lemma xxx can be applied and
we conclude that η is minimal. The time consistency follows from general
arguments as seen before in section xxx. 2

Example 37 The previous example can be made more general. We work
on a filtered probability space (Ω, (Ft)0≤t≤T ,P). The filtration is generated
by a Brownian Motion W , which can be more dimensional. Suppose that
L is a continuous local martingale defined on the finite time interval [0, T ].
Suppose that for t < T : Lt > 0, L0 = 1 and LT = 0. Let R = 1/L
and let τ = inf{t | Lt = 1/2}. Clearly τ < T a.s. and Lτ ≥ 1/2. The
process L is the solution of the stochastic differential equation: L0 = 1
and dLt = q0

tLtdWt (with obvious notational changes in case W is more
dimensional). The process R satisfies (for t < τ):

dRt = −q0
tRtdWt + (q0

t )2Rt dt = −q0
tRtdWt + q0

t (q0
tRt) dt

The set S of test probabilities is defined as

S =

{
Q | dQ

dP
= E(q ·W ), with |q| ≤ |q0|1]]0,τ ]]

}
.
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All measures in S are equivalent to P. The process Lτ itself does not define
a probability measure.

The random variable Rτ − R0 is nothing else than the constant 1 but
Rt is not equal to the utility function ut(Rτ − R0) defined by S. As in the
previous example we introduce stopping times τk and we can carry out the
same analysis. We leave the details to the reader.



Chapter 15

The Set of Local Martingale Measures

15.1 Risk Neutral Measures

In this chapter we will prove that for locally bounded processes, the set of
martingale measures forms an m–stable set. This allows us to apply our
previous results to situations occurring in finance. We will also see which
m–stable sets can occur as sets of martingale measures for finite dimensional
processes. The latter characterisation is not fully complete since it will only
be done in the context of continuous filtrations. Throughout this section we
will use the following notation, see [43] for more information.

On the filtered probability space
(

Ω,F∞, (Ft)t≥0 ,P
)

, let S : R+ × Ω →
Rd be an adapted càdlàg process that takes values in the d−dimensional
space Rd. We suppose that the process is locally bounded and that the
original measure is a local martingale measure for the process S. This is a
simplification when compared to the situation in finance, but it simplifies
notation without destroying its generality. Since the process S is locally
bounded, the set

S = {Q� P | the process S is a local martingale for Q}

is a closed convex set. As the following shows, it is also m–stable. The
associated time consistent utility function will be investigated later.

Proposition 72 The set S is m–stable.

Proof. We can suppose that the process S is bounded (in the same way as
in [43]). That the set S is convex and closed is then obvious. The m–stability
is also quite obvious. Let us take Q1,Q2 ∈ Se. Let Z1, Z2 be the associated
density processes. If σ is a stopping time, we have to show that the density

process defined as Zt = Z1
t for t ≥ σ and Zt = Z1

σ
Z2
t

Z2
σ

, is still in S. To show

this, it is sufficient to show that the process ZS is a P−martingale. This
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is easy. Indeed first observe that the process Z1S is a P−martingale (since
Q1 ∈ S). The same applies to Z2 and hence the process 1t≥σ

(
Z2
t St − Z2

σSσ
)

is also a P−martingale. It follows that the process:

ZtSt = Z1
t∧σSt∧σ +

Z1
σ

Z2
σ

1t≥σ
(
Z2
t St − Z2

σSσ
)

is also a P−martingale. 2

To avoid complicated notation we first introduce some extra notions. We
restrict ourselves to the case of a continuous price process S. As above
we may and do suppose that S is bounded. If X is a local martingale
then there is a decomposition of X with respect to S. This decomposition,
called the Kunita-Watanabe-Galtchouk decomposition, allows to write X as
a sum of two local martingales. One is a stochastic integral with respect
to S, the other part M is strongly orthogonal to S. So let us write X =
H · S + M . Saying that X is strongly orthogonal to S means that H · S is
strongly orthogonal to S. This means that the vector H is orthogonal to
the predictable range of S. See the appendix for a definition and for the
definition of the projection P . In other words it means that the measure
H ′ d〈S, S〉H = 0 and this implies that H · S = 0. This can only happen
when the price process has some redundancy.

Theorem 65 With the notation of the preceding sections and under the as-
sumption that S is continuous we have that

Se =

{
E(X)

∣∣∣∣∣ E(X)∞ > 0,

X is strongly orthogonal to S, E(X) is unif. integrable

}
.

Proof. The proof is very easy. If E(X) is a uniformly integrable, nonneg-
ative martingale, where X = H · S +M is the Kunita-Watanabe-Galtchouk
decomposition, then E(X)S is a martingale if and only if X is strongly or-
thogonal to S. This is equivalent to H · S being strongly orthogonal to S.
The latter is equivalent to the fact that every coordinate of S is strongly
orthogonal to H · S and hence to the fact that H ′ d〈S, S〉H = 0. This in
turn is equivalent to the property PH = H. 2

There is also a converse to this theorem. The interpretation of such a
converse theorem is the following. Given a convex closed set of probabilities,
when does there exist a finite dimensional process, say S, such that the given
set is the set of absolutely continuous martingale measures for the process S?
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A necessary condition is certainly that the set is m–stable. In the continuous
case the answer is given by the following theorem.

Theorem 66 Let S be a stable set of probability measures. Let the filtration
be so that every local martingale is the stochastic integral with respect to the
d−dimensional local martingale M . Let S be given by the closure of

Se = {E(q ·M) | q ∈ Φ and E [(E(q ·M))∞] = 1} ,

where the set-valued predictable process Φ is convex and closed valued. Then
the set S is a set of equivalent local martingale measures for a price process
if and only if each Φ(t, ω) is a subspace. If the predictable projection-valued
process P is the orthogonal projection on the space Φ(t, ω), then the price
process S can be chosen as S = (IdRd − P ) ·M .

Proof. The proof is a reformulation of the above theorem and the results
of the appendix. The details are left to the reader. 2

Remark 91 The situation can be generalised to the setting of theorem xxx,
in the sense that we may suppose that M only generates the continuous
local martingales. This means that every local martingale is given by a
decomposition of the form H ·M +N , where N is purely discontinuous. In
that case we get the following theorem

Theorem 67 With the above notation we have that the closure S of the set

Se =

E(q ·M +N)

∣∣∣∣∣∣∣
q ∈ Φ

E(q ·M +N) uniformly integrable and strictly positive

N is purely discontinuous

 ,

is a set of risk neutral measures if and only if each Φ(t, ω) is a subspace. If
the predictable projection valued process P is the orthogonal projection on the
space Φ(t, ω), then the price process S can be chosen as S = (IdRd −P ) ·M .

15.2 Appendix on the predictable range.

If M is a d−dimensional martingale then it may happen that on some time
intervals — or on some predictable sets — coordinates are linearly depen-
dent. To avoid difficulties coming from this redundancy we will introduce
the predictable range of M . We will only need the concept for continuous
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martingales. We will not give full details of the proofs, most of them being
straightforward. Readers familiar with the theory of stochastic processes
can skip this section that indeed does not contain anything new. Only the
presentation is (maybe) of some interest.

Lemma 32 The set

K = {q | q predictable d− dimensional and q · [M,M ] = 0}

is a vector space of predictable processes satisfying

if q ∈ K, if h is predictable and real-valued, then h q ∈ K

Lemma 33 The space

K⊥ = {q | q predictable d− dimensional and for all k ∈ K : q.k = 0}

is a vector space of predictable processes satisfying

if q ∈ K⊥, if h is predictable and real-valued, then h q ∈ K⊥

We will introduce a measure that is related to the bracket [M,M ]. The
measure is defined as follows

µ(A) = E
[∫ ∞

0

e−Trace[M,M ]t(1A)t d(Trace[M,M ])t

]
.

It is easily seen to be finite. We use the almost standard notation of operator
theory. If x, y ∈ Rd, then x ⊗ y denotes the rank-one operator z → (z.x)y.
If x = y and ‖x‖ = 1, this operator is the orthogonal projection on the line
generated by x.

Lemma 34 (and Definition) There exist predictable process ej : R+ ×
Ω −→ Rd, j = 1, . . . , d such that µ almost everywhere

1. for j ≤ d− 1 we have {ej+1 6= 0} ⊂ {ej 6= 0}.

2. Either ‖ej(ω)‖ = 1 or ej(ω) = 0.

3. For j 6= k we have ej .ek = 0.

4. q ∈ K⊥ if and only if there are real-valued predictable processes h1, . . . , hd
such that q =

∑
j≤d hj ej.
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5. The orthogonal projection (depending on t and ω), P =
∑
j ej ⊗ ej

satisfies q ∈ K⊥ if and only if on R+ × Ω we have Pq = q.

6. We call the range of P the predictable range for the process M .

7. P satisfies: q · [M,M ] = 0 if and only if Pq = 0.

Proof We will not prove all the statements, the reader can easily fill in
the details. The only tricky point is how to get the predictable processes
ek. The measure µ clearly satisfies: if q = 0, µ almost everywhere, we have
q ·M = 0. This will allow us to replace predictable processes q by processes
that are equal to q, µ a.e.. We now put K1 = K⊥ and we look at the class

C = {{q 6= 0} | q ∈ K1} .

It is easily seen that this class of predictable sets is stable for countable
unions. Indeed let qn be a sequence in K1. Without loss of generality we
may suppose that each qn has a norm equal to either 0 or 3−n, eventually
we replace qn by qn

3n‖qn‖1{qn 6=0}. We can now verify that q =
∑
n q

n satisfies

{q 6= 0} = ∪n{qn 6= 0}. Since the class C is stable for countable unions, it
has up to µ−negligable sets a biggest element, coming from say an element
q. Of course we may and do suppose that ‖q‖ is either 0 or 1. Let us put
e1 = q. Now we look at the class

K2 = {q ∈ K1 | q.e1 = 0},

and we continue with K1 replaced by K2. We again find an element e2 with
maximal support. Of course the maximality of the support of e1 implies that
{e2 6= 0} ⊂ {e1 6= e2}. At least µ a.e., but it is easy to adapt the processes
in such away that the inclusion holds as sets. We continue by induction and
observe that the procedure stops after d steps, i.e. Kd+1 = {0}. We now
prove item 4. Let the space obtained using the procedure of item 4 be L.
We claim that L = K⊥, up to equality µ a.e.. If not then we take an element
q ∈ L \ K⊥, q not equal to zero µ a.e.. Replacing q by q − Pq then gives an
element q ∈ K⊥ such that q.ej = 0 for all j ≤ d. This, by induction, implies
that q ∈ Kj for each j ≤ d. Consequently we must have {q 6= 0} ⊂ {ej 6= 0}
for each j. In the points where q(t, ω) is not zero this means that the vec-
tors ej(t, ω), j = 1 . . . d are all nonzero and orthogonal. But then q(t, ω) is
perpendicular to a basis of Rd, a contradiction to q not equal to zero µ a.e.. 2
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Chapter 16

Characterisation of the Penalty

Function c

16.1 Notation and the Main Theorem

We will work with the filtration F of a d−dimensional Brownian Motion W .
The time interval is bounded and is supposed to be [0, T ].

The notation will remain fixed and u0 is a time consistent utility function
satisfying the Fatou property. We will suppose that c0(P) = 0, a property
equivalent to EP[ξ] ≥ 0 for each ξ ∈ A0 = {η | u0(η) ≥ 0}. This of course
implies that u0 is relevant and ct(P) = 0 for all t. The utility process is
the càdlàg process ut and the penalty process (also càdlàg ) is ct. The
acceptance sets at intermediate times are denoted by Aσ = {ξ | uσ(ξ) ≥ 0}.
We know from section xxx that ut(ξ) is a P−submartingale and its Doob-

Meyer decomposition will be written as ut(ξ) = u0(ξ) +At −
∫ t

0
Zu dWu. In

case we need more variables we will write Aξ, Zξ.
We will show the following representation theorem:

Theorem 68 Suppose that u0 is Fatou and time consistent. Suppose that
the filtration F is given by a d−dimensional Brownian Motion W , defined
on the bounded time interval [0, T ]. Suppose that c0(P) = 0. Under these
assumptions there is a function

f : Rd × [0, T ]× Ω→ R+,

such that

1. for each (t, ω) ∈ [0, T ]× Ω, the function f(., t, ω) is convex on Rd,

2. for each (t, ω) ∈ [0, T ]× Ω, f(0, t, ω) = 0,

3. for each x ∈ Rd, the function f(x, ., .) is predictable,



208 Chapter 16. Characterisation of the Penalty Function c

4. the function f is measurable for B×P, where B is the Borel σ−algebra
on Rd and P is the predictable σ−algebra on [0, T ]× Ω,

5. for each Q� P we have

c0(Q) = EQ

[∫ T

0

f(qt(.), t, .) dt

]
.

