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The SchoenfliesTheorem after Mazur,
Morse, and Brown

stefan behrens, allison n. miller, matthias nagel,
and peter teichner

We introduce some basic techniques in the study of topological manifolds by means of
a discussion of the Schoenflies theorem. First we present the proof of Mazur and Morse
using the Eilenberg swindle and a technique called push-pull. These techniques exemplify
the kinds of arguments often used in the study of topological manifolds. Then we explain
Brown’s alternative proof of the Schoenflies theorem as an introduction to decomposition
space theory, or shrinking.

The Schoenflies problem is a fundamental question about spheres embedded in
Euclidean space. Denote the d-dimensional Euclidean space byRd, the closed unit disc or
ball inRd byDd, and the d-dimensional sphere by Sd. We identify Sd with the boundary
∂Dd+1.The original Schoenflies problem can be stated as the conjecture that for all d, every
continuous embedding ofSd intoRd+1 extends to a continuous embedding ofDd+1 intoRd+1.

In 1913, the 1-dimensional case, more commonly known as the Jordan curve theorem,
was proved in full generality by Carathéodory [Car13] and Osgood-Taylor [OT13] using
elaboratemethods from complex analysis.The 2-dimensional case was studied in the 1920s
by Alexander, who first circulated an unpublished manuscript claiming a proof but soon
discovered a counterexample [Ale24], which is now called the Alexander horned sphere,
shown in Figure 3.1. Later, Alexander found that the Schoenflies conjecture holds in
dimension two, given the existence of a bicollar [Ale30].

Definition 3.1 A continuous embedding f : Sd → Rd+1 has a bicollar if f extends to a
continuous embedding F : Sd × [−1,1]→ Rd+1 such that F restricted to Sd ×{0} is
equal to f . We say thatF is a bicollared embedding of Sd.

With the bicollared hypothesis added, the following became known as the Schoenflies
conjecture.

Conjecture 3.2 (Schoenflies) For all d, every bicollared embedding of Sd intoRd+1 extends
to a continuous embedding ofDd+1 intoRd+1.
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Figure 3.1 TheAlexander horned sphere. Perform the indicated infinite construction, then add in
aCantor set to compactify the union of the tubes and obtain a topological embedding of a 2-sphere
in R3. The open exterior region is not simply connected, since, for example, the red circle is not
null-homotopic.

In the 30 years that followed, almost no progress was made. In the 1950s there was
pervasive pessimism among manifold topologists regarding the topological category. A
watershed moment came in 1959 when Mazur gave his partial proof of the Schoenflies
conjecture [Maz59], which we now explain.

3.1 Mazur’sTheorem

Mazur’s proof uses a principle known as the Eilenberg swindle, which appears, for example,
in the proof of the following observation in commutative algebra. Let A be any projective
module over some ring. Since A is projective, it can be written as a direct summand
A⊕B ∼= F , where F is a free module and B is some module. Then on the one hand
we have

(A⊕B)⊕ (A⊕B)⊕ (A⊕B)⊕ ·· · ∼= F∞,

while on the other hand a different grouping of the summands gives

A⊕ (B⊕A)⊕ (B⊕A)⊕ (B⊕A)⊕ ·· · ∼=A⊕F∞,

since the direct sum is associative and B⊕A∼=A⊕B ∼= F . Thus, F∞ ∼=A⊕F∞. In
other words, A becomes an infinite-dimensional free module upon direct sum with an
infinite-dimensional free module.That is, any projective module is stably free in the infinite-
dimensional context.

Example 3.3 (Do knots have inverses?) The following is a standard application of the
Eilenberg swindle in topology. Knots in R3 (or S3) can be added by forming connected
sums.We ask whether, given a knotA, there is a knotB such that the connected sumA#B

D
ow

nloaded from
 https://academ

ic.oup.com
/book/43693/chapter/367034270 by U

niversitat-ETH
 Zurich user on 30 April 2024



OUPCORRECTED PROOF – FINAL, 5/6/2021, SPi

the schoenflies theorem after mazur , morse, and brown | 47

BABA

Figure 3.2 Adding knots in cylinders. The boxes denote tangles; that is, the braid closure of the
strand lying within the box labelledA (respectively,B) is the knotA (respectively,B).

. . .A B A

Figure 3.3 By stacking cylinders together, we construct the connected sum of infinitely many
copies ofA#B in a cone.

is ambiently isotopic to the trivial knotU ; that is,A#B ∼= U . We think of knots as strands
within a cylinder, and, indeed, every knot is the ‘braid closure’ of such a knotted strand.
Then, the connected sum operation is realized by stacking cylinders next to each other,
as shown in Figure 3.2. This operation is both commutative and associative. To see the
commutativity, start with A#B, shrink B so that it becomes very small compared to A,
slide it alongA to the other side, and let it grow again.

Assume that a knotA has an inverseB; that is,A#B ∼= U . This implies we can unknot
A#B using an ambient isotopy entirely supported in the two cylinders. Now the swindle
works as follows. Take the connected sum of infinitely many copies of A#B and think of
the resulting knot as living in a cone, which in turn lives in a cylinder, as shown in Figure 3.3.
The cone forces the summands to get progressively smaller, so they limit to a point at the tip
of the cone.Then we have an ambient isotopy,

(A#B)#(A#B)#(A#B)# · · · ∼=#∞
i=1U

∼= U,

while a different grouping gives another ambient isotopy,

A#(B#A)#(B#A)#(B#A)# · · · ∼=A#(#∞
i=1U)∼=A,

where we use the fact that B#A∼= U and apply infinitely many small ambient isotopies.
Thus, A must be ambiently isotopic to the trivial knot. This proves that a nontrivial knot
does not admit an inverse.

