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Intersection Numbers and the Statement
of the Disc EmbeddingTheorem

mark powell and arunima ray

We carefully state the disc embedding theorem, defining each term that appears therein.
In particular, we carefully describe intersection numbers.

11.1 Immersions

Let M be a smooth 4-manifold. Recall that the disc embedding theorem begins with
smooth immersions and yields topological, flat embeddings. As usual, an immersion is a
local embedding and everymap froma surface to a smooth4-manifold can be approximated
by an immersion. That is, every such function is homotopic to an immersion, which can
be chosen to be arbitrarily close to the original function. If the boundary of the surface
is already immersed, we may assume that it is fixed by the homotopy. We may assume,
moreover, that the immersion is in general position; that is, all intersections are transversal,
lie in the interior, and are at most double points. Henceforth, we replace maps of surfaces
in 4-manifolds by immersions and assume without comment that immersed surfaces have
transverse double point intersections, all of which lie in the interior, and no triple points.

A framed immersion of an orientable surface F in M is an immersion of F in M such
that the normal bundle of the image of F is trivial. Framed immersions can also be defined
topologically, as follows [FQ90, Section 1.2]. Given an abstract surfaceF , form the product
F ×R2. Consider disjoint copies D and E of R2 in F . Perform a plumbing operation
on D×R2 and E×R2. That is, identify (x,y) ∈D×R2 with (y,x) ∈ E×R2. The
orientations of D and E inherited from the standard orientation of R2 need not be
restrictions of the same orientation on F , but we do require that the resulting 4-manifold
be orientable. Repeated applications of this procedure for mutually disjointD andE yields
a plumbed model for F . A (topological) framed immersion of the abstract surface F inM is
a map from a plumbed model forF to some open set inM that is a homeomorphism onto

Mark Powell and Arunima Ray, Intersection Numbers and the Statement of the Disc Embedding Theorem In: The Disc
Embedding Theorem: with an afterword by Michael H. Freedman. Edited by: Stefan Behrens, Boldizsár Kalmár, Min Hoon Kim,
Mark Powell, and Arunima Ray, Oxford University Press. © Oxford University Press 2021.
DOI: 10.1093/oso/9780198841319.003.0011

D
ow

nloaded from
 https://academ

ic.oup.com
/book/43693/chapter/367034878 by ETH

 Zürich user on 13 M
ay 2024



OUPCORRECTED PROOF – FINAL, 7/6/2021, SPi

156 | the disc embedding theorem

its image. Such a homeomorphism determines a map g : F →M when we restrict to the
image ofF in the framed model, and we say that the map g extends to a framed immersion.

The normal bundle of a smoothly immersed, connected, orientable surface is determined
up to isomorphism by its Euler number. If the Euler number is even, then the surface is
homotopic via local cusp homotopies [FQ90, Section 1.6] to an immersion that extends
to a framed immersion. In particular, a cusp homotopy changes the Euler number of the
normal bundle of F by ±2. Performing a local cusp homotopy was called “adding a local
kink” in Chapter 1 (see Figure 1.3).

SinceD2 is contractible, the normal bundle of an immersed disc inM is trivial. Fixing
an orientation of the fibres determines a framing of the normal bundle, uniquely up to
homotopy, again since D2 is contractible. Recall that a framing of a rank n vector bundle
over a space B is by definition a trivialization, namely an identification of the total space
withB×Rn. So forD2 #M , thismeans an identification of the total space of the normal
bundle withD2 ×R2. IfM andD2 are both oriented, then the fibres of the normal bundle
ofD2 inherit an orientation. But in general, orientations of the fibres are an auxiliary choice
that we make in order to proceed, as in the next paragraph.

The framing of the normal bundle of an immersed disc induces a framing of the normal
bundle restricted to the boundary ∂D2. When a framing of this restricted normal bundle
inducing the same orientation on fibres is independently specified, we may consider the
twisting number, or relative Euler number, of the induced framingwith respect to the specified
framing. This twisting number is an integer (coming from π1(SO(2))∼= Z). In such a
situation, we say that the immersed disc is framed when the twisting number is zero, so
that the two framings match up to homotopy. For us, this will mostly occur in three
scenarios:

(1) when the disc is properly immersed; that is, when the preimage of∂M is the boundary
of the disc;

(2) when the disc is attached to a simple closed curve in an immersed surface inM , in
which casewewill consider the framing induced by the tangent bundle of the surface;

(3) when the disc is aWhitney disc, inwhich casewe consider theWhitney framing.This
latter case will be described in more detail soon.

In general, given an immersed surfaceF inM , if the boundary ofF is nonempty, we will
usually have a fixed framing already prescribed on the boundary. In this case, we say that a
mapg : F →M extends to aframed immersion if it extends to a framed immersion restricting
to the given framing on ∂F . For any immersed, connected surface F with nonempty
boundary ∂F ⊆M r ∂M in the interior ofM , there is a homotopy via boundary twists,
as described in Section 15.2.2 (see also [FQ90, Section 1.3]), to an immersion that extends
to a framed immersion. This is because, as we will see, a single boundary twist changes the
relative Euler number by±1.

