The disc embedding theorem

Based on work of Michael H. Freedman

Editors: Stefan Behrens, Boldizsar Kalmar,

Min Hoon Kim, Mark Powell, and Arunima Ray

Contributors: Stefan Behrens, Xiaoyi Cui, Christopher W. Davis,
Peter Feller, Boldizsar Kalmar, Daniel Kasprowski, Min Hoon Kim, Duncan McCoy,
Jeffrey Meier, Allison N. Miller, Matthias Nagel, Patrick Orson, JungHwan Park,
Wojciech Politarczyk, Mark Powell, Arunima Ray, Henrik Riiping,

Nathan Sunukjian, Peter Teichner, and Daniele Zuddas






Preface

In 1982, Michael Freedman, building upon ideas and constructions of Andrew
Casson, proved the h-cobordism theorem and the exactness of the simply connected
surgery sequence in dimension four, deducing a classification theorem for topological
4-manifolds, a special case of which was the 4-dimensional topological Poincaré
conjecture.

The key ingredient in his proof is the disc embedding theorem. In manifolds
of dimension five and higher, generic maps of discs are embeddings, whereas in
dimension four such maps have isolated double points, preventing the high di-
mensional proofs from applying. Freedman showed how to embed discs in simply
connected 4-manifolds, revealing that in certain situations topological 4-manifolds
behave like higher dimensional manifolds. Contemporaneous results of Simon Don-
aldson showed that smooth 4-manifolds do not. Indeed, dimension four exhibits
a remarkable disparity between the smooth and topological categories, as demon-
strated by the existence of exotic smooth structures on R*, for example.

Freedman and Donaldson both received the Fields medal in 1986 for their contri-
butions to the understanding of 4-manifolds. Soon after Freedman’s work appeared,
Frank Quinn expanded on the techniques of Freedman, proving foundational results
for topological 4-manifolds, such as transversality and the existence of normal bun-
dles for locally flat submanifolds. The work of Freedman and Quinn was collected
in the book [FQ90], which became the canonical source for topological 4-manifolds
in the decades that followed.

The origin of this book

In January and February of 2013, Freedman gave a series of twelve lectures at
the University of California Santa Barbara (UCSB) in the USA with the goal of ex-
plaining his proof of the disc embedding theorem. The lectures were broadcast live
to the Max-Planck-Institut fiir Mathematik (MPIM) in Bonn, Germany as part
of the Semester on 4-manifolds and their combinatorial invariants organised by
Matthias Kreck and Peter Teichner, where Quinn and Teichner ran supplementary
discussion sessions. Robert Edwards, in the UCSB audience, not only contributed
various remarks but also stepped in as a guest lecturer and presented his perspec-
tive on a key step of the proof, namely the construction of “the design”. The
lectures were recorded and are currently available online at https://www.mpim-
bonn.mpg.de/node/4436.

This book began as annotated transcripts of Freedman’s lectures typed by Stefan
Behrens. In May and June of 2013, the rough draft of the notes was revised and
augmented in a collaborative effort of the MPIM audience, coordinated by Behrens
and Teichner. The following people were involved in this process: Xiaoyi Cui,
Matthew Hogancamp, Daniel Kasprowski, Ju A. Lee, Wojciech Politarczyk, Mark
Powell, Henrik Riiping, Nathan Sunukjian, and Daniele Zuddas.

Three years later, in November and December of 2016, Peter Feller and Mark
Powell organised a seminar on the disc embedding theorem at the Hausdorff In-
stitute for Mathematics (HIM) in Bonn. This included screenings of Freedman’s
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UCSB lectures on decomposition space theory and a series of talks by Powell,
along with guest lectures by Stefan Behrens, Peter Feller, Boldizsar Kalmar, Alli-
son Miller, and Daniel Kasprowski, on the constructive part of the proof following
the approach in the book by Freedman and Quinn [FQ90]. The HIM audience
included many of the participants in the Junior Trimester Programme in Topol-
ogy: Christopher Davis, Peter Feller, Duncan McCoy, Jeffrey Meier, Allison Miller,
Matthias Nagel, Patrick Orson, JungHwan Park, Mark Powell, and Arunima Ray.
Together, the speakers and the audience revised the structure of the 2013 notes,
fleshing out many details and rewriting certain parts from scratch. From 2017 to
2020, Kalmér, Kim, Powell, and Ray synthesised the individual contributions of the
authors into the artefact you presently behold. New chapters on good groups, the
applications of the disc embedding theorem to surgery and the Poincaré conjecture,
the development of topological 4-manifold theory, and remaining open problems
were written. During this period, Kim and Miller in particular created the many
computerised figures appearing throughout the book.