The above proof has the drawback that it loses category; that is, we may have started
with smooth or piecewise linear knots but the conclusion holds only in the topological
category, since the ambient isotopy we constructed may not be smooth or piecewise linear
at the cone point: we obtain a homeomorphism of S3 sendingA to the unknot rather than
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a diffeomorphism. Other proofs of the non-cancellation of knots, such as the proof using
additivity of the Seifert genus, do not have this drawback.

Mazur used the Eilenberg swindle to give a proof of the Schoenflies theorem, with a
hypothesis about a standard spot.

Definition 3.4 Let i : Sd × [−1,1]→ Rd+1 be a bicollared embedding with a point p ∈
Sd such that i(p,0) = 0. WriteRd+1 asRd ×R and then the function i as (i1, i2), where
i1 : S

d × [−1,1]→ Rd and i2 : Sd × [−1,1]→ R.
We say that (p,0) ∈ Sd × [−1,1] is a standard spot of i if there is a standard d-

dimensional discDd ⊆ Sd around p such that

(a) the function imapsDd ×{0} to a standard round disc inRd ×{0},

(b) for each q ∈Dd, the interval {q}× [−1,1] inSd × [−1,1] is mapped by i such that
i(q, t) = (i1(q,0), t).

Note that, in particular, the closure of the complement ofDd in Sd is also a standard disc.
Morally, this definition means that i is ‘as standard as possible’ around p.

Theorem3.5 (Mazur [Maz59]) Let d≥ 1 and let i : Sd × [−1,1]→ Rd+1 be a bicollared
embedding with a standard spot. Then i extends to a continuous embedding ofDd+1.

Proof Let i : Sd × [−1,1]→ Rd+1 be the given bicollared embedding with a standard
spot (p,0). By passing to the one-point compactification of Rd+1, we can consider i to
be an embedding Sd × [−1,1] ↪→ Sd+1. LetDd ⊆ Sd be the disc in the definition of the
standard spot. Cut out the image i(Dd × [− 1

2 ,
1
2 ]) = i(Dd)× [− 1

2 ,
1
2 ] around i(p,0). By

definition, we have removed a standard ball from Sd+1, so the closure of the complement
is also a standard ball (in particular, this does not assume the Schoenflies theorem).

Next, we claim that the space Sd+1 r i(Sd × [− 1
2 ,

1
2 ]) has two components, as

indicated in Figure 3.4 in the case d= 1. To see this, let X := i(Sd × [− 1
2 ,

1
2 ]) and

Y := Sd+1 rX . Then Sd+1 =X ∪i(Sd×{− 1
2 ,

1
2})

Y , and so the Mayer–Vietoris
sequence yields

H1(S
d+1)→H0

(
Sd ×

{
− 1

2 ,
1
2

})
→H0(X)⊕H0(Y )→H0(S

d+1)→ 0.

To apply theMayer–Vietoris sequence, we use that i(Sd ×{± 1
2}) sits inside a larger collar,

so is itself bicollared. Since d≥ 1, we have that H1(S
d+1) = 0 and Z∼=H0(S

d+1)∼=
H0(S

d)∼=H0(X).We compute thatH0(Y )∼= Z2, soY has two connected components,
as claimed. We call these two pieces A+ and A−, where A− is the piece contained in
Rd+1 ⊆ Sd+1.

We also see from the existence of the standard spot that the boundary of A± is a
d-dimensional sphere that is decomposed into two standard d-dimensional discs P±

and Q±, as shown in Figure 3.4, where P+ = i(Dd ×{− 1
2}), P

− = i(Dd ×{ 1
2}) and

Q± are the closures of the complementary regions.

D
ow

nloaded from
 https://academ

ic.oup.com
/book/43693/chapter/367034270 by U

niversitat-ETH
 Zurich user on 30 April 2024



OUPCORRECTED PROOF – FINAL, 5/6/2021, SPi

the schoenflies theorem after mazur , morse, and brown | 49

P+

P−

Q−

Q+

A−

A+

Figure 3.4 Mazur’s partial proof of the Schoenflies conjecture. Red denotes the image i(Sd).
The standard spot is shown around the origin. Let A± denote the connected components of the
complement of i(Sd × [− 1

2
, 1
2
]). The boundary i(Sd ×{− 1

2
}) is decomposed into P+ ∪Q+

and i(Sd ×{ 1
2
}) is decomposed intoP− ∪Q−.

Consider the space

A− ∪QA
+ :=A− ∪Q− i((Sd rDd)× [− 1

2 ,
1
2 ])∪Q+ A+.

By definition, this is the closure of the complement in Sd+1 of i(Dd × [− 1
2 ,

1
2 ]), and we

have already established that it is homeomorphic toDd+1. Next we show that the space

A− ∪P A
+ :=A− ∪P− i(Dd × [− 1

2 ,
1
2 ])∪P+ A+

is also homeomorphic toDd+1. To see this, note that P± andQ± are ambiently isotopic
in ∂A±, via some ambient isotopy

F± : ∂A± × [0,1]→ ∂A±,

withF±|∂A±×{0} = Id, sinceP± andQ±may be considered to be the standard northern
and southern hemispheres of the d-dimensional sphere ∂A±. By construction, ∂A± is
collared. Thus there is an embedding, ∂A± × [0,1]→A±, with ∂A± ×{1} mapped
homeomorphically to ∂A±. Then we have the following homeomorphism obtained by
inserting the ambient isotopies into the boundary collars.

A− ∂A− × [0,1] i(Dd × [− 1
2 ,

1
2 ]) ∂A+ × [0,1] A+

A− ∂A− × [0,1] i((Sd rDd)× [− 1
2 ,

1
2 ]) ∂A+ × [0,1] A+

∪P−

Id

∪P−

F−×Id

∪P+

g

∪P+

F+×Id Id

∪P− ∪Q− ∪Q+ ∪P+
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The middle map is obtained using the abstract homeomorphism Dd ∼= Sd rDd. The
diagram shows thatA− ∪P A

+ ∼=A− ∪QA
+ ∼=Dd+1, as desired.

