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The s-cobordismTheorem,
the Sphere EmbeddingTheorem,
and the Poincaré Conjecture

patrick orson, mark powell, and arunima ray

We start this chapter by finishing the proof of the s-cobordism theorembegun inChapter 1.
This will allow us to prove the category losing version of the 4-dimensional Poincaré
conjecture (Theorem20.3), that every smoothhomotopy4-sphere is homeomorphic toS4.

Thenwe will prove an alternative statement of the disc embedding theorem [FQ90,The-
orem 5.1B]. This version differs from the usual disc embedding theorem in that the inter-
section conditions are on the immersed discs {fi} rather than on the dual spheres {gi},
and that the embedded discs {f i} obtained as a consequence of the theorem are regularly
homotopic to the original immersed discs {fi}. We show that the two versions are logically
equivalent. We directly obtain the sphere embedding theorem from the second version.
The sphere embedding theorem is the key ingredient needed to deduce the exactness of
the surgery sequence, as we show in Chapter 22. For the applications to surgery, it will
be important that we have geometrically transverse spheres in the outcome of the sphere
embedding theorem.

20.1 The s-cobordismTheorem

In this section, we state and prove the s-cobordism theorem for smooth s-cobordisms
between closed 4-manifolds. As indicated in Chapter 1, the disc embedding theorem is a
key ingredient in the proof.

Theorem 20.1 (s-cobordism theorem) Let N be a smooth, 5-dimensional h-cobordism
between closed 4-manifoldsM0 andM1 with vanishingWhitehead torsion τ(N,M0). Further,
suppose that π1(N) is a good group. ThenN is homeomorphic to the productM0 × [0,1]. In
particular,M0 andM1 are homeomorphic.
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Proof The first part of the proof was already explained in Chapter 1. We give the argument
again, with a few more details, for the convenience of the reader. First, sinceN is smooth,
we may choose a Morse function F : N → [0,1] with F−1(i) =Mi for i= 0,1. This
gives rise to a handle decomposition of N relative to M0, as defined in Chapter 13. As
usual, by transversality, we may assume that the handles are attached in increasing order
of index. Since N is connected, we may assume, by handle cancellation, that this handle
decomposition has no 0- or 5-handles.

Next, we use the process of handle trading to trade 1- and 4-handles for 3- and 2-handles,
respectively, as follows. Let N2 ⊆N denote the union of M0 × [0,1] and the 1- and
2-handles ofN . LetM2 denote the new boundary, so ∂N2 =−M0 ⊔M2.

Consider the chain of inclusion-inducedmaps π1(M0)→ π1(N2)→ π1(N). SinceN
is built fromN2 by attaching handles of index strictly greater than 2, the second map is an
isomorphism. The composition is an isomorphism by hypothesis. Thus the first map is an
isomorphism.

Fix a 1-handle h1 inN2, with core arcα. We claim that there is an arc β ⊆M0 such that
γ := α∪β is a null-homotopic loop inN2. To see this, first choose any arc β′ ⊆M0 with
the sameendpoints asα.Then there is some loop δ ⊆M0with the same image inπ1(N2) as
α∪β′, since the inclusion-inducedmapπ1(M0)→ π1(N2) is surjective. Anyband sumof
β′ and δ−1 is the desiredβ. By transversality, we assume thatγ is disjoint from the attaching
circles of all the 1- and 2-handles ofN2 and then we push γ to the boundaryM2.

By turning handles upside down, we see that the inclusion-induced map π1(M2)→
π1(N2) is an isomorphism. Thus γ bounds an immersed disc in M2, since it is null-
homotopic inN2. By fingermoves in the direction of γ, we see that γ bounds an embedded
disc inM2.Thicken this disc to produce a cancelling2-/3-handle pair.More precisely, insert
a collar ofM2 × [0,1] into the handle decomposition and thicken by pushing the interior
of the disc into this collar. The result is the addition of a single cancelling 2-/3-handle pair
compatible with the old handle decomposition. By the choice of γ the 2-handle cancels the
1-handle h1, leaving the 3-handle behind. Iterating this process allows us to trade all the
1-handles inN for 3-handles, and the same argument for the dual handlebody ofN built
onM1 trades all 4-handles for 2-handles.

