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Abstract

For applications in finance, we study the stochastic differential equa-
tion dXs = (2βXs + δs)ds + g(Xs)dBs with β negative, g a continuous
function vanishing at zero which satisfies a Hölder condition and δ a mea-
surable and adapted stochastic process such that

∫ t
0
δudu < ∞ for all

t ∈ IR+.
In this paper, we recall that there exists a unique strong solution. We
give a construction of this solution and we prove that it is non-negative.
The method we use is based on Yamada’s (1978).
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1 Introduction.

Suppose that a probability space (Ω,F , (Ft)t≥0, IP ) is given and that a Brown-
ian motion (Bt)t≥0 is defined on it. The filtration (Ft)t≥0 is supposed to satisfy
the usual hypothesis.

For applications in finance, we are interested in the existence and construction
of a unique strong solution of the stochastic differential equation

dXs = (2βXs + δs)ds+ g(Xs)dBs ∀s ∈ IR+ (1)

with β ≤ 0 and g a function vanishing at zero which satisfies the Hölder condition

|g(x)− g(y)| ≤ b
√
|x− y|,

and δ : Ω × IR+ → IR+ is a measurable and adapted stochastic process such
that

∫ t
0
δudu <∞ for all t ∈ IR+.

The stochastic differential equation (1) is a particular case of the Doléans-Dade
and Protter’s equation

Xt = Kt +
∫ t

0

fs (·, X·(·)) dZs (2)

where the driving process Z is a m-dimensional semimartingale, the coefficient
f is a predictable process which depends on the path of X, and K is an adapted
process with right-continuous paths with left-hand limits.

In our case, (Zs)s≥0 is the two-dimensional semimartingale (s,Bs)s≥0; Ks =∫ s
0
δudu and fs only depends on Xs, namely fs (·, X·(·)) = (2βXs, g(Xs)).

Jacod and Memin (1980) have studied the existence and uniqueness of solutions
of the Doléans-Dade and Protter’s equation by introducing extensions of the
given probability space. If C(IR+, IR) denotes the space of continuous sample
paths, Cs the canonical σ-field and C = (Cs)s≥0, then we take

Ω = Ω× C(IR+, IR), F = F ⊗ C, F t =
⋂
s>t

(Fs ⊗ Cs) .

Jacod and Memin have proved that on this space (Ω,F), there exists a prob-
ability measure IP such that X̃ is a solution on Ω, which means that X̃ is
F-adapted, that Z is a semimartingale on (Ω,F , (F t)t≥0, IP ) and that if f(X̃)
is defined by (ω, ω′, t) ; f(X̃)t(ω, ω′) = ft(ω, X̃(ω, ω′)), then one has f(X̃) ∈
L(Z; Ω, (F t)t≥0, IP ) and X̃ = K + f(X̃) · Z.
This solution-measure is strong if there exists a solution-process X on the
space (Ω,F , (FIP )t≥0, IP ) such that IP = IP ◦ ϕ−1 with ϕ : Ω → Ω defined
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by ϕ(ω) = (ω,X(ω)).

Jacod and Memin found that the classical theorem of Yamada-Watanabe still
holds in this more general situation. As pathwise uniqueness is easily shown as
in Karatzas-Shreve (1988) on page 291 and Revuz-Yor (1991) on page 360, it is
known that the stochastic differential equation (1) has a unique strong solution
as soon as δ is a measurable and adapted process such that

∫ t
0
δudu <∞ for all

t ∈ IR+.

We will construct a solution by the method of finite differences on the proba-
bility space (Ω,F , (FIPt )t≥0, IP ). We will show that the approximating solution
converges in L1-supnorm towards the solution of the stochastic differential equa-
tion (1) and we check that this solution remains positive. We remark that the
convergence also holds in the H1-norm.

The method we use is the same as Yamada’s (1978). However, in his paper the
proof is restricted to the case

dXs = b(s,Xs)ds+ σ(s,Xs)dBs

with b only depending on the time and the process itself. Our presentation is
on some instances easier than Yamada’s because we can benefit from the fact
that β ≤ 0. The case of a random drift satisfying a Lipschitz condition can
be handled in the same way but the technicalities become more involved. For
applications in finance, we limit ourselves to the case at hand.