We are now ready for the Eilenberg swindle. We have the following sequence of homeo-
morphisms:

Dd+1 ∼=
(
A− ∪QA

+
)
∪P− i

(
Dd ×

[
−1

2
,
1

2

])
∪P+

(
A− ∪QA

+
)
∪P− · · · ∪ {∞}

∼=A− ∪Q− i
((
Sd rDd

)
×
[
−1

2
,
1

2

])
∪Q+

(
A+ ∪P A

−)∪Q− · · · ∪ {∞}

∼=A− ∪Q− i
((
Sd rDd

)
×
[
−1

2
,
1

2

])
∪Q+ Dd+1 ∪Q− Dd+1 ∪ ·· · ∪ {∞}

∼=A− ∪Q− i
((
Sd rDd

)
×
[
−1

2
,
1

2

])
∪Q+ Dd+1

∼=A−.

For the first homeomorphism above, we are using the fact that A− ∪QA
+ ∼=Dd+1

and that gluing infinitely many balls in pairs along balls of one lower dimension in their
boundaries and then taking the one-point compactification gives another ball. The second
step is theEilenberg swindle, where the rebracketing occurs.The third step uses thatA+ ∪P

A− ∼=Dd+1, as shown above. Then we again use the fact that a compactified infinite
sequence of balls glued together along balls of one lower dimension is homeomorphic to a
ball.The last homeomorphism is easier: the boundary connected sum of finitely many balls
is homeomorphic to a ball, and since ∂A− is collared, boundary connected sumwith a ball
alongpart of its boundary is trivial.Wehavenowshown that the spaceA− is homeomorphic
to Dd+1. Note that the closure of the component of the complement of i(Sd ×{0}) in
Rd+1 ⊆ Sd+1 is A− equipped with a boundary collar and thus is also homeomorphic to
Dd+1. The proof is then completed by the Alexander trick, which provides an extension of
a given homeomorphism Sd → Sd to a homeomorphismDd+1 →Dd+1. �

Note that we could reverse the rôles of A− and A+ in the proof above to conclude
that A+ is also a ball. Thus, we have shown that given a bicollared embedding i : Sd ↪→
Sd+1 with a standard spot, both of the connected components of the complementSd+1 r
i(Sd) have closures homeomorphic toDd+1. Next we show that the standard spot is not
required.

3.2 Morse’sTheorem

Mazur’s work generated a lot of interest in the problem of removing the standard spot
hypothesis. This was solved in 1960 in a paper by Morse [Mor60] using a technique called
push-pull. We introduce it by proving a theorem that uses the technique.

Theorem 3.6 (Application of push-pull, Brown (unpublished), see [EK71, p. 85; Sie68,
p. 535; Sie70b, Corollary 5.4]) Let X and Y be compact metric spaces. If X ×R is
homeomorphic to Y ×R, thenX ×S1 is homeomorphic to Y ×S1.
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Sketch of proof Let h : X ×R→ Y ×R be a homeomorphism. The key point in this
argument will be that Y ×R has two product structures, the intrinsic one and the one
induced fromX ×R via h.

Let Xt denote X ×{t} for t ∈ R and let X[t,u] denote X × [t,u] for [t,u]⊆ R.
Similarly, let Ys denote Y ×{s} for s ∈ R and let Y[r,s] denote Y × [r,s] for [r,s]⊆ R.
By compactness ofX and Y , there exist a < c < e and b < d such that

(1) Ya, Yc, Ye, h(Xb), and h(Xd) are pairwise disjoint in Y ×R,

(2) h(Xb)⊆ Y[a,c],

(3) Yc ⊆ h(X[b,d]),

(4) h(Xd)⊆ Y[c,e],

as illustrated in the leftmost panel in Figure 3.5. This may be achieved by first fixing a, and
then choosing as follows.

• Choose b so that (1) is satisfied for a and b.

• Choose c > a so that (1) and (2) are satisfied for a, b, and c.

• Choose d > b so that (1) and (3) are satisfied for a, b, c, and d.

• Choose e > c so that (1) and (4) are satisfied.

Now we construct a self-homeomorphism χ of Y ×R as the composition

χ= C−1 ◦PY ◦PX ◦C,

where the steps are illustrated in Figure 3.5.ThemapsPX andPY will constitute the actual
pushing and pulling, while C , which we might call cold storage, makes sure that nothing is
pushed or pulled unless it is supposed to be.

Themaps are obtained as follows:

• The map C rescales the intrinsic R-coordinate of Y ×R such that C(Y[a,c]) lies
below h(Xb) and leaves h(Xd) untouched. We require C to be the identity on
Y[c+ε,∞) and Y(−∞,a], for ε small enough so that Yc+ε ( h(X[b,d]).

• ThemapPX pushesh(Xd) down toh(Xb) along theR-coordinate induced byh—
that is, the image of the product structure ofX ×R—without movingC(Y[a,c]).

• ThemapPY pullsh(Xb) = (PX ◦C ◦h)(Xd) up along the intrinsicR-coordinate
of Y ×R so that it lies above the support ofC−1, again without movingC(Y[a,c]).
This can be done in such a way thatPY is supported below Ye.

The map χ is the identity outside of Y[a,e]. Observe that χ leaves h(Xb) untouched and
that χ(h(Xd)) appears as a translate of h(Xb) in the intrinsicR-coordinate.
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C PX PY C−1

a

c

e

h(Xb)

h(Xd)

Figure 3.5 The push-pull construction. Each panel depicts the space Y ×R. The blue and yellow
regions denote h(X[b,d]) and Y[a,c], respectively. Note that the regions overlap.