16.2 Some measure theory

From section xxx we recall that for Q� P, c0(Q) <∞, the process ct(Q) is
a Q−supermartingale of class D. We also proved that there is an increasing
process αt(Q) such that ct(Q) = EQ[αT (Q) − αt(Q) | Ft], Q a.s. . In case
Q� P the density process will be denoted by L (we will drop the index Q).
The density process can be written as a stochastic exponential L = E(q ·W ).
Of course q is only defined up to the stopping time τ = inf{t | Lt = 0}.
In case we need more measures Q1,Q2, . . ., the exponentials will be denoted
q1, q2, . . . . In most of the lemmas below we will use the assumption Q ∼ P.
This is not always needed but is done to simplify the presentation. At the
end we will then use a localisation procedure to prove the final result for all
measures Q� P.

In case β is an increasing (in better English but worse mathematics, non-
decreasing) predictable càdlàg process, β0 = 0, βT ∈ L1, we can associate
a measure on the σ−algebra P of the predictable sets. The measure ν is

defined as ν(H) = E
[∫ T

0
1H dβ

]
. On sets of the form B×]s, t], with B ∈ Fs

this gives E[1B(βt − βs)]. These sets form a semi-algebra that generates
the σ−algebra P. Because we work with Brownian motion, the Lebesgue
measure m on [0, T ] and the product measure dm× dP play a fundamental
role. We can decompose the measure dβ into two parts, the part, dβac

that is absolutely continuous with respect to dm and the singular part dβs.
This decomposition can be done for each ω ∈ Ω. One can show that the
decompositions can be“glued” together. But one can also decompose the
measure dν into a part that is absolutely continuous with respect to dm×dP
and a part singular to it. This yields the same decomposition. So there
exists a predictable set H such that dβac = 1Hdβ and dβs = 1Hcdβ. In case
dβ � dm, the derivatives dβ/dm can be glued together so that they form a
predictable process and in fact they build dβ/(dm× dP). All this is part of
the general theory of stochastic processes, see [45].

The following result from measure theory will be used.
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Lemma 35 Let νi, i ∈ I be a family of measures on P. Suppose that the
family contains the zero measure and that there is a measure µ such that for
all i ∈ I : νi ≤ µ. Suppose that for every ε > 0 and for every partition of
[0, T ]×Ω in sets of the form B×]s, t], with B ∈ Fs, there is a j ∈ I such that
for every element in the given partition: (supi ν

i)(B×]s, t]) ≤ νj(B×]s, t]) +
ε. Then for each predictable set H we have (supi ν

i)(H) = supi ν
i(H).

The element (supi ν
i) is calculated as the supremum of a family of measures

where the outcome is a measure on P. This supremum exists if the fam-
ily is bounded above by a fixed measure. The expression (supi ν

i)(H) =
supi ν

i(H) is calculated for every set H separately and in general it does not
define a measure. We will not prove this straightforward lemma.

Lemma 36 For Q ∼ P, c0(Q) < ∞, the increasing process α(Q) is the
smallest measure defined on P such that for all ξ ∈ L∞:

dαt(Q) ≥ −dAξt + qtZ
ξ
t dt.

Proof. Since the measure Q is fixed, we will drop the indices Q. Let
us define dνξ = −dAξt + qtZ

ξ
t dt. We need to show that the measure dα =

supξ dν
ξ, where the sup is taken in the space of measures defined on P. We

first show that dα ≥ supξ dν
ξ. For this it is sufficient to show that for each

ξ, B ∈ Fs and s < t ≤ T we have

EQ [(αt − αs)1B ] ≥ EQ

[∫ t

s

−dAξu + quZ
ξ
u du

]
.

This is easy since α+ u(ξ) is a Q−submartingale and hence

EQ

[
αt +Aξt − (Zξ ·W )t | Fs

]
≥ αs +Aξs − (Zξ ·W )s.

This can be rewritten as

EQ[αt − αs | Fs] ≥ EQ

[
−Aξt +Aξs +

∫ t

s

Zξu dWu | Fs
]

≥ EQ

[
−Aξt +Aξs +

∫ t

s

quZ
ξ
u du | Fs

]
,

which is what we need. We now show the converse inequality. Here we
will use the measure theoretic lemma stated above. The family of measures
−dAξu + quZ

ξ
u du is order bounded by the measure defined by α(Q). Let us
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give a partition in sets of the form B×]s, t]. Of course refining the partition
allows to find a finite sequence of times 0 = t0 < t1 < . . . < tn = T and
for each k a partition of Ω into Ftk−measurable sets B1, . . . , BNk . From
section xxx (same xi lemma) we recall that for every ε > 0 there is an ele-
ment ξ ∈ A0 such that for every k < n: EQ[ctk(Q)] ≤ EQ[EQ[−ξ | Ftk ]] + ε.
This means that for every ε > 0 there is ξ such that for all k and j ≤ Nk:
EQ[
∫ tk+1

tk
1Bjdαu] ≤ EQ[

∫ tk+1

tk
1Bj

(
−dAξu + quZ

ξ
u du

)
] + ε. The assumption

of the lemma is therefore satisfied. This means that for all B ∈ Fs and all

s < t, the supremum over all ξ of EQ

[∫
B×]s,t]

(
−dAξu + quZ

ξ
u du

)]
is exactly

equal to EQ

[∫ t
s

1B dαu(Q)
]
. 2

The lemma can be rephrased as follows

Theorem 69 Suppose Q ∼ P, c0(Q) <∞. The measure dα(Q) is the small-
est measure such that for all ξ, the process u.(ξ)+α(Q) is a Q−submartingale.

16.3 Convexity and stochastic integrals

Proposition 73 Suppose that Q1,Q2 ∼ P and c0(Q1) + c0(Q2) <∞. Sup-
pose that 0 < λ < 1 is a predictable process and suppose that q = λq1 +
(1 − λ)q2 defines a probability measure Q. We have the following convexity
inequality

dα(Q) ≤ λ dα(Q1) + (1− λ) dα(Q2),

and hence c0(Q) <∞.

Proof. We only have to show that for each ξ: qtZ
ξ
t dt−dA

ξ
t ≤ λt dαt(Q1)+

(1− λt) dαt(Q2). This is done by a straightforward calculation.

qtZ
ξ
t dt− dA

ξ
t = λt

(
q1
tZ

ξ − dAξt
)

+ (1− λt)
(
q2
tZ

ξ − dAξt
)

≤ λt dαt(Q1) + (1− λt) dαt(Q2).

2

Corollary 21 Let Q ∼ P, c0(Q) < ∞. Suppose that H is predictable and
that E((q1H) · W ) and E((q1Hc) · W ) define probability measures QH and
QHc . Then dα(QH) = 1H dα(Q) and dα(Q) = dα(QH) + dα(QH

c

).
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Proof. We apply the convexity result with λ = 1H , q1 = q and q2 = 0.
We get dα(QH) ≤ 1Hdα(Q). Consequently dα(QH) is supported by H.
Next we apply the convexity result with q1 = q1H and q2 = q1Hc . We
get dα(Q) ≤ 1Hdα(QH) + 1Hcdα(QHc), We now multiply with 1H and get
1Hdα(Q) ≤ 1Hdα(QH) = dα(QH). This gives dα(QH) = 1Hdα(Q). 2

Remark 92 Using a localisation argument together with some approxima-
tion, one can show that to get dα(QH) = 1H dα(Q), we only need that
E((q1H) ·W ) defines a probability measure. We leave this as an exercise for
the reader.

Lemma 37 Let u0(ξ) = 0 and suppose that dut(ξ) = dAt − Zt dWt is the
Doob-Meyer decomposition of the process Y = u(ξ). Suppose that H is pre-
dictable and that the stochastic integral 1H · Y is bounded. The element
(1H · Y )T belongs to A0.

Proof. If H is an elementary set, i.e. there is an increasing finite sequence
of stopping times 0 = σ0 ≤ σ1 ≤ . . . ≤ σn = T as well sets Bk ∈ Fσk such
that H = ∪n−1

k=0Bk×]]σk, σk+1]], the statement (1H · Y )T ∈ A0 follows from
the decomposition property. For general predictable sets H we proceed by
approximation. There is a sequence of elementary sets Hn such that for the
measure dAt + dm, 1Hn → 1H a.s. . Of course the elements 1Hn · Y are
bounded since each Hn is elementary, but there is no guarantee that they are
uniformly bounded. So we will localise these processes. Let c be such that
supt |(1H ·Y )t| ≤ c and c ≥ ‖ξ‖∞. We may suppose that c > 0 since otherwise
there is nothing to prove. We know that supt |(1Hn · Y )t − (1H · Y )t| → 0
in probability. Hence P[supt |(1Hn · Y )t| > 2c] → 0. Let σn = inf{t |
|(1Hn · Y )t| > 2c}. The jump at time σn is part of the jump of Y and hence
bounded by 2c. Hence supt≤σn |(1Hn · Y )t| ≤ 4c. Let us now replace Hn

by Hn ∩ [[0, σn]] (we keep the notation Hn). These sets are still elementary
and converge to H. Since (1Hn · Y )T ∈ A0 and since this sequence tends to
(1H · Y )T ∈ A0, we get (1H · Y )T ∈ A0. 2

Remark 93 The hypothesis that 1H · Y is bounded is needed. The decom-
position theorem cannot be generalised to the situation where we decompose
A0 into two parts: AH and AHc , where AH is obtained by the procedure of
the previous lemma.

Lemma 38 For ξ ∈ L∞, u0(ξ) = 0 with Doob-Meyer decomposition u(ξ) =
A − (Z ·W ), let H be predictable with EP[

∫
[0,T ]

1Hc dt] = 0 and such that
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1HdA = dAac where dAac is the absolutely continuous part of dA. Let
σn be defined as σn = inf{t | |Aact − (Z · W )t| ≥ n}. The element ξn =
Aacσn − (Z ·W )σn is in A0.

Proof. This follows from the previous lemma applied to sets of the form
H∩]]0, σn]]. Since EP[

∫
[0,T ]

1Hc dt] = 0, the stochastic integral (Z ·W ) is the

same as (1HZ ·W ). We remark that the existence of the set H is given by
the Lebesgue decomposition of the measure dA with respect to dm × dP.
The pointwise decomposition (for almost every ω separately) is the same as
the decomposition on the space [0, T ]× Ω. 2

Lemma 39 Let Q ∼ P and c0(Q) <∞. Then

dαt = sup
dAξ�dm

(−dAξt + qtZ
ξ
t dt).

In other words, to calculate the measure dα we can restrict to the set of
elements ξ such that the Doob-Meyer decomposition has a finite variation
component that is absolutely continuous with respect to the Lebesgue measure.

Proof. Clearly dαt ≥ supdAξ�dm(−dAξt +qtZ
ξ
t dt). But the previous lemma

shows that for each ξ, −dAξ + qtZ
ξdt ≤ supn(−dAξn,ac + qtZ

ξndt) where ξn

is defined as in the proof of the previous lemma. 2

Corollary 22 c0(Q) = sup{EQ[−ξ] | u0(ξ) = 0 and dAξ � dm}.

Theorem 70 Let Q ∼ P and c0(Q) <∞. The measure dα(Q) is absolutely
continuous with respect to Lebesgue measure. Consequently the process c.(Q)
is continuous.

Proof. There is not much to prove since the supremum of measures ab-
solutely continuous with respect to the measure dm × dP is still absolutely
continuous with respect to dm× dP. 2

In case Q ∼ P, c0(Q) < ∞, we can write dα(Q) = φdm × dP, where φ is a
predictable process.

16.4 Proof of the Main Theorem

For each measure Q ∼ P, c0(Q) < ∞ we get a derivative φ. We adapt the
notation as follows. If q is predictable and defines a measure Q ∼ P, then
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we write φ(q, t, ω) as the value of the derivative dα(Q)/(dm × dP). For the
moment the value of φ(q, t, ω), depends on the measure Q and not just on
the value of q at time t. So we cannot yet write φ(qt(ω), t, ω). But this
function has a special structure. Because of the localisation shown in lemma
xxx above, the value of the function φ at the point (t, ω) is only depending
on qt(ω). This is not so easy and it is the topic of a series of lemmata. The
first step is to exploit the absolute continuity of the processes α(Q).

Lemma 40 There is a sequence ξn of elements in L∞ such that

1. u0(ξn) = 0, u(ξn) = An − Zn ·W , dAn � dm

2. (dA
n

dm , Zn) is dense – for the L1(dm×dP) norm – in the set {(dA
ξ

dm , Zξ) |
ξ ∈ L∞, dAξ � dm}.

Proof. The proof is easy and follows directly from the separability of the
space L1([0, T ]× Ω,P, dm× dP). 2

For each n we take a version of the random variables dAn/dm and Zn. We
will abusively denote these by dAn

dm (t, ω), Zn(t, ω) to indicate that we work
with functions on [0, T ]× Ω and not just with classes modulo dm× dP. We
may suppose that these functions are predictable.

