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Basic Geometric Constructions

mark powell and arunima ray

Wehave now described the finite and infinite iterated objects that will appear in the proof of
the disc embedding theorem. In this chapter, we gather some tools that we will use to build
them.

Throughout this chapter we work in an ambient smooth 4-manifoldM .

15.1 TheClifford Torus

In a neighbourhood of a double point of immersed surfaces A and B (where possibly
A=B) inM , lies anembedded torus, as shown inFigure15.1.Wecall this torus theClifford
torus of the double point. More concretely, the local picture at the double point is modelled
by thexy- and zt-planes intersecting at the origin inR4, and theClifford torus corresponds
toS1 ×S1, where the first S1 factor is the unit circle in the xy-plane and the second is the
unit circle in the zt-plane.The fundamental group of this torus is generated bymeridians of
the two surfaces. Clifford tori are equipped with a canonical framing by construction.

A fingermove from an immersed surfaceA to an immersed surfaceB within the ambient
4-manifoldM , where possibly A=B, changes the fundamental group ofM r (A∪B)
by adding the relation corresponding to the 2-cell of the Clifford torus of either of the
newly introduced double points. The standard argument for this [Cas86] goes as follows.
Let A′ denote the surface A after the finger move. After the finger move, there is an
embedded, framed Whitney disc D for the two new intersection points between A′ and
B, the Whitney move along which would undo the finger move. Observe that π1(M r
(A∪B))∼= π1(M r (A′ ∪B ∪D)).TheWhitney discD intersects the Clifford torus T
in a single point, so there is a meridional disc ofD that is also a disc in T . The boundary of
this disc is ameridian forD and is freely homotopic inM r (A′ ∪B ∪D) to the attaching
circle for the2-cell ofT .This attaching circle corresponds to a commutator [µA,µB ], where
µA andµB are appropriately basedmeridians ofA andB, respectively. LetµD be a (based)
meridian ofD.
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Figure 15.1 A Clifford torus at a double point of the surfaces A and B. As usual, the fourth
coordinate is interpreted as time, t. The double point is seen at the t= 0 time slice.The red circles
depicted trace out the Clifford torus as we move backwards and forwards in time. Note that each
S1 factor of the torus corresponds to ameridian of eitherA orB, and as such bounds ameridional
disc that intersects the respective surface transversely at a single point. Compare with Figure 1.5.

Given a groupG and g ∈G, let ⟨⟨g⟩⟩ denote the normal subgroup ofG generated by g.
We have that

π1(M r (A′ ∪B))∼= π1(M r (A′ ∪B ∪D))/⟨⟨µD⟩⟩
∼= π1(M r (A′ ∪B ∪D))/⟨⟨γT ⟩⟩
∼= π1(M r (A∪B))/⟨⟨[µA,µB ]⟩⟩,

as asserted.

15.2 Elementary Geometric Techniques

The following operations will be described on (immersed) surfaces. Where necessary,
these operations can be extended to framed surfaces, and therefore to stages of capped or
uncapped gropes or towers. However, we will not comment on this every time, unless there
is extra particular care that needs to be taken.

15.2.1 Tubing

Tubing was described in [FQ90, Sections 1.8 and 1.9]. Suppose we have an immersed con-
nected surface,A. LetΣ andΣ′ be two other immersed surfaces intersectingA transversely
at points p and p′, respectively, with p ̸= p′. Let γ be a smooth, embedded arc inA joining
p and p′. Consider a tubular neighbourhood of γ intersectingA andB in small discs about
p and p′. Cut out these discs from A∪B and glue on the rest of the boundary of the
neighbourhood of γ toΣ∪Σ′. In other words, we are gluing in a meridional annulus for γ.
This process is called tubingΣ intoΣ′ (along γ ⊆A) or vice versa. (In [FQ90], the resulting
surface is called the sum ofΣ andΣ′.) We shall at times also refer to this process as tubing
p into the surfaceΣ′. IfΣ andΣ′ are distinct framed immersed surfaces, then the result of
tubing is itself immersed and inherits a framing coming from the framing of the annulus,
of Σ, and of Σ′. If Σ and Σ′ are the same immersed framed surface, we need additionally
that the intersection points p and p′ have opposite signs, otherwise we would obtain a
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Figure 15.2 Tubing into a transverse sphere.
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Figure 15.3 Tubing multiple points of intersection.

nonorientable surface. Note that the notion of ‘opposite signs’ is still meaningful even if the
ambient spaceM is nonorientable, by using the arc γ to transport a local orientation at p to
one at p′.

We will often tube surfaces into geometrically transverse spheres; that is, Σ′ will be a
framed sphere such that p′ is its unique point of intersection with A. This situation is
depicted in Figure 15.2. Note that this operation then decreases the number of points of
intersection betweenA andΣ by one.