A regular homotopy in the smooth category is a homotopy through immersions. It is well
known that a smooth regular homotopy of immersed surfaces in a 4-manifold is generically
a concatenation of smooth isotopies, finger moves, and Whitney moves with respect to
smoothly embedded and framed Whitney discs whose interiors are in the complement of
the surfaces. Indeed, by [GG73, Section III.3], generic immersions are dense in the space
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of smoothmappings, and the generic singularities for a regular homotopy between surfaces
are precisely arcs of isolated double points, which may appear (finger move) or disappear
(Whitneymove) at finitely many distinct time values.Whitney and fingermoves, which are
inverse to each other, were introduced inChapter 1, andwe give further details in amoment
(see also [FQ90, Chapter 1]).

A topological regular homotopy of immersed surfaces in a 4-manifold is by definition a
concatenation of (topological) isotopies, finger moves, and Whitney moves with respect
to topologically flat, embedded, and framed Whitney discs whose interiors are in the
complement of the surfaces. Regular homotopies of immersed surfaces with boundary take
place in the interior of the surfaces, unless stated otherwise. For example, a finger move
pushing an intersection point off the boundary of a disc, such as in Figure 11.4, is not
permitted as part of a regular homotopy. Having said that, we will often change surfaces
by this move (see, for example, Section 15.2.4). In that case, we perform an isotopy of the
surface that moved and a homotopy of the collection, but the motion does not count as a
regular homotopy of the collection.

11.2 WhitneyMoves and FingerMoves

11.2.1 Whitney Moves

Recall fromChapter 1 that aWhitneymove is designed to remove twopoints of intersection
between two immersed surfaces, or of an immersed surface with itself, within a smooth
ambient 4-manifold M . If the associated Whitney disc is framed and embedded, with
interior in the complement of the surfaces, then the resulting surfaces indeed have two fewer
intersections. If theWhitney disc is framed but not embedded, or the interior intersects the
surfaces, then the two original intersection points are still removed, but other double points
might be introduced in the process. We now give further details.

Let f and g be two immersed oriented surfaces in a smooth 4-manifoldM , with possibly
f = g. Letp and q be twopoints inf t g such that there is an embedded arcγ in the interior
of f from p to q and an embedded arc δ in the interior of g from p to q where the union
γδ−1 bounds an embedded discD whose interior lies in the complement of f and g. See
Figure 11.1. Fix a local orientation ofM at p, and transport it along γ to q. Now, comparing
with the orientations of TpM and TqM determined by the orientations of f and g yields a
function sgn: {p,q}→ {+,−}.

As before, the normal bundle of D in M is a trivial 2-plane bundle. Fix an orientation
on the fibres. Consider the following 1-plane sub-bundle V of the normal bundle of D
restricted to ∂D = γδ−1.The sub-bundle along γ is given by the tangent bundle to f .This
can be extended to a choice of sub-bundle along δ that is normal to g and agrees with Tf
at p and q, since the intersections are transverse. This is a trivial 1-plane bundle if and only
if the function sgn: {p,q}→ {+,−} is surjective; that is, if and only if the signs of p and
q are opposite.

Assuming that this is the case, choose a section s of the sub-bundle V . Since V is
1-dimensional, the section s is determined up to multiplication by a continuous function
S1 → Rr {0}. We say that the Whitney disc D is framed if the section s extends to a
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t = 0 t = εt = −ε

f

g

(a)

t = 0 t = εt = −ε

γ

δ

(b)

t = 0 t = εt = −ε

(c)

Figure 11.1 Amodel Whitney move. (a) A region in a smooth 4-manifoldM is shown modelled
on R3 ×R, where the last co-ordinate t is interpreted as time. The central image shows a small
region in an immersed surface f (red). A small region on the immersed surface g (black) is traced
out by the black curves as we move backwards and forwards in time.
(b)The twopoints of intersectionbetweenf andg from(a) are shown tobepairedby an embedded
Whitney disc (blue) with interior in the complement of f and g. The boundary of the disc is given
by the union of arcs γ ∪ δ.
(c)TheWhitney move on f along theWhitney disc has removed the two points of intersection.

nonvanishing section on the normal bundle of all ofD. The framing of the normal bundle
ofD restricted to ∂D, induced by s and the chosen orientation on the fibres of the normal
bundle, is called theWhitney framing.

Now extend the Whitney disc very slightly beyond its borders; more precisely, extend
γ slightly beyond p and q in A and push δ out along the radial direction of TD|δ; that is,
the direction orthogonal to Tδ. Now consider the disc bundleDE ∼=D2 ×D1, which is
the sub-bundle of the normal bundle of (the extended version of) D determined by the
section s, whereD coincides with the zero section.The boundary ofDE is a 2-sphere, with
∂(DE)∩ f a neighbourhood of γ, that we denote by S. The Whitney move pushes the
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strip S acrossDE. The outcome has S replaced by two parallel copies of theWhitney disc
D together with a strip whose core is parallel to δ. This is an isotopy of the surface f (if
f ̸= g) and a regular homotopy of f ∪ g. The latter fact holds, since we have described a
homotopy through local embeddings. Note that we used a framed and embeddedWhitney
disc with interior in the complement of f ∪ g, and the two intersection points p and q were
removed, as desired.