Lemma 41 Suppose Q ∼ P and c0(Q) <∞. Then with the notation of the
previous paragraph

φ(q, t, ω) = sup
n

(
−dA

n

dm
(t, ω) + q(t, ω)Zn(t, ω)

)
Proof. This follows from lemma xxx and the density property for the
sequence ξn. 2

Since the right hand side is a pointwise supremum we get that φ(q, t, ω) only
depends on q(t, ω). We now define

C =

{
(x, t, ω) | x ∈ Rd; sup

n

(
−dA

n

dm
(t, ω) + xZn(t, ω)

)
<∞

}
.

Clearly C ∈ B×P where B is the Borel σ−algebra on Rd. If Q ∼ P, c0(Q) <
∞, then q is dm×dP almost everywhere a selection of C. We can now define
the function

f(x, t, ω) = sup
n

(
−dA

n

dm
(t, ω) + xZn(t, ω)

)
.
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Lemma 42 f : Rd × [0, T ] × Ω → R+. It is convex on Rd and is lsc.
f(x, t, ω) <∞ if and only if x ∈ C(t,ω). f is measurable for B × P.

Lemma 43 For each Q� P we have

c0(Q) ≤ EQ

[∫ T

0

fu(qu) du

]
Proof. By definition c0(Q) = sup{EQ[−ξ] | u0(ξ) = 0}. If we write
u(ξ) = A−Z ·W , then an application of the Girsanov formula, in its version

due to Lenglart, [99] we get c0(Q) = sup{EQ[−AξT+
∫ T

0
quZ

ξ
u du] | u0(ξ) = 0}.

Exactly as in lemma xxx above we can write

c0(Q) = sup{EQ[−AξT +

∫ T

0

quZ
ξ
u du] | u0(ξ) = 0, dAξ � dm}

= sup{EQ

[∫ T

0

(
−dA

ξ

dm
+ quZ

ξ
u du

)]
| u0(ξ) = 0, dAξ � dm}

≤ EQ

[∫ T

0

fu(qu) du

]
.

Theorem 71 For each Q� P we have

c0(Q) = EQ

[∫ T

0

f(qt(.), t, .) dt

]
.

Proof. If Q ∼ P, c0(Q) <∞, then the equality is part of the construction
of the function f . For other measures we have to work a little bit. Suppose
first that c0(Q) <∞. Let L be the continuous density process of Q. Define

σn = inf{t | Lt ≤ 1/n}.

Of course σn ↑ σ = inf{t | Lt = 0}. Let dQn = Lσn dP. The cocycle property
shows that c0(Qn) is increasing and hence c0(Qn) ↑ c0(Q). We have

c0(Q) = lim
n
c0(Qn)

= lim
n

E

[∫ σn

0

Lufu(qu) du

]

= E
[∫ σ

0

Lufu(qu) du

]
= EQ

[∫ T

0

fu(qu) du

]
.
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The case c0(Q) = +∞ is easy since this is treated in lemma xxx above. 2
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Chapter 17

law invariant case, result of Kupper,

Schachermayer

In this chapter we will study the result of Kupper and Schachermayer. They
proved, [94], that a time consistent, law determined utility function is nec-
essary of entropic type. Their basic assumptions are very weak. The only
non-trivial assumption is that the filtration should allow for martingales that
”sufficiently move”.
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Chapter 18

Relation with BSDE and the use of

weak compactness.

subquadratic case, superquadratic case no uniqueness, no existence, linear
equation with Bessel-inverse coefficient ==¿ BSDE always solution, not al-
ways minimizer, allows a relevant utility with c0(Q) > 0 all measures. g sub-
quadratic with path-dependent coefficient ==¿ always solution not unique.

18.1 Relation with BSDE

As shown in chapter xxxx, a time consistent utility function u0 in the filtra-
tion of a d−dimensional Brownian Motion, is given by the expression:

u0(ξ) = inf EQ

[
ξ +

∫ T

0

fu(qu) du

]
.

Of course the expression only characterises utility functions that have
the Fatou property are relevant and for which the penalty function satisfies
c0(P) = 0. In this setting the function f has the following properties

1. f : [0, T × Ω× Rd → R+

2. for each q ∈ Rd, the partial function on [0, T ]× Ω is predictable

3. for each (u, ω) the partial function is lsc and convex on Rd

4. the function f is measurable for B×P, where B is the Borel σ−algebra
on Rd and P is the predictable σ−algebra on [0, T ]× Ω,

5. f(u, ω, 0) = 0 for each (u, ω).

The Legendre transform of f(t, ω, .) is denoted by g(t, ω, z) and it has
similar properties as f . We suppose that g takes finite values. A statement
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equivalent to: for each (t, ω): lim|q|→+∞
f(t,ω,q)
|q| = ∞. This means that f

has sufficient growth. It rules out the case that f is e.g. 0 on subspaces.
We leave it as an exercise for the reader to show that also g is predictable
in (t, ω). The following theorem gives an inequality between the solutions of
BSDE and the utility process.

Theorem 72 Suppose that the process Y is bounded and that it satisfies{
dYt = gt(Zt) dt− Zt dWt

YT = ξ
.

We then have Y ≤ u(ξ)

Proof Let Q ∼ P be a measure such that c0(Q) <∞, then

EQ

[
ξ +

∫ T

t

fu(qu) du | Ft

]

= Yt + EQ

[∫ T

t

(gu(Zu) + fu(qu)− quZu) du | Ft

]
≥ Yt

Taking the infimum over all such measures Q gives ut(ξ) ≥ Yt. 2

The key to applications is the following “verification” theorem.

Theorem 73 Suppose ξ ∈ L∞ and suppose that there exists an equivalent
measure Q ∼ P such that

u0(ξ) = EQ

[
ξ +

∫ T

0

fu(qu) du

]
.

Then there exists a process Z such that for all t ≤ T :

ξ = ut(ξ) +

∫ T

t

gu(Zu) du−
∫ T

t

Zu dWu.

The process defined by Y0 = u0(ξ) and dYt = gt(Zt) dt − Zt dWt is bounded
and YT = ξ. The backward stochastic differential equation{

dYt = gt(Zt) dt− Zt dWt

YT = ξ

has a bounded solution.
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Proof Let Q be such that u0(ξ) = EQ

[
ξ +

∫ T
0
fu(qu) du

]
. The density pro-

cess of Q is given by the stochastic exponential E(q ·W ). From xxx it follows

that ut(ξ) +
∫ t

0
fu(qu) du is a Q−martingale. The Doob-Meyer decomposi-

tion – under P – of u(ξ) can be written as dut(ξ) = dAt −ZtdWt, where the
process Z ·W is a BMO-martingale according to xxxx. The decomposition
under Q therefore becomes dut(ξ) = dAt − qtZtdt+ ft(qt)dt− ZtdWQ

t . The
martingale property shows that dAt = (qtZt−ft(qt))dt. But Q is a minimis-
ing measure and hence for all other density processes E(k ·W ) we must have
dAt ≥ (ktZt− ft(kt))dt, which shows that dAt = gt(Zt) dt. Combining these
results yields dut(ξ) = gt(Zt)dt− ZtdWt as required. The other statements
are trivial consequences. 2

Remark 94 We do not claim uniqueness of the solution. In fact we will see
later that uniqueness is not always valid.

Theorem 74 Suppose that u satisfies the weak compactness property, then
for every ξ ∈ L∞, the BSDE has a unique bounded solution.

Proof The existence follows from the preceding theorem and section xxx
of chapter xxx. We now prove uniqueness. Suppose that Y is a bounded
solution that is different from u(ξ). Because Y ≤ u(ξ) there is a stopping
time σ such that P[uσ(ξ) > Yσ] > 0. Let Q be a minimising measure for ξ,
then Q ∼ P by xxxx. But Q is then also a minimising measure for uσ(ξ) and
hence

u0 xxxx

Remark 95 By the Bishop-Phelps theorem, the set{
ξ | there is Q� P such that u0(ξ) = EQ

[
ξ +

∫ T

0

fu(qu) du

]}

is norm dense in L∞. But there is no guarantee that a minimising measure
is equivalent to P. This is the topic of the next theorem.

Theorem 75 Suppose that for every ω ∈ Ω there is a constant K < ∞
depending on ω such that for all t: gt(z) ≤ K(1 + |z|2). Suppose that Q is a
minimising measure for ξ, then necessarily Q ∼ P.

We need the following lemma (xxx rephrase in a nicer way)
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Lemma 44 If φ : Rd → R+ is a convex function such that φ(z) ≤ K(1+|z|2)
for all z ∈ Rd, |z| ≥ 1 and q ∈ ∂zφ (q an element of the subgradient of φ
in the point z) satisfies |q| ≤ K(1 + 4|z|). As a consequence we have the
existence of a constant C (independent of z ∈ Rd, e.g. C = 5K will do) such
that for all z and q ∈ ∂zφ: |q| ≤ C(1 + |z|)

Proof of the lemma Take z ∈ Rd and q ∈ ∂zφ. Because of convexity we
have for all w ∈ Rd, with |w| = |z| that g(z + w) − g(z) ≥ q · w and hence
K(1 + 4|z|2) ≥ |q| |z|. For |z| ≥ 1, this shows |q| ≤ K(1 + 4|z|). For |z| ≤ 1
we take |w| = 1 and we get 5K ≥ |q|. The two inequalities give the desired
result. 2

Proof of the theorem We will need the Lebesgue measure m on [0, T ].
Let dut(ξ) = dAt −ZtdWt be the Doob-Meyer decomposition of the process
u(ξ). Let the density process L of Q be given by the stochastic exponential
E(q · W ). Let τ = inf{t | Lt = 0}. Since 0 < τ is predictable we have
that there is a sequence τn < τ such that τn ↑ τ . Of course Q ∼ P on Fτn .

Under Q the process ut(ξ) +
∫ t

0
ft(qt) is a martingale and hence Q×m a.s. :

gt(Zt) + ft(qt)− qtZt = 0 on [[0, τ [[. Hence on [[0, τ [[, we have that qt is a an
element of the subgradient of gt at Zt. This is true for the measure Q×m and
hence also for P×m (because on Fτn both measures are equivalent). Hence
we have |qt| ≤ C(1+ |Zt|). But this shows that

∫ τ
0
|qt|2dt ≤ C+C

∫ τ
0
|Zt|2 dt

for some constant C. So we have P a.s. that
∫ τ

0
|Zt|2 dt ≤

∫ T
0
|Zt|2 dt < ∞

and hence also
∫ τ

0
|qt|2dt < ∞ P a.s. . Since {LT = 0} = {

∫ τ
0
|qt|2dt = ∞},

we have LT > 0 a.s. , meaning Q ∼ P. 2

Theorem 76 Suppose that for every ω ∈ Ω there is a constant K depending
on ω such that for all t: gt(z) ≤ K(1 + |z|2). For every ξ ∈ L∞ the process
u(ξ) is a bounded solution of the BSDE:{

dYt = gt(Zt) dt− Zt dWt

YT = ξ

Proof By the Bishop-Phelps theorem there is a sequence ξn → ξ (in L∞

norm) and such that for ξn there is a minimising measure Qn. By the preced-
ing theorem this measure is equivalent to P. By the “verification” theorem we
can write dut(ξn) = gt(Z

n
t ) dt−Znt dWt. Since supt |ut(ξn)−ut(ξ)| ≤ ‖ξn−ξ‖

we can apply xxx and hence we get that Zn ·W → Z ·W in BMO. Hence also

in L2 and this implies
∫ T

0
|Znt − Zt|2 dt → 0 in probability. The hypothesis
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on g then implies that in probability:
∫ s

0
gt(Z

n
t ) dt →

∫ s
0
gt(Zt) dt for every

s ≤ T . We get us(ξ) = u0(ξ) +
∫ s

0
gt(Zt) dt−

∫ s
0
Zt dWt. 2

The general case can now be analysed further. For ξ ∈ L∞ we know
that the process u(ξ) is a P−submartingale and hence has a Doob-Meyer
decomposition dut(ξ) = dAt − Zt dWt. Because for Q ∼ P, c0(Q) < ∞,

the process ut(ξ) +
∫ t

)
fu(qu) du is a Q−submartingale we must have that

dAt ≥ gt(Zt) dt. This is proved as in theorem xxx. So we can write dut(ξ) =
gt(Zt) dt+ dCt − Zt dWt, where C is a nondecreasing process, with C0 = 0.
The discontinuity points of C must be the same as the discontinuity points
of u(ξ). So we get that the jumps of C must be bounded by the jumps of
u(ξ) and hence smaller than 2‖ξ‖. It follows that the process C is locally
bounded. We know that the existence of a minimising measure Q ∼ P implies
that CT = 0. There is also a relation with minimal elements (as defined in
xxx).

