LECTURE 8

Zumma. Jui can be modified to the identity matrix. Id remin by the moves linted Celow, if
and only if all the remaining handles can be put into alg. cancelling position.
MOVES: 1° interchange rows: $(\equiv) \iff (\equiv)$
2° add rows: () ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
3° (de) stabilize : $(\equiv) \iff (\equiv_1)$
4° multiply a row by $g \in \pi$ (or $-g$) : (\equiv) $\leftrightarrow \sim$ ($=$)
proof. Show that each move on matrices can be realised by a move on handles. Exercise. E
def. The Whitehead group Wh(π) is the set of escuivalence classes under moves 1°-4° of invertible matrices of arbitrary size with cutrics in $\mathbb{Z}[\pi]$ with group structure $\mathcal{T} + \mathcal{T}' = (\mathcal{T}, \mathcal{G})$. Note: Equivalently, Wh(π):= $GL(\mathbb{Z}\pi)^{ab}$ $\langle [q], [-q] : g \in \pi \rangle$
where $GL(R) := \operatorname{colim}_{n \to \infty} GL_n(R)$ for a ring R,
and at denotes allowingtron $(K_1(R) = GL(R)^4)$ Excutually $(I_1h) = 0$ since $\mathbb{Z}(I_1h) - \mathbb{Z}$ has Suchdama alposition
Wh $(\pi) = 0$ for $\pi = $ free alclican group [barn-Heller-Swam '64]
$Wh(\mathbb{Z}_{5\mathbb{Z}}) = \mathbb{Z}$ generated by the unit $t + t^{-1} \in GL_1$. $Ginjerture. Wh(\pi) = 0$ if π is tomion-free.
def. Whitehead torsion of $(W, \partial_0 W, \partial_1 W)$ is $T_W := [J^{u_1}] \in Wh(\pi, W)$.
Remark. $\overline{tw}=0$ iff $\partial_i W \longrightarrow W$ are simple homotopy equivalences.
Prives the name to the scobordismi Thin.

Step3.

We now want to use Whitney mores to turn an algebraically cancelling pair of handles, into a geometrically cancelling pair. - Whitney Trick Zemma -Jf drm N = 5 and $\tilde{A}: S^n \rightarrow N$, $\tilde{B}: S^{n_2} \rightarrow N$ have $\tilde{T}(\tilde{A} \wedge \tilde{B}) = +1$. then there is an isotry of \tilde{A} such that $\tilde{A} \wedge \tilde{B} = dpt^3$. $(n_1+n_2=n=dmN) = 5$ proof. Having $\tilde{T}(\tilde{A} \wedge \tilde{B}) = \sum_{p \in A \wedge B} \epsilon_p q_p = +1$ $= (\epsilon_p q_p + \epsilon_2 q_2) + \ldots + \epsilon_r q_r$

implies that we can find pairs $\rho, 2 \in A \wedge B$ and that $\varepsilon_2 q_2 = -\varepsilon_p q_p \Rightarrow \exists$ Whitney circle $\varepsilon_1 \cdot \varepsilon_2^{-1}$ through ρ and 2, which is null homotopic in NSince $N_i \leq n-3$ $i=1,2 \Rightarrow \pi_1 (N \cdot (A \cup B)) \cong \pi_n N \implies \varepsilon_1 \varepsilon_2^{-1} \cong *$ in $N \cdot A \cup B$ $\Rightarrow \varepsilon_1^* \varepsilon_2^{-1}$ bounds an immersed dime in $N \cdot A \cup B$. Since $n \geq 5 \implies \varepsilon_1 \varepsilon_2^{-1}$ bounds an embedded dime $W: D^2 \longrightarrow N$ with int $W \wedge A \cup B = \emptyset$ Since $\varepsilon_2 = -\varepsilon_p$ and $n > 4 \implies W$ can be framed.

→ We can perform the Whitney more to remove p.g. Continue with other pairs, until previsely are intersection p with Epgp = +1 left. □

Corollaries.

Thm - Top Poincaré Gnjelhure in dm≥G-H N is a smooth homotopy n-sphere aud n≥6, Then N is homeomorphic to Sn (i.c. N is au exotic n-sphere).

proof. Remove two small dimes from N. The resulting manifold is a simply connected h-cobordimn from S^{n-1} to itself, so by the h-cobordimn theorem: $(N \cdot D_n^n \cup D_2^n, \partial D_2^n) \cong (\partial D_1^n \times [0, 1], \partial D_n^n \times (0^1, \partial D_n^n \times 11^1))$ We can glue back D_n^n by $i\partial_{\partial D_1^n}$, but D_2^n has to be glued back by a homeomorphism extending the diffeomorphism $\partial D_2^n \to \partial D_1^n \times 11^1$ (we the radial extrumin, see (ecture 3)

Thm [Diff Schoeuflies Conjecture in drn ≥ 6] $J_{f} K: S^{n-1} \longrightarrow S^n$ is a smooth ecubedding curd $n \geq 6$, then the donure of each component of $S^n \cdot K(S^{n-1})$ is diffeomorphic to \mathbb{D}^n .

proof. Since K has a tubular neighbourhood, we see that the clonure of each component of Sⁿ·K(S^{n·1}) is a smooth manifold with boundary S^{n·1} It is simply connected by Seifert-van-Kampen Theorem. Thus, it we remove from it a small dime we get a simply connected b-cobordime By the b-cobordime Theorem this is diffeomorphic to S^{h-1}·[0,1], and we can put base the dime by the identity to get a diffeomorphism to TDⁿ. \Box . Lemma. PC =) SC proof. observe: Subjectives B⁴ is contractifie, has $\Im = S^3$. So B J B⁴ is a humotryly S⁴. So B J B⁴ is claudard S⁴ laut Padais implies B⁴ is isobytic to northern hemisphere So B is isotrylic to the southern hemisphere.

IN FACT :