At this point, we have produced a handle decomposition ofN , relative toM0, consisting
only of 2- and 3-handles, attached in that order. LetN1/2 denote the 5-manifold consisting
of M0 and the 2-handles, and let M1/2 denote the 4-manifold obtained as a result. That
is, ∂N1/2 =−M0 ⊔M1/2. Then the inclusion-induced map π1(M1/2)→ π1(N1/2) is
an isomorphism, since N1/2 is produced from M1/2 by attaching only 3-handles. We
also know that the inclusion-induced map π1(N1/2)→ π1(N) is an isomorphism, since
N is produced from N1/2 by adding only 3-handles. Thus, the inclusion-induced map
π1(M1/2)→ π1(N) is an isomorphism and can be used to identify the two groups.

Weobtain a chain complex corresponding to thehandle decompositionofN constructed
above of the form

0→ C3(Ñ ,M̃0)
∂3−→ C2(Ñ ,M̃0)→ 0,

D
ow

nloaded from
 https://academ

ic.oup.com
/book/43693/chapter/367035549 by ETH

 Zürich user on 13 M
ay 2024



OUPCORRECTED PROOF – FINAL, 7/6/2021, SPi

the s-cobordism and sphere embedding theorems | 285

where Ñ is the universal cover ofN and M̃0 is the universal cover ofM0. EachCi(Ñ ,M̃0)
is a finitely generated, free Z[π1(N)]-module with basis elements corresponding to a
choice of lift of the i-handles of N . The boundary map records the intersections, with
Z[π1(N)] = Z[π1(M1/2)] coefficients, between the belt spheres {S1, . . . ,Sk} of the 2-
handles, corresponding to {0}×S2 ⊆D2 ×D3, and the attaching spheres {T1, . . . ,Tk}
of the 3-handles, corresponding to S2 ×{0} ⊆D3 ×D2. Each of the sets {Si} and {Ti}
is a collection of pairwise disjoint, framed, embedded 2-spheres inM1/2.

The vanishing of the Whitehead torsion τ(N,M0) implies that after possible
stabilization (by adding cancelling pairs of 2- and 3-handles) and handle slides (corre-
sponding to basis changes), the boundary map ∂3 is represented by the identity matrix
[Lüc02, Chapter 2]. In other words, we may assume that λ(Si,Tj) = δij , measured in
Z[π1(M1/2)], for all i, j. As in the introduction, we wish to perform an isotopy of the
family {Ti} such that these intersection numbers are realized geometrically, so that we can
cancel the 2-handles with the 3-handles.

Since the inclusion-induced map from π1(M0) to π1(N) is an isomorphism, the
2-handles in N are attached to M0 along homotopically trivial circles in M0. These
null homotopies, glued to the cores of the attached 2-handles (pushed to the boundary),
produce a collection {S#

i } of possibly unframed, immersed spheres inM1/2, such that the
collections {Si} and {S#

i } are geometrically transverse. The identical argument applied
to the dual handlebody obtained by turning the handles upside down produces the family
{T#

i } of possibly unframed, immersed spheres inM1/2 geometrically transverse to {Ti}.
Note that we do not have any control over the intersections between the families {S#

i }
and{Ti}or between the families{Si} and{T#

i }.There are also uncontrolled intersections
within and between the families {S#

i } and {T#
i }.

We will now arrange for framed, geometrically transverse spheres for {Si} that are
disjoint from {Ti}, and for framed, geometrically transverse spheres for {Ti} that are
disjoint from {Si}. This will deviate slightly from the proof sketched in Chapter 1, since
we desire framed dual spheres rather than the unframed ones we produced there.