Proposition 74 If ξ is minimal then for each stopping time σ, the element
uσ(ξ) is minimal.

Proof Take η ≤ uσ(ξ) such that u0(η) = u0(uσ(ξ)) and P[η < uσ(ξ)] > 0.
Obviously we have uσ(η) ≤ uσ(ξ). We first show that uσ(η) < uσ(ξ) on a
set of positive measure. Indeed if, uσ(η) = uσ(ξ), then

uσ(ξ) ≥ EP[η | Fσ] since η ≤ uσ(ξ)

≥ uσ(η) = uσ(ξ),

hence uσ(ξ) = EP[η | Fσ]. Integrating with respect to P gives
∫
uσ(ξ) dP =∫

η dP, a contradiction to P[η < uσ(ξ)] > 0. This shows P[uσ(η) < uσ(ξ)] >
0. We then get

u0(ξ − (uσ(ξ)− uσ(η))) = u0(uσ(ξ − (uσ(ξ)− uσ(η))))

= u0(uσ(η) = u0(η) = u0(uσ(ξ))

= u0(ξ),

showing that ξ was not minimal, a contradiction. 2

Theorem 77 If ξ is minimal, then CT = 0 and hence the process u(ξ) is a
bounded solution of the BSDE:{

dYt = gt(Zt) dt− Zt dWt

YT = ξ
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Proof If CT 6= 0 there is a stopping time σ, such that Cσ is bounded and
P[Cσ > 0] > 0. Indeed take ε > 0 such that P[CT > ε] > 0. Take now
σ = inf{t | Ct ≥ ε}. Since the jumps of C are bounded we have that Cσ is
bounded. We can now write

uσ(ξ)− Cσ = u0(ξ) +

∫ σ

0

gu(Zu) du−
∫ σ

0

Zu dWu.

This shows that we have a bounded solution of the BSDE with endpoint
uσ(ξ)−Cσ and starting point u0(ξ). The proposition then gives u0(uσ(ξ)−
Cσ) ≥ u0(ξ). But we certainly have u0(uσ(ξ) − Cσ) ≤ u0(uσ(ξ)) = u0(ξ).
This shows u0(uσ(ξ)− Cσ)) = u0(ξ) and hence uσ(ξ) cannot be minimal, a
contradiction to proposition xxx. We conclude that CT = 0. 2

Remark 96 The converse is not true. We will show that there is a utility
function u and a random variable ξ such that u(ξ) satisfies the associated
BSDE but ξ is not minimal. This shows that the characterisation of those ξ
for which the BSDE has a solution is not an easy problem. But we can show
the following

Theorem 78 Suppose that for every ω ∈ Ω there is a constant K < ∞
depending on ω such that for all t: gt(z) ≤ K(1 + |z|2). Every ξ ∈ L∞ is
then minimal.

Proof The proof uses that the process u(ξ) is a solution of the BSDE.
Suppose that u0(ξ) = 0 and dut(ξ) = gt(Zt) dt − Zt dWt. For each ω ∈ Ω
there is a constant K(ω) such that gt(z) ≤ K(1 + |z|2). We can of course
suppose that K is measurable for FT . To find a minimising measure we can
try a selection q of ∂Zg but of course there is no guarantee that the stochastic
exponential E(q ·W ) is uniformly integrable. Nevertheless this is the idea
behind the proof. To show that ξ is minimal we take A ∈ FT , δ > 0 and we
must show that u0(ξ − δ1A) < 0. Take N big enough so that P[A ∩ {K ≤
N}] > 0. Define the stopping time σ as

σ = inf{t | |qt| > 5N(1 + |Zt|} ∧ T.

By lemma xxx we have that {σ < T} ⊂ {K > N} and hence P[A ∩ {σ =
T}] > 0. We now show that the stochastic exponential E(q ·W ) stopped at
σ is uniformly integrable. Since uσ(ξ) =

∫ σ
0
gt(Zt) dt −

∫ σ
0
Zt dWt, we have

Z ·W is in BMO. But

|q|1[[0,σ[[ ≤ 5N(1 + |Z|)
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and hence q ·W is also in BMO. Therefore E(q1[[0,σ[[ ·W ) = E(q ·W )σ is uni-
formly integrable. The measure dQ = E(q ·W )σ dP satisfies 0 = u0(uσ(ξ)) =
EQ
[
uσ(ξ) +

∫ σ
0
ft(qt) dt

]
. We also have that Q ∼ P. The following inequali-

ties are now obvious

u0(ξ − δ1A) = u0 (uσ(ξ − δ1A))

≤ u0

(
uσ(ξ − δ1A∩{σ=T})

)
≤ u0

(
uσ(ξ)− δ1A∩{σ=T}

)
≤ EQ

[
uσ(ξ) +

∫ σ

0

ft(qt) dt

]
− δQ[A ∩ {σ = T}]

< 0.

18.2 Deterministic Drivers

Our main result is the following. xxxx print out and correct the layout

Theorem 79 Let u be the dynamic utility function defined by xxxx . Then
the following are equivalent:

1. lim|x|→∞
f(x)
|x|2 > 0.

2. lim|z|→∞
g(z)
|z|2 <∞.

3. For all k > 0, the set {Q | c0(Q) ≤ k} is weakly compact.

4. For all ξ ∈ L∞(FT ), there exists a measure Q � P such that u0(ξ) =

EQ

[
ξ +

∫ T
0
f(qu) du

]
.

5. For all ξ ∈ L∞(FT ), there exists a measure Q ∼ P such that u0(ξ) =

EQ

[
ξ +

∫ T
0
f(qu) du

]
.

6. For all ξ ∈ L∞(FT ), the BSDE dYt = g(Zt) dt− Zt dWt has a unique
bounded solution with YT = ξ.

7. u0 is strictly monotone.

Proof 1 ⇔ 2: item 1 implies that there exist positive constants a, b ∈ R+

such that f(x) ≥ a|x|2 − b. We then get

g(z) = sup
x∈Rd

(zx− f(x)) ≤ sup
x∈Rd

(zx− a|x|2 + b) ≤ 1

4a
|z|2 + b
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which shows that limz→∞
g(z)
|z|2 < ∞. The proof of the implication 2 ⇒ 1 is

similar.
1⇒ 3: It suffices to verify that for any k > 0,{

dQ
dP

∣∣∣ c0(Q) = EQ

[∫ T

0

f(qu) du

]
≤ k

}

is uniformly integrable. The Dunford-Pettis theorem then shows that the set
is weakly compact. Since f(x) ≥ a|x|2 − b, we get

k ≥ EQ

[∫ T

0

f(qu) du

]
≥ aEQ

[∫ T

0

|qu|2 du

]
− b.

Therefore,

1

2
EQ

[∫ T

0

|qu|2 du

]
≤ α,

where α = k+b
2a is a positive constant independent of Q. It follows from

1

2
EQ

[∫ T

0

|qu|2 du

]
= EQ

[∫ T

0

qu dW
Q
u +

1

2

∫ T

0

|qu|2 du

]

= EQ

[∫ T

0

qu dWu −
1

2

∫ T

0

|qu|2 du

]

= EQ

[
log

dQ
dP

]
that for any k > 0,{

dQ
dP

∣∣∣∣EQ

[∫ T

0

f(qu) du

]
≤ k

}
⊂
{
dQ
dP

∣∣∣∣EP

[
dQ
dP

log
dQ
dP

]
≤ α

}
.

From the de la Vallée Poussin theorem, we conclude that{
dQ
dP

∣∣∣∣EQ

[∫ T

0

f(qu) du

]
≤ k

}
is uniformly integrable.

3 ⇒ 1 This is proved by contradiction. Suppose lim inf |x|→∞
f(x)
|x|2 = 0, then

there exists a sequence (xn)n≥1 such that limn→∞ |xn| =∞ and limn→∞
f(xn)
|xn|2 =
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0. Put qn = xn1[0,δn∧T ] where δn = 1
/(√

f(xn)
|xn|2 |xn|

2
)
. Define the measure

Qn with the density process E(qn ·W ). It follows from

c0(Qn) = EQn

[∫ T

0

f(qn(u)) du

]
≤

√
f(xn)

|xn|2
→ 0,

that for all k > 0, there exists N > 0 such that the sequence {dQndP }n≥N ⊂
{dQdP | c0(Q) ≤ k}. Furthermore, we have∫ T

0

|qn|2(u) du =

(
1

/√
f(xn)

|xn|2

)
∧
(
x2
nT
)
→∞,

which shows that dQn
dP = E(qn ·W )T → 0, a.s. as n→∞. Thus {dQndP }n≥1 is

not uniformly integrable.
3 ⇔ 4: It is a conclusion induced by James’s theorem as shown by Jouini-
Schachermayer-Touzi’s work [84], see also chapter xxx.
4⇔ 5: It is obvious that item 5 implies item 4. For the proof of the inverse
implication, we use that item 4 is equivalent to item 2.

xxxx rewrite the next lines

In this case, by convexity, there exists a positive constant c such that
|g′(z)| ≤ c(|z|+1). For any ξ ∈ L∞(FT ), there is a measure Q� P such that

U0(ξ) = EQ[ξ+
∫ T

0
f(qu) du], then, by Proposition ??, Ut(ξ)+

∫ τ∧t
0

f(qu) du
is a Q-martingale where τ = inf{t ∈ [0, T ] | E(q · B)t = 0} ∧ T . It follows
from (??) that

dAt = (Ztqt − f(qt)) dt m⊗Q a.s. on [0, τ ],

where m is the Lebesgue measure on [0, T ]. Since dAt ≥ g(Zt) dt, m ⊗ Q
a.s., we get

g(Zt) = Ztqt − f(qt) m⊗Q a.s.,

which implies qt = g′(Zt) on [0, τ ]. We then have∫ τ

0

|qu|2 du =

∫ τ

0

(g′(Zu))2 du

≤ c2
∫ τ

0

(1 + |Zu|)2 du <∞,

which means P
{
dQ
dP = 0

}
= P

{∫ τ
0
|qu|2 du =∞

}
= 0. Hence Q ∼ P .
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5 ⇒ 6: For a given ξ ∈ L∞(FT ), if there exists a measure Q ∼ P

such that U0(ξ) = EQ

[
ξ +

∫ T
0
f(qu) du

]
, it follows from Lemma xxxx that

{Ut, Zt}0≤t≤T is a solution of the following BSDE:
dYt = g(zt) dt− ZtdBt; 0 ≤ t ≤ T ;

YT = ξ, ξ ∈ L∞(FT );

Y is bounded

where E
[∫ T

0
|zt|2 dt

]
< ∞ and E

[∫ T
0
g(zt) dt

]
< ∞. Since, as we have

proved above, condition 5 implies limz→∞
g(z)
|z|2 <∞, the BSDE has a unique

bounded solution according to Kobylanski [?].
6 ⇒ 2 We will prove this in the next section. See Theorem ??.
5 ⇒ 7 For any ξ ∈ L∞(FT ), there exists an equivalent measure Q ∼ P

such that U0(ξ) = EQ[ξ +
∫ T

0
f(qu) du] with dQ

dP = E(q ·B).
Suppose that U0(η) = U0(ξ) for some η ∈ L∞(FT ) with η ≤ ξ, P a.s.

Since

U0(η) ≤ EQ

[
η +

∫ T

0

f(qu) du

]
≤ EQ

[
ξ +

∫ T

0

f(qu) du

]
= U0(ξ),

we have EQ[ξ − η] = 0, hence ξ = η, Q a.s. Thus ξ = η, P a.s. and U0 is
strictly monotone.

7 ⇒ 2 See Remark xxx, Remark xxx or Example xxxx . 2

We have proved that in the case when the generator g is at most quadratic,
the dynamic utility function U is the solution of BSDE. In general, however,
we have the following inequality.

Proposition 75 For any ξ ∈ L∞(FT ), if BSDE (??) has a bounded solution
Y , then we have U(ξ) ≥ Y .

Proof Since Y is bounded, the following calculation is justified:

EQ

[
ξ +

∫ T

t

f(qu) du
∣∣∣Ft] = Yt + EQ

[∫ T

t

g(Zu) du−
∫ T

t

ZudBu +

∫ T

t

f(qu) du
∣∣∣Ft]

= Yt + EQ

[∫ T

t

[g(Zu)− Zuqu + f(qu)] du
∣∣∣Ft]

≥ Yt, for any Q ∼ P with EQ

[∫ T

0

f(qu) du

]
<∞.
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2

18.3 Backward SDEs with superquadratic growth.
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Chapter 19

Applications to mathematical finance

19.1 The relation with superhedging

We follow the notation of Delbaen and Schachermayer, 1994, [43]. So let
(Ω, (Ft)0≤t,P) be a filtered probability space, satisfying the usual assump-
tions, and let S : R+ × Ω → Rd be a càdlàg, locally bounded, adapted
process. We suppose that the set

Me = {Q | Q probability Q ∼ P , S is a Q local-martingale}

is non-empty. This is equivalent to the condition “NFLVR” or “no free lunch
with vanishing risk”. Since S is locally bounded, the closure of the set Me

is the closed convex set

Ma = {Q | Q probability Q� P , S is a Q local-martingale}.