Afterwards, we extend the result to stochastic differential equations with vola-
tility defined by |g(x)| = k xα for 1/2 ≤ α ≤ 1.

2 Proof of the existence by construction.

First, we prove that for a fixed time T , there exists a solution on the interval
[[0, T ]]. We start with the extra assumption that

∫ T
0
δu du ≤ K. Afterwards, we

generalize the result by using the uniqueness theorem and a localisation tech-
nique.

We remark that trivially
∫ T

0
IE[δu] du ≤ K. Let us define a function

γ : IR+ −→ IR+ : γ(ν) = sup
0≤s≤t≤s+ν≤T

∫ t

s

IE[δu]du.

Since the function u 7→ IE[δu] is integrable over the interval [0, T ], we have that
γ(ν) converges to zero as ν tends to zero.
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We divide the interval [0, T ] in order to apply a discretisation technique, known
as the Euler scheme. For each n ≥ 1, we take a subdivision

0 = tn0 < tn1 < · · · < tnN = T

and denote this net by 4n. For notational use, we drop the index n.

The mesh of the net is defined as ‖4n‖ = sup1≤k≤N |tk − tk−1|. We are working
with a sequence of nets (4n)n such that the meshes are tending to zero. There
is no need to suppose that 4n ⊂ 4n+1.

The solution of the stochastic differential equation turns out to be non-negative
but the approximations we will need may take negative values. We therefore
put g′(x) = g(x) if x ≥ 0 and g′(x) = 0 if x ≤ 0. Remark that also g′ satisfies

|g′(x)− g′(y)| ≤ b
√
|x− y|.

If we are working with the net4n, we look atX4n(t), which we denote byXn(t).
We put Xn(0) = x0. For t taken between two netpoints, e.g. tk ≤ t ≤ tk+1,
k = 0, · · · , N − 1, we define Xn(t) as follows:

Xn(t) = Xn(tk) + 2βXn(tk)(t− tk) +
∫ t

tk

δudu+ g′(Xn(tk))(Bt −Btk).

We remark that if we denote ηn(t) = tk for tk ≤ t < tk+1, then the terms
telescope and we may write:

Xn(t) = x0 +
∫ t

0

2βXn (ηn(u)) du+
∫ t

0

δudu+
∫ t

0

g′ (Xn (ηn(u))) dBu.

Since Xn(0) = x0, Xn(0) is bounded in L2. By induction it is easy to show that
for all t ∈ [0, T ], Xn(t) is bounded in L2.

We now prove that there exists an explicit bound, independent of n and t, for
IE [ |Xn(ηn(t))| ] with t such that tk ≤ t ≤ tk+1:

IE [ |Xn(ηn(t))| ]

≤ x0 + |2β|
∫ t

0

IE [ |Xn(ηn(u))| ] du

+
∫ t

0

IE[δu]du+ IE

[ ∣∣∣∣∫ tk

0

g′ (Xn(ηn(u))) dBu

∣∣∣∣ ] .
Since the L2-norm exceeds the L1-norm, we find by stochastic calculus and by
the hypothesis that g′(x) ≤ b√x ≤ b(1 + x):

IE [|Xn(ηn(t))|] ≤
(
x0 +

∫ t

0

IE[δu]du+ b

)
+(|2β|+ b)

∫ t

0

IE [|Xn(ηn(u))|] du.
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By Gronwall’s inequality, we find that

IE [ |Xn(ηn(t))| ] ≤
(
x0 +

∫ t

0

IE[δu]du+ b

)
e(|2β|+b)t = Gt ≤ GT .

This upperbound is independent of n and t.

Moreover, we can find a bound for the norm ‖Xn(t)−Xn(ηn(t))‖1:

IE [ |Xn(t)−Xn(ηn(t))| ] ≤ |2β|GT ‖ 4n ‖+ γ(‖ 4n ‖) + b
√
GT
√
‖ 4n ‖.

Let us denote the right-hand side by HT (n). This bound is independent of t
and tends to zero for n tending to infinity.

We will use these intermediate results to prove that (Xn)n≥1 is a Cauchy se-
quence in L1

C([0,T ]) = {f : Ω → C([0, T ]) | f is Bochner integrable}, with
C([0, T ]) the space of continuous functions from [0, T ] to IR. We will indeed
show that if n and n′ tend to infinity:

IE

[
sup

0≤t≤T
|Xn(t)−Xn′(t)|

]
−→ 0.