Let {S′
i} and {T ′

i} denote parallel copies of {Si} and {Ti}, respectively. Then, by
hypothesis, the collection{Si}∪ {S′

i} is pairwise disjoint, as is the collection{Ti}∪ {T ′
i}

(recall that {Si} and {Ti} are collections of mutually disjoint, framed embedded spheres).
Additionally, λ(S′

i,Tj) = λ(Si,T
′
j) = δij for all i, j. Thus all but one intersection point

betweenS′
i andTi, as well as betweenSi andT ′

i , can be paired by immersedWhitney discs,
for each i (Proposition 11.10). In addition, all the intersection points between S′

i and Tj ,
as well as between Si and T ′

j , can be paired by immersed Whitney discs, for all i ̸= j. Let
{WS

ℓ } and{WT
ℓ }be the collectionsof theseWhitneydiscs for the extraneous intersections

between {Si} and {T ′
j}, and between {S′

i} and {Tj}, respectively.
We make the interiors of the {WT

ℓ } disjoint from {Ti} by tubing into the unframed,
geometrically transverse spheres {T#

i }.This creates new intersections of theWhitney discs
with {Si} but not with {Ti}, since {T#

i } and {Ti} are geometrically transverse. Then
remove all intersections of the interiorswith{Si}by (disjoint) fingermoves in the direction
of {Ti}. See Figure 20.1. Boundary twist, at the expense of new intersections with {S′

i}, to
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S′

S

T

T#

WT

Figure 20.1 Obtaining a Whitney disc for intersections between {S′
i} and {Ti} with interior in

the complement of
∪
{Si}∪

∪
{Ti}. We see a Whitney disc WT (black) pairing intersection

points between S′ (light red) and T (blue). Remove intersections of WT and T by tubing into
the unframed, geometric dualT# (light blue). Intersections ofWT andS, including any new ones
created in the previous step, can be removed by a finger move in the direction of T .

correct the framing of the Whitney discs. We still call the resulting collection of Whitney
discs {WT

ℓ }, but note that they are framed and their interiors lie in the complement of∪
{Si}∪

∪
{Ti}. We do not control the intersections within the collection {WT

ℓ }. We
have created some new algebraically cancelling intersections between {Si} and {Ti} via
the finger move. Instead of finger moving the {Si} over {Ti}, we could have finger moved
Ti over Si, with isotopic results. So we shift perspective and consider these finger moves to
be an isotopy of {Ti}, instead.

A similar process makes the interiors of the {WS
ℓ } disjoint from

∪
{Si}∪

∪
{Ti}. That

is, remove intersections of the discs with {Si} by tubing into the unframed, transverse
spheres {S#

i }, next remove all intersections with {Ti} by disjoint finger moves in the
directionof{Si}, and thenboundary twist at the expenseof new intersectionswith{T ′

i}, to
frame theWhitney discs.We still call the resulting collection of framed, immersedWhitney
discs {WS

ℓ }.
Perform the Whitney move on {S′

i} along the Whitney discs {WT
ℓ }, and call the

resulting spheres {T̂i}. Note that the collections {Ti} and {T̂i} are geometrically
transverse, and, moreover, Si ∩ T̂j = ∅ for all i, j. Then perform the Whitney move on
{T ′

i} along the Whitney discs {WS
ℓ } and call the resulting spheres {Ŝi}. As desired, the

collections {Si} and {Ŝi} are geometrically transverse, and Ŝi ∩Tj = ∅ for all i, j. Thus
the collections

∪
{Si}∪

∪
{Ti} and

∪
{Ŝi}∪

∪
{T̂i} are geometrically transverse, and

as a result the collection
∪
{Si}∪

∪
{Ti} is π1-negligible in M1/2. We also remark that

in the process of constructing
∪
{Ŝi}∪

∪
{T̂i}, we have moved the {Ti} by an isotopy,

the collection {Si} is unaffected, and we have created some new algebraically cancelling
intersection points between the collections {Si} and {Ti}.

Now we return to our original problem, which is to perform a further isotopy of the
{Ti} so that the collections {Si} and {Ti} become geometrically transverse. We have that
λ(Si,Tj) = δij for all i, j.Thus all theunwanteddouble points between{Si} and{Ti} can
be paired up by framed, immersedWhitney discs {Wm} inM1/2 (Proposition 11.10). For
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each intersection of the interiors of {Wm} with {Si}, tube {Wm} into the geometrically
transverse spheres {Ŝi}. Similarly, for every intersection of the interiors of {Wm} with
{Ti}, tube {Wm} into the geometrically transverse spheres {T̂i}. Since {Ŝi} and {T̂i} are
framed, the collection {Wm} remains framed and we have now arranged that the interior
of {Wm} lies in the complement of

∪
{Si}∪

∪
{Ti}.