In the case that D is framed but not embedded, or the interior intersects f ∪ g, the
Whitney move, now called a (framed) immersed Whitney move, still uses the same strip S
in a neighbourhood of δ and two copies ofD obtained using s and−s, where s is a section
of the normal bundle. The resulting move is a regular homotopy of f and not an isotopy,
even if f ̸= g. We state this fact here, but prove it in Section 15.3.

Proposition 11.1 A (framed) immersed Whitney move is a regular homotopy.

In particular, the intersection points p and q are removed by an immersed Whitney move,
but four new self-intersection points of f are created for each self-intersection point ofD,
and two new intersections of f ∪ g are created for each intersection of the interior ofDwith
f ∪ g.

In more generality, ifD intersects a surfaceΣ other than itself, whereΣmay equal f or
g but need not, then two intersection points of f with Σ are created for each intersection
point ofD withΣ.

11.2.2 Finger Moves

Aswe saw inChapter 1, a fingermove is a regular homotopy that adds two intersection points
between two immersed surfaces f and g in a smooth 4-manifoldM , where possibly f = g.
It is supported in a neighbourhood of an arc. and is depicted in Figure 11.2.

g

f

γ

t = −ε t = εt = 0

(a)

g

f

t = −ε t = εt = 0

(b)

Figure 11.2 A model finger move along the arc γ, shown (a) before and (b) after the move. As
usual, the ambient space is shownasR3 slicesmoving through time (see the caption toFigure 11.1).
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Let γ ∼= [0,1] be an embedded path in M with an endpoint on f and an endpoint on
g, away from any double points, and otherwise disjoint from f ∪ g. We describe the finger
move of f on g along γ.Thicken γ to γ×D2 such that {0}×D2 ⊆ f is a neighbourhood
of one end of γ. Extend γ slightly beyond its other endpoint on g, to an embedding of
[0,5/4]. Suppose that ({1}×D2)∩Σ is a single arc.Thefingermove pushes {0}×D2 ⊆
f across [0,5/4]×D2, replacing {0}×D2 with the rest of the boundary ([0,5/4]×
S1)∪ ({5/4}×D2).

The finger move adds two intersection points between f and g, which are paired by a
framed, embedded Whitney disc with interior in the complement of f ∪ g, should it be
required. Note that if f ̸= g, the finger move is an isotopy of f and a regular homotopy
of f ∪ g, since we have described a homotopy through local embeddings.

11.3 Intersection and Self-intersection Numbers

LetM be a smooth 4-manifold. Assume for a moment thatM is compact and based and
let π denote π1(M) based at the basepoint.The equivariant intersection form λ onM is the
pairing

λ : H2(M ;Zπ)×H2(M,∂M ;Zπw) → Zπ
(x,y) 7→ ⟨PD−1(y),x⟩.

HereH2(M ;Zπ) denotes the second homology ofM with twisted coefficients, which is
isomorphic to the second homology of the universal cover of M ; that is, to π2(M). The
homomorphism w : π →{±1} is the orientation character, which by definition satisfies
that w(α) =−1 if and only if α is orientation reversing. The orientation character makes
the group ringZπ into a leftZπ-module denoted byZπw with action g · r := w(g)gr, for
g ∈ π and r ∈ Zπw , extended linearly. The Poincaré duality map PD : H2(M ;Zπ)→
H2(M,∂M ;Zπw) is an isomorphism, and the pairing denoted by ⟨·, ·⟩ is the Kronecker
pairing. The cohomology group with Zπ coefficients is isomorphic to cohomology with
compact support of the universal cover ofM .

We prefer not to restrict to compact manifolds. To avoid getting into the details of
cohomology with compact support, we will use λ from now on to denote a different
notion of intersection number, with a more geometric definition. The notion will be appli-
cable to every smooth, connected 4-manifold, including noncompact and nonorientable
4-manifolds with arbitrarily many boundary components, and coincides with the above
definition whenever both apply [Ran02, Proposition 7.22]. The new definition will be
for intersections between smooth, based immersions of discs or spheres that intersect
transversely in double points in their interiors, with no triple points. In particular, discs need
not have boundaries mapping to the boundary of M and might not represent homology
classes: this is another key reason that we use the geometric definition of λ in this book
rather than the homological definition.