Let W be the space

W = {(H · S)∞ | H · S bounded}.

It can be shown, see [43], that W is a weak* closed subspace of L∞ and
of course W⊥ = {f | E[f g] = 0 for all g ∈ W}. Clearly Ma is the
intersection of W⊥ with the set of probability measures. Let the acceptance
cone be defined using the set Ma, more precisely

A = {f | f ∈ L∞ for all Q ∈Ma we have EQ[f ] ≥ 0} .

This means that A is the acceptance cone of the utility function, m, con-
structed with Ma. This means that

m(ξ) = inf{EQ[ξ] | Q ∈Ma}.

The analysis in [43] shows that the set A can be described as

A = {f ∈ L∞ | there is H admissible such that f ≥ −(H · S)∞} .
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The difficulty in this description is that we cannot suppose that the admis-
sible strategy H is such that H · S remains bounded, i.e. defines an element
in W . In case the process S is continuous, things become easier. Indeed by
stopping the process H · S when it hits the level ‖f‖∞ allows to replace the
already admissible startegy H by a strategy such that the value process H ·S
is also bounded above. In that case we therefore have:

A = {f + h | f ∈W,h ≥ 0}.

In [43] we gave a counter-example when the process S is only locally bounded.
In this case the set W + L∞+ was not even norm closed. Furthermore the
norm closure of W + L∞+ was different from A.

From now on we suppose that the price process S is continuous.
In mathematical finance, m(ξ) is the minimum price that has to be

charged for a contingent claim ξ. Our theory also shows that

m(ξ) = sup{α | ξ − α ∈ A}
= sup{α | there is f ∈W,h ≥ 0, such that ξ − α = f + h}
= sup{α | there is f ∈W such that ξ ≥ α+ f}

Now suppose that an economic agent has sold the contingent claim ξ. This
means that his position is described by the random variable −ξ. The agent is
now interested in the smallest amount β so that −ξ+β is acceptable. In other
words he/she is looking for the number β = −m(−ξ). In economic terms
this is not necessarily the price of ξ that should be charged. It may happen
that the economic agent charges a price smaller that the amount −m(−ξ)
and that the rest is covered with own capital. In a real world situation, it
is also possible that the regulator will use another risk meaure (or utility
function) than the one we are presently investigating. The number −m(−ξ)
is denoted by p(ξ) and can be described as

p(ξ) = − sup{α | −ξ − α ∈ A}
= inf{−α | −ξ − α ∈ A}
= inf{β | −ξ + β ∈ A}
= inf{β | there is f ∈W,h ≥ 0, such that − ξ + β = f + h}
= inf{β | there is f ′ ∈W such that ξ ≤ β + f ′}

The number p(ξ) is called the superhedging price of ξ. If an investor would
have p(ξ) at his disposal, he would be able to find a strategy H so that H ·S
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is bounded and so that p(ξ) + (H · S)∞ ≥ ξ. This means that after having
sold ξ for the price p(ξ) he could, by cleverly trading, hedge out the risky
position −ξ. The final result would then be p(ξ)+(H ·S)∞−ξ ≥ 0. Because
p(ξ) = sup{EQ[ξ] | Q ∈ Me}, the quantity p(ξ) is also the maximum (or
better the supremum) price that can be charged for ξ. The minimum price
is simply m(ξ) = infQ∈Ma EQ[ξ]. No agent would be willing to sell ξ for less
than m(ξ) and no agent would be willing to buy ξ for more than p(ξ).

The mapping m : L∞ → R is an example of a time consistent Fatou
coherent utility function. Its scenario set is Ma.

xxxxx
From [38] we recall the following theorem.

Theorem 80 Suppose that the filtration F is continuous in the sense that
all the martingales are continuous. Then the following alternatives hold

1. Either Ma = Me and it is a singleton, i.e. the market is complete

2. or when the market is incomplete, the set Ma does not have extreme
points, hence it cannot be weakly compact.

This theorem has the following consequence

Theorem 81 Under the assumption that the filtration is continuous and the
market is incomplete we get that the coherent utility function m is nowhere
Gâteaux differentiable.

Proof. Differentiability at a point ξ ∈ L∞ means, see section xxx, that
the minimising measure µ ∈ ba is unique. However the Fatou property then
implies, see xxx, that µ ∈ Ma and that it is an exposed point. Hence µ
would be an extreme point in Ma. Since there are no extreme points in Ma,
m cannot be Gâteaux differentiable at ξ. 2

19.2 Relation with other utility functions

We keep the notation of the preceding section. This also includes that we
suppose the price process S to be continuous. We introduce a new coherent
utility function via its defining set of probability measures. We will suppose
that the new utility function, u, has the Fatou property. So let S be a closed
convex set defining the coherent utility fnction u. The corresponding risk
measure is denoted by ρ, i.e. ρ(ξ) = −u(ξ). We will deal with the case S
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is weakly compact. The more general case is much more difficult. We now
look at two special cases:

(a) We suppose that for all ξ we have u(ξ) ≥ m(ξ). This is equivalent to
ρ(η) ≤ p(η) for all η ∈ L∞. This requirement is, by the Hahn-Banach theo-
rem, equivalent to S ⊂Ma. The condition S ⊂Ma is equivalent to S ⊂W⊥.
Therefore u(ξ) = 0 for all ξ ∈ W . This means that something that can be
replicated does not require extra capital. In terms of risk measures it means
that the risk measure ρ is less severe than the superhedging requirement.

(b) If S∩Ma = ∅ then, by weak compactness of S, the Hahn Banach theorem
gives us an element ξ ∈ L∞ so that:

inf
Q∈S

EQ[ξ] > sup
Q∈Ma

EQ[ξ] .

This means that having sold a contingent claim, the position ξ is appreciated
by much more than p(ξ), but this number is the maximum price that the
position ξ is worth on the market. This seems to be an overestimation. We
leave it to the reader to find the interpretation of an element η such that

sup
Q∈S

EQ[η] < inf
Q∈Ma

EQ[η] .

We can push this analysis a little bit further. The hypothesis Ma ∩ S = ∅
is equivalent to W⊥ ∩ S = ∅. By the Hahn-Banach theorem there exists
ξ ∈ L∞ so that E[ξ f ] = 0 for all f ∈ W⊥ and infξ∈S EQ[ξ] > 0. But of
course this means ξ ∈ W⊥⊥ = W and hence there is a strategy H so that
(H · S) is bounded, (H · S)∞ = ξ and u(ξ) > 0. This would mean that a
position ξ can be completely hedged (by the strategy H) at no cost and the
controlling agent or supervisor allows to reduce the capital. From this we
deduce the following theorem.

Theorem 82 If S is a weakly compact convex set of probability measures
defining the coherent utility function u, then S ∩Ma 6= ∅ if and only if for
all ξ ∈W we have u(ξ) ≤ 0.

We leave it to the reader to rephrase this condition for the examples Sk, Sp,k
of section xxx. It leads to necessary and sufficient conditions for the exis-
tence of local martingale measures with bounded densities (or p-integrable
densities).
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19.3 The mixture of a coherent utility func-
tion with a financial market

In this section we will use two coherent utility functions. One is defined
through a convex closed set of probability measures S and is denoted by u.
The other one is defined by the set Ma of absolutely continuous risk neutral
measures of a continuous d-dimensional price process S. The economic agent
is confronted with the following situation. He has a future wealth described
by the bounded random variable ξ. The associated utility is then u(ξ). Since
he is able to make financial transactions he can improve his utility by adding
to ξ a random variable that is attainable at zero cost. If, as in the previous
sections, W denotes

W = {(H · S)∞ | H · S bounded},

the economic agent is interested in the quantity

ũ(ξ) = sup{u(ξ + η) | η ∈W}.

A little algebra allows us to change this expression into the convex con-
volution of u and m. Indeed, because for every η ∈ L∞ we have that
η −m(η) = Zη + hη where Zη ∈W and hη ≥ 0, we can write

(u2m)(ξ) = sup{u(ξ − η) +m(η) | η ∈ L∞}
= sup{u(ξ − η +m(η)) | η ∈ L∞}
= sup{u(ξ − Zη − hη) | η ∈ L∞}
= sup{u(ξ − Z) | Z ∈W}
= ũ(ξ).

It follows that ũ has the Fatou property as soon as S is weakly compact. See
the next section for a counter-example when S is not weakly compact.

19.4 A counterexample

We showed that ũ has the Fatou property when S is weakly compact. This
section will give a counterexample for the general case. The counterexample
has its own interest since it is related to correlation trading. The idea is to
hedge positions coming from one market with positions coming from another
correlated market. We will not work out the interpretation of the example.
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We invite the reader to make his/her philosophy about it. The example
uses some stochastic integration theory as well as some facts from Brownian
motion theory. The reader familiar with this theory can easily complete the
details. The reader not familiar with stochastic analysis should believe the
author.

There are two independent Brownian motions describing the source of
uncertainty. In other words the filtration is the natural filtration coming
from B = (B1, B2), where B is a standard 2-dimensional Brownian motion.
The time interval is restricted to [0, 1]. We suppose that there are two
markets. The first market trades the financial asset S1, the second market
trades the financial asset S2. We suppose that the measure P is risk neutral
(this to simplify notation). The dynamics of S = (S1, S2) is given by

dS1
t = dB1

t

dS2
t = dB1

t + εt dB
2
t .

here ε is a deterministic function, rapidly decreasing to zero as t → 1. We
can take εt = exp(− 1

1−t ). Of course the price processes Si are not positive,

but since we are mainly interested in stochastic integrals the processes Si can
easily be replaced by their stochastic exponentials. This only complicates the
notation and obscures the idea of the example. We denote by Ma

1 and Ma
2

the absolutely continuous probability measures that turn resp. S1 and S2

into a local martingale. The utility functions are denoted by resp. m1 and
m2. Both have the Fatou property. If E denotes the stochastic exponential
function, the sets Ma

1 and Ma
2 can be decribed as the closures of:

Me
1 = {E

(
H ·B2

)
1
|
∫ 1

0

H2
u du < +∞ a.s., H predictable and

E
[
E(H ·B2)1

]
= 1}

Me
2 = {E

(
(H1, H2) · (B1, B2)

)
1
|
∫ 1

0

H2
u du < +∞ a.s., H predictable,

E
[
E
(
(H1, H2) · (B1, B2)

)
1

]
= 1 and H1

t + εtH
2
t = 0}.

These sets are not relatively weakly compact (as we will see later). The
closures of these sets in the dual of L∞ are denoted by resp. Sba1 and Sba2 .
We will show that Ma

1 ∩Ma
2 = {P} but that Sba1 ∩ Sba2 6= {P}. According to

the results in section xxx this means that m12m2 does not have the Fatou
property.

That
Me

1 ∩Me
2 = {P}
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is fairly obvious. It follows from the fact that the couple (S1, S2) defines
a complete market. It can also be verified directly. If Q ∈ Ma

1 ∩ Ma
2 ,

then any non-trivial convex combination of Q and P is in Me
1 ∩ Me

2. If
E
(
(H1, H2) · (B1, B2)

)
1
∈Me

1∩Me
2, then necessarily we must have (because

it is in Me
1) that H1 = 0. But the requirement to be in Me

2 and εt > 0 (t <
1) then gives H2 = 0. Consequently we have that E

(
(H1, H2) · (B1, B2)

)
1

=
1. Now it is fairly trivial to see that Me

1 ∩Me
2 = {P} implies that also

Ma
1 ∩Ma

2 = {P}.

To see that
Sba1 ∩ Sba2 6= {P}

is less easy. Let us take the following sequence of stochastic exponentials.

Ln = E
(
Hn ·B2

)
,

where Hn = −(5/2)n1]1−2−n,1−2−(n+1)]. xxxx maybe 5/2 is not good enough
– check. This sequence is in Ma

1 . The sequence (Ln1 )n≥1 is equivalent to
the standard basis in `1 (see below). Therefore its adherent points all lie
in ba \ L1 (see below for a sketch of this result from functional analysis).
Now look at the sequence of densities E

(
(−εHn, Hn) · (B1, B2)

)
1
. This is a

sequence in Ma
2 . This sequence has the same adherent points as the sequence

E
(
Hn ·B2

)
1
. This is proved by calculating the L1−norm of their difference

‖E
(
Hn ·B2

)
1
− E

(
(−εHn, Hn) · (B1, B2)

)
1
‖1.

If we denote by Qn the measure (by the way in Ma
1) defined as dQn/dP =

E
(
Hn ·B2

)
1
, the above expression is simply

EQn
[∣∣E (−εHn ·B1

)
1
− 1
∣∣] .

