LECTURE 5

- Remove o-handles Lemma- (Cor of Cancellation unove 0-haudies Zeinma - (Cor of Caucellation)
H W is connected, then any haudie decomp.of (W,2W,2, can be modified to one in which either there are no o-handles (if $\partial_o W_+ \mathscr{B}$) CECTURE 5

or collectives Jeurna - (Gorof Cauculletton)

4 W is connected, freen any hauble decomp of (W,2W,2W)

an Ge modified to one in which either there are no o-handles (if 2W=p).

Then it is smoothly trivial,

4 2W+p

 $proof.$ H $\partial_{0}W+\phi$ then for any 0 -handle h^{o} of W there must be a 1-handle h^{o} .
that attaches both to h° and 2 W; otherwise, are in cancelling position : Au n Bu = lpt? ao un can remove both. \mathcal{J}_t $\partial_s\mathcal{W}$ = ϕ , first attach one 0-haudle aud then apply the care $\partial_s\mathcal{W}$ + ϕ .

- Remove n-handles Lemmaunove n-haudies Zeinima –
H W is connected , then any haudie decomp.of (W,2W,2, gt in is connected, then any nacional accomplist (vv, anv, a,nv)
can be modified to one in which either there are no n-bandles (if ∂W_{\neq} p) H W is connected, then any haudic decomp of (W,2W,2W)
au Ge modified to one in utricu either there are no n-handles (if 2W≠B)
or there is precisely one n-haudic (if 2W= &). Step 2. Put haudies with algebraically cancelling proof. Turn the *hauste de*commonition upside down aud appy - Remove o-haustes *Jeuu*a- co $\mathbb N$ ow recall: $\begin{array}{ccc} \mathbb R & \mathbb N \mathbb A(\mathbb N) \end{array}$ x H_x(\widetilde{W})
 x H_x(\widetilde{W})),
 x Wh(W). a While Slides

Any simply connected h-cobordinar $(W, \partial_{0}W, \partial_{1}W)$ with d m $W \geq 6$ is trivial. In the case $\pi_a W \cong \pi_a (S_i W)$ is not trivial, In the case $\pi_{\lambda}W \cong \pi_{\lambda}(\partial_iW)$ is not trivial,
we need to additionally assume $\partial_iW \hookrightarrow W$ are goingle hornotopy eq. $\begin{aligned} \mathbb{R}_{means} \otimes \mathbb{W} &\hookrightarrow \mathbb{W}$ are homotogy equivalences.
In the case $\pi_n \mathbb{W} \cong \pi_n (3 \mathbb{W})$ is not trivial, $\mathbb{W} \hookrightarrow \mathbb{W}$ are gimple hornotogy equivalences to additionally arrivine $\partial_i \mathbb{W} \hookrightarrow \mathbb{W}$ are gi This is meanures by an invariant called the Whitehead torsion.
Fluch will be explained later. The matrix of the Whitehead torsion.

& S-COBORDISM THEOREM S S-COBORDISM THEO
W) ney Thm[Smale 1961] - s-cobordina Theorem -If $(W, \partial_{\theta} W, \partial_{\theta} W)$ is an s-cobordinum with dom $W > 6$, (W.∂W.∂,W) is au s-as6ordinuu witu dnnW > 6,
m it is amoothly triVial,
i.e. there is a diffeomorpluinu (W.∂,W.∂,W)≌(∂,W×[o,i],∂,W×|o},∂,W×{i}). i.e. there is a diffeomorphism. (W,2N,2N)≅(2W×To.i.7.2W×Iof.2W×Iof.2W×Inh).
Haat attaches 6Ha to h° aus 2W; otherwine, W would be disconnected for the Medical of Dilogle. Picu a houndle decomponition of (W,2W,2N).
(as hau Γ_{E} Step 1. - Normal Form Jeunna-For every h-cobordinm of dimemion $n \geq 6$ and any $2 \leq \ell \leq n-3$ there is a handle decomposition of the form using: Haudle Trading Zemma dyn×lo Jncu leuma) No 0- and n-handle
 $\leq \ell \leq n-3$
 $\binom{n}{\ell}$ ℓ_{ℓ} $\binom{Q_{\ell+1}}{P_{\ell}}$ ℓ_{ℓ}
 ℓ_{ℓ}
 ℓ_{ℓ} ℓ_{ℓ} ℓ_{ℓ} ℓ_{ℓ} ung : k baubles into algebraically auucling position:
s:
Hx (W,QW;Z) is computed by the Morse chain complex
& Hx (W,QW;Z) = 0 since 20W < W is a homol \mathbb{C}) is comparison by the <u>consecution</u> ρ m α $\partial_{o}W \longrightarrow W$ is a homotopy equivalence $W_6(W, \partial_0 W) = 0$ $\Omega_{\text{on}}(k) \longrightarrow \text{on}$ is a simple $k.e.$ $dmW \geqslant 6$
Courried x While $3.800 = 0$ amic $3.00 < 0.0$ is a m
& Houstle slides
 $5.$ Caucel $\bigcup_{i=1}^{r_e} \ell_i^{\ell_i}$ whis: Whitney Trick Jennes where the international cancelling
geometrically cancelling.

