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The s-cobordism Theorem,
the Sphere Embedding Theorem,

and the Poincaré Conjecture

PATRICK ORSON, MARK POWELL, AND ARUNIMA RAY

We start this chapter by finishing the proof of the s-cobordism theorem begun in Chapter 1.
This will allow us to prove the category losing version of the 4-dimensional Poincaré
conjecture (Theorem 20.3), that every smooth homotopy 4-sphere is homeomorphic to S*.

Then we will prove an alternative statement of the disc embedding theorem [FQ90, The-
orem 5.1B]. This version differs from the usual disc embedding theorem in that the inter-
section conditions are on the immersed discs { f; } rather than on the dual spheres {g; },
and that the embedded discs { f; } obtained as a consequence of the theorem are regularly
homotopic to the original immersed discs { f; }. We show that the two versions are logically
equivalent. We directly obtain the sphere embedding theorem from the second version.
The sphere embedding theorem is the key ingredient needed to deduce the exactness of
the surgery sequence, as we show in Chapter 22. For the applications to surgery, it will
be important that we have geometrically transverse spheres in the outcome of the sphere
embedding theorem.

20.1 The s-cobordism Theorem

In this section, we state and prove the s-cobordism theorem for smooth s-cobordisms
between closed 4-manifolds. As indicated in Chapter 1, the disc embedding theorem is a
key ingredient in the proof.

Theorem 20.1 (s-cobordism theorem) Let N be a smooth, 5-dimensional h-cobordism
between closed 4-manifolds Mo and My with vanishing Whitehead torsion T(IN, My). Further,
suppose that 1 (N) is a good group. Then N is homeomorphic to the product My x [0,1]. In
particular, My and M, are homeomorphic.
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284 | THE DISC EMBEDDING THEOREM

Proof The first part of the proof was already explained in Chapter 1. We give the argument
again, with a few more details, for the convenience of the reader. First, since [N is smooth,
we may choose a Morse function F': N — [0,1] with F~1(i) = M; for i = 0, 1. This
gives rise to a handle decomposition of N relative to My, as defined in Chapter 13. As
usual, by transversality, we may assume that the handles are attached in increasing order
of index. Since NN is connected, we may assume, by handle cancellation, that this handle
decomposition has no 0- or 5-handles.

Next, we use the process of handle trading to trade 1- and 4-handles for 3- and 2-handles,
respectively, as follows. Let No C N denote the union of My x [0,1] and the 1- and
2-handles of N. Let M5 denote the new boundary, so 0Ny = — M U Mo.

Consider the chain of inclusion-induced maps 71 (Mg) — 71 (N2) — 71 (N). Since N
is built from N5 by attaching handles of index strictly greater than 2, the second map is an
isomorphism. The composition is an isomorphism by hypothesis. Thus the first map is an
isomorphism.

Fixa 1-handle ! in N», with core arc . We claim that there is an arc 8 C M| such that
v := aU S is a null-homotopic loop in Na. To see this, first choose any arc 8’ C M, with
the same endpoints as cv. Then there is some loop & C M with the same image in 71 (N2) as
aU ', since the inclusion-induced map 71 (M) — 71 (IN2) is surjective. Any band sum of
/3 and § ! is the desired /3. By transversality, we assume that 7 is disjoint from the attaching
circles of all the 1- and 2-handles of Ny and then we push -y to the boundary M.

By turning handles upside down, we see that the inclusion-induced map 71 (Mz) —
71(N3) is an isomorphism. Thus v bounds an immersed disc in Mba, since it is null-
homotopic in No. By finger moves in the direction of -y, we see that ¥ bounds an embedded
discin M>. Thicken this disc to produce a cancelling 2-/3-handle pair. More precisely, insert
a collar of M5 x [0,1] into the handle decomposition and thicken by pushing the interior
of the disc into this collar. The result is the addition of a single cancelling 2-/3-handle pair
compatible with the old handle decomposition. By the choice of 7y the 2-handle cancels the
1-handle A, leaving the 3-handle behind. Iterating this process allows us to trade all the
1-handles in IV for 3-handles, and the same argument for the dual handlebody of IV built
on M trades all 4-handles for 2-handles.