Since under Qn the process B1 is still a Brownian motion and since all the
integrands are deterministic, we get that the expression is the same as

EP
[∣∣E (−εHn ·B1

)
1
− 1
∣∣] .

Since εHn tends to zero uniformly on [0, 1] × Ω, we get that the above
expression tends to zero. So the adherent points in ba of the sequences
E
(
(−εHn, Hn) · (B1, B2)

)
1

and E
(
Hn ·B2

)
1

are the same and consequently

the sets Sba1 and Sba2 have an intersection that is much bigger than {P}.
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Remark 97 Let B be a Brownian motion. Let q be predictable with |q| ≤ a.
We then have ‖E(q · B)1 − 1‖1 ≤ ‖E(q · B)1 − 1‖2 ≤

√
ea2 − 1. Hint: it is

easier to calculate the L2 norm. We calculate

E
[
(E(q ·B))

2
1

]
= E

[
exp (2(q ·B)1) exp(−

∫ 1

0

q2
u du)

]
= E

[
E((2q) ·B)1 exp

(∫ 1

0

q2
u du

)]
≤ exp(a2)E [E((2q) ·B)1] = ea

2

.

From this deduce that ‖E(q ·B)1− 1‖22 ≤ ea
2 − 1. This estimate can be used

to fill in the details above.

Remark 98 We still have to show that the sequence (Ln1 )n is equivalent to
the unit vector basis of `1. In other words we have to show the existence
of δ > 0 so that ‖

∑
n γnL

n
1‖1 ≥ δ

∑
n |γn|. We will only give a sketch,

the details are left as exercises. The first step is to show an inequality for
exponentials.

Lemma 45 If N is a standard normal random variable then for x > 0 we
have P[N ≥ x] ≤ 1

x
√

2π
exp(− 1

2x
2).

Proof. This inequality is standard and easily proved:

P[N ≥ x] =
1√
2π

∫ +∞

x

exp

(
−1

2
u2

)
du

≤ 1√
2π

∫ +∞

x

u

x
exp

(
−1

2
u2

)
du

=
1

x
√

2π
exp

(
−1

2
x2

)
.

2

Lemma 46 Let α > 0 and let N be a standard normal variable. Let ξ =
exp(αN − 1

2α
2) and let B = {ξ ≥ 1}. Then E[ξ] = 1, E[1B ξ] = 1 − P[B],

therefore E[1Bcξ] = P[B]. We also have that P[B] ≤ 2
α
√

2π
exp(− 1

8α
2).

Proof. That E[ξ] = 1 is obvious. If we define the measure Q as dQ = ξ dP,
then the random variable N , seen under the measure Q, is a normal random
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variable with standard deviation 1 but with mean EQ[N ] = α. (This can
be seen by calculating EQ[exp(i tN)] = EP[exp(i tN)ξ].) In other words
(Q ·N−1) is equal to (P · (N + α)−1). We now have

EP[1B ξ] = Q[B] = Q
[
αN − 1

2
α2 ≥ 0

]
= Q

[
N ≥ 1

2
α

]
= P

[
N + α ≥ 1

2
α

]
= P

[
N ≥ −1

2
α

]
= 1− P

[
N ≥ 1

2
α

]
= 1− P[B].

The inequality in the last line is proved as follows:

P[B] = P
[
αN − 1

2
α2 ≥ 0

]
= P

[
N ≥ 1

2
α

]
≤ 2

α
√

2π
exp

(
−1

8
α2

)
.

2

Each of the random variables is of the form Ln1 = exp(αnNn − 1
2α

2
n)

with αn =
√

( 5
2 )n2−(n+1) and where (Nn)n is an independent sequence of

standard normal random variables. Let Bn = {Ln1 ≥ 1} and let An =
Bc1 ∩ . . . Bcn−1 ∩Bn. The set An “almost” supports the random variable Ln1
whereas

∫
Ak
Ln1 dP is “small” for k 6= n. We leave the details to the reader

to check that this implies that the sequence (Ln1 )n is equivalent to the unit
vector base of `1. One can also use the following lemma.

Lemma 47 If (fn)n≥1 is a bounded sequence in L1 that is not uniformly
integrable, then there is a subsequence (fnk)k≥1 that is equivalent to the unit
vector base of `1.

Proof. This is standard. Here is a sketch. Since the sequence (fn)n≥1 is
not uniformly integrable, we can find ε > 0, a subsequence (to be completed
xxx) 2

Lemma 48 Let E be a Banach space and let F ⊂ E be a closed subspace
of E, isomorphic to the space `1. Let (yn)n≥1 be a sequence in F that cor-
responds to the unit vector base of `1. Let e∗∗ ∈ E∗∗ be a weakly adherent
point of the sequence (yn)n≥1. Then e∗∗ ∈ E∗∗ \ E.

Proof. Let T be an isomorphism between F and `1, so that T (yn) is the
unit vector base of `1. In case e∗∗ ∈ E, we would have that for every k the
point e∗∗ would be in the weak closure, i.e. σ(E,E∗), of the convex hull of
the sequence (yn)n≥k. By the Hahn-Banach theorem it is therefore in the



240 Chapter 19. Applications to mathematical finance

norm closure of these convex hulls. This would mean that there are convex
combinations zk of (yn)n≥k that would converge in norm to e∗∗. In particular
the sequence zk is a Cauchy sequence. This can be translated by T and it
would give us a sequence T (zk) that would be a Cauchy sequence in `1. But
this sequence – or at least a subsequence – is supported by disjoint sets of
coordinates. Such a situation is impossible. Therefore e∗∗ ∈ E∗∗ \ E. 2

19.5 Another example

The reader might ask what happens if we take two independent Brownian
motions and look at the example of the previous paragraph. More precisely
let the dynamics of S = (S1, S2) be given by

dS1
t = dB1

t

dS2
t = dB2

t .

Again the price processes Si are not positive, but since we are mainly inter-
ested in stochastic integrals the processes Si can easily be replaced by their
stochastic exponentials. For simplicity of the notation we assume that the
time interval is [0,+∞). We again denote by Ma

1 and Ma
2 the absolutely

continuous probability measures that turn resp. S1 and S2 into a local mar-
tingale. The utility functions are denoted by resp. m1 and m2. Both have
the Fatou property. If E denotes the stochastic exponential function, the sets
Ma

1 and Ma
2 can be decribed as the closures of:

Me
1 = {E

(
H ·B2

)
∞ |

∫ ∞
0

H2
u du < +∞ a.s., H predictable and

E
[
E(H ·B2)∞

]
= 1}

Me
2 = {E

(
H ·B1

)
∞ |

∫ ∞
0

H2
u du < +∞ a.s., H predictable and

E
[
E
(
H ·B1

)
∞

]
= 1}.

These sets are not relatively weakly compact. The closures of these sets in
the dual of L∞ are denoted by resp. Sba1 and Sba2 . The question is whether
m12m2 has the Fatou property. That

Me
1 ∩Me

2 = {P}

is fairly obvious. But what happens with Sba1 ∩ Sba2 ? The problem is equiv-
alent to an approximation property in L∞ as we shall explain now. Let us
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introduce

W1 = {(H ·B1)∞ | H predictable and (H ·B1) bounded}
W2 = {(H ·B2)∞ | H predictable and (H ·B2) bounded}.

Furthermore let us introduce the cones:

A1 = {f + g | f ∈W1 and 0 ≤ g ∈ L∞} = {h | EQ[h] ≥ 0 for all Q ∈Me
1}

A2 = {f + g | f ∈W2 and 0 ≤ g ∈ L∞} = {h | EQ[h] ≥ 0 for all Q ∈Me
2}.

We will prove, in a series of lemma’s and remarks, that

1. The set W1 + W2 is not norm-closed. The cone A1 + A2 is not norm
closed.

2. The norm closure of W1 +W2 is strictly contained in the set

L∞0 = {f ∈ L∞ | EP[f ] = 0}.

Of course the representation theorem for martingales shows that the
set W1 +W2 is weak∗ dense in L∞0 .

3. The norm closure of A1 +A2 = W1 +W2 + L∞+ contains the set L∞0 .

4. The preceding can be reformulated as follows. For ξ ∈ L∞0 and ε > 0
we have ξ + ε ∈W1 +W2 + L∞0 .

5. Sba1 ∩ Sba2 = {P}.

6. m12m2 = P.

7. A bounded hedging property: for ξ ∈ L∞ we have

EP[ξ] = inf {α | there are f ∈W1, g ∈W2 with ξ ≤ α+ f + g} .

The proof of these will be divided over a series of separate results. The
proofs of the first two statements are independent of the proof of the other
statements. To prove 1 and 2 we need some extra information on BMO
martingales.

Proposition 76 Let T = inf{t | |B1
t +B2

t | = 1}. The stopping time T has a
Laplace transform given by E[exp(−λ2T )] = 1/ cosh(λ). For s ∈ C, |<(s)| ≤
π/2 we have E

[
exp(s2T )

]
= 1/ cos(s).
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Proof. That B1
T and B2

T are unbounded is easily seen, we leave the
proof to the reader. The Laplace transform of T is found by standard
methods. Let us look at the martingale Mt = exp

(
λ(B1

t +B2
t )− λ2t

)
.

Then by symmetry the variable a = B1
T + B2

T has a distribution given by
P[a = 1] = P[a = −1] = 1/2. Moreover by symmetry, the variable a is
independent of T . Since for t ≤ T , Mt ≤ exp(|λ|) we can apply the stopping
time theorem and we get E

[
exp(λa− λ2T )

]
= 1. This immediately implies

E
[
exp(−λ2T )

]
= 1/ cosh(λ). Since cosh(z) is analytic around the origin and

different from 0 for |z| < π/2 we get for z complex and for |<(z)| < π/2 that
E
[
exp(z2T )

]
= 1/ cosh(iz). For s ∈ R, |s| < π/2 we then get E

[
exp(s2T )

]
=

1/ cos(s). Moreover we get that E
[
exp

(
(π/2)2T

)]
= +∞ as an application

of the monotone convergence theorem for s→ π/2. If |<(s)| = π/2 but s is
not real, we can proceed by a limit argument. 2

Proposition 77 The variable B1
T satisfies E[exp(αB1

T )] = +∞ for |α| ≥ π.
The random variable B1

T is in BMO but not in the closure of L∞ in BMO.

Proof. The two processes B1 +B2 and B1−B2 are independent processes.
Furthermore the stopping time T is defined through B1 + B2 and hence
independent of B1 − B2. Let us denote by G the σ−algebra generated by
the process B1 +B2. We then get, at least for λ small enough:

E[exp(2λB1
T )] = E

[
E
[
exp(λ(B1 −B2)T ) | G

]
exp(λ(B1 +B2)T )

]
= E

[
exp(λ2T ) exp(λa)

]
.

Since a and T are independent this gives

cosh(λ)E[exp(λ2T )] = cosh(λ)
1

cos(λ)
.

We get that E[exp(2λB1
T )] = cosh(λ)

cos(λ) for |λ| < π/2. For |λ| = π/2 we find

as an application of Beppo Levi’s theorem that E[exp(πB1
T )] = +∞. And of

course this implies the same inequality for |α| ≤ π.
The statement about BMO follows from BMO-theory where it is shown

that elements in the closure of L∞ in BMO necessarily have exponential
moments of all order. We do not give details since this is beyond the scope
of this book. 2

Proposition 78 The variable a defined above cannot be in the BMO−closure
of W1 +W2. Consequently the variable a cannot be in the L∞−norm-closure
of W1 +W2.
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Proof. Suppose that a would be in the closure of W1 +W2 for the BMO
topology. This means that there are fn ∈W1 and gn ∈W2 so that fn+gn →
a. It can be shown that this implies that fn → B1

T in BMO. Since B1
T is

not in the BMO closure of L∞ this is a contradiction. 2

Proposition 79 The set W1 +W2 is not norm closed.

Proof. Since W1 ∩W2 = {0} the closedness of W1 +W2 would imply – by
the closed graph theorem – that the projections W1 + W2 → Wi would be
continuous. Let us define Tn = inf{t | |B1

t | ≥ n} ∧ T where T is defined in
the previous proposition. Set an = E[a | FTn ] = B1

Tn
+ B2

Tn
. Then clearly

‖an‖∞ ≤ 1 but as easily seen ‖B1
Tn
‖∞ = n. This implies that the projections

W1 +W2 →Wi cannot be continuous. Therefore W1 +W2 is not closed. 2

Remark 99 This also means that there are sequences fn ∈W1 and gn ∈W2

so that ‖fn‖∞ = ‖gn‖∞ = 1 and such that ‖fn − gn‖∞ → 0. For instance

we can take fn =
B1
Tn

n and gn =
−B2

Tn

n .

Proposition 80 The set A1 +A2 is not norm closed.