In most cases, we will tube into a parallel push-off of Σ′ instead of Σ′ itself. This will
allowus to tubemultiple times, as follows. Suppose thatΣ′ is a framed surface geometrically
transverse toA; that is,A andΣ′ intersect exactlyonce, at thepointp′.Nowsupposewehave
surfaces Σi intersectingA at the points pi, for i= 1, . . . ,k. Then take k parallel push-offs
ofΣ′, using distinct nonvanishing sections of the normal bundle (of the formΣ′ ×{p} in
the given framing).These intersectA at k distinct points. Find pairwise disjoint, embedded
arcs on A joining these points to the {pi} and use these to tube each Σi into a distinct
parallel push-off ofΣ′.This eliminates the intersection points p1, . . . ,pk , and also leaves the
original Σ′ unchanged for further tubing or other constructions. This process is described
in Figure 15.3.

Note that if some surface B intersects Σ′, then now Σi intersects B for each i. In
particular, if Σ′ has double points, then the tubing creates new points in Σi t Σj , for all
i, j, as well as inΣi t Σ′.

15.2.2 Boundary Twisting

Boundary twisting was introduced in [FQ90, Section 1.3]. Suppose we have two immersed
surfaces A and B in a 4-manifoldM such that part of the boundary of B is embedded in
A, as shown in Figure 15.4(a), and this part of ∂B lies in the interior of M . For us, this
situation usually arises whenB is aWhitney disc pairing intersection points ofAwith itself
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B

Figure 15.4 Boundary twisting. Left: Before boundary twisting. Right: Cross sections for the
picture on the left, before and after boundary twisting. Each cross section shows a 3-dimensional
time slice.

(a) (b)

Figure 15.5 Boundary push off to ensure Whitney circles are disjoint. We perform a regular
homotopy of one Whitney circle until it becomes disjoint from the other, introducing a new
intersection point for the correspondingWhitney disc.

or some other surface. Another commonly occurring situation is that of a cap of a grope or
tower attached to a lower stage. The operation of boundary twisting B about A consists of
changing a collar ofB near a point in its boundary onA, as depicted in Figure 15.4(b).Note
that this creates a new point of intersection betweenA andB and changes the framing ofB
by a full twist.

15.2.3 Making Whitney Circles Disjoint

Wesaw inChapter 11 that, given two immersed surfacesA andB, ifλ(A,B) = 0, the inter-
section points betweenA andB can be paired up withWhitney discs (Proposition 11.10).
A priori, the corresponding Whitney circles may intersect one another. Performing the
Whitney trick with intersectingWhitney circles leads to new intersections, which wewould
like to avoid. We ensure that Whitney circles are disjoint by pushing one Whitney circle
along the other, as shown in Figure 15.5. This is a regular homotopy, and as we see in the
figure, leads to new intersections between aWhitney disc and eitherA orB.

To achieve this in general for surfaces A and B, enumerate the Whitney arcs, and then
work on the arcs in order. For the ith arc, push other arcs with index greater than i off the ith
arc, starting with one of the arcs closest to the endpoint, until the ith arc is disjoint from all
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other arcs. At the end of the process, all Whitney arcs are mutually disjoint. From now on,
we always assume that Whitney circles are disjoint without comment or loss of generality.

Remark 15.1 The last two techniques show how to complete the proof of Proposi-
tion 11.10. In that proposition, we obtained immersed Whitney discs using algebraic
topological considerations, due to the vanishing of the appropriate intersection and self-
intersectionnumbers.Thesediscs come fromnull homotopies and thus theymaynotapriori
be framed.The boundary twisting operation allows us to ensure that theWhitney discs are
framed, at the expense of adding new points of intersection between theWhitney discs and
the original surfaces. Since such intersections are often already present, or at least cannot be
assumed not to be present, this does not hurt us in practice. The boundary of the Whitney
discs may not be embedded or mutually disjoint to begin with, but this can be ensured by
the procedure of this section and we will occasionally assume this without comment.

15.2.4 Pushing Down Intersections

The technique of pushing down intersection points was introduced in [FQ90, Section 2.5].
Suppose we have two immersed surfaces A and B such that part of the boundary of B is
embedded in A, as shown on the left of Figure 15.6 (note this is the same situation as in
Figure 15.4). Then any intersection betweenB and some third surface C can be removed
at the expense of adding two new intersections between C and A. This is shown on the
right of Figure 15.6. For us, most often A will be part of a surface stage in a capped grope
or tower, andB will be part of either a cap stage or a surface stage. We can then iteratively
push down intersections withB to any surface stage including or belowA. One advantage
of doing this is that the new intersections appear in algebraically cancelling pairs and thus
have associated Whitney discs. Alternatively, often a lower stage of a grope will have a
geometrically transverse sphere, and so we can push down the intersection points and then
tube the many new intersection points into the geometrically transverse sphere.