In the following definition, and in the rest of the book, we regularly abuse notation by
conflating a map f and its image.
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Definition 11.2 Let M be a connected, based, smooth 4-manifold with a fixed local
orientation at the basepoint. Let f and g be smoothly immersed, transversely intersecting,
based, oriented discs or spheres in M . If applicable, assume that f and g have disjointly
embedded boundaries. Let vf and vg be paths in M joining the basepoint of M to the
basepoint of f and g respectively. The paths vf and vg are called whiskers for f and g,
respectively. Define the following sum

λ(f,g) :=
∑

p∈ftg

ε(p)α(p),

where

• γp
f is a simple path in f from the basepoint of f to p and γp

g is a simple path in g from
the basepoint of g to p, as in Figure 11.3, such that γp

f and γ
p
g are disjoint from all the

other points in f t g;

• ε(p) ∈ {±1} is+1when the local orientation at p induced by the orientations of f
and gmatches the one obtained by transporting the local orientation at the basepoint
ofM to p along vgγp

g , and is−1 otherwise;

• α(p) is the element of π1(M) given by the concatenation vfγ
p
f (γ

p
g )

−1v−1
g .

Since f and g are (immersed) discs or spheres, distinct choices ofγp
f andγ

p
g are homotopic,

and thus λ(f,g) is a well defined element ofZ[π1(M)].
We also define λ(f,f) := λ(f,f+), where f+ is a push-off of f along a section of the

normal bundle transverse to the zero section. If f is an immersed disc with embedded
boundary equipped with a specified framing for the normal bundle restricted to the bound-
ary, thenf+ is defined to be the push-off off along a section restricting to one of the vectors
of that framing on ∂f .

Remark 11.3 Note that in Definition 11.2, we need the simple connectivity of spheres
and discs for the intersection number λ to be well defined. In surfaces with nontrivial

f g

vf vg

γ
p
f

γp
g

p

∗

Figure 11.3 Computation of the intersection number λ(f,g) for spheres f and g, denoted
schematically as circles, in a 4-manifoldM , with basepoint ∗.
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fundamental group, the choice of path from the basepoint to the double point could change
the value of λ, albeit in a controlled manner.

We alsonote thatε(p)does not dependon the choice of pathγp
g wheng is an (immersed)

disc or sphere, since any two choices of path are homotopic relative the endpoints and thus
induce the same local orientation atp.However,ε(p)mightdependon the choiceofwhisker
vg if, for example, we preconcatenate vg with an orientation reversing loop at the basepoint
ofM .

Define an involution onZ[π1(M)] by setting

h=
∑

α∈π1(M)

nαα 7→ h=
∑

α∈π1(M)

w(α)nαα
−1,

where nα ∈ Z andw : π1(M)→{±1} is the orientation character.The next proposition
summarizes the properties of the intersection number.

Proposition 11.4 LetM be a connected, based, smooth 4-manifold with a fixed local orienta-
tion at the basepoint. Let f and g be smoothly immersed, transversely intersecting, based, oriented
discs or spheres inM withwhiskersvf andvg , respectively, and, if applicable, disjointly embedded
boundaries. In particular,f andg only intersect in their interiors.The intersection numberλ(f,g)
has the following properties.

(i) The intersection number λ(f,g) is unchanged by regular homotopies in the interiors of
f and g. The intersection number is not preserved by a regular homotopy pushing an
intersection point off the boundary of an immersed disc, as in Figure 11.4.

(ii) λ is hermitian; that is, λ(f,g) = λ(g,f).

(iii) A different choice of whisker v′f for f results in multiplication of λ(f,g) on the left by the
element v′fv

−1
f of π1(M). A different choice of whisker v′g for g results in multiplication

Figure 11.4 Left: A 3-dimensional snapshot of an intersection of an immersed surface f (shown
as a blue interval) with an immersed disc g (shaded blue) in an ambient 4-manifold. The interval
locally traces out f as we move backwards and forwards in time, as in Figures 11.1 and 11.2.
Right: A finger move on f across the boundary of g removes an intersection point, and so changes
the intersection number λ(f,g).
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of λ(f,g) on the right by the element vg(v′g)−1 of π1(M), and changes the sign by
w(vg(v

′
g)

−1).

(iv) Changing the orientation of f changes the sign ofλ(f,g), as does changing the orientation
of g. Changing the orientation of both f and g leaves λ(f,g) unchanged.

In the homological version of λ discussed above, (iii) implies that λ is sesquilinear; that
is, λ(rf,sg) = rλ(f,g)s, for r,s ∈ Z[π1(M)].

Proof For (i), we only need to check that the intersection number is preserved under finger
moves and Whitney moves along framed, embedded Whitney discs with interiors in the
complement of f ∪ g. By the requirement that the regular homotopies occur in the interiors
of f and g, double points are introduced or eliminated in pairs.