Our goal is to apply the disc embedding theorem to the collection {Wm} in this comple-
ment. With this in mind, we need to construct algebraically transverse spheres for {Wm}.

Thedesired sphereswill arise fromClifford tori. LetΣm be theClifford torus at oneof the
two double points paired by someWm. For eachm, the Clifford torusΣm intersectsWm

exactly once, and the collection of suchClifford tori is embedded and pairwise disjoint. Cap
each Σm with the meridional discs to {Si} and {Ti} described in Figure 20.2. Each cap
has a unique intersection with

∪
{Si}∪

∪
{Ti}, and none of them intersects {Wm}. Tube

these intersections into parallel copies of the relevant members of the set of geometrically
transverse spheres {Ŝi}∪ {T̂i}. Contract these capped surfaces to produce algebraically
transverse spheres {Rm} for the discs {Wm}. Since the collection {Rm} is produced by
contraction of capped surfaces with mutually disjoint bodies, each element is framed and
we see that λ(Rm,Rm′) = 0 = µ(Rm) for allm,m′.

The Whitney discs {Wm}, along with the collection of spheres {Rm}, now satisfy the
hypotheses of the disc embedding theorem in the 4-manifold

M ′ :=M1/2 r
(∪

νSi ∪
∪

νTi

)
.

T

t = −ε

Σ
T

t = −

ε

2

T

t =
ε

2

T

t = ε

T

S
W

t = 0

T

t = −ε

T

t = −

ε
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T
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ε

2
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T

S
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Figure 20.2 Obtaining a transverse sphere from a Clifford torus. Top: The Clifford torusΣ (red)
at one of the two intersection points paired up by the Whitney discW (yellow). The single point
of intersection between T and W is shown in the central panel. Bottom: The two meridional
discs are shown in blue. We see that each meridional disc intersects exactly one of {S,T},
exactly once.
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Since {Si}∪ {Ti} is π1-negligible inM1/2, we see that π1(M
′)∼= π1(M1/2)∼= π1(N),

which is a good group by hypothesis. Additionally, the intersection numbers of {Rm}
vanish in M ′, since they vanish in M1/2 ⊇M ′, and the inclusion map induces a
π1-isomorphism.

The disc embedding theorem replaces the Whitney discs {Wm} by embedded discs
with the same framed boundaries. (We also obtain geometrically transverse spheres for
these embedded discs, but we will not need them here.) Perform Whitney moves on the
{Ti} using the framed, embeddedWhitney discs to remove all the unwanted intersections.
This is the desired isotopy of {Ti}, after which the collections {Si} and {Ti} become
geometrically transverse. Now the 2-handles and the 3-handles of the 5-manifoldN can be
cancelled in pairs. Since there are no remaining handles,N is homeomorphic to the product
M0 × [0,1], as desired. �

The h-cobordism theorem is an immediate corollary of the s-cobordism theorem, since
theWhitehead torsion of a simply connected cobordism lies in theWhitehead group of the
trivial group, which is trivial.

Theorem 20.2 (h-cobordism theorem) Every smooth h-cobordism between simply con-
nected, closed 4-manifoldsM0 andM1 is homeomorphic to the productM0 × [0,1].

20.2 The Poincaré Conjecture

Possibly the most famous application of the disc embedding theorem is the 4-dimensional
Poincaré conjecture.

Theorem 20.3 (Poincaré conjecture, category losing version) Every closed, smooth
4-manifold homotopy equivalent to the 4-sphere S4 is homeomorphic to S4.

Theproofwe give belowuses5-dimensional surgery and theh-cobordism theorem(The-
orem 20.2). We discuss the category preserving Poincaré conjecture, that every topological
homotopy 4-sphere is homeomorphic to S4, in Section 21.6.2. As explained there, the
known proofs require ingredients not proved in this book, such as the category preserving
h-cobordism theorem.