TheembeddingH := χ ◦h : X × [b,d]→ Y ×Rnowdescends to a homeomorphism
X ×S1 → Y ×S1. That such a continuous map exists is straightforward to see. It takes
some work to verify that it is a bijection; we leave this for the reader.The closedmap lemma
(Lemma 3.23) then shows that the inverse is also continuous. �

Remark 3.7 The converse of Theorem 3.6 is not true in general. There exist compact
manifolds X and Y such that X ×S1 and Y ×S1 are diffeomorphic but X ×R and
Y ×R are not even homotopy equivalent [Cha65,Theorem 3.9].

Remark 3.8 The compactness hypothesis of Theorem 3.6 is necessary. That is, there
exist examples of noncompact metric spaces X and Y such that X ×R and Y ×R are
homeomorphic butX ×S1 andY ×S1 are not, as follows. LetΣg,n denote the compact,
orientable surface with genus g and n boundary components. Note that Σg,1 × [0,1] is
homeomorphic toΣ0,2g+1 × [0,1]. Indeed, both are obtained fromD3 by attaching2g ori-
entable 1-handles, and there is an essentially unique way to attach orientable 3-dimensional
1-handles to D3. Let X and Y be the interiors of Σg,1 and Σ0,2g+1, respectively. Then
X ×R andY ×R are homeomorphic (indeed, diffeomorphic), since they are the interiors
of the homeomorphic spaces Σg,1 × [0,1] and Σ0,2g+1 × [0,1], respectively. However,
the end of X ×S1 is homotopy equivalent to a torus, but the set of ends of Y ×S1 is
homotopy equivalent to the disjoint union of 2g+1 copies of tori. Therefore X ×S1 is
not homeomorphic to Y ×S1.

Morse used the technique of push-pull to prove the following theorem.

Theorem 3.9 (Morse [Mor60]) For all d, every bicollared embedding Sd × [−1,1]→
Rd+1 has a standard spot after applying a self-homeomorphism ofRd+1.
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Figure 3.6 Creating a standard spot. Left: The disc Dd appears as the central horizontal red
segment.Theblue vertical lines show the induced coordinate systemonDd × [−1,1]. A collection
of standard round spheres are indicated in green. Right: We show the image of Dd × [−1,1] in
Rd+1. The proof of Theorem 3.9 compares the intrinsic round spheres (black) with the induced
round spheres (green).

Sketch of proof Consider a bicollared embedding, i : Sd × [−1,1]→ Rd+1, and fix a
point, p ∈ Sd. Up to translation, we can assume that i(p,0) = 0. Choose local coordinates
on a standard discDd ⊆ Sd containing p, which yields an induced local coordinate system
on i(Dd × [−1,1])⊆ Rd+1, as shown in Figure 3.6.

In this new local coordinate system onRd+1, the embedded sphere has a standard spot,
so it remains to extend it to a global coordinate system.We achieve this by using a push-pull
argument.The idea is to compare the standardpolar coordinate system inRd+1with theone
induced by i. Again, by compactness we can find interlaced pairs of standard d-dimensional
spheres inRd+1 and homeomorphically mapped spheres, as indicated in Figure 3.6. Then,
by using push-pull, we can find an isotopy that transforms one of the homeomorphically
mapped spheres into a translate of the other homeomorphically mapped sphere along the
standard radial coordinate and preserves a neighbourhood of the origin. �

Combining the results of Mazur and Morse, we immediately deduce the following
theorem.

Theorem 3.10 (Schoenflies theorem) Let d≥ 1. Every bicollared embedding of Sd

intoRd+1 extends to a continuous embedding ofDd+1.

As a historical note, by the time Morse had augmented Mazur’s argument with his
theorem, Brown had already given an independent and complete proof of the Schoenflies
theorem, which we will discuss shortly.

We observe that the utility of the push-pull technique is in gaining control over a homeo-
morphism in one linear direction. As we will see, a major technical problem when working
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with topologicalmanifolds is to gain control of a homeomorphism inmanydirections simul-
taneously. Results in this direction culminated in Kirby’s work on the torus trick [Kir69].

We end this section by stating some more applications of push-pull to topological
manifolds.

Theorem3.11 ([Bro62,Theorem3]) A locally bicollared codimension one embedding in any
topological manifold is globally bicollared.

Theorem3.12 ([Bro62,Theorem2]) The boundary of every topological manifold is collared.

Theorem3.13([Arm70,Theorem2]) Any two locally flat collars for either a codimension one
submanifold or for the boundary of a topological manifold are ambiently isotopic to one another.

3.3 Shrinking Cellular Sets

At the end of this chapter, we will give Brown’s alternative proof of the Schoenflies theorem.
In this section, we set the stage by introducing certain elementary notions from decompo-
sition space theory, a field of ideas that will be central to the proof of the disc embedding
theorem. In this section we follow [Bro60] and [Dav07].

Definition 3.14 Let Md be a d-dimensional manifold. A subset X ⊆Md is said to be
cellular if it is the intersection of countably many nested closed balls in Md; that is, if
there exist embedded, closed d-dimensional balls Bi ⊆Md, i≥ 1, with Bi

∼=Dd, such
thatBi+1 ⊆ IntBi andX =

∩∞
i=1Bi.

Figure 3.7 illustrates that the letter

X := {(x,y) ∈D2 | x2 = y2, |x| ≤ 1/2}

Figure 3.7 A cellular set (red) inD2.The boundaries of embedded discs (black) converging to the
cellular set are shown.
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is a cellular subset of D2. Most of the cellular sets in this section will be denoted by the
symbolX . We begin with some elementary properties of cellular sets.