Suppose the intersection points p and q between f and g are paired by a framed,
immersed Whitney disc, as described in Section 11.2.1. Then there is a path γpq

f in f from
p to q and a path γpq

g in g from p to q such that γpq
f (γpq

g )−1 is null-homotopic in M .
Moreover, since theWhitney framing exists, ε(p) =−ε(q). Let γp

f be a path in f from the
basepoint of f to p and let γp

g be a path in g from the basepoint of g to p as in Definition
11.2.Then the contribution of p and q to λ(f,g) is the sum

ε(p)vfγ
p
f (γ

p
g )

−1vg
−1 + ε(q)vfγ

p
fγ

pq
f (γpq

g )−1(γp
g )

−1vg
−1,

which is zero inZ[π1(M)], since ε(p) =−ε(q) and γpq
f (γpq

g )−1 is null-homotopic inM .
Since theWhitney disc is embedded and framed with interior in the complement of f ∪ g,
theWhitneymove removes the two intersection points p and q, creates no new intersection
points, and preserves the contribution of all other intersection points to λ(f,g). It follows
that the intersection number λ(f,g) is preserved under a Whitney move along framed,
embedded Whitney discs with interior in the complement of f ∪ g. Additionally, this
finishes the proof of (i), since a finger move in the interior creates a pair of intersection
points paired by an embedded, framed Whitney disc, with interior in the complement of
f ∪ g.

Property (ii) is a direct consequence of the definition

λ(f,g) :=
∑

p∈ftg

ε(p)α(p),

noting that switching the order of f and g replaces every α(p) by α(p)−1, while the sign
ε(p) changes precisely whenα(p) is orientation reversing.

Property (iii) is also a direct consequence of the definition, since, given another whisker
v′f for f , each α(p) changes by multiplication on the left by v′fv

−1
f , and similarly, given

another whisker v′g for g, each α(p) changes by multiplication on the right by vg(v′g)−1.
The local orientation is transported along (v′gv−1

g )vgγg = v′gγg instead of vgγg , so ε(p)
changes byw(v′gv−1

g ) = w((v′gv
−1
g )−1) = w(vg(v

′
g)

−1).
Property (iv) follows directly from the definition of ε(p) for a point p ∈ f t g. �
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Next we define the self-intersection number of a smoothly immersed, based, oriented sphere
or disc. The definition is analogous to the intersection number λ. However, for the self-
intersection number, there is an ambiguity coming from the choice of sheets at each
intersection point, as indicated in Proposition 11.4(ii). As a result, the self-intersection
number is only well defined as an element of a quotient ofZ[π1(M)], as follows.

Definition 11.5 Let M be a connected, based, smooth 4-manifold with a fixed local
orientation at the basepoint. Let f be a smoothly immersed, based, oriented disc or sphere
inM with a whisker v, and embedded boundary if applicable. Letw : π1(M)→{±1} be
the orientation character ofM . Define the following sum:

µ(f) :=
∑

p∈ftf

ε(p)α(p),

where

• γp
1 and γp

2 are simple paths in f from the basepoint to p along two different sheets,
as in Figure 11.5, such that γp

f and γp
g are disjoint from all the other points in f t g;

• ε(p) ∈ {±1} is+1 when the local orientation at p induced by the orientation of f
matches the one obtained by transporting the local orientation at the basepoint ofM
to p along vγp

2 , and is−1 otherwise;

• α(p) is the element of π1(M) given by the concatenation vγp
1 (γ

p
2 )

−1v−1.

It follows from the proof of Proposition 11.4(ii) that µ(f) is a well defined element of
the quotient groupZ[π1(M)]/(a∼ a).

∗

v

γ
p

2γ
p

1

p

p+p
−

γ̃
p

2γ̃
p

1

Figure 11.5 Computation of the self-intersection number µ(f) for an immersed sphere f in a
4-manifoldM with basepoint ∗
Left:The points p+ and p− inS2 map to the self-intersection point p of f . Lifts of γp

1 and γ
p
2 toS

2

are shown.
Right:The paths γp

1 and γp
2 approach p on two different sheets in the image of f .
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Remark11.6 As before forλ, we need the simple connectivity of spheres and discs in order
for µ to be well defined.

Unlike before, ε(p) does depend on the choice of the path γp
1 , even when f is an

(immersed) disc or sphere. In particular, the local orientation at p, induced by transporting
the local orientation at the basepoint ofM along vγp

1 and along vγ
p
2 , differ exactlywhen the

loop γp
1 (γ

p
2 )

−1 is orientation reversing. Thus in this case the value of ε(p) depends on the
choice of sheet at p.The difference in ε(p) is encodedwithin the definition of the involution
h= w(h)h−1, for h ∈ π1(M). As before, once a sheet is chosen, that is, once one of the
two preimage points of p is chosen, the value of ε(p) is well defined, modulo the choice of
whisker v.

By virtually the same proof as Proposition 11.4, we have the following properties of the
self-intersection number.

Proposition 11.7 LetM be a connected, based, smooth 4-manifold with a fixed local orienta-
tion at the basepoint. Let f be a smoothly immersed, based, oriented disc or sphere in M with
a whisker v, and embedded boundary if applicable. The self-intersection number µ(f) has the
following properties.

(i) The self-intersection number µ(f) is unchanged by regular homotopies in the interior of
f . The intersection number is not preserved by a regular homotopy pushing an intersection
point off the boundary of an immersed disc, as in Figure 11.4.

