LECTURE 4

Exercise. Use the Haudichody Decomposition Thom to prove the clamification of coupact nurtaus.

Exercise. Pelabe surgery on a (K-1)-sphere and hounder attachment of a K-hawke

§ HANDLE CALCULUS See Wall § 5.

Cor of Ishy. - Isotopy Lemma - If $e_i: S^{k-1} D^{n-k} \to \partial N$ are isotopic i=1,2.

Then $N \cup e_i h^k$ are diffeomorphic i=1,2.

- Unknot Lemma — If $N:=D^n \cup_{e} h^{\kappa}$ and $A:=e|_{S^{\kappa,0}}: \stackrel{\mathcal{E}}{S^{\kappa,0}} \partial D^n$ bounds a dime, $A(S^{\kappa-1})=\partial \Delta^{\kappa}$, then N is a $D^{n-\kappa}$ bundle over a smooth manifold homeomorphic to S^n .

proof. Push the interior of \triangle into \mathbb{D}^n , so $\triangle' \in \mathbb{D}^n$, $\partial \triangle' = A(S^{k-1})$. Then \mathbb{D}^n can be viewed as a tub notion $\mathcal{V}_{\Delta}: \Delta' \times \mathbb{D}^{n-k} \stackrel{\cong}{\to} \mathbb{D}^n$. Then: $\mathcal{N} = \mathbb{D}^n \cup_{\varphi} \mathcal{L}^k \stackrel{\cong}{\simeq} (\Delta' \times \mathbb{D}^{n-k}) \stackrel{\cup}{\circ}_{S^{k}} \mathcal{D}^{n-k} \stackrel{\vee}{\to} \varphi$ Now, the projections $\mathbb{D}^k \times \mathbb{D}^{n-k} \longrightarrow \mathbb{D}^k$ slue together along $(\partial \mathbb{D}^k)_* D^{n-k}$ to a well-defined map $N \longrightarrow (\mathbb{D}^k \cup_A \mathbb{D}^k)$ which is a fibre bundle with fibre \mathbb{D}^{n-k} . The Zenna below

Let. For a diffeomorphism $A: S^{r} \to L$ Let ne the smooth manifold $S(A) := D^{r} \vee_{A} D^{r}$.

Lemma. S(A) is always homeomorphic to S^k .

proof. Define a homeomorphism $\mathbb{D}^k \cup_A \mathbb{D}^k \xrightarrow{id \cup \overline{A}} \mathbb{D}^k \cup_{id \in E^k} \mathbb{D}^k = \mathbb{S}^k$ where $\overline{A}: \mathbb{D}^k \to \mathbb{D}^k$, $\overline{A}(r,v) = (r,A(v))$ is a homeomorphism extensing A radially. \square

Note: S(A) is not diffeomorphic to S in general. It is called a "twisted sphere".

Smale's h-cobordimm Thm \Rightarrow Every exotic sphere of drn ≥ 5 is a tuinted sphere.

Exercise. A twisted ophere $S(A) = D^k \cup_A D^k$ is diffeomorphic to S^k if and only if $A: S^{k-1} \longrightarrow S^{k-1}$ extends to a diffeomorphism $D^k \longrightarrow D^k$.

Note: The Ununot Lemma is not true of $\Delta \subseteq \mathbb{D}^n$ instead of $\Delta \subseteq \partial \mathbb{D}^n$. The condition $\Delta \subseteq \partial \mathbb{D}^n$ is equivalent to A being "ununotted" whereas $\Delta \subseteq \mathbb{D}^n$ is equivalent to A being "slice". A is isotopic to a small sphere in a chart)

Cor. If $A:S^{k-1} \rightarrow N$ bounds a dim $A(S^{k-1}) = \partial \Delta^k$, Then $N_{U_{Y}}h^{k} \cong N_{H}E$ where $E \rightarrow S(A)$ is a D^{n-k} -bundle.

- Upride Down Zauma - For every handle decomposition of (W, 2, W, 2, W) there to Wall 5.3.4 au "upride-down" decomposition of (W, 2, W, 2, W) with handles of index n-k attached along the belt spheres of k-haudles of the original decomposition.

proof. FACT: Every handle decomposition corresponds to a Morre function, call it h. Then - h yields a decomposition of the upside-down cobordisms. We just observe that turning a K-haudle upride-down turns its belt region into the attactions region.

- Reordering Lemma - If Kel then $(N \cup_{e_1} h_1^k) \cup_{e_2} h_2^k \cong (N \cup_{e_2}^* h_2^k) \cup_{e_2} h_1^k$ Wall 5.2.1 for some isotypic attacking map $e_2^* \cong e_2$, with $im e_2 \in \partial N$, and et has the name image as en

proof. Denote $A_2 := the$ attaching ophere of h_2 , $B_4 := the$ belt sphere of h_1 .

Thm [Thum] If $A: M \longrightarrow N$ a smooth map and $B \subseteq N$ a compact nubmanifold then there is an ambient isotropy of N, taking A to A' such that A' AB. Moreover, the isotopy can be assumed to be the identity outside of any open nobal of B.

Aromung tuis, we have A_2 in B i.e. dA_2 (TS*1) + dB(TS*1) = $Ta(Nuh.)_*$ tur every a_1b o.t. $A_2(a) = B(b)$. However, mice

 $\dim B_1 + \dim A_2 = n - \ell - 1 + \kappa - 1 = (n - 1) + (\kappa - \ell) - 1 < n - 1 = \dim \partial (N \cup h_1)$ we must have $A_2' \cap B = \emptyset$. We can isotype further, so that $A_2'' \leq \partial N$ (i.e. the left region) by the Ambraut Sotopy Extension Thus we have $\Psi_2''(S_{\times}^{K-1}D^{N-K}) \leq \partial N$. Thus, the two houses can be attached in any order (or simultaneously). \Box

metch proof of Thim's Thui:

Firstly, find a tubular nobld UB of B contained in the given open not U=B. Then apply to $E = U_B \rightarrow B$ the following:

Lew. If $f: M \to E$ is annooth and $E \xrightarrow{\pi} N$ a smooth vertex bundle, then there exist a section $s: N \rightarrow E$ must that f + s. Thus, there is an obvious isotopy from B to $s(B) \subseteq U_B \subseteq U$ and we can extend it by Id on N.V.

To prove the Lemma, we Muhre-Sard Thim to get the result for trivial buildes, and extend to all bundles using that all velour bundles have stable inverses. I. Example. n=3, k=l=1

- Cancellation Lemma - If $A_2 \wedge B_1 = \{p\}$ then $(N \cup_{e_1} h_1^k) \cup_{e_2} h_2^{k+1} \cong N$.

Wall 5.4.3
Yosmsui 7.2
We pay that he and he are in a geometrically caucaling position.
Or he goes over the geometrically once.

proof. Since A_2 and B_1 interneut transversely, and $\mathcal{V}_{B} \in \mathcal{N}_{V,B_1}$ can be identified with the belt region $D^* \ni \partial D^{-*} \in \partial h_1^*$, we can assume Az nohi = Dxx lpl (the fibre of PBENUM, at PEB,)

Then by for of Unknot Lemma for $N':=N\cup_{e}h_{1}^{k}$ and $A:=A_{1}$ and $\Delta:=A_{2}\cap\partial N$

 $(N_{v_1}h_1)_{v_2}h_2 \cong (N_{H}E)_{v_2}h_2 \cong N_{H}(E_{v_2}h_2) \cong N_{H}D^2 \cong N.$ amile imezedE

Note: We can reverse the argument to show that a cancelling pair can be added.