Proposition 3.15 Every cellular subsetX of a manifoldM is closed and compact.

Proof Let{Bi}be thenestedballs, as inDefinition3.14.ThenX =
∩∞

i=1Bi is closed as an
intersection of closed sets. Further,X is compact, since it is a closed subset of the compact
spaceB1. �

Proposition 3.16 LetX be a cellular set in a d-dimensional manifoldM , and letU be an open
set with X ⊆ U . Then there exist embedded, closed d-dimensional balls Bi ⊆ U , i≥ 1, with
Bi

∼=Dd andBi+1 ⊆ IntBi, for all i such thatX =
∩∞

i=1Bi.

Proof Bydefinition, there exist embedded, closedd-dimensional ballsBi ⊆M , i≥ 1, with
Bi

∼=Dd, such thatBi+1 ⊆ IntBi andX =
∩∞

i=1Bi. It suffices to show that there exists
a j such thatBj ⊆ U . Suppose not. Then for all i,Bi ∩ (M rU) is nonempty. Choose a
pointxi ∈Bi ∩ (M rU)⊆B1 for each i. SinceB1 is sequentially compact, the sequence
{xi} has a convergent subsequence {xik}, converging to some x ∈B1. We assert that
x ∈

∩
Bi. To see this, note thatxik ∈Bik for allk. Fix ℓ.Then fork ≥ ℓ,xik ∈Bik ⊆Biℓ .

SinceBiℓ is closed, x ∈Biℓ .Thus x ∈Biℓ for all ℓ, so x ∈
∩
Bi, as asserted. We therefore

have that x ∈
∩
Bi =X ⊆ U and {xik} is contained in the closed setM rU , which is a

contradiction, since closed sets contain their limit points. �

Remark 3.17 Note that cellularity is not an intrinsic property of a space X but rather
depends on its specific embedding within the ambient space. For example, there exist
noncellular embeddings of a closed arc in S3 [Edw80].

The key property of cellular sets is that they can be shrunk by homeomorphisms, as seen
in the following proposition.

Proposition 3.18 LetX be a cellular set in a d-dimensional manifoldM and letU be an open
set withX ⊆ U . For every ε > 0, there exists a homeomorphism hε : M →M such that hε is
the identity outsideU and diamhε(X)< ε.

Proof By Proposition 3.16, there is a closed ball B in U such that X ⊆ IntB. Since
X is closed by Proposition 3.15, there exists a collar N of ∂B disjoint from X . Find a
ballD inBrN such that diamD < ε. Now pick a homeomorphism sε : B→B which
is the identity on the boundary ∂B and maps the complement of the collar N into D.
Consequently, sε(X)⊆D and therefore diamsε(X)< ε. The map hε is obtained by
extending sε to all ofM by the identity map. �

For a homeomorphism hε as in the statement above, we say that hε : M →M shrinks
X inU to diameter less than ε.

Our eventual goal is to use decomposition space theory, specifically the idea of shrinking,
to approximate certain functions by homeomorphisms. Next we define precisely what this
means.

Let X and Y be compact metric spaces. Recall that the uniform metric is defined by
setting d(f,g) = supx∈X dY (f(x),g(x)) for functions f,g : X → Y . We denote the
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metric space of continuous functions fromX to Y , equipped with the uniform metric, by
C(X,Y ). This is known to be a complete metric space [Mun00,Theorems 43.6 and 45.1].
Observe that the metric space C(X,X) contains the subspace CA(X,X) of functions
f : X →X with f |A = IdA, for any subset A⊆X . This is a closed set in C(X,X) and
thus is itself a complete metric space under the induced metric. The following definition
formalizes the notion of approximating functions by homeomorphisms.

Definition 3.19 LetX andY be compactmetric spaces and let f : X → Y be a surjective
continuous map. The map f is said to be approximable by homeomorphisms if there is a
sequence of homeomorphisms {hn : X → Y }∞n=1 that converges to f in C(X,Y ).

In particular, a necessary condition for f to be approximable by homeomorphisms is
that X and Y are homeomorphic. In applications, frequently we will not know that X
and Y are homeomorphic until we have shown that a map f : X → Y is approximable by
homeomorphisms.

Wewill oftenwish to approximate quotientmaps by homeomorphisms.This will only be
meaningful when the quotient spaces aremetric spaces.We record the following fact for use
in this chapter.This will later be subsumed by Corollary 4.13.

Given a surjective map f : X → Y between topological spaces, we say that a subset
C ⊆X is saturated (with respect to f) if, whenever f−1(y) intersectsC , for some y ∈ Y
we have f−1(y)⊆ C , or in other words, the setC is a union of fibres of f .

Proposition 3.20 Let M be a compact d-dimensional manifold, possibly with nonempty
boundary. LetX ⊆ IntM be a cellular set. Then the quotientM/X is a compact metric space.

Proof Fix some metric on M , inducing its topology. The quotient M/X is compact,
sinceM is compact. We show thatM/X is Hausdorff. Let x denote the image of X in
M/X . Choose y,z ∈M/X with y ̸= z. Consider the quotientmapπ : M →M/X .The
restriction of π to the saturated open setM rX is an open, continuous bijection and thus
a homeomorphism. If y,z ̸= x, then π−1(y) and π−1(z) are distinct points inM rX
with disjoint open neighbourhoods inM rX which are mapped by π to disjoint open
neighbourhoods inM/X . Moreover, sinceM is a metric space and X is closed, we can
find disjoint open neighbourhoods ofX and π−1(y) inM . These are saturated open sets
and are thus mapped to (disjoint) open sets inM/X separating x and y. Therefore,M/X
is Hausdorff.This finishes the proof, since the continuous image of a compact metric space
in a Hausdorff space is metrizable [Wil70, Corollary 23.2, p. 166]. �

A simple class of quotient maps consists of those where a unique point in the codomain
has more than one point in its preimage. In other words, such a map is many to one on
this pre-image but one to one everywhere else.The following terminology will be helpful in
describing such maps.