At this point, we have produced a handle decomposition of NV, relative to M, consisting
only of 2- and 3-handles, attached in that order. Let N /5 denote the 5-manifold consisting
of My and the 2-handles, and let M/, denote the 4-manifold obtained as a result. That
is, 0Ny /o = — My LU My /5. Then the inclusion-induced map 71 (M /2) — 71 (N1 /2) is
an isomorphism, since Ny /o is produced from M /o by attaching only 3-handles. We
also know that the inclusion-induced map 71 (N /2) — 71 (V) is an isomorphism, since
N is produced from Ny /o by adding only 3-handles. Thus, the inclusion-induced map
71 (M j2) = 1 (N ) is an isomorphism and can be used to identify the two groups.

We obtain a chain complex corresponding to the handle decomposition of N constructed
above of the form

0— C5(N, My) 25 Co (N, My) — 0,
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where N is the universal cover of N and ]% is the universal cover of M. Each C} (Kf , ]%)
is a finitely generated, free Z[m;(IN)]-module with basis elements corresponding to a
choice of lift of the -handles of N. The boundary map records the intersections, with
Z[m1(N)] = Z[m1 (M, j2)] coefficients, between the belt spheres {S1, ..., Sy} of the 2-
handles, corresponding to {0} x S? C D? x D3, and the attaching spheres {T7,..., T} }
of the 3-handles, corresponding to S x {0} C D? x D?. Each of the sets {S; } and {7} }
is a collection of pairwise disjoint, framed, embedded 2-spheres in M, /2

The vanishing of the Whitehead torsion 7(N,Mj) implies that after possible
stabilization (by adding cancelling pairs of 2- and 3-handles) and handle slides (corre-
sponding to basis changes), the boundary map 05 is represented by the identity matrix
[Lic02, Chapter 2]. In other words, we may assume that A(.S;,T;) = ¢;;, measured in
Z[m1(My/3)], for all i, j. As in the introduction, we wish to perform an isotopy of the
family {7 } such that these intersection numbers are realized geometrically, so that we can
cancel the 2-handles with the 3-handles.

Since the inclusion-induced map from 71 (Mp) to 71 (V) is an isomorphism, the
2-handles in N are attached to Mj along homotopically trivial circles in Mj. These
null homotopies, glued to the cores of the attached 2-handles (pushed to the boundary),
produce a collection {.S l# } of possibly unframed, immersed spheres in M3 /2, such that the

collections {S;} and {S7} are geometrically transverse. The identical argument applied
to the dual handlebody obtained by turning the handles upside down produces the family
{Tl#} of possibly unframed, immersed spheres in M /5 geometrically transverse to {77 }.

Note that we do not have any control over the intersections between the families {.S l# }
and {T; } orbetween the families {.5; } and {Tl# }. There are also uncontrolled intersections
within and between the families {S7 } and {77 }.

We will now arrange for framed, geometrically transverse spheres for {.S;} that are
disjoint from {7}, and for framed, geometrically transverse spheres for {7} that are
disjoint from {.5; }. This will deviate slightly from the proof sketched in Chapter 1, since
we desire framed dual spheres rather than the unframed ones we produced there.

Let {S/} and {7} denote parallel copies of {S;} and {T;}, respectively. Then, by
hypothesis, the collection {.S; } U { S} } is pairwise disjoint, as s the collection {7} } U {7}
(recall that {.S;} and {7} } are collections of mutually disjoint, framed embedded spheres).
Additionally, A(S},T;) = A\(Si,T}) = d;; for all i, j. Thus all but one intersection point
between S; and T}, as well as between S; and 77, can be paired by immersed Whitney discs,
for each ¢ (Proposition 11.10). In addition, all the intersection points between .S} and 77,
as well as between S; and 77, can be paired by immersed Whitney discs, for all i # j. Let
{W 7} and {W '} be the collections of these Whitney discs for the extraneous intersections
between {.5; } and {77}, and between {5} and {7} }, respectively.

We make the interiors of the {W,/'} disjoint from {7} by tubing into the unframed,
geometrically transverse spheres {TL# }. This creates new intersections of the Whitney discs
with {S;} but not with {T}}, since {T1#} and {7} are geometrically transverse. Then
remove allintersections of the interiors with {.S; } by (disjoint) finger moves in the direction
of {7} }. See Figure 20.1. Boundary twist, at the expense of new intersections with {5} }, to
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Figure 20.1 Obtaining a Whitney disc for intersections between {.S; } and {7} with interior in
the complement of | J{S;} U|UJ{T:}. We see a Whitney disc W’ (black) pairing intersection
points between S’ (light red) and 7" (blue). Remove intersections of W7 and T by tubing into
the unframed, geometric dual T# (light blue). Intersections of W7T and S, including any new ones
created in the previous step, can be removed by a finger move in the direction of T'.

correct the framing of the Whitney discs. We still call the resulting collection of Whitney
discs {W '}, but note that they are framed and their interiors lie in the complement of
U{S:} UU{T:}. We do not control the intersections within the collection {W} }. We
have created some new algebraically cancelling intersections between {.5;} and {7} via
the finger move. Instead of finger moving the {S; } over {T; }, we could have finger moved
T over S;, with isotopic results. So we shift perspective and consider these finger moves to
be an isotopy of {7 }, instead.