The method we use is the same as Yamada’s. We introduce a sequence of func-
tions ϕm(u), m = 1, 2, · · · ∈ C2 ((−∞,∞)) tending to |u| in an appropriate
manner.

First, we search for a sequence of numbers 1 = a0 > a1 > · · · > am > 0 such
that ∫ a0

a1

du

b u
= 1, · · · ,

∫ am−1

am

du

b u
= m.

Obviously am −→ 0 for m going to infinity.
We define ϕm(u), m = 1, 2, · · · by ϕm(u) = Φm(|u|) with Φm(u) defined on
[0,∞), Φm ∈ C2 ([0,∞)) and Φm(0) = 0 such that:

• Φ”m(u) =

 0 0 ≤ u ≤ am
between 0 and 2

mub am < u < am−1

0 u ≥ am−1

• ∫ am−1

am
Φ”m(u) du = 1

• Φ”m(u) a continuous function.

If we integrate Φ”m(u), we obtain:

Φ′m(u) =

 0 0 ≤ u ≤ am
between 0 and 1 am < u < am−1

1 u ≥ am−1
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Φ is then defined as the integral of Φ′.

Remark that |u|−am−1 ≤ ϕm(u). Consequently, we have that |Xn(t)−Xn′(t)| ≤
am−1 + ϕm (Xn(t)−Xn′(t)) . We use this property to estimate the L1-norm
‖Xn(t)−Xn′(t)‖1.

By Itô’s lemma we obtain as far as the integrals exist (which will be proved
below):

IE [ϕm (Xn(t)−Xn′(t))]

= IE

[∫ t

0

ϕ′m (Xn(u)−Xn′(u)) 2β (Xn(ηn(u))−Xn′(ηn′(u))) du
]

+IE
[∫ t

0

ϕ′m (Xn(u)−Xn′(u)) (g′ (Xn(ηn(u)))− g′ (Xn′(ηn′(u)))) dBu

]
+

1
2
IE

[∫ t

0

ϕ”m (Xn(u)−Xn′(u)) (g′ (Xn(ηn(u)))− g′ (Xn′(ηn′(u))))2
du

]
.

Let us investigate the first term. Since |ϕ′m| ≤ 1 a.e. and IE [ |Xn(ηn(u))| ]
is bounded independent of n and t, the integral exists. Using the facts that
|ϕ′m| ≤ 1 and that ϕ is decreasing for x ≤ 0 and increasing for x ≥ 0, we find
that

IE

[
2β
∫ t

0

ϕ′m (Xn(u)−Xn′(u)) (Xn(ηn(u))−Xn′(ηn′(u))) du
]

≤ |2β|
∫ t

0

IE [ |Xn(ηn(u))−Xn(u)| ] du+ |2β|
∫ t

0

IE [ |Xn′(u)−Xn′(ηn′(u))| ] du
≤ |2β|T HT (n) + |2β|T HT (n′).

We now treat the second term. Calculating the square of the L2-norm, it is easy
to prove that(∫ t

0

ϕ′m (Xn(u)−Xn′(u)) (g′ (Xn(ηn(u)))− g′ (Xn′(ηn′(u)))) dBu

)
t≥0

is a martingale, bounded in L2. Therefore the second term equals zero.

It remains to look at the last term. The integral exists since ϕ”m(u) ≤ 2
m |u| b

and supu |ϕ”m(u)| ≤ 2
mam b . Furthermore,

1
2
IE

[∫ t

0

ϕ”m (Xn(u)−Xn′(u)) (g′ (Xn(ηn(u)))− g′ (Xn′(ηn′(u))))2
du

]
≤ 3

2
IE

[∫ t

0

2
m |Xn(u)−Xn′(u)| bb

2 |Xn(u)−Xn′(u)| du
]
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+
3
2
‖ϕ”m‖b2IE

[∫ t

0

(|(Xn(ηn(u))−Xn(u)|+ |(Xn′(ηn′(u))−Xn′(u)|) du
]

≤ 3T b
m

+
3
2
‖ϕ”m‖ b2T HT (n) +

3
2
‖ϕ”m‖ b2T HT (n′).