C

A

B

C

A

B

Figure 15.6 Pushing down an intersection point between C and B (left) leads to two new
intersection points between C and A (right). Note that the two new intersection points are
evidently paired by an embedded, framed Whitney disc. Only a single time slice is pictured. Note
thatwe are performing a fingermove, albeit one that pushes across the boundary and therefore does
not preserve intersection numbers.
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15.2.5 Contraction and Subsequent Pushing Off

Contraction and push-offwas introduced in [FQ90, Section 2.3].The (symmetric) contrac-
tionof a capped surface, depicted inFigure 15.7, converts a capped surface into an immersed
disc. As shown by the figure, we start with a symplectic basis of curves on the surface
and surger the surface using two copies each of framed immersed discs bounded by these
curves joined by a square at the point of intersection of the curves. One could, alternatively,
contract a capped surface by only surgering along one disc per dual pair, but this would
not enable the pushing off procedure that we are about to describe in the next paragraph.
Henceforth, whenever we talk about contraction, by default we will mean the symmetric
contraction. Observe that the result of contracting a capped surface with embedded body
has algebraically cancelling self-intersections.

After contracting a capped surfaceΣc with bodyΣ, any other surfaceA that intersected
the caps ofΣc can be pushed off the contracted surface, as we describe in Figure 15.8. The
fact that we can perform the pushing off procedure, which is a regular homotopy, shows that
the intersection number of the contracted surface withA is trivial. The push-off procedure
reduces the number of intersection points between the contracted surface (an immersed
disc) and the pushedoff surfaces, sowe gain somedisjointness at the expense of converting a
capped surface into an immerseddisc.An additional cost is as follows. Suppose that a surface
A intersects a cap of the capped surface, and a surface B intersects a dual cap. Then after
pushing bothA andB off the contraction,weobtain two intersection points betweenA and
B.The contraction push-off operation is shown, via before and after pictures, in Figure 15.8.

Auseful observation is that the homotopy class of the surface resulting froma contraction
of a capped surface is independent of the choice of caps.

Lemma 15.2 The homotopy class of the sphere or disc resulting from symmetric contraction of a
fixed capped surface is independent of the choice of caps, provided the boundaries of the different
choices of caps coincide.

(a) (b)

Figure15.7 (Symmetric) contraction of a capped surface. Here we show the situation for
embedded caps.
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Figure 15.8 Top: Before contraction of a surface. Bottom: After contraction, with other surfaces
pushed off the result of contraction. The capped surface being contracted is shown in the middle
time slice. The surfaces A and B being pushed off the contraction are shown in blue and red,
respectively. Note that the intersections of the pushed-off surfaces occur between diagrams one
and two and between diagrams four and five in the bottom row of figures, namely one intersection
in the past and one intersection in the future between each pair of surfaces that were pushed
off dual caps.

Proof As explained in [FQ90, Section 2.3], an isotopy in themodel capped surface induces
a homotopy of the immersed copies. In the model, the symmetric contraction along dual
caps {C,D} is isotopic to the result of surgery along either cap; for example, C . This can
be seen directly by isotoping across the region lying between the parallel copies ofD used
in the symmetric contraction (see Figure 15.7).Therefore, once themodel is immersed in a
4-manifold, the symmetric contraction is homotopic to the result of surgery along one cap
per dual pair.

Now let {Ci,Di}gi=1 and {C ′
i,D

′
i}

g
i=1 be two sets of caps for a surface of genus

g such that ∂Ci = ∂C ′
i and ∂Di = ∂D′

i form a dual pair of curves on the surface for
each i. Then the result of contraction along {Ci,Di}gi=1 is homotopic to the asymmetric
contraction along {Ci}, which is homotopic to contraction along {Ci,D

′
i}

g
i=1. This is,

in turn, homotopic to the result of asymmetric contraction along {D′
i}, which finally is

homotopic to the result of contraction on {C ′
i,D

′
i}

g
i=1, as asserted. �

15.3 Replacing Algebraic Duals with Geometric Duals

We finish the chapter with two applications of the techniques introduced so far. The first
lemma will be used repeatedly in the upcoming constructions. It allows us to improve
algebraic duals into geometric duals, at the cost of introducing new self-intersections, and
first appeared in this form in [Fre82a, Lemma 3.1]. Compare with the techniques described
in Chapter 1 and see also [FQ90, Section 1.5].
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Lemma 15.3 (Geometric Casson lemma) Let M be a smooth 4-manifold. Let {fi}
and {gi} be immersed finite collections of discs or spheres in M , transversely intersecting in
their interiors in double points, with λ(fi,gj) = δij for all i, j . Then there exist families {f ′

i}
and {g′i} of immersed discs or spheres inM , again transversely intersecting only in their interiors
in double points, such that:

(i) for every i, f ′
i is regularly homotopic to fi;

(ii) for every i, g′i is regularly homotopic to gi;

(iii) the surfaces f ′
i and g′i intersect exactly once transversely;

(iv) the surfaces f ′
i and g′j are disjoint whenever i ̸= j .