A similar process makes the interiors of the {W; } disjoint from (J{S;} U{J{T;}. That
is, remove intersections of the discs with {.S;} by tubing into the unframed, transverse
spheres {S7}, next remove all intersections with {7}} by disjoint finger moves in the
direction of { S; }, and then boundary twist at the expense of new intersections with {7} }, to
frame the Whitney discs. We still call the resulting collection of framed, immersed Whitney
discs {W;}.

Perform the Whitney move on {S!} along the Whitney discs {WT} and call the
resulting spheres {7}. Note that the collections {T}} and {7}} are geometrically
transverse, and, moreover, S; N T = () for all 7, j. Then perform the Whltney move on
{T/} along the Whitney discs {W} and call the resulting spheres {S;}. As desired, the
collections {.S;} and {S } are geometrlcally transverse, and S NT; = () for all ¢, 5. Thus
the collections | J{5;} UU{T;} and U{S:} UU{T}} are geometrically transverse, and
as a result the collection (J{9;} U {73} is m1-negligible in M /5. We also remark that
in the process of constructing U{:S'\l} U U{ﬁ}, we have moved the {7} } by an isotopy,
the collection {.5;} is unaffected, and we have created some new algebraically cancelling
intersection points between the collections {S; } and {T; }.

Now we return to our original problem, which is to perform a further isotopy of the
{T’;} so that the collections {S; } and {T; } become geometrically transverse. We have that
A(S;,T;) = §;; foralli, j. Thusall the unwanted double points between {.9; } and {T; } can
be paired up by framed, immersed Whitney discs { W,,, } in M /5 (Proposition 11.10). For

20z Aey g1 uo Jasn younz H13 Aq 6¥55£0.9€/491dBYD/E69€EH/5000/W0od dnoolwaepese//:sdpy woly papeojumoq



THE S-COBORDISM AND SPHERE EMBEDDING THEOREMS | 287

each intersection of the interiors of {W,,, } with {.S;}, tube {W,,,} into the geometrically
transverse spheres {S'\l} Similarly, for every intersection of the interiors of {W,,} with
{T;}, tube {W,, } into the geometrically transverse spheres {T:}. Since {S;} and {7} } are
framed, the collection {W),, } remains framed and we have now arranged that the interior
of {W,,,} lies in the complement of  J{.5;} U|J{T; }.

Our goal is to apply the disc embedding theorem to the collection { W,,, } in this comple-
ment. With this in mind, we need to construct algebraically transverse spheres for {W,,, }.

The desired spheres will arise from Clifford tori. Let 3, be the Clifford torus at one of the
two double points paired by some W,,. For each m, the Clifford torus X, intersects W,
exactly once, and the collection of such Clifford tori is embedded and pairwise disjoint. Cap
each X,,, with the meridional discs to {.5;} and {7} described in Figure 20.2. Each cap
has a unique intersection with ( J{S; } U|J{7;}, and none of them intersects { W, }. Tube
these intersections into parallel copies of the relevant members of the set of geometrically
transverse spheres {5; } U {7} }. Contract these capped surfaces to produce algebraically
transverse spheres { R, } for the discs {W,, }. Since the collection { R, } is produced by
contraction of capped surfaces with mutually disjoint bodies, each element is framed and
we see that A(R,,, Ry ) = 0 = p(Ryy,) forallm,m’.

The Whitney discs { W), }, along with the collection of spheres { R, }, now satisfy the
hypotheses of the disc embedding theorem in the 4-manifold

M’ =My N (UVSZ»UUVTi).