This text follows Freedman’s introduction to decomposition space theory in his
2013 lectures in Part I, before giving a complete proof of the disc embedding theorem
in Parts IT and IV. The latter parts follow the 2016 lectures based on [FQ90],
although they are naturally based on the ideas learnt from Freedman’s original
lectures and the concurrent explanations and guest lectures of Edwards, Quinn,
and Teichner. In particular, we give a detailed new description of tower embedding
and the design. Part III contains a discussion of major applications and conjectures
related to the disc embedding theorem. It describes how to use the disc embedding
theorem to prove the s-cobordism theorem, the Poincaré conjecture, the exactness
of the surgery sequence in dimension four for good groups, and the topological
classification of simply connected closed 4-manifolds.

Since so much of 4-dimensional topological manifold theory rests on the seminal
work of Freedman, it has been felt by the community that another independent
and rigorous account ought to exist. We hope that this manuscript will make this
high point in 4-manifold topology accessible to a wider audience.

Casson towers

We choose to follow the proof from [FQ90], using gropes, which differs in many
respects from Freedman’s original proof using Casson towers [Fre82a]. The infinite
construction using gropes, which we call a skyscraper, simplifies several key steps
of the proof, and the known extensions of the theory to the non-simply connected
case rely on this approach. Readers interested in Casson towers should refer to
the MPIM videos of Freedman’s 2013 lectures, where he explained much about
Casson towers and their use in the original proof. Apart from [Fre82a], further
literature on Casson towers includes [GS84,Biz94, Sie82, CP16]. Moreover, the
combination of [Sie82] and the Casson tower embedding theorem from [GS84)]
gives another account of the original Casson towers proof from [Fre82a].

Differences

We briefly indicate, for the experts, the salient differences between the proof given
in this book and that in [FQ90]. First, there is a slight change in the definition of
towers (and therefore of skyscrapers), which we point out precisely in Remark 12.8.
With our definition, it is clear that the corresponding decomposition spaces are
mixed ramified Bing-Whitehead decompositions. This possibility was mentioned
in [FQ90, p. 238|.

Additionally, the statement of the disc embedding theorem in [FQ90] asserts
that immersed discs, under certain conditions including the existence of framed,
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algebraically transverse spheres, may be replaced by flat embedded discs with the
same boundary and geometrically transverse spheres. The proofs given in [Fre82a,
FQ90] produce the embedded discs, but not the geometrically transverse spheres.
We remedy this omission by modifying the start of the proof given in [FQ90],
as in [PRT20]. The geometrically transverse spheres are essential for the sphere
embedding theorem, which is the key result used in the application of the disc
embedding theorem to surgery for topological 4-manifolds with good fundamental
group and the classification of simply connected closed topological 4-manifolds,
as we describe in Chapter 22. We also observe that the geometrically transverse
spheres in the output are homotopic to the algebraically transverse spheres in the
input [PRT20]. Besides these points, the proof of the disc embedding theorem
given in this book only differs from that in [FQ90] in the increased amount of
detail and number of illustrations.

We largely focus on the first few chapters of [FQ90]. In particular, we assume
that the ambient 4-manifold is smooth. We do not delve into the work of Quinn on
the smoothing theory of noncompact 4-manifolds, the annulus theorem, transver-
sality, or normal bundles for locally flat submanifolds, instead describing these
developments broadly in Chapter 1, and in more detail in Chapter 21.