(ii) A different choice of whisker v′ for f results in conjugation of µ(f) by the element v′v−1

of π1(M) and multiplication byw(v′v−1).

Moreover, the intersection and self-intersection numbers of an immersed sphere or disc
are related by the following helpful formula.

Proposition 11.8 LetM be a connected, based, smooth 4-manifold with a fixed local orienta-
tion at the basepoint. Let f be a smoothly immersed, based, oriented disc or sphere inM . In the
case that f is an immersed disc, assume that the boundary is embedded and the normal bundle of
the disc restricted to the boundary has a specified framing. Let v be a whisker for f . Then

λ(f,f) = µ(f)+µ(f)+χ,

where χ ∈ Z is the Euler number of the normal bundle of f if f is a sphere, or is the twisting
number of the framing induced on the boundary by the restriction of the canonical framing of the
normal bundle of the immersed disc with respect to the specified framing when f is an immersed
disc.

Note that µ(f) and λ(f,f) do not lie in the same group. However, the formula above
still holds, since µ(f)+µ(f) ∈ Z[π1(M)] is well defined; that is, it is independent of the
choice of lift of µ(f) to Z[π1(M)]. Such a lift corresponds to a choice of ordering of the
sheets of f at each double point of f .

Proof Whenχ= 0, this is a straightforward consequence of the definitions, observing that
each self-intersection point p of f gives rise to a pair of intersection points between f and
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f+. Here, recall that λ(f,f) := λ(f,f+) where f+ is a push-off of f along a section of
the normal bundle transverse to the zero section if f is a sphere and is defined to be the
push-off along a section restricting to the specified framing on the normal bundle of the disc
restricted to the boundary if f is a disc. The key point is that if one of the new intersection
points contributes ε(p)α(p) to λ(f,f), then the other contributes ε(p)α(p).

By the definition of f+, there are χ intersection points of f and f+ which do not arise
from self-intersection points of f . Such an intersection point r corresponds to the trivial
element of π1(M): if γr is a path in f joining the basepoint to r, thenα(r)may be chosen
to be the concatenation vγr((γr)+)−1(v+)−1, where (γr)+ and v+ are push-offs of γr

and v respectively.This concatenation is null-homotopic inM . �

By Proposition 11.8, if f is a immersed sphere with λ(f,f) = 0, then the Euler number
of the normal bundle is even, and so f is homotopic to a map that extends to a framed
immersion, via local cusp homotopies. If both λ(f,f) and µ(f) vanish, then the Euler
number must already be zero and f extends to a framed immersion. Moreover, we have the
following corollary, showing that in many cases λ(f,f) = 0 implies that µ(f) = 0 for an
immersed sphere or disc f .

Corollary 11.9 LetM be a connected, based, smooth 4-manifold with a fixed local orientation
at the basepoint. Suppose that the orientation character vanishes on all the order two elements
of π1(M). Let f be a smoothly immersed, based, oriented disc or sphere inM . In case f is an
immersed disc, assume that the boundary is embedded and the normal bundle of the disc restricted
to the boundary has a specified framing. Assume that f is framed.
Then λ(f,f) = 0 implies that µ(f) = 0.

Proof For each equivalence class {α,α−1} ∈ π1(M)/∼, where α∼ β if α= β or
α−1 = β for any α,β ∈ π1(M), choose a representative r(α). That is, r(α) is either α
orα−1 (or both) for everyα ∈ π1(M). Write

µ(f) =
∑

{α,α−1}∈π1(M)/∼

nαr(α).

Then, using Proposition 11.8, since f is framed, we have

0 = λ(f,f) = µ(f)+µ(f)

=
∑

{α,α−1}∈π1(M)/∼

nαr(α)+w(α)nαr(α)
−1.

Equating coefficients, and using that ifα= α−1, thenw(α) = 1 by hypothesis, we see that
nα = 0 for allα ∈ π1(M). �

Ontheother hand, if there existsα ∈ π1(M)withw(α) =−1 andα2 = 1 andf is such
that µ(f) = α, then λ(f,f) = 0. So the hypothesis of the corollary cannot be removed.

So far, we have discussed intersection and self-intersection numbers in general. In the
forthcoming proof of the disc embedding theorem, we will primarily use only the following
proposition.
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Proposition 11.10 LetM be a connected, smooth 4-manifold. Let f and g be immersed discs
or spheres inM intersecting transversely, and with embedded boundaries if applicable.

(1) The quantity λ(f,g) = 0 for some choice of basepoints forM , f , and g and some choice
of whiskers for f and g, if and only if all the intersection points of f and g can be paired
up by framed, immersed Whitney discs inM with disjointly embedded boundaries. These
discs may intersect one another, themselves, and f and g. Similarly, λ(f,g) = 1 for some
choice of basepoints forM , f , and g, and some choice of orientations and whiskers for f
and g, if and only if all but one intersection point can be paired up in such a manner.