Figure 20.2 Obtaining a transverse sphere from a Clifford torus. Top: The Clifford torus % (red)
at one of the two intersection points paired up by the Whitney disc W (yellow). The single point
of intersection between 7" and W is shown in the central panel. Bottom: The two meridional
discs are shown in blue. We see that each meridional disc intersects exactly one of {S,T'},
exactly once.
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Since {S;} U {T;} is 71 -negligible in M /5, we see that 1 (M') = 71 (M /) = 71 (N),
which is a good group by hypothesis. Additionally, the intersection numbers of {R,, }
vanish in M’ since they vanish in Mj /o O M’, and the inclusion map induces a
m1-isomorphism.

The disc embedding theorem replaces the Whitney discs {W,,,} by embedded discs
with the same framed boundaries. (We also obtain geometrically transverse spheres for
these embedded discs, but we will not need them here.) Perform Whitney moves on the
{T;} using the framed, embedded Whitney discs to remove all the unwanted intersections.
This is the desired isotopy of {7}, after which the collections {.S;} and {7;} become
geometrically transverse. Now the 2-handles and the 3-handles of the 5-manifold N can be
cancelled in pairs. Since there are no remaining handles, NV is homeomorphic to the product
My x [0,1], as desired. O

The h-cobordism theorem is an immediate corollary of the s-cobordism theorem, since
the Whitehead torsion of a simply connected cobordism lies in the Whitehead group of the
trivial group, which is trivial.

Theorem 20.2 (h-cobordism theorem) Every smooth h-cobordism between simply con-
nected, closed 4-manifolds My and M is homeomorphic to the product My % [0, 1].

20.2 The Poincaré Conjecture

Possibly the most famous application of the disc embedding theorem is the 4-dimensional
Poincaré conjecture.

Theorem 20.3 (Poincaré conjecture, category losing version) Every closed, smooth
4-manifold homotopy equivalent to the 4-sphere S* is homeomorphic to S*.

The proof we give below uses 5-dimensional surgery and the h-cobordism theorem (The-
orem 20.2). We discuss the category preserving Poincaré conjecture, that every topological
homotopy 4-sphere is homeomorphic to 5%, in Section 21.6.2. As explained there, the
known proofs require ingredients not proved in this book, such as the category preserving
h-cobordism theorem.

Proof Let X be a closed, smooth 4-manifold homotopy equivalent to the 4-sphere S*.
The signature of X vanishes, since Ho(X;Z) = 0. We claim that the tangent bundle of
3] is stably trivial. The obstructions to stably trivializing the tangent bundle of a smooth,
oriented 4-manifold are the second Stiefel-Whitney class w2 (7'3) and the first Pontryagin
class p1(T'Y). Since the cohomology of ¥ is concentrated in degree four, wo(T'X) =0,
while p; (T'3) vanishes because the signature vanishes, by the Hirzebruch signature for-
mula 30(X) = (p1(TX),[X]) € Z. Thus the tangent bundle is stably trivial, as claimed. It
follows that 32 bounds a compact 5-manifold W with stably trivial tangent bundle, since the
smooth, framed 4-dimensional cobordism group Q2 is trivial.

Construct a degree one normal map relative boundary (f,0f): (W,%) — (D, S%) by
collapsing to a point the complement of an open tubular neighbourhood in W of some point
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x € X. More precisely, the map Of is a homotopy equivalence and f sends fundamental
class to fundamental class. We use the fact that W is stably framed to construct the normal
data required for the normal map. For more details on normal maps, see Section 22.1.4.
Perform 5-dimensional surgery on (f,Jf) to make f into a homotopy equivalence. This
is possible, since the odd-dimensional surgery obstruction group L5 (Z) of the trivial group
isitself the trivial group. Thus ¥ bounds a smooth, contractible 5-manifold W”'. In this step
we have used the main result of odd-dimensional surgery theory [Wal99, Theorem 6.4]; see
also Section 22.1.6 below for the definition of the group L5 (Z) = Lg(Z). The proof so far
shows that any smooth homology 4-sphere bounds a smooth, contractible 5-manifold.
Remove an open ball from the interior of W’. This produces a smooth h-cobordism from
¥ to S*. By the h-cobordism theorem, W’ is homeomorphic to the product S* x [0, 1].
Consequently, 3 is homeomorphic to 5*. O

In the previous proof, the h-cobordism between 3 and S* could have been obtained
using Wall’s theorem [Wal64] showing that any two closed, smooth, simply connected 4-
manifolds with isomorphic intersection forms are smoothly h-cobordant. The proof given
here is more transparent and has the advantage that it applies, with a few modifications, to
topological homotopy 4-spheres, as we describe in Section 21.6.2.