Proof. If the set A1 +A2 would be norm closed then the set W1 +W2 =
{b | b ∈ A1 +A2 and E[b] = 0} would also be norm closed. 2

We now start the proof that L∞0 is in the norm closure of the set A1 +A2.
We will use the duality between L1 × L1 and L∞ × L∞. This allows us
to use the weak∗−closedness of the sets A1 and A2, in other words the
weak∗−closedness of the convex set A1 ×A2 in L∞ × L∞.

Theorem 83 Let Ln and Zn be uniformly integrable martingales. Suppose
that Ln = E(Hn ·B2) and Zn = E(Kn ·B1) for predictable processes Hn and
Kn. Then Ln ∈M1 and Zn ∈M1. If ‖Ln∞ − Zn∞‖1 → 0, then the sequences
(Ln∞)n and (Zn∞)n converge in L1−norm to 1.

Proof. Replacing L by L+1
2 and replacing Z by Z+1

2 does not change
the theorem (since P ∈ M1 ∩M2) and allows us to suppose that Ln∞ ≥ 1/2,
Zn∞ ≥ 1/2. Furthermore we only have to show that there is a subsequence
that fulfils the conclusion. So let us suppose that ‖Ln∞ − Zn∞‖1 ≤ 4−n.
We will show that the sequence Ln∞ converges to 1 and that it is uniformly
integrable. This will then prove the theorem. Let us first define the stopping
times

Tn = inf
{
t | Lnt ≥ 2n or Znt ≥ 2n or |Lnt − Znt | ≥ 2−n

}
.
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Clearly P[supt L
n
t ≥ 2n] ≤ 2−n and P[supt Z

n
t ≥ 2n] ≤ 2−n. Also we have

that P[supt |Lnt − Znt | ≥ 2−n] ≤ 2n4−n = 2−n. These inequalities follow
from Doob’s maximum inequality. As a consequence we have that P[Tn <
∞] ≤ 2−n+3. The Borel-Cantelli lemma now implies that for almost all
ω ∈ Ω : Tn(ω) =∞ for n big enough.

The central trick in the proof is that the processes LnZn are local martin-
gales. This is so because the bracket 〈Ln, Zn〉 = 0. Therefore we have that
(LnZn)Tn are bounded martingales. The following inequalities are trivial

1 = E
[
LnTnZ

n
Tn

]
≤ E

[
LnTn

(
LnTn + 2−n

)]
≤ E

[(
LnTn

)2]
+ 2−n,

and

1 = E
[
LnTnZ

n
Tn

]
≥ E

[
LnTn

(
LnTn − 2−n

)]
≥ E

[(
LnTn

)2]− 2−n.

It follows that E
[(
LnTn − 1

)2]
= E

[(
LnTn

)2] − 1 → 0. We therefore have

that the sequence (LnTn)n is uniformly integrable. But we also have that
supt≤Tn |L

n
t − 1| → 0 in probability. Since Tn becomes eventually equal to

∞, this implies that supt≥0 |Lnt − 1| → 0 in probability. We now turn to

the sequence
(
Ln∞
LnTn

)
n
. We have that these elements all have expected value

equal to 1 and since Ln∞ ≥ 1/2, the stationary converge of Tn to ∞, implies

that
Ln∞
LnTn
→ 1. Scheffé’s lemma then shows that

Ln∞
LnTn
→ 1 in L1 norm. This

implies that the sequence
(
Ln∞
LnTn

)
n

is uniformly integrable. We can now show

that the sequence Ln∞ is also uniformly integrable. This will complete the
proof of the theorem. So let ε > 0 and let δ > 0 be chosen so that ‖g‖∞ ≤ 1
and ‖g‖1 ≤ δ imply that for all n: ‖LnTng‖1 ≤ ε. Let η > 0 be so that

‖g‖∞ ≤ 1 and ‖g‖1 ≤ η imply that for all n: ‖ L
n
∞

LnTn
g‖1 ≤ δ. If A ∈ F∞ is

such that P[A] ≤ η we then have that g = E[
Ln∞
LnTn

1A | FTn ] satisfies ‖g‖∞ ≤ 1

and ‖g‖1 ≤ δ. Consequently for all n we have:

E[Ln∞1A] = E
[
LnTn

Ln∞
LnTn

1A

]
= E[LnTng] ≤ ε.

This shows that (Ln∞)n is uniformly integrable. 2

Remark 100 The previous result has a quantitative equivalent. The reader
can check that the theorem also follows from the following result in integra-
tion theory. The proof of this result is much more technical than the proof
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above and it can be skipped. An earlier version of this technical result gave an
estimate or order 1/6. It did not require the hypothesis that also

∫
Ω
g dP = 1

but for practical applications this is only a minor generalisation. The present
proof with the better exponent 1/2 was found by Jaixxx of Fudan University
Shanghai. He found this nice proof with the constant (2 +

√
2) which is up

to a factor 1/2 the constant obtained in the proof below.

Lemma 49 Let f, g be nonnegative functions defined on a probability space
(Ω,F ,P). Suppose that

∫
Ω
f dP =

∫
Ω
g dP = 1 and

∫
Ω
fg dP ≤ 1. Then the

following estimate holds:∫
Ω

|f − 1| dP ≤
√

2 + 2

2
‖f − g‖1/21 .

Proof. For simplicity of the notation let us write F = f − 1, G = g − 1.
Clearly

∫
F =

∫
G = 0 ≥

∫
FG. Now∫

{f≤g}
F 2 =

∫
{f≤g}

FG+

∫
{f≤g}

F (F −G).

Because F ≥ −1 and because on the set {f ≤ g} we have f−g = F −G ≤ 0,
this also implies∫

{f≤g}
F 2 ≤

∫
{f≤g}

FG+

∫
{f≤g}

|F −G| =
∫
{f≤g}

FG+
1

2
‖f − g‖1.

A similar inequality holds for F and G interchanged:∫
{f>g}

G2 ≤
∫
{f>g}

FG+

∫
{f>g}

|F −G| =
∫
{f>g}

FG+
1

2
‖f − g‖1.

If we sum these two inequalities we get∫
{f≤g}

F 2 +

∫
{f>g}

G2 ≤ ‖f − g‖1,

where we used that
∫
FG ≤ 0. This implies

∫
{f≤g}

|F |+
∫
{f>g}

|G| ≤
(∫

1{f≤g}F
2 + 1{f>g}G

2

)1/2

≤ ‖f − g‖1/21 .
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Since obviously
∫
{f>g} |F | ≤

∫
{f>g} |G|+

∫
{f>g} |F −G| we get that∫

Ω

|F | ≤ ‖f − g‖1/21 +
1

2
‖f − g‖1 ≤

(
1 +

√
1

2

)
‖f − g‖1/21 .

This ends the proof of the lemma. 2

Theorem 84 If b ∈ L∞0 then b is in the norm closure of A1 +A2. Conse-
quently the norm closure of A1 +A2 is equal to {f | E[f ] ≥ 0}.

Proof. As already observed above, the set

D = A1 ×A2.

is a convex, weak∗−closed subset of L∞ × L∞. Let ε > 0. For each n let us
define the weak∗−compact convex set

Cn = {(b+ ε− h, h) | ‖h‖∞ ≤ n}.

We will show that for some n, necessarily Cn ∩D 6= ∅. Suppose on the con-
trary that for all n we have Cn ∩D = ∅. Since the set Cn is weak∗−compact
this implies the existence of an element (φn1 , φ

n
2 ) ∈ L1 × L1 so that

sup{(φn1 , φn2 )(b+ ε− h, h) | ‖h‖∞ ≤ n} <
inf{(φn1 , φn2 )(f + k, g + k′) | f ∈W1, g ∈W2, k, k

′ ≥ 0}.

This necessarily implies that φn1 and φn2 are nonnegative and that φn1 (f) = 0
for all f ∈ W1. Similarly φn2 (g) = 0 for all g ∈ W2. Therefore a standard
normalisation allows us to suppose that φn1 ∈ M1 and φn2 ∈ M2. The above
inequality can then be rewritten as

E[φn1 (b+ ε)] + sup
‖h‖∞≤n

E[(φn2 − φn1 )h] < 0.

This implies that (1− ε)/n ≥ ‖φn1 − φn2‖1 → 0. The previous theorem then
shows that φn1 → 1 in L1. The above inequality finally reduces to

E[b+ ε] ≤ 0.

This is clearly a contradiction and hence Cn ∩D 6= ∅ for n big enough. The
definition of the sets Cn allows us to write this statement as follows. There
is h ∈ L∞ so that b+ ε− h ∈ A1 and h ∈ A2. This implies b+ ε ∈ A1 +A2

as desired. Since this is true for all ε > 0 we find that L∞0 is a subset of
the norm closure of A1 + A2. The last line of the theorem is an obvious
consequence. 2
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Remark 101 Using the technical lemma above it is possible to give a quan-
titative estimate in the sense that we can show that for given ε > 0, ‖b‖∞ ≤
1,E[b] = 0, there are functions f ∈ A1, g ∈ A2, ‖f‖∞, ‖g‖∞ ≤ M such that
‖b − (f + g)‖∞ ≤ ε. We leave it as an exercise in accounting to find the
explicit dependence between ε and M ≈ 6/ε2.

Proposition 81 For every ξ ∈ L∞ we have m12m2(ξ) = E[ξ].

Proof. Since the acceptance cone of m12m2 is equal to the norm closure
of the sum of both acceptance cones, i.e. the closure of A1 +A2, we get that
the acceptance cone of m12m2 equals the acceptance cone of the functional
E[.]. Consequently m12m2(ξ) = E[ξ]. 2

Remark 102 Since W1 + W2 is not norm dense in the set L∞0 , the Hahn-
Banach theorem allows us to find a nonzero element µ ∈ ba, µ 6= P such
that µ(f) = 0 for all f ∈ W1 + W2. However such elements will be signed
measures. Indeed the proposition above shows that the only finitely additive
probability measure µ ∈ ba annihilating the set W1 +W2, is necessarily equal
to P.
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Chapter 20

Utility Functions of a Process

Bellman’s principle, problem with open end

20.1 Definition of the Utility Process

Until now we worked with utility functions that are defined on a space of
random variables. In applications to finance, it is needed to define the utility
process of positions that are better described by stochastic processes. A basic
example is for instance that we look at a situation where the economic agent
has written an American option. Suppose that the payout process is given
by the stochastic process X. Since there is a possibility of early exercise and
since the exercise time cannot be controlled by the economic agent, he should
look at all possible future values of the form Xτ , where τ is a stopping time.
At time 0, it is therefore important to look at the quantity inf{u0(Xτ ) |
τ is a stopping time}. At a stopping time σ the economic agent will then
look at ess.inf{uσ(Xτ ) | σ ≤ τ and τ is a stopping time}. Of course this is
very informal and we need certain assumptions on the utility function and
on the stochastic processes involved. So let us fix the following notations

1. The time interval will be a closed interval [0, T ] and the filtration F
satisfies the usual assumption. We will see later that if the time interval
is an open end interval there are “surprises”.

2. u0 : L∞(Ω,FT ,P) → R is a fixed concave, monetary utility function.
In case u is time consistent, this gives a family of utility “operators”
uσ.

3. Using u0, for the moment only defined for random variables, we will
define the utility process for bounded càdlàg processes X, adapted to
the filtration.
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Theorem 85 If u0 is time consistent with associated utilities uσ (σ stopping
time), if X is a bounded, adapted, càdlàg process, then for each stopping time
σ, the random variable

Ψσ(X) = ess.inf {uσ(Xτ ) | σ ≤ τ and τ is a stopping time} ,

is well defined. Ψσ(X) is Fσ−measurable and bounded. There is a bounded,
càdlàg , adapted process V such that Vσ = Ψσ(X).

Proof Because X is right continuous we also have

Ψσ(X) = ess.inf {uσ(Xτ ) | σ < τ on {σ < T} and τ is a stopping time} .

This is easily seen. Fix ε > 0 and let σ′ = inf{t ≥ σ | |Xt −Xσ| ≥ ε}. For
any stopping time τ ≥ σ, we now have |Xτ −Xτ∨σ′ | ≤ ε. So replacing τ by
max(τ, σ′) only changes the outcome by at most ε. Since ε > 0 was arbitrary
and since σ′ > σ on {σ < T}, the statement follows.

The calculation of the essential infimum is done over a set of random
variables that forms a lattice. For each Q ∼ P with c0(Q) < ∞ and for
stopping times σ ≤ ν we therefore have that

Ψσ(X) ≤ EQ[Ψν(X) + αν(Q)− ασ(Q) | Fσ].