Seminar organisation

The majority of the chapters in this book may be covered in a single seminar talk
each. We expect that Parts II and IV, even without going through all the details
in Part IV, will require a semester. We therefore suggest the following alternative
to the standard approach. After using Chapters 1 and 2 to provide context, work
through Parts II and IV alongside group viewings of the videos of Freedman’s
UCSB lectures 2-5, which discussed the decomposition space theory of Part I. The
exposition in Part I of this book should supply enough additional detail to support
the lectures, and it adds to the charm of learning this mathematics to watch the
man himself explain it. This also allows Parts I and II to be covered simultaneously.
In the latter part of the seminar, results from both can be combined for the proof
that skyscrapers are standard in Part IV. Part III is not directly applicable to the
proof of the disc embedding theorem and may be safely skipped in the first reading.

Credit

This manuscript is the outcome of a collaborative project of many mathemati-
cians, as described earlier. After Freedman, who of course gave the original lectures
and proved the disc embedding theorem in the first place, and Stefan Behrens, who
typed up the initial draft, many people contributed to improving individual chap-
ters, or in some cases developing them from scratch. We therefore attribute each
chapter to those who contributed the bulk of the work towards it, whether through
a new lecture that they wrote and delivered, polishing the exposition, creating orig-
inal pictures, adding new material to fill in details that could not be covered in the
lectures, or writing a chapter on their own by combining information from various
sources in the literature.

Apart from the authors, the project benefitted from the input of Bob Edwards
and Frank Quinn, as well as Jae Choon Cha, Diarmuid Crowley, Jim Davis, Ste-
fan Friedl, Bob Gompf, Chuck Livingston, Michael Klug, Matthias Kreck, Slava
Krushkal, Andy Putman, and Andras Stipsicz.
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CHAPTER 1

Context for the disc embedding theorem

Stefan Behrens, Mark Powell, and Arunima Ray

1.1. Before the disc embedding theorem

1.1.1. High dimensional surgery theory. By 1975, classification problems
for manifolds of dimension n at least five, be they smooth, piecewise linear (PL),
or topological, had been translated into questions in homotopy theory and algebra.
For each of these categories, classification problems are typically of two types: the
existence problem concerns the existence of a manifold within a given homotopy
type, while the uniqueness problem concerns the number of such manifolds up to
isomorphism. The input to such questions is a Poincaré complex, roughly speaking
a finite cell complex that satisfies n-dimensional Poincaré duality.

Fix the category C'AT to be either smooth, PL, or topological. Two closed
n-manifolds are said to be h-cobordant if they cobound an (n + 1)-manifold such
that the inclusion of each boundary component is a homotopy equivalence. The
structure set of a given Poincaré complex X, denoted by S(X), is the set of n-
dimensional closed manifolds M along with a homotopy equivalence M — X, up
to h-cobordism, where the cobordism has a compatible map to X. For Poincaré
complexes of dimension at least five, surgery theory can decide if S(X) is nonempty,
and if so, can compute it explicitly using algebraic topology, at least in favourable
circumstances [Bro72, Nov64, Sul96, Wal99, KS77]. More precisely, the struc-
ture set of a Poincaré complex X with dimension at least five is nonempty if and
only if (i) a certain spherical fibration over X, called the Spivak normal fibration,
lifts to a CAT-bundle, and (ii) an L-theoretic surgery obstruction vanishes. This
completely answers, at least in principle, the question of whether X is homotopy
equivalent to a C'AT manifold.

Moreover, if the structure set for a Poincaré complex X of dimension n at least
five is nonempty, it fits in the following exact sequence of pointed sets, called the
Browder-Novikov-Sullivan-Wall surgery ezact sequence:

L1 (Z[m(X)]) = S(X) = N(X) = Ly(Z[m (X))

Here N(X) denotes the set of normal invariants of X, namely bordism classes of
degree one maps from some n-manifold to X, together with normal bundle data.
Via transversality, this can be computed using homotopy theory. The L-groups
are purely algebraic and depend only on the group m1(X) and the residue of n
modulo 4.