20.3 The Sphere Embedding Theorem

We state and prove an alternative version of the disc embedding theorem, where the
intersection assumptions are on the initial immersed discs rather than the dual spheres.

Theorem 20.4 ([FQ90, Theorem 5.1B]) Let M be a smooth, connected 4-manifold with
nonempty boundary and such that w1 (M) is a good group. Let

F=(fi,..,fn): (D*U---uD* S0 S & (M,0M)

be an immersed collection of discs in M with pairwise disjoint boundaries satisfying pu(f;) =0
foralli and A(f;, f;) = O for all i # j. Suppose, moreover, that there is an immersed collection

G=(g91...,9n): S?U---US* % M

of framed, algebraically dual spheres; thatis, \(f;,g;) = 65 foralli,j=1,... k.
Then there exist mutually disjoint flat embeddings

F=(fy,....fn): (D*u---uD?* S*U---uS") — (M,0M)

with f; regularly homotopic, relative boundary, to f; for each i, together with an immersed
collection of framed, geometrically dual spheres

G=(Gy--Gp): S?U---US* M

such that, for each i, g, is homotopic to g;.
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Proof Since A(f;, ;) = 0;;, we may apply the geometric Casson lemma (Lemma 15.3) to
arrange that { f;} and {g; } are geometrically transverse (note that the collection of trans-
verse spheres {g; } may have any kind of intersections among themselves). This changes
the collections by regular homotopy, and we continue to use the same notation. Since
A(fi, f;) =0forall ¢ # j and p(f;) = O for all ¢, the intersections and self-intersections
within { f; } are paired by framed, immersed Whitney discs (Proposition 11.10).

Consider one such Whitney disc D pairing up intersections between f; and f;, where
possibly ¢ = j. Such a disc may intersect itself, the collections { f;} and {g;}, or other
Whitney discs (see the left panel of Figure 20.3). For each intersection of D with fy, for
some ¢, tube D into a parallel push-off of the geometric dual g¢, as shown in the right panel
of Figure 20.3. This introduces potentially many new intersections, between D and anything
that intersected g, (including g itself), as well as new self-intersections of D coming from
the self-intersections of g¢. However, the interior of D no longer intersects any f;, since g,
intersects exactly one of the { f; }, namely fy, at the intersection point we used for tubing. Do
this for all the Whitney discs and their intersections with { f; }. Now our Whitney discs are
more complicated, but their interiors lie in the complement of | J{ f; }. Call this collection of
Whitney discs { D}, }. These Whitney discs are framed, so if they were embedded we could
perform the Whitney move along them to obtain the embedded discs we seek.

We wish to apply the disc embedding theorem to IV := M ~\ |Jv f;. Since each f; has
a geometrically transverse sphere by construction, the collection { f; } is 71 -negligible, and
so there is an isomorphism 71 (N) — 71 (M). Since 1 (M) is good, we conclude that
m1(IN) is also good, as desired.

Next, we find algebraically transverse spheres for the Whitney discs { D}, }. As before,
these will arise from Clifford tori. Let X5, be the Clifford torus at one of the two double
points paired by some Dj,. As we saw earlier, the Clifford torus ¥y, intersects D}, exactly
once. Each torus is framed and embedded, and the collection of such Clifford tori is pairwise
disjoint. Cap each X, with meridional discs to { f; } (see Figure 20.2). Each cap has aunique
intersection with { f;}, and none intersects { D} }. Tube these intersections between the

9b
L~

__"717 /W g

fu ,fb Ye D.’L‘ Dy fu ,fb Ye D;z: Dy
(a) (b)

Figure 20.3 Left: A schematic picture of a piece of a Whitney disc D. It may intersect { f; }, {g: },
or other Whitney discs. Recall that { f;} and {g;} are geometrically transverse. Right: Remove
intersections of D with { f; } by tubing into {g;}.
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capsand { f; } into the set of geometrically transverse spheres { g; } and contract the resulting
capped surfaces in the complement of { f; } to produce algebraically transverse spheres { g}, }
for the discs { D} } lying in N. Since the collection {gj, } is produced by contraction of
capped surfaces with disjoint bodies, each g;, is framed and A(g},, ;) = 0= u(g;) in N
for all k, . Moreover, note that by Lemma 17.11, we have [g}.] = 0 € w2 (M) for each k.