Proof Let Σ be a closed, smooth 4-manifold homotopy equivalent to the 4-sphere S4.
The signature of Σ vanishes, since H2(Σ;Z) = 0. We claim that the tangent bundle of
Σ is stably trivial. The obstructions to stably trivializing the tangent bundle of a smooth,
oriented 4-manifold are the second Stiefel–Whitney classw2(TΣ) and the first Pontryagin
class p1(TΣ). Since the cohomology of Σ is concentrated in degree four, w2(TΣ) = 0,
while p1(TΣ) vanishes because the signature vanishes, by the Hirzebruch signature for-
mula 3σ(Σ) = ⟨p1(TΣ), [Σ]⟩ ∈ Z. Thus the tangent bundle is stably trivial, as claimed. It
follows thatΣ bounds a compact 5-manifoldW with stably trivial tangent bundle, since the
smooth, framed 4-dimensional cobordism groupΩfr

4 is trivial.
Construct a degree one normalmap relative boundary (f,∂f) : (W,Σ)→ (D5,S4) by

collapsing to apoint the complementof anopen tubular neighbourhood inW of somepoint
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x ∈ Σ. More precisely, the map ∂f is a homotopy equivalence and f sends fundamental
class to fundamental class. We use the fact thatW is stably framed to construct the normal
data required for the normal map. For more details on normal maps, see Section 22.1.4.

Perform 5-dimensional surgery on (f,∂f) tomake f into a homotopy equivalence.This
is possible, since the odd-dimensional surgery obstruction groupL5(Z) of the trivial group
is itself the trivial group.ThusΣ bounds a smooth, contractible 5-manifoldW ′. In this step
we have used themain result of odd-dimensional surgery theory [Wal99,Theorem 6.4]; see
also Section 22.1.6 below for the definition of the groupL5(Z)∼= Ls

5(Z). The proof so far
shows that any smooth homology 4-sphere bounds a smooth, contractible 5-manifold.

Remove an open ball from the interior ofW ′.This produces a smoothh-cobordism from
Σ to S4. By the h-cobordism theorem,W ′ is homeomorphic to the product S4 × [0,1].
Consequently,Σ is homeomorphic to S4. �

In the previous proof, the h-cobordism between Σ and S4 could have been obtained
using Wall’s theorem [Wal64] showing that any two closed, smooth, simply connected 4-
manifolds with isomorphic intersection forms are smoothly h-cobordant. The proof given
here is more transparent and has the advantage that it applies, with a few modifications, to
topological homotopy 4-spheres, as we describe in Section 21.6.2.

20.3 The Sphere EmbeddingTheorem

We state and prove an alternative version of the disc embedding theorem, where the
intersection assumptions are on the initial immersed discs rather than the dual spheres.

Theorem 20.4 ([FQ90, Theorem 5.1B]) Let M be a smooth, connected 4-manifold with
nonempty boundary and such that π1(M) is a good group. Let

F = (f1, . . . ,fn) : (D
2 ⊔ ·· · ⊔D2,S1 ⊔ ·· · ⊔S1)# (M,∂M)

be an immersed collection of discs inM with pairwise disjoint boundaries satisfying µ(fi) = 0
for all i and λ(fi,fj) = 0 for all i ̸= j . Suppose, moreover, that there is an immersed collection

G= (g1 . . . ,gn) : S
2 ⊔ ·· · ⊔S2 #M

of framed, algebraically dual spheres; that is, λ(fi,gj) = δij for all i, j = 1, . . . ,k.
Then there exist mutually disjoint flat embeddings

F = (f1, . . . ,fn) : (D
2 ⊔ ·· · ⊔D2,S1 ⊔ ·· · ⊔S1) ↪→ (M,∂M)

with f i regularly homotopic, relative boundary, to fi for each i, together with an immersed
collection of framed, geometrically dual spheres

G= (g1 . . . ,gn) : S
2 ⊔ ·· · ⊔S2 #M

such that, for each i, gi is homotopic to gi.
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Proof Since λ(fi,gj) = δij , we may apply the geometric Casson lemma (Lemma 15.3) to
arrange that {fi} and {gi} are geometrically transverse (note that the collection of trans-
verse spheres {gi} may have any kind of intersections among themselves). This changes
the collections by regular homotopy, and we continue to use the same notation. Since
λ(fi,fj) = 0 for all i ̸= j and µ(fi) = 0 for all i, the intersections and self-intersections
within {fi} are paired by framed, immersedWhitney discs (Proposition 11.10).