Definition 3.21 Let f : X → Y be a map between topological spaces. The set f−1(y),
where y ∈ Y , is called an inverse set of f if |f−1(y)|> 1.

The following proposition shows that crushing a cellular set to a point does not change
the homeomorphism type of a manifold.
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Proposition3.22 LetM be a compactd-dimensionalmanifold, possiblywith nonempty bound-
ary. LetX ⊆ IntM be a cellular set. Then the quotient map π : M →M/X is approximable
by homeomorphisms. In particular, the quotient spaceM/X is homeomorphic toM .

Before giving the proof, we recall the following elementary lemma, since we will use it
frequently.

Lemma 3.23 (Closed map lemma) Every continuous map from a compact space A to a
Hausdorff spaceB sends closed subsets ofA to closed subsets ofB.

Proof Let U ⊆A be closed. Then U is compact as a closed set in a compact space.
Continuous maps preserve compactness, so f(U) is compact. Finally, a compact subset of
a Hausdorff space is closed, so f(U)⊆B is closed. �

Proof of Proposition 3.22 Fix metrics onM andM/X , using Proposition 3.20. Most of
the proof will consist of building a surjective, continuous function f : M →M which has
X as its unique inverse set.

Since X is cellular, there is a family {Bi} of closed balls with B0 ⊆ IntM ,
Bi+1 ⊆ IntBi for all i, and

∩
iBi =X . We inductively define a family of homeomor-

phisms fi : M →M , starting with f0 = IdM . Assume that fi is already defined for
some i. From the proof of Proposition 3.18, there is a homeomorphism hi : M →M
shrinking fi(Bi+1) in fi(Bi) to diameter less than 1

i+1 that restricts to the identity outside
Intfi(Bi). Define fi+1 = hi ◦ fi. Note that diamfi(Bi)<

1
i for all i, by construction.

Next we will show that the sequence {fi} in the complete metric space C∂M (M,M) is
Cauchy. Fix integersm> n. Note that fm = fn outsideBn. For every point x ∈Bn, we
have thatfm(x),fn(x) ∈ fn(Bn), and, asdiamfn(Bn)<

1
n ,wegetd(fm(x),fn(x))<

1
n .This implies that d(fn,fm)< 1

n in C∂M (M,M) and so {fi} is a Cauchy sequence.We
define f to be the limit of the sequence {fi}, which exists since C∂M (M,M) is complete.
By construction, if x /∈Bi, then f(x) = fi(x).

Next, we show that f has the correct inverse sets. Let z ∈M be such that z /∈Bi for
some i, and let x ∈X . Then

d(f(z),f(x)) = d(fi(z),f(x))≥ d(fi(z),fi(Bi+1))> 0.

Above, in the penultimate inequality, we use the fact that f(x) ∈ fi(Bi+1). In the final
inequality, we use thatBi+1 ⊆ IntBi, so for every z /∈Bi,dX(z,Bi+1)> 0.The inequal-
ity follows, since fi is a homeomorphism onM r IntBi+1. Thus f(X) is disjoint from
f(M rX). Additionally, note that diamfi(X)< 1

i for all i, and thus f(X) consists of a
single point, y. As a result, f−1(y) =X .

Next we show that f−1(z) for z ̸= y consists of precisely one element. Note that
f−1(z)⊆M rX . Thus f−1(z) = (f |MrX)−1(z), and it suffices to show that f |MrX

is injective. Given any two points p,q ∈M rX , there exists some i such that p,q /∈Bi.
Then, f(p) = fi(p) and f(q) = fi(q). Since each fi is a homeomorphism and therefore
injective, this completes the proof thatX is the unique inverse set of f .

Finally we are ready to investigate the quotient map π : M →M/X directly. Note that
the surjective map f descends to amapM/X →M via the quotient map, and we obtain a
bijective continuous function f : M/X →M .
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M
f //

π

��

M

M/X

f

<<yyyyyyyy

By the closed map lemma (Lemma 3.23), f is a homeomorphism. Note that f = f ◦π.
Given the sequence of homeomorphisms {fi : M →M} converging to f , consider the

functions

{f−1 ◦ fi : M →M/X}.

These are homeomorphisms, since f
−1

and fi are. The sequence {πi := f
−1 ◦ fi} con-

verges to

f
−1 ◦ f = f

−1 ◦ f ◦π = π,

as desired, since f
−1

is uniformly continuous byTheorem 3.25 below. �

There is no need to restrict ourselves to the case of a single cellular set.Wewill show next
that any finite collection of cellular sets in a manifold can be crushed to individual points
(one per cellular set) while preserving the homeomorphism type of the manifold. We will
need the following proposition.

Proposition 3.24 Let f : X → Y and g : Y → Z be maps between compact metric spaces
that are approximable by homeomorphisms. Then g ◦ f : X → Z is also approximable by
homeomorphisms.

Wewill use the next elementary result from analysis [Rud76,Theorem 4.19] in the proof
of the proposition, but also many times in the future, so we record it here.

Theorem 3.25 (Heine–Cantor theorem) Let Y be a metric space, X be a compact metric
space, and f : X → Y be a continuous function. Then f is uniformly continuous.

Proof of Proposition 3.24 Let ε > 0. The Heine–Cantor theorem implies that, since Y is
compact and g is continuous, the function g : Y → Z is uniformly continuous.Thus there
is a δ > 0 such that dZ(g(y),g(y′))< ε

2 whenever y,y
′ ∈ Y are such that dY (y,y′)< δ.