‘We may, therefore, apply the disc embedding theorem to replace the immersed Whitney
discs { D} } with topologically embedded Whitney discs { W}, } with normal bundles that
induce the right framing on the boundaries, and framed, geometrically transverse spheres
{Ry} in N, with Ry, homotopic to g}, for each k. For each intersection of some g; with
some Wj, tube that g; into the geometrically transverse sphere 2. This transforms the
collection {g; } to a collection {7, }, the elements of which may have more intersections
among themselves, but are still geometrically transverse to { f; }. The {g; } are still framed
because the { Ry, } are. Since g}, is null-homotopic in M for every j, so is R. It follows that
G, is homotopic to g; for each i.

Moreover, we obtain embedded, flat, framed Whitney discs for the intersections among
the {f;} in M ~ (Uvf; UJvg;) (see Figure 20.4). Perform the Whitney move on { f; }
over the Whitney discs {W},} to obtain flat, embedded discs { f;}, regularly homotopic
to the { f;} with the same framed boundary as the { f;} as well as framed, geometrically
transverse spheres {g, }. O

Proposition 20.5 Theorem 20.4 and the disc embedding theorem are equivalent.

Proof Since we have already deduced Theorem 20.4 from the disc embedding theorem,
it suffices to show the converse. Begin with immersed discs { f; } with algebraically trans-
verse spheres {g; } with A(fi,g;) = 0;; and A(g;, ;) = 11(g;) = 0 for all 4, j. Tube each
intersection and self-intersection within { f;} into {g;} using the unpaired intersection
points between { f;} and {g;} (see Figure 16.2). This replaces { f; } with a collection of
discs, which we still call { f; }, with the same framed boundaries, and satisfying A( f;, f;) =
w(fi) = 0 for all 4, . Moreover, we still have that A(f;,g;) = J;;. Apply Theorem 20.4 to

achieve the conclusion of the disc embedding theorem. a
9 g
W / W /
fﬂ\ﬁ N | [:3@\
/ \ ‘ — / \ ‘ N
() (b)

Figure 20.4 Left: An embedded Whitney disc (green) with a geometrically dual sphere (blue),
both with interiors in the complement of { f; }, has been produced.

Right: After tubing {g;} into the geometrically dual spheres, as needed, we have produced the
spheres {g, }, which are geometrically dual to { f;}.
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We can now prove the sphere embedding theorem, stated next, which we will apply in
Chapter 22 to prove the exactness of the surgery sequence. The key difference from
Theorem 20.4 is that we embed spheres instead of discs.

Sphere embedding theorem Let M be a smooth, connected 4-manifold such that w1 (M) is
good. Suppose there exists an immersed collection

F=(fi, s fn): S*U---US*% M

of spheres with A(f;, f;) = 0 for every i # j and pu(f;) = O for all i. Suppose, moreover, that

there is an immersed collection
G=(g1, .., 9n): S?U---US*9 M

of framed, algebraically dual spheres; that is, \(f;, g;) = d;; for all i, j.

Then there exists an embedding,
F=(f1, - fn):S?U---US? — M,

of a collection of spheres in M, with each f, regularly homotopic to f;, together with framed
geometrically dual spheres,

G=(Gy,---,G,): S?U---US? 3 M,

with G, homotopic to g; for each 1.

The sphere embedding theorem is summarized in Figure 20.5. Note that the assumption
p(fi) = 0 implies that all the self-intersections of f; can be paired up with Whitney discs,
but it does not imply that f; has trivial normal bundle. Since f; is regularly homotopic to

fi

5

(a) (b)

Figure 20.5 Summary of the sphere embedding theorem. We start with the situation in (a) and
produce the situation in (b).
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Ji,and f; has a normal bundle, albeit not a trivial one, we deduce that so does ?l Moreover,
the Euler numbers of the normal bundles of f; and f, coincide.

Proof For each i, find a point on f; away from all intersections and self-intersections
of {f;}. Choose a small open ball around this point. Use embedded 1-handles in M
disjoint from (J{fi} UJ{g:} to connect these small balls into one large open ball B.
Let N := M ~ B. Since 71 (N) 2 71 (M) and removing B does not change any inter-
section and self-intersection numbers, we may apply Theorem 20.4 to /N and the discs
{fi ~ (fi " B)}. This replaces the discs with regularly homotopic, disjointly embedded,
flat discs equipped with an immersed collection of framed, geometrically transverse spheres
in V. Gluing together B and N as well as {f; N1 B} and the embedded discs just con-
structed produces the desired embedded spheres { f, } in M. O
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