Consider one such Whitney discD pairing up intersections between fi and fj , where
possibly i= j. Such a disc may intersect itself, the collections {fi} and {gi}, or other
Whitney discs (see the left panel of Figure 20.3). For each intersection of D with fℓ, for
some ℓ, tubeD into a parallel push-off of the geometric dual gℓ, as shown in the right panel
of Figure 20.3.This introduces potentiallymanynew intersections, betweenD and anything
that intersected gℓ (including gℓ itself), as well as new self-intersections ofD coming from
the self-intersections of gℓ. However, the interior ofD no longer intersects any fi, since gℓ
intersects exactly oneof the{fi}, namelyfℓ, at the intersectionpointweused for tubing.Do
this for all theWhitney discs and their intersections with {fi}. Now ourWhitney discs are
more complicated, but their interiors lie in the complement of

∪
{fi}. Call this collectionof

Whitney discs {D′
k}. TheseWhitney discs are framed, so if they were embedded we could

perform theWhitney move along them to obtain the embedded discs we seek.
We wish to apply the disc embedding theorem toN :=M r

∪
νfi. Since each fi has

a geometrically transverse sphere by construction, the collection {fi} is π1-negligible, and
so there is an isomorphism π1(N)→ π1(M). Since π1(M) is good, we conclude that
π1(N) is also good, as desired.

Next, we find algebraically transverse spheres for the Whitney discs {D′
k}. As before,

these will arise from Clifford tori. Let Σk be the Clifford torus at one of the two double
points paired by some D′

k . As we saw earlier, the Clifford torus Σk intersects D′
k exactly

once. Each torus is framed and embedded, and the collection of suchClifford tori is pairwise
disjoint.Cap eachΣk withmeridional discs to{fi} (seeFigure 20.2). Each caphas a unique
intersection with {fi}, and none intersects {D′

k}. Tube these intersections between the

fa fb

ga gb

gc Dx Dy

D

(a)

fa fb

ga gb

gc Dx Dy

D

(b)

Figure 20.3 Left: A schematic picture of a piece of a Whitney discD. It may intersect {fi}, {gi},
or other Whitney discs. Recall that {fi} and {gi} are geometrically transverse. Right: Remove
intersections ofD with {fi} by tubing into {gi}.
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caps and{fi} into the set of geometrically transverse spheres{gi} andcontract the resulting
capped surfaces in the complement of{fi} to produce algebraically transverse spheres{g′k}
for the discs {D′

k} lying in N . Since the collection {g′k} is produced by contraction of
capped surfaces with disjoint bodies, each g′k is framed and λ(g′k,g

′
ℓ) = 0 = µ(g′k) in N

for all k,ℓ. Moreover, note that by Lemma 17.11, we have [g′k] = 0 ∈ π2(M) for each k.
Wemay, therefore, apply the disc embedding theorem to replace the immersedWhitney

discs {D′
k} with topologically embedded Whitney discs {Wk} with normal bundles that

induce the right framing on the boundaries, and framed, geometrically transverse spheres
{Rk} in N , with Rk homotopic to g′k for each k. For each intersection of some gi with
some Wk , tube that gi into the geometrically transverse sphere Rk . This transforms the
collection {gi} to a collection {gi}, the elements of which may have more intersections
among themselves, but are still geometrically transverse to {fi}. The {gi} are still framed
because the {Rk} are. Since g′k is null-homotopic inM for every j, so isRk . It follows that
gi is homotopic to gi for each i.