Let us describe the existence programme in more detail. Assuming that the
Spivak normal fibration on X lifts to a C'AT-bundle, a choice of lift gives rise to an
element of N'(X), namely a closed manifold N together with a degree one map to X
that respects the normal data corresponding to the chosen lift. We wish to improve
such an element to a manifold M equipped with a homotopy equivalence to X,
at the expense of modifying N by the process of surgery. An elementary surgery
consists of finding an embedded SP x D? within a (p + ¢)-dimensional manifold,

1



2 1. CONTEXT FOR THE DISC EMBEDDING THEOREM

cutting out its interior, and gluing in DP*! x §9~! along its boundary instead. This
process kills the homotopy class represented by SP x {0} and therefore can assist
in achieving a given homotopy type. The main theorem of surgery theory says that
such a sequence of elementary surgeries on N can produce a manifold homotopy
equivalent to X if and only if the obstruction in L, (Z[m(X)]) associated with N
vanishes. This is encoded by the map o in the sequence above. In other words, every
element of 0~1(0) can be modified by surgery to produce an element of the structure
set S(X), namely a closed manifold M equipped with a homotopy equivalence to
the Poincaré complex X. This argument shows that, for Poincaré complexes of
dimension at least five, we have a procedure for deciding whether the structure set
is nonempty, that is whether the existence problem has a positive resolution.

Exactness of the surgery sequence can also be used to calculate the size of the
structure set, which addresses part of the uniqueness problem. In order to fully solve
the uniqueness problem, we also need to understand when h-cobordant manifolds
are isomorphic in the category CAT. The s-cobordism theorem [Sma62, Bar63,
Maz63, Sta67, KS77] (see also [Mil65, RS72]) states that an h-cobordism be-
tween closed manifolds of dimension at least five is a product if and only if its
Whitehead torsion vanishes. The theorem, which holds for all smooth, PL, and
topological manifolds, allows one to obtain uniqueness results.

Its precursor, the h-cobordism theorem, states that every simply connected h-
cobordism between closed manifolds of dimension at least five is a product. This is
a straightforward corollary of the s-cobordism theorem, since a simply connected
h-cobordism has Whitehead torsion valued in the Whitehead group of the trivial
group, which itself vanishes.

Summarising, by the early 1970s, armed with the powerful tools of the surgery
exact sequence and the s-cobordism theorem, topologists had a deep understanding
of both the existence and uniqueness problems for manifolds of dimension at least
five.

1.1.2. Attempting 4-dimensional surgery. By contrast, in the early 1970s
very little was known about 4-manifolds. Whitehead [Whi49] and Milnor [Mil58]
had shown that the homotopy type of a simply connected 4-dimensional Poincaré
complex is determined by its intersection form. More precisely, the homotopy types,
together with a choice of fundamental class, are in one to one correspondence with
isometry classes of unimodular symmetric integral bilinear forms, or equivalently
congruence classes A ~ PAPT of symmetric integral matrices with determinant
+1. So 4-manifold topologists were interested in determining which of these forms
are realised by closed, smooth (equivalently, PL [HM74; FQ90, Theorem 8.3B]) or
topological 4-manifolds, whether homotopy equivalent 4-manifolds are s-cobordant,
and whether s-cobordant 4-manifolds are C' AT-isomorphic. Due to its remarkable
success in addressing high dimensional manifolds, surgery theory seemed like a
promising tool. However, the main theorems of surgery were not known to hold
in dimension four. Similarly, the h- and s-cobordism theorems for 4-manifolds
remained open in all three categories.
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Let Eg denote the even 8 x 8 integer Cartan matrix of the eponymous exceptional
Lie algebra; that is,

Eg

I
cCoooco N
CoOO0 O RN
oOrRrNMR,OoOOO
S e =R =R
R R =N =)

MO O R OOOO

SO OO~ NHO
O OO R NFEOO

0 0 100

This is a symmetric integral matrix with determinant one, and so by the Milnor-
Whitehead classification there is a simply connected Poincaré complex with inter-
section form represented by this matrix. Is there a closed 4-manifold homotopy
equivalent to this Poincaré complex?

By Rochlin’s theorem [Roc52,Kir89], the intersection form of a smooth, closed,
spin 4-manifold must have signature divisible by 16. Since Fg corresponds to an
even intersection form, has signature 8, and any simply connected 4-manifold with
even intersection form is spin, there cannot be any smooth, closed, simply connected
4-manifold with Fg as its intersection form. Nevertheless, the question remained: is
there a topological, closed, simply connected 4-manifold with Eg as its intersection
form? This was an intractable question in the 1970s (refer to Section 1.6 for the
answer).

In order to bypass the obstruction from Rochlin’s theorem