(2) The quantity µ(f) = 0 for some choice of basepoint for M and f , and some choice of
whisker for f , if and only if all the self-intersection points of f can be paired up by framed,
immersed Whitney discs in M with disjointly embedded boundaries. These discs may
intersect one another, themselves, and f .

Remark 11.11 In the statement of Proposition 11.10, the vanishing of λ(f,g) or µ(f)
for some choice of basepoints for M , f , and g and some choice of whisker for f and g
implies the vanishing for all choices of basepoints and whiskers by Propositions 11.4(iii)
and 11.7(ii). Thus in these cases it is meaningful to refer to the vanishing of intersection
and self-intersection numbers for immersed discs or spheres with no specified choice of
basepoints or whiskers. A different choice of whisker or basepoint changes nonzero values
of λ(f,g) orµ(f), as dictated by Propositions 11.4(iii) and 11.7(ii). By Proposition 11.10,
from now on, for spheres or discs f and g with no specified choice of whisker or basepoint,
when we say λ(f,g) = 1 wemean that all but one of the intersection points may be paired
up byWhitney discs in the ambient 4-manifold.

Proof Suppose thatλ(f,g) = 0with respect towhiskersvf andvg forf andg respectively,
corresponding to some chosenbasepoints.Then the contributions of the intersectionpoints
between f and g toλ(f,g)must cancel in pairs. Let p and q be intersection points of f and
g such that the contributions of p and q toλ(f,g) cancel each other.That is, ε(p) =−ε(q)
andα(p) = α(q) in π1(M). In other words,α(p)α(q)−1 is the trivial element of π1(M).
Let γp

f be a path in f from the basepoint of f to p as in Definition 11.2 and let γpq
f be a path

in f from p to q. Similarly, let γp
g be a path in g from the basepoint of g to p and let γpq

g be a
path in g from p to q. We may assume that all these paths are disjointly embedded.Then

α(p)α(q)−1 = (vfγ
p
f (γ

p
g )

−1v−1
g )(vgγ

p
gγ

pq
g (γpq

f )−1(γp
f )

−1v−1
f )

= vfγ
p
fγ

pq
f (γpq

g )−1(γp
f )

−1v−1
f

is trivial in π1(M). Thus α(p)α(q)−1 is a basepoint-changing conjugation away from the
loop γpq

f (γpq
g )−1, so this loop is also null-homotopic inM .The trace of this null homotopy

gives a Whitney disc pairing p and q inM . This gives one direction of the argument. The
reverse direction holds, since double points paired by a Whitney disc have opposite signs
and they have the same element ofπ1(M) associatedwith them.A similar argument applies
when λ(f,g) = 1.

As we will show in Section 15.2.3, after an isotopy of the Whitney discs and their
boundaries, we may arrange for any collection of Whitney circles to be mutually disjoint
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and embedded.Then by boundary twisting, explained in detail in Section 15.2.2, there is a
homotopy of eachWhitney disc to a framedWhitney disc.The homotopy is supported in a
neighbourhood of one of the boundary arcs. See Remark 15.1.

We have to be a bit more careful when considering the self-intersection number, since it
takes values in the quotient groupZ[π1(M)]/(a∼ a). Assume thatµ(f) = 0with respect
to a whisker v. We now introduce some new notation for the rest of the proof. Given a self-
intersection point p of f and an arc γ from the basepoint of f to p, let εγ(p) ∈ {±1} equal
+1when the local orientation atp inducedby theorientationoff matches the oneobtained
by transporting the local orientation at the basepoint of M to p along vγ, and equal −1
otherwise.

As before, since µ(f) = 0, the contributions of the self-intersection points of f to µ(f)
must cancel in pairs. Let p and q be self-intersection points of f such that the contributions
of p and q to µ(f) cancel each other. Then there exist lifts to Z[π1(M)] of these contribu-
tions which cancel each other as elements ofZ[π1(M)]. Recall that such a lift toZ[π1(M)]
corresponds precisely to a choice of ordering of the sheets of f at both p and q.

Let γi, for i ∈ {1,2,3,4}, be disjointly embedded arcs in f such that γ1 goes from the
basepoint of f to p along the second sheet of f at p, γ2 goes from p to itself, leaving on the
second sheet off atp and returning on the first,γ3 goes fromp to q, leaving on the first sheet
of f at p and ending on the second sheet of f at q, and γ4 goes from q to itself, leaving on the
second sheet of f at q and returning on the first (see Figure 11.6).Then the contribution of
p to µ(f), lifted toZ[π1(M)], is

ε(p)α(p) = εγ1(p)vγ1γ2γ
−1
1 v−1.