If σn ↓ σ is a decreasing sequence of stopping times, the above shows that
Ψσn(X) + ασn(Q)− ασ(Q) is an inverse submartingale. Since α(Q) is right
continuous (see xxx), ασn(Q)−ασ(Q) tends to zero. It follows that Ψσn(X)
converges almost surely to a random variable η, which is Fσ−measurable.
But the submartingale inequality also shows that η ≥ Ψσ(X). We will now
show that η ≤ Ψσ(X). Given ε > 0 there exists a stopping time τ > σ such
that uσ(Xτ ) ≤ Ψσ(X) + ε. In the same way as in chapter xxx, there then
exists a measure Q ∼ P such that uσ(Xτ ) + ε ≥ EQ[Xτ | Fσ] + cσ,τ (Q).
We find that Ψσ(X) + 2ε ≥ EQ[Xτ | Fσ] + cσ,τ (Q). For each n we have
σ ≤ σn ∧ τ ≤ τ and the cocycle property then implies

Ψσ(X) + 2ε ≥ EQ[Xτ | Fσ] + cσ,τ (Q)

≥ EQ [EQ[Xτ | Fσn∧τ ] | Fσ] + cσ,σn∧τ (Q) + EQ [cσn∧τ,τ (Q) | Fσ]

≥ EQ [EQ[Xτ | Fσn∧τ ] + cσn∧τ,τ (Q) | Fσ] + cσ,σn∧τ (Q)

≥ EQ[uσn∧τ (Xτ ) | Fσ] + cσ,σn∧τ (Q)

≥ EQ[uσn(Xτ )1τ≥σn | Fσ] + EQ[Xτ1τ<σn | Fσ] + cσ,σn∧τ (Q)

≥ EQ[Ψσn(X)1τ≥σn | Fσ] + EQ[Xτ1τ<σn | Fσ] + cσ,σn∧τ (Q).
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Since 1τ≥σn → 1 (because τ > σ on {σ < T}), the dominated convergence
theorem for conditional expectations shows that the first term converges to
η. The second and the third converge to 0. Since ε > 0 was arbitrary, this
yields Ψσ(X) ≥ η.

We have shown that for decreasing sequences of stopping times we always
have Ψσn(X)→ Ψσ(X). As in chapter xxx, this is enough to show that there
is a càdlàg version for the “process” Ψ(X). 2

20.2 The Relation with Bellman’s Principle

In this section we prove that time consistency is equivalent to the validity
of Bellman’s principle. The proof is almost the same as in [5] or in [41].
Especially in the case of Markov processes such a result can be of great
importance. We also suppose that F0 is trivial. For a bounded process X
and a stopping time σ we defined

Ψσ(X) = ess.inf{uσ(Xτ ) | τ ≥ σ}.

Of course σ, τ, . . . denote stopping times. We also recall that if σ is a stopping
time, the process σX is defined as σXs = 0 if s ≤ σ and σXs = Xs −Xσ if
s ≥ σ. The process Xσ is defined as Xσ

s = Xs if s ≤ σ and Xσ
s = Xσ if

s ≥ σ.

Theorem 86 Suppose that u0 is a relevant monetary Fatou utility function
defined on L∞. In case the time interval is closed from the right, say [0, T ],
with 0 ≤ T < +∞, the following two properties are equivalent

1. u0 is time consistent,

2. (Bellman’s principle) For every bounded càdlàg adapted process X and
every finite stopping time τ ≤ T , we have that

Ψ0(X) = Ψ0(Xτ + Ψτ (τX)1[[τ,T ]]).

Proof. We first show that Bellman’s principle implies time consistency.
For ξ ∈ L∞(FT ) we introduce the process X defined as Xu = ‖f‖∞ for
u < T and Xu = ξ for u ≥ T . The value Ψτ (X) then coincides with the
value uτ (ξ) and the Bellman principle gives the recursivity for u.
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Conversely let us show the Bellman principle. For a given stopping time
τ we have:

Ψ0(X) = inf
σ
u0(Xσ)

= inf
σ
u0(Xσ1σ≥τ +Xσ1σ<τ )

= inf
σ
u0 (uτ (Xσ)1σ≥τ +Xσ1σ<τ )

= inf
σ

inf
ν≥τ

u0 (uτ (Xν)1σ≥τ +Xσ1σ<τ )

= inf
σ
u0 (Ψτ (X)1σ≥τ +Xσ1σ<τ )

= inf
σ
u0 ((Ψ(τX) +Xτ ) 1σ≥τ +Xσ1σ<τ )

= Ψ0(Ψτ (τX)1[[τ,T ]] +Xτ )

We have used that {uτ (Xν) | ν ≥ τ} form a lattice and that u0 is Fatou.
The other steps are left as an exercise for the reader. 2

Remark 103 The time consistency always implies the Bellman principle,
even if the time interval is not closed. The trick to replace a random vari-
able by this special process is strange and one has the feeling that using
more “intelligent” methods one should be able to avoid this gimmick. The
following section shows that this is not the case

20.3 Counter-example

In this section we gave an example where the Bellman principle is valid, the
measure is coherent but the utility function is not time consistent. In the case
of coherent utility functions, time consistency is equivalent to the stability
of the scenario set S. Whether the Bellman principle implies the stability
property is a much more delicate problem. We will give two answers. In case
the set S is weakly compact in L1, the answer is yes. Afterwards we will give
a counter-example in the case where S is not weakly compact.

Proposition 82 Suppose that the time interval is R+, suppose that the Bell-
man principle holds and suppose that the set S is weakly compact in L1, then
the set S is m–stable.

Proof. We will adapt the proof of theorem 86 above. The idea is to
show that u0(ξ) = u0(uτ (ξ)) for every finite stopping time τ and for every
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bounded function ξ that is F∞−measurable. Since S is weakly compact the
set

{Zσ | σ a finite stopping time, Z ∈ S}

is still relatively weakly compact. If we replace ξ by the sequence ξn =
EP[ξ | Fn] then weak-compactness implies that uniformly for Q ∈ S, ξn
approximates ξ in L1(Q). It follows that u0(ξn), uτ (ξn), u0(uτ (ξn)) tend to
u0(ξ),uτ (ξ), u0(uτ (ξ)). It is therefore sufficient to prove the statement for
functions that are Fn−measurable. This is done exactly in the same way as
in the proof of the theorem. 2

It is clear that a counter-example will have to use the fact that the set
S is big. For notational ease we will work on the time interval [0, 1[. This
is equivalent to the time interval R+ (simply use a time transform such as
u = t/(t+1)). The use of the time interval [0, 1[ allows us to use a Brownian
Motion W defined for all times t < ∞ even if we only need the part before
time 1. Finite stopping times will now be replaced by stopping times ν < 1.
The filtration we will use is the usual filtration coming from the process W .
The set S is defined as

{Z1 | EP[Z1] = 1, Z1 ≥ 0,EP[Z1 sign(W1)] = 0} .

It is clear that this set is not m–stable. This can be seen using the definition
of m–stability but it will also follow from the results below. We first give the
sequence of lemma’s used to prove the Bellman principle and then we will
give the details of the proofs of these lemma’s. Since the Bellman principle
will be valid, Ψ0 will in fact be equivalent to the risk adjusted value

Ψ0(X) = ess.inf{ inf
0≤t<1

Xt}.

Hence we cannot have m-stability. Indeed u0(ξ) = 0 for ξ = sign(W1).

Lemma 50 Let ν < 1 be a stopping time. The set

{Zν | Z ∈ S}

is dense in the set of all Fν measurable densities of probabilities absolutely
continuous with respect to P.

Lemma 51 Bellman’s principle is valid.

Lemma 52 Let Q be the set of all density processes Z such that
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1. Z1 = E(q ·W )1 > 0, EP[Z1] = 1

2.
∫ 1

0
qu du = 0 a.s. .

We then have that Q ⊂ S. For τ < 1 a stopping time, the set

{Zτ | Z ∈ Q}

is dense in the set of all probability densities on the σ−algebra Fτ .

Lemma 53 Let ν < 1 be a stopping time and let q be a predictable process,
defined on [0, 1]× Ω so that

1. qu = 0 for u ≤ ν

2. q is measurable for the σ−algebra R×Fν where R is the Borel σ−algebra
on [0, 1],

3. a.s.
∫ 1

ν
q2
u du <∞,

then EP [E(q ·W )1] = 1 and therefore E(q ·W )1 is the density of a probability
measure, equivalent to P. Moreover we have

EP [E(q ·W )1 | Fν ] = 1.

Proof of Lemma 53 This is almost trivial. Seen from time ν the process
q is deterministic. Here are the details. For each n we put

An =

{∫ 1

ν

q2
u du ≤ n

}
.

ClearlyAn ∈ Fν and the stochastic exponential E(1Anq·W ) satisfies Novikov’s
condition. Therefore we have

EP [1AnE(q ·W )1] = EP [1AnE(1Anq ·W )1] = P[An].

We now apply Beppo Levi’s theorem to conclude that EP [E(q ·W )1] = 1
as desired. The statement on the conditional expectation follows from the
fact that since EP [E(q ·W )1] = 1, E(q ·W ) must be a uniformly integrable
martingale. 2

Proof of Lemma 52 and 50 Let Zτ be the density of a probability
measure equivalent to P on Fτ . The process Z is supposed to be defined up
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to time τ . We will now extend it in such a way that it defines an element
Z ∈ Q. The process Z is a stochastic exponential and therefore Zτ can be
written as Zτ = E(q ·W )τ . The predictable process q is defined up to time
τ . Since Zτ > 0 we must have that

∫ τ
0
q2
u du <∞ and therefore we also have

that r =
∫ τ

0
qu du is defined. If we now put for u > τ

qu =
−r

1− τ

we have that q1]]τ,1[[ satisfies the assumptions of lemma 53. We therefore
have that

EP [E(q ·W )1] = EP [EP [E(q ·W )1 | Fτ ]] = EP[1] = 1.

Moreover
∫ 1

0
qu du =

∫ τ
0
qu du +

∫ 1

τ
qu du = r + (−r) = 0. Also, we have

that
∫ 1

0
q2
u du =

∫ τ
0
q2
u du+

∫ 1

τ
q2
u du =

∫ τ
0
q2
u du+ r2/(1− τ) <∞. Therefore

Z1 > 0 and Z ∈ Q. This proves the density part of the lemma. We now
prove that Q ⊂ S. For an element Q ∈ Q we have that W is a Brownian
motion with drift qu du. Therefore the variable Wt is, under the measure Q,
equal to a gaussian random variable +

∫ t
0
qu du. For t = 1 this simply means

that under Q, the random variable W1 is still a symmetric gaussian random
variable with L2(Q) norm 1. In particular we have that EQ [sign(W1)] = 0,
i.e. Q ∈ S. Lemma 50 immediately follows from Lemma 52. 2

Proof of lemma 51 Let us suppose that X is càdlàg , bounded adapted.
Furthermore let us fix a stopping time ν < 1. It is clear that

Ψν(X) = Xν + Ψν(νX).

So we have to calculate Ψν(νX). By definition we have

Ψν(νX) = ess.infν≤σ<1 ess.infQ∈Se {EQ[νXσ | Fν ]} .

Because of lemma 8.3 this can also be written as

Ψν(νX) = ess.infν≤σ<1 ess.infQ∼P {EQ[νXσ | Fν ]} .

Indeed the set
{Zσ | Z ∈ Se}

is dense in the set

{Zσ | Z a nonnegative uniformly integrable martingale with EP[Z1] = 1} .
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This means that the Ψ−operator is the same when calculated with the set
S as with the set of all probability measures that are absolutely continuous
with respect to P. The latter set is stable and therefore the Ψ−operator
satisfies Bellman’s inequality. 2

We end this analysis with the following

Corollary 23 The m–stable hull of the set Q is the set of all probability
measures that are absolutely continuous with respect to P.

Remark 104 That the set S is not m–stable can also be seen from the
criteria in section xxx. The calculations are of course similar than the ones
above but it might be of pedagogical interest to give the details. Let us have
a look at the variable ξ = sign(W1). Because of the definition of S, we have
that ξ ∈ A. Let τ be a stopping time 0 ≤ τ < 1. We will show that uτ (ξ) /∈
Aτ . According to theorem xxx, this is a contradiction to the m–stability of S.
The set Aτ is the set of all Fτ−measurable elements η such that for all Z ∈ S
we have EP[ηZ] = EP[ηZτ ] ≥ 0. But lemma 50 then implies that necessarily
η ≥ 0. Hence Aτ = L∞+ (Fτ ). Now let us calculate uτ (ξ). To do so, let us
define the function p : R→ [−1,+1] by the relation p(Wτ ) = EP[ξ | Fτ ]. Take
now dQ

dP = Z1 = E(q ·W )1 ∈ S, implying that W1 has the same distribution

under P as under Q. Clearly we have that Wt −
∫ t

0
qu du is a Q−Brownian

motion and therefore EQ[ξ | Fτ ] = p
(
Wτ −

∫ τ
0
qu du

)
. Therefore uτ (ξ) ≤

infn p
(
Wτ −

∫ τ
0
ndu

)
= p (Wτ − nτ) = −1. This is sufficient to guarantee

that uτ (ξ) /∈ Aτ .
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