Notational: Given a haudle decomposition of
$$
(W, \partial_{0}W, \partial_{4}W)
$$
 let $W^{\leq k} = \partial_{0}W \cup \sigma_{f}$ index $\leq k$.
Then $W^{\leq k}$ is a cobordima from $\partial_{0}W^{\leq k} = \partial_{0}W$ to $\partial_{4}W^{\leq k}$.

$$
\frac{d\ell}{d\mu} = \frac{\text{Norm} \text{ cum coupling}}{\text{Given a lcaudile decomposition of } h_{i}^{k} \text{ over } \mathbb{Z} \text{ as follows: } \text{From } \frac{d\ell}{d\mu} \text{ over } \mathbb{Z} \text{ as follows: } \text{From } \frac{d\ell}{d\mu} \text{ over } \mathbb{Z} \text{ as follows: } \text{for } 0 \leq k \leq n \text{ for } \frac{C\mu}{k} := \mathbb{Z} \left\{ \frac{H^{k}, \ldots, H^{k}}{H^{k}, \ldots, H^{k}} \right\} \text{ (the free at } \mathfrak{p} \text{ on } \mathfrak{r}_{k} \text{ generates)} \text{ and } \frac{\delta \mu}{\mu} \cdot \frac{C\mu}{C\mu} - \frac{C\mu}{C\mu} \text{ over } \mathbb{Z} \text{ as follows: } \frac{1}{\mu} \left(\frac{H^{k}}{d\mu} \right) := \sum_{k=1}^{\infty} \frac{1}{k} \left(\frac{H^{k}}{d\mu} \cdot \frac{H^{k}}{d\mu} \right) \text{ and } \frac{\delta \mu}{\mu} \cdot \frac{H^{k}}{d\mu} \text{ over } \mathbb{Z} \text{ as follows: } \frac{1}{\mu} \left(\frac{H^{k}}{d\mu} \cdot \frac{H^{k}}{d\mu} \right) := \sum_{k=1}^{\infty} \frac{1}{k} \left(\frac{H^{k}}{d\mu} \cdot \frac{H^{k}}{d\mu} \right) \text{ and } \frac{H^{k}}{d\mu} \text{ over } \mathbb{Z} \text{ is } \frac{1}{\mu} \left(\frac{H^{k}}{d\mu} \cdot \frac{H^{k}}{d\mu} \right) \text{ and } \frac{H^{k}}{d\mu} \text{ over } \mathbb{Z} \text{ is } \frac{1}{\mu} \left(\frac{H^{k}}{d\mu} \cdot \frac{H^{k}}{d\mu} \right) = \sum_{k=1}^{\infty} \frac{1}{k} \left(\frac{H^{k}}{d\mu} \cdot \frac{H^{k}}{d\mu} \right) \text{ and } \frac{H^{k}}{d\mu} \text{ over } \mathbb{Z} \text{ is } \frac{1}{\mu} \left(\frac{H^{k}}
$$

$$
\begin{array}{c}\n\text{Example.} \\
\hline\n\text{Example.} \\
\hline\n\text{Example
$$