Thesheet change occurs betweenγ2 andγ−1
1 . Similarly, the contribution of q toµ(f), lifted

toZ[π1(M)], is

ε(q)α(q) = εγ1γ2γ3(q)vγ1γ2γ3γ4γ
−1
3 γ−1

2 γ−1
1 v−1,

∗

v

γ1

p q

γ2

γ3

γ4

Figure 11.6 FindingWhitney discs pairing self-intersection points of an immersed sphere f
when µ(f) = 0.
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where the sheet change occurs between γ4 and γ−1
3 . Since these lifts cancel in Z[π1(M)]

by the choice of ordering of the sheets, we have ε(p)α(p) =−ε(q)α(q). That is,

εγ1
(p) =−εγ1γ2γ3

(q)

and

vγ1γ2γ
−1
1 v−1 = vγ1γ2γ3γ4γ

−1
3 γ−1

2 γ−1
1 v−1

in π1(M). In other words,

(vγ1γ
−1
2 γ−1

1 v−1)(vγ1γ2γ3γ4γ
−1
3 γ−1

2 γ−1
1 v−1)

= vγ1γ3γ4γ
−1
3 γ−1

2 γ−1
1 v−1

is trivial in π1(M). This is a basepoint-changing conjugation away from the loop
γ3γ4γ

−1
3 γ−1

2 , so that loop is null-homotopic in M . The trace of this null homotopy
produces a map of a disc inM bounded by the curve γ3γ4γ−1

3 γ−1
2 . Note that the change

of sheets occurs between γ4 and γ−1
3 .We know that εγ1

(p) =−εγ1γ2γ3
(q), which implies

that ε(p) =−ε(q) in the definition of µ(f). Again, as we shall show in Section 15.2.3, we
may arrange for the Whitney circles to be disjointly embedded and, by boundary twisting
(Section 15.2.2), for each Whitney disc to be framed (see Remark 15.1). As before, the
reverse direction holds, since double points paired by a Whitney disc have algebraically
cancelling contributions to µ(f). This completes the proof of Proposition 11.10. �

Givenan immerseddiscor spheref in a smooth, connected4-manifoldM , an immersion
g : S2 #M is said to be a transverse sphere or a dual sphere for f if f and g intersect
transversely and λ(f,g) = 1. This was called algebraically transverse in Chapters 1 and 2.
By Proposition 11.10, this means that all but one intersection point between f and g can
be paired by Whitney discs in M . If λ(f,g) = 0, we say that f and g have algebraically
cancelling intersections. More generally, for a set {fi} of immersed discs or spheres in M ,
a set of immersed spheres {gi} is said to be a collection of (algebraically) transverse or dual
spheres if, for every i, j and some choices of orientations and whiskers, we have that fi and
gj intersect transversely andλ(fi,gj) = δij .The collection{gi} is said to be a geometrically
transverse or geometrically dual collection of spheres if, in addition, fi t gj is a single point
when i= j and is empty otherwise.

11.4 Statement of the Disc EmbeddingTheorem

Now we state the disc embedding theorem (see [FQ90, Theorem 5.1A; PRT20]). Recall
that, sinceD2 is contractible, the normal bundle of every immersed disc in a 4-manifold is
trivial. For an immerseddisc, a choice of orientationof the fibres of the normal bundle deter-
mines a framing of the normal bundle, inducing a framing of the normal bundle restricted
to the boundary. We say that two immersed discs f,f : (D2,S1)# (M,∂M) have the
sameframedboundary iff(S1) = f(S1)⊆ ∂M , and there are choices of orientations of the
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fibres of the normal bundles of f and f such that the induced framings on the boundaries
are homotopic.

Discembedding theorem LetM be a smooth, connected4-manifoldwith nonempty boundary
and such that π1(M) is a good group. Let

F = (f1, . . . ,fn) : (D
2 ⊔ ·· · ⊔D2,S1 ⊔ ·· · ⊔S1)# (M,∂M)

be an immersed collection of discs in M with pairwise disjoint, embedded boundaries. Suppose
thatF has an immersed collection of framed, algebraically dual 2-spheres

G= (g1, . . . ,gn) : S
2 ⊔ ·· · ⊔S2 #M ;

that is, λ(fi,gj) = δij with λ(gi,gj) = 0 = µ(gi) for all i, j = 1, . . . ,n.
Then there exists a collection of pairwise disjoint, flat, topologically embedded discs

F = (f1, . . . ,fn) : (D
2 ⊔ ·· · ⊔D2,S1 ⊔ ·· · ⊔S1) ↪→ (M,∂M),

with geometrically dual, framed, immersed spheres

G= (g1, . . . ,gn) : S
2 ⊔ ·· · ⊔S2 #M,

such that, for every i, the discs f i and fi have the same framed boundary and gi is homotopic
to gi.

In other words, within a smooth 4-manifold M with good fundamental group, we can
replace a collection of immersed discs {fi}, equipped with a collection of algebraically
transverse spheres {gi} with vanishing intersection and self-intersection numbers, with
pairwise disjoint, flat, embedded discs {f i} equipped with a collection of geometrically
transverse spheres {gi}, such that, for every i, fi and f i have the same framed boundary.

We do not requireM to be compact, since we use the geometric definition of the inter-
section numberλ. In the upcoming proof, wewill only use intersection number information
to findWhitney discs, as described by Proposition 11.10.

We will define good groups in the next chapter (Definition 12.12), once we have the
requisite terminology.
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