Similarly, given distinct families {fi} and {gi} of immersed discs or spheres such that
λ(fi,gj) = 0 for all i, j , there exist pairwise disjoint families {f ′

i} and {g′i} such that, for
each i, f ′

i and g′i are regularly homotopic to fi and gi, respectively.

Note that, since the lemma provides a regular homotopy, λ(fi,h) = λ(f ′
i ,h), µ(fi) =

µ(f ′
i), λ(gi,h) = λ(g′i,h), and µ(gi) = µ(g′i) for every i and for every immersed disc or

sphere h inM .

Proof Since λ(fi,gi) = 1 for each i, we can pair up all but one of the points of intersec-
tion with framed, immersed Whitney discs with mutually disjoint boundaries (Proposi-
tion 11.10). Similarly, since λ(fi,gj) = 0 whenever i ̸= j, all of the points of intersection
between each fi and each gj are paired byWhitney discs. Note that eachWhitney circle for
theWhitney discs mentioned above has an arc lying in {fi} and an arc lying in {gi}.

Push all the points of intersection between theWhitney discs and {fi} and {gi} off the
Whitneydiscs.Do this so that theonlynew intersections arewithin each family.That is, push
each intersection of a Whitney disc with an element of {fi} onto {fi} by pushing towards
the arc of theWhitney circle lying in{fi}.Do the same for the{gi}, as shown inFigure 15.9.

D

f g

D

f g

Figure 15.9 Proof of the geometric Casson lemma. Left:TheWhitney discD pairs two intersec-
tion points between the surfaces f (blue) and g (red). Only a small portion of the Whitney disc is
shown. Right: Push off f intersections into f , and g intersections into g.
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Now we have framed, immersed Whitney discs with interiors lying in the complement of
{fi}∪ {gi}, andwe use them to perform theWhitneymove. For eachWhitneymove, push
fi over the Whitney disc. This introduces new intersections among the {fi} coming from
the intersection among the Whitney discs, but this is the price we agreed to pay. Note that
surfaces or curves disjoint from theWhitney discs may be assumed to be unaffected by the
construction, by doing everything in a small enough neighbourhood of the Whitney discs.
By Proposition 11.1, proved next, the immersedWhitney move is a regular homotopy.

A virtually identical proof gives the second statement. �

More generally, the above argument can be used to ensure that the algebraic and geomet-
ric intersection numbers between finite collections {fi} and {gi} agree, at the expense of

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 15.10 (a) A framed, immersed Whitney disc W (purple) pairing intersections between
surfacesA (red) andB (blue).The discW is not embedded, but an embedded collar of its bound-
ary is shown. (b)–(f) A sequence of isotopies, finger moves, and Whitney moves along framed,
embedded Whitney discs with interiors disjoint from A∪B. (g) The result of the immersed
Whitney move on (a).

D
ow

nloaded from
 https://academ

ic.oup.com
/book/43693/chapter/367035259 by ETH

 Zürich user on 13 M
ay 2024



OUPCORRECTED PROOF – FINAL, 8/6/2021, SPi

226 | the disc embedding theorem

increasing the number of geometric intersections within each family. On the other hand,
we certainly may not use this argument to realize a self-intersection number µ(f) = 0
geometrically.

Finally, we give a proof of Proposition 11.1, which we now recall.

Proposition 11.1 A (framed) immersed Whitney move is a regular homotopy.

Proof By the definition of regular homotopy, it suffices to show that a framed immersed
Whitney move is a sequence of isotopies, finger moves, and Whitney moves along framed,
embedded discs with interiors disjoint from the surfaces being homotoped. This is shown
in Figure 15.10. First push down self-intersections of W to A (or B) along the collar
of W to produce a framed, embedded Whitney disc, whose interior might still intersect
A∪B. Observe that this does not change A or B. Then, as in the proof of the geometric
Casson lemma, push intersections ofAwithW towardsA, and those ofB withW towards
B. Observe that these are finger moves on A and B, respectively. The result is a framed,
embedded Whitney disc with interiors disjoint from A∪B. Perform the Whitney move
onA along this disc. Finally, reverse the effect of the previous finger moves onA andB to
see that the result coincides with the result of the immersedWhitney move on the original
Whitney disc andA andB.More precisely, this final reversalmove consists of an isotopy on
A andWhitneymoves onB along framed, embeddedWhitney discs with interiors disjoint
fromB. �
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