Moreover, we obtain embedded, flat, framedWhitney discs for the intersections among
the {fi} inM r (

∪
νfi ∪

∪
νgi) (see Figure 20.4). Perform the Whitney move on {fi}

over the Whitney discs {Wk} to obtain flat, embedded discs {f i}, regularly homotopic
to the {fi} with the same framed boundary as the {fi} as well as framed, geometrically
transverse spheres {gi}. �

Proposition 20.5 Theorem 20.4 and the disc embedding theorem are equivalent.

Proof Since we have already deduced Theorem 20.4 from the disc embedding theorem,
it suffices to show the converse. Begin with immersed discs {fi} with algebraically trans-
verse spheres {gi} with λ(fi,gj) = δij and λ(gi,gj) = µ(gi) = 0 for all i, j. Tube each
intersection and self-intersection within {fi} into {gi} using the unpaired intersection
points between {fi} and {gi} (see Figure 16.2). This replaces {fi} with a collection of
discs, which we still call {fi}, with the same framed boundaries, and satisfyingλ(fi,fj) =
µ(fi) = 0 for all i, j. Moreover, we still have that λ(fi,gj) = δij . Apply Theorem 20.4 to
achieve the conclusion of the disc embedding theorem. �

f

f

g

R

W

(a)

f

f

g

W

(b)

Figure 20.4 Left: An embedded Whitney disc (green) with a geometrically dual sphere (blue),
both with interiors in the complement of {fi}, has been produced.
Right: After tubing {gi} into the geometrically dual spheres, as needed, we have produced the
spheres {gi}, which are geometrically dual to {fi}.
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We can now prove the sphere embedding theorem, stated next, which we will apply in
Chapter 22 to prove the exactness of the surgery sequence. The key difference from
Theorem 20.4 is that we embed spheres instead of discs.

Sphere embedding theorem LetM be a smooth, connected 4-manifold such that π1(M) is
good. Suppose there exists an immersed collection

F = (f1, . . . ,fn) : S
2 ⊔ ·· · ⊔S2 #M

of spheres with λ(fi,fj) = 0 for every i ̸= j and µ(fi) = 0 for all i. Suppose, moreover, that
there is an immersed collection

G= (g1, . . . ,gn) : S
2 ⊔ ·· · ⊔S2 #M

of framed, algebraically dual spheres; that is, λ(fi,gj) = δij for all i, j .
Then there exists an embedding,

F = (f1, . . . ,fn) : S
2 ⊔ ·· · ⊔S2 ↪→M,

of a collection of spheres in M , with each f i regularly homotopic to fi, together with framed
geometrically dual spheres,

G= (g1, . . . ,gn) : S
2 ⊔ ·· · ⊔S2 #M,

with gi homotopic to gi for each i.

The sphere embedding theorem is summarized in Figure 20.5. Note that the assumption
µ(fi) = 0 implies that all the self-intersections of fi can be paired up with Whitney discs,
but it does not imply that fi has trivial normal bundle. Since f i is regularly homotopic to

g1 g2

f1

f2

+

−

+

−

+
−

(a) (b)

g
1

g
2

f
1 f

2

Figure 20.5 Summary of the sphere embedding theorem. We start with the situation in (a) and
produce the situation in (b).
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fi, and fi has a normal bundle, albeit not a trivial one, we deduce that so does f i.Moreover,
the Euler numbers of the normal bundles of fi and f i coincide.

Proof For each i, find a point on fi away from all intersections and self-intersections
of {fi}. Choose a small open ball around this point. Use embedded 1-handles in M
disjoint from

∪
{fi}∪

∪
{gi} to connect these small balls into one large open ball B.

Let N :=M rB. Since π1(N)∼= π1(M) and removing B does not change any inter-
section and self-intersection numbers, we may apply Theorem 20.4 to N and the discs
{fi r (fi ∩B)}. This replaces the discs with regularly homotopic, disjointly embedded,
flat discs equippedwith an immersed collection of framed, geometrically transverse spheres
in N . Gluing together B and N as well as {fi ∩B} and the embedded discs just con-
structed produces the desired embedded spheres {f i} inM . �
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