Note: We fixed an onemation on \mathbb{R}^k for all $k \gg o$, so also on \mathbb{D}^k and $S^{k-1} = \partial \mathbb{D}^k$ aus tuns on the core, att and belt spheres of the K-handle $h^k \cong \mathbb{D}^s \times \mathbb{D}^{n-k}$ Note: For $ve\in C_{\kappa}^{\mu}$ we can write $S_{\kappa}^{\mu}(v)=\pm\frac{u}{\kappa}\vee\varphi_{\kappa}$ $r_{\kappa^{\kappa}}r_{\kappa+1}$ -matrix $\pm\frac{u}{\kappa}=\left(\partial_{\kappa}^{\mu}(H_{i}^{\kappa})\right)_{u_{i}\in\mathfrak{c}_{\kappa}}$

Thm. This defines a chain complex whose humology is $H_*(C^{\mu}_*, \delta^{\mu}_*) \cong H_*(W, \mathfrak{z}, W; \mathbb{Z})$.

proof. Recall that for a CW-comyplex X with x-xreleton
$$
X^{\leq k} \leq X
$$
, $H_*(X, X^{\leq o}; \mathbb{Z})$ can be computed as homology of (C^w_*, S^w_*) defined by C^w_* := $H_*(X^{\leq k}, X^{\leq k-1}; \mathbb{Z}) \cong$ free atetraum x -cells and $S^{\leq w}_*$: $H_*(X^{\leq k}, X^{\leq k}) \cong H_{k-1}(X^{\leq k-1} \times X^{\leq k-1}; \mathbb{Z})$. \n\nAssume. Collqaying haudles to cores in a deformation refrautrino of M on α CW complex X. \n\nLet $f_i: C^{\mu}_*(W, \partial_s W) \longrightarrow C^{\leq W}_k(X, X^{(o)})$ and H_i^k to the cell $C_i^k :=$ the ave of h_i^k .

Thus in decay an information for all
$$
\kappa
$$
 to the just need to the cut that differentials agree,
\ni.e. $f_{\kappa-1}$ ($\delta_{\kappa}^{U}(H_{\kappa}^{k})$) = $\delta_{\kappa}^{CU} (f_{\kappa}(H_{\kappa}^{k}))$
\n $\sum_{i=1}^{m} L(A_{i}^{k} \wedge B_{i}^{k}) \cdot f_{\kappa-1}(H_{i}^{k})$
\n $\sum_{i=1}^{m} L(A_{i}^{k} \wedge B_{i}^{k}) \cdot f_{\kappa-1}(H_{i}^{k})$
\n $\sum_{i=1}^{m} L(A_{i}^{k} \wedge B_{i}^{k}) \cdot f_{\kappa-1}(H_{i}^{k})$
\n $\sum_{i=1}^{m} \sum_{i=1}^{m} \phi_{i}^{U}(C_{i}^{k})$
\n $\sum_{i=1}^{m} \sum_{i=1}^{m} f_{i}^{U}(C_{i}^{k})$
\n $\sum_{i=1}^{m} \sum_{i=1}^{m} f_{i}^{U}(C_{i}^{k})$
\n $\sum_{i=1}^{m} f_{i}^{U}(C_{i}^{k}) = \sum_{i=1}$

Thm - Esuivaniaut Morre chan complex -The Z[T]-cham complex $(C_{*}^{\mathcal{U}}, \delta_{*}^{\mathcal{U}})$ defined $\mathcal{L}_{\mathcal{Y}}$: $C_{\kappa}^{\mathcal{U}} := \mathbb{Z} \setminus qH_{i}^{\kappa}$: $g \in \pi, 1 \in \{ \in \pi_{\kappa} \}$
 $\delta_{\kappa}^{\mathcal{U}} (gH_{i}^{\kappa}) = \sum_{\mathcal{Y} \in \pi, 1 \in \{ \mathcal{Z} \} \in \pi} \pm (g \tilde{A}_{i}^{\kappa} \wedge g^{\prime}$ computes $H_*(\widetilde{W},\widetilde{\partial W};\mathbb{Z})\cong H_*(W, \partial_s W;\mathbb{Z})$ [TT]). proof. Analogously to the preceding proof. When $f_{\kappa} \colon C_{\kappa}^{\widetilde{\mu}}(W,2W) \longrightarrow C_{\kappa}^{cw}(\widetilde{X},\widetilde{aX})$
g $H_{\kappa}^{\kappa} \longmapsto$ g $\tilde{c}_{\kappa}^{\kappa}$ \mathbf{D}