For given ε, let m be such that 0 < am−1 < ε
3 and 3T b

m < ε
3 . For this

fixed m, ‖ϕ”m‖ is known to be bounded. So, we can look for a n0 such that
(HT (n) +HT (n′)) (3

2‖ϕ”m‖b2 + |2β|)T < ε
3 for all n, n′ ≥ n0 and for all t ≤ T .

Summarizing, there exists a n0 such that for all n, n′ ≥ n0 and for all t ≤ T
IE [ |Xn(t)−Xn′(t)| ] ≤ am−1 + IE [ϕm(Xn(t)−Xn′(t))] < ε.

We completed the proof that (Xn)n≥1 is a Cauchy sequence in L1([0, T ] × Ω).
Since this space is complete, there is a process X in L1([0, T ]× Ω) such that

lim
n→∞Xn(t, ω) = X(t, ω)

Obviously, we also obtain in L1

lim
n→∞Xn(ηn(t), ω) = X(t, ω).

Thus, there exists a subsequence, still denoted by n, such that limn→∞Xn(t, ω) =
X(t, ω) and limn→∞Xn(ηn(t), ω) = X(t, ω) a.e. for the measure du× dIP .

We now proceed with the proof and try to estimate IE
[
sup0≤t≤T |Xn(t)−Xn′(t)|

]
for n and n′ tending to infinity (along the chosen subsequence):

IE

[
sup

0≤t≤T
|Xn(t)−Xn′(t)|

]
≤ |2β|

∫ T

0

IE [|Xn(ηn(u))−X(u)|] du+|2β|
∫ T

0

IE [|X(u)−Xn′(ηn′(u))|] du

+
∥∥∥∥ sup

0≤t≤T

∣∣∣∣∫ t

0

g′ (Xn(ηn(u)))− g′ (Xn′(ηn′(u))) dBu

∣∣∣∣ ∥∥∥∥
2

.

By the previous results, the first two terms clearly tend to zero for n and
n′ tending to infinity. By the martingale inequality and the hypothesis that
g′(x) ≤ b√x, this is also true in case of the last term.

This completes the proof that (Xn)n≥1 is a Cauchy sequence in L1
C([0,T ]). Since

L1
C([0,T ]) is complete and since the norm is finer than the L1([0, T ] × Ω) norm,

the sequence converges to a process du× dIP a.e. equal to X and therefore still
denoted by X. Thus Xn(t) is a.e. uniformly convergent on [0,T] and

lim
n→∞ IE

[
sup

0≤t≤T
|Xn(t)−X(t)|

]
= 0.
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We will now show that

X(t) = X0 +
∫ t

0

δu du+
∫ t

0

2βXu du+
∫ t

0

g′(Xu)dBu.

Indeed,

IE

[
sup

0≤t≤T

∣∣∣∣X(t)−X0 −
∫ t

0

δu du−
∫ t

0

2βXu du−
∫ t

0

g′(Xu)dBu

∣∣∣∣]
= IE

[
sup

0≤t≤T

∣∣∣∣X(t)−Xn(t) +
∫ t

0

2β(Xn(ηn(u))−Xu)du

+
∫ t

0

(g′(Xn(ηn(u)))− g′(Xu)) dBu

∣∣∣∣ ]
and the result follows by the triangular inequality and the previous calculations.

We now prove that X(t) is a non-negative process. Therefore, we introduce
stopping-times:

τ1 = inf{t | Xt < −ε} ∧ T
σ1 = σ1

1 ∧ σ2
1 ∧ T

with σ1
1 = inf{t | Xt < −2ε}

and σ2
1 = inf{t > τ1 | Xt = 0}

Trivially τ1 < σ1 ≤ T . Let us define the set A = {infu≤T Xu < −2ε}. On
this set, σ2

1 < σ1
1 ≤ T a.e., since if σ1

1 < σ2
1 , then σ1 = σ1

1 and consequently
Xσ1 −Xτ1 = −ε < 0. But on the other hand,

Xσ1 −Xτ1 =
∫ σ1

τ1

δu du+
∫ σ1

τ1

2βXu du ≥ 0.