Recall that for two functions f,f ′ : X → Y , the uniform metric is defined by
d(f,f ′) := supx∈X dY (f(x),f

′(x)). Similarly, for functions g,g′ : Y → Z we have
d(g,g′) := supy∈Y dZ(g(y),g

′(y)). Let {fn : X → Y } be a sequence of homeomor-
phisms converging to f and let {gm : Y → Z} be a sequence of homeomorphisms
converging to g. That is, there exists N > 0 such that d(f,fn)< δ whenever n≥N ,
and similarly there existsM > 0 such that d(g,gm)< ε

2 wheneverm≥M .
Let L be the maximum of M and N . Then, for every x ∈X and every n≥ L,

dY (f(x),fn(x))< δ. By the uniform continuity property,

dZ(g(f(x)),g(fn(x)))<
ε
2 .
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Also, for every x ∈X and for every n≥ L, we have

dZ(g(fn(x)),gn(fn(x)))<
ε
2 .

Thus for every x ∈X and for every n≥ L, we have

dZ(g(f(x)),gn(fn(x)))≤ dZ(g(f(x)),g(fn(x)))+ dZ(g(fn(x)),gn(fn(x)))

< ε
2 +

ε
2 = ε.

Therefore, d(g ◦ f,gn ◦ fn)< ε for everyn≥ L, and so gn ◦ fn → g ◦ f . Since gn ◦ fn is
a homeomorphism for everyn, this proves that g ◦ f is approximable by homeomorphisms.

�

Proposition 3.26 Let M be a compact d-dimensional manifold, possibly with nonempty
boundary. Let {X1, . . . ,Xn} be a finite collection of pairwise disjoint cellular sets in IntM .
Then the quotient map π : M →M/{X1, . . . ,Xn} is approximable by homeomorphisms. In
particular, the quotientM/{X1, . . . ,Xn} is homeomorphic toM .

Wepoint out that the spaceM/{X1, . . . ,Xn} is the quotientwhere the collection of cel-
lular subsetsX1, . . . ,Xn is crushed to n distinct points rather thanM/

∪
{X1, . . . ,Xn},

where all theXi are identified to a single point.

Proof of Proposition 3.26 We give a proof by induction. For the case n= 1, see Propo-
sition 3.22. Suppose that the quotient map on M crushing any given pairwise disjoint
collection of n− 1 cellular sets in IntM is approximable by homeomorphisms, for some
n≥ 2. The quotient map π : M →M/{X1, . . . ,Xn} factors as the composition

M →M/X1 →M/{X1, . . . ,Xn}.

The first quotient map is approximable by homeomorphisms by Proposition 3.22. The
second map is approximable by homeomorphisms by the inductive hypothesis. Here we
are using the fact that {X2, . . . ,Xn} is mapped to a pairwise disjoint collection of cellular
sets inM/X1 by the quotient map.This follows fromProposition 3.16 and the fact that the
quotient mapM →M/X1 is a homeomorphism when restricted toM rX1. Composi-
tionsofmapsbetweencompactmetric spaceswhich are approximablebyhomeomorphisms
are themselves approximable by homeomorphisms, according to Proposition 3.24. This
completes the proof that π is approximable by homeomorphisms. �

For the application to the Schoenflies theorem, we will need the following proposition.

Proposition 3.27 Let f : Sd → Sd be a continuous surjection for some d with exactly two
inverse sets,A andB. Then each ofA andB is cellular.

To prove Proposition 3.27, we will need the following lemma.

Lemma 3.28 Let f : Dd → Sd be a continuous function such that X ⊆ IntDd is the only
inverse set of f and f(IntDd) is open in Sd. ThenX is cellular inDd.
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Proof LetD denote the domainDd. LetX = f−1(y) for some y ∈ Sd. SinceX ⊆ IntD
and we know that f(IntD) is open in Sd, there is an ε > 0 such that the standard disc
Bε(y) of radius ε around y inSd is contained in f(IntD). Next, choose some z ∈ Sd not
in Im(D). In particular,wehavez ̸= y. LetV be a standardopenball neighbourhoodofz in
Sd such that Sd rV is a d-dimensional discB withBε(y)⊆ f(D)⊆ Sd rV =B. For
everyn ∈ N, choose some homeomorphism sε/2n : Sd → Sd that restricts to the identity
on the small discBε/2n+1(y) and squeezes the rest ofB intoBε/2n(y). In a ball containing
B, this could, for instance, be defined radially and then extended to all of Sd, stretching
out V so as to cover the complement of Bε/2n(y). Using this function, we now define a
map σε/2n : D→D by setting

σε/2n(x) =

{
x if x ∈X
f−1 ◦ sε/2n ◦ f(x) if x /∈X.

Here, f−1 may be used, because f is injective on DrX and sε/2n ◦ f does not map x
to y = f(X) as long as x ∈DrX . By the closed map lemma (Lemma 3.23), we see that
f : D→ Sd is a closed map. The restriction f : DrX → Sd r {y} is also closed as a
restriction of a closed map to a saturated set. As a consequence, the composition

f−1 ◦ sε/2n ◦ f |DrX : DrX →DrX

is continuous. Define U := f−1(Bε/2n+1(y))⊇X . Then, by construction, σε/2n |U =
IdU . We deduce that σε/2n is continuous, since both f−1 ◦ sε/2n ◦ f |DrX and σε/2n |U
are continuous. Furthermore, the map σε/2n is injective, because the maps σε/2n |DrX

and σε/2n |X are injective and have disjoint images. As a result, the image Imσε/2n ⊆D is
Hausdorff, and by the closed map lemma (Lemma 3.23) the map σε/2n : D→ Imσε/2n

is a closed map. Thus, the inverse σ−1
ε/2n : Imσε/2n →D is continuous and σε/2n is an

embedding. Therefore, σε/2n(D) is homeomorphic to a ball for every n. To finish the
proof, observe that the ballsBn := σε/2n(D)⊆D, forn= 1,2, . . . , exhibitX as a cellular
set. In particular, note that Bn+1 ⊆ IntBn, since σε/2n(∂D) lies in f−1(Bε/2n) but not
in f−1(Bε/2n+1). �

Proof of Proposition 3.27 In an attempt to reduce confusion, let S and T denote the two
copies of Sd. That is, we have a function f : S→ T . We show that B is cellular. Let a :=
f(A) and b := f(B). SinceA andB are precisely the two inverse sets of f , we know that
they are closed and disjoint.Thus, there exists some standard open ballU ⊆ S disjoint from
A∪B such that ifD := SrU , thenD is a standard closed d-dimensional ball and A∪
B ⊆ IntD.

Then we claim that f(IntD) is open in T . Note that f is a closed map by the closed
map lemma (Lemma 3.23).Thus f(U) is closed. But then f(IntD) = T r f(U) is open
as claimed.

Then, since a,b ∈ f(IntD) are distinct, there exists some open set V ⊆ f(IntD)with
a ∈ V and b /∈ V . Choose a homeomorphism h : T → T , taking f(D) to V bijectively
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and fixing some smaller neighbourhoodW ( V of a. Recall that D ⊆ S. Define a map
ψ : D→ S, as follows.

ψ(x) =

{
x if x ∈ f−1(W )

f−1 ◦h ◦ f(x) if x ∈DrA.

The function above is well defined and continuous, since f is injective away fromA andB
and f−1 ◦h ◦ f(x) = x on f−1(W )rA.

We also check that B ⊆ IntD is the only inverse set of ψ. This follows, since h maps
f(D) intoV andf is injective away fromA andB. Tofinish,weneed to showthatψ(IntD)
is open inS.Wecheckbyhand thatψ(IntD) = f−1 ◦h ◦ f(IntD).Weknow frombefore
that f(IntD) is open inT .Then f−1 ◦h ◦ f(IntD) is open, sinceh is a homeomorphism
and f is continuous. Now apply Lemma 3.28 to the map ψ : D→ S to conclude thatB is
cellular. A similar proof shows thatA is cellular. �

3.4 Brown’s Proof of the SchoenfliesTheorem

After our lengthy interlude in the previous section, we return to the Schoenflies theorem,
which we restate below in an equivalent form.

Theorem3.29 (Schoenflies theorem[Bro60]) Let i : Sd−1 ↪→ Sd be a continuous embed-
ding admitting a bicollar.Then the closure of each component ofSd r i(Sd−1) is homeomorphic
toDd.

Proof By the bicollar hypothesis, there exists J : Sd−1 × [−1,1]→ Sd such that
J |Sd−1×{0} equals i. From elementary homology computations, as in the proof of
Theorem 3.5, it follows that the complement of the image of J in Sd has exactly
two connected components. Denote their closures by A and B, where A meets
J(Sd−1 ×{1}).

Observe that thequotient spaceSd/{A,B} is homeomorphic toSd due to the existence
of the bicollar. In other words, Sd/{A,B} can be identified with the (unreduced) suspen-
sion of Sd−1, which is homeomorphic to Sd, as indicated in Figure 3.8. Thus we have the
composition

f : Sd π−→ Sd/{A,B}
∼=−→ Sd,

where∼=denotes homeomorphismandπ denotes thequotientmap.Thismapf : Sd → Sd

has exactly two inverse sets, namelyA andB, and is surjective. By Proposition 3.27, each of
A andB is cellular.

Let D denote the closed northern hemisphere of Sd, thought of as a subset of the
codomain Sd. By definition, D is a copy of the d-dimensional ball. Let U :=A∪
(J(Sd−1 × (0,1])); that is, U is the component of Sd r i(Sd−1) containing A. Then
we have the restriction f |U : U →D, whose unique inverse set isA, which is cellular inSd

and thus inU by Proposition 3.16.
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A

B

Figure 3.8 Brown’s proof of the Schoenflies theorem. Going from left to right, the regions labelled
A andB are collapsed to a point each, stretching out a neighbourhoodof the equator in the process.

Our goal is to apply Proposition 3.22 to U . To do so, we first need to show that U is
a manifold (with boundary). The only possible failure could be near the boundary. As a
subspace of Sd, U is already Hausdorff and second countable, so we only need to show
that it is locally Euclidean. LetE := J(Sd−1 × [0, 12 ]). Note that U = U ∪E. Moreover,
f restricts to a continuous bijection fromE to some collar of ∂D.This collar ofD is closed
by the closed map lemma (Lemma 3.23). Therefore f |E is a homeomorphism, so U is a
manifold, as needed.

Then we have the following diagram:

U
f //

π

��

D

U/A.

f

=={{{{{{{{

Themap f is constant on the fibres of the quotient map π : U → U/A and thus descends
to the map f , which is a homeomorphism by the closed map lemma (Lemma 3.23). Next,
since A is cellular, the map π is approximable by homeomorphisms by Proposition 3.22.
Let π̃ : U → U/A be any such approximating homeomorphism.Then f ◦ π̃ : U →D is a
homeomorphism. It follows that U is homeomorphic to the d-dimensional ballD ∼=Dd,
as claimed. �

D
ow

nloaded from
 https://academ

ic.oup.com
/book/43693/chapter/367034270 by U

niversitat-ETH
 Zurich user on 30 April 2024


	Preface
	The Origin of This Book
	Casson Towers
	Differences
	Seminar Organization
	Credit

	Contents
	List of figures