We conclude that on A, Xσ1 = 0.
Let us define some more stopping-times:

τ2 = inf{t > σ1 | Xt < −ε} ∧ T
σ2 = σ1

2 ∧ σ2
2 ∧ T

with σ1
2 = inf{t | Xt < −2ε}

and σ2
2 = inf{t > τ2 | Xt = 0}

Analogously on A, τ1 < σ1 < τ2 < σ2 ≤ T and Xσ2 = 0. Therefore, we can
repeat this reasoning and conclude that on the set A, there exists a strict in-
creasing sequence of stopping-times:τ1 < σ1 < · · · < τn < σn < · · · ≤ T.
Since all stopping-times are smaller than T , this sequence converges to a limit
µ. All subsequences have to converge to the same limit µ. Thus (τn)n ↑ µ and
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(σn)n ↑ µ. But for all n, Xτn = −ε and Xσn = 0 on A. Consequently IP [A] = 0
or equivalently IP [infu≤T Xu < −2ε] = 0. Since this is true for all ε > 0, we
have proved that IP [infu≤T Xu < 0] = 0.

Because X(t) is a non-negative process, we can replace g′ by g:

X(t) = X0 +
∫ t

0

δu du+
∫ t

0

2βXu du+
∫ t

0

g(Xu)dBu.

We have proved that there exists a solution of the stochastic differential equation
(1) on the stochastic interval [[0, T ]] under the assumption that

∫ T
0
δudu ≤ K.

Let us now look at the general case with the local assumption
∫ T

0
δu du <∞ a.e..

We define the sequence (σn)n≥1 by σn = inf{t | ∫ t
0
δu du ≥ n} ∧ T . We denote

δu11[[0,σn]] by δ(n)
u . Since

∫ T
0
δ

(n)
u du ≤ K, the stochastic differential equation

dX(n)
s =

(
2βX(n)

s + δ(n)
s

)
+ g(X(n)

s )dBs

has a unique solution X(n) on [[0, σn]]. But on [[0, σn]], all X(k), k ≥ n are equal
by the uniqueness of the solution of the stochastic differential equation (1). Since⋃

[[0, σn]] ⊃ [[0, T ]], the result holds under the local assumption
∫ T

0
δu du <∞.

By the same reasoning, we find that on each interval [[0, l]] with l > 0, there exists
a solution X(l). By uniqueness, the solutions (X(l))l>0 have to be extensions of
each other.

q.e.d.

Remark: The approximating solution converges in the H1-norm towards the
solution of the stochastic differential equation.
Indeed, let us recall from Protter (1990) that for a continuous semimartingale
Z with Z0 = 0, the H1-norm is defined by:

‖Z‖H1 = ‖ [N,N ]1/2∞ +
∫ ∞

0

|dAs| ‖L1

where Z = N + A is the decomposition of Z in its martingale part N and its
predictable part A.
If we take for Z the difference Xn−Xn′ (as defined in the proof of the theorem),
then one easily shows that (Xn)n≥1 is a Cauchy sequence in the space of contin-
uous semimartingales with the H1-norm, which is complete. Since the H1-norm
is stronger than the L1-supnorm (also denoted as the S1-norm), (Xn)n≥1 con-
verges also in the H1-norm towards X, the solution of the stochastic differential
equation.
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Remark: We can extend the result to stochastic differential equations with
volatility defined by |g(x)| = kxα for 1

2 ≤ α ≤ 1. We define the sequence
(σh)h≥1 by σh = inf{t | X(h)

t ≥ h}.The stochastic differential equation

dX(h)
s = (2βX(h)

s + δs)ds+ gh(X(h)
s )dBs

with gh(x) = kxα for x ≤ h and gh(x) = khα for x ≥ h has a unique solution on
the stochastic interval [[0, σh]] since the function gh satisfies the Hölder condition
|gh(x)− gh(y)| ≤ bh√x− y.
But on [[0, σh]] all solutions X(m),m ≥ h have to be the same by uniqueness.
Since one can easily show that IP

[
sup0≤t≤T X

(h)
t ≥ h

]
converges to zero for h

going to infinity,
⋃

[[0, σh]]=[[0,∞). Thus also in this case, there exists a unique
strong solution on IR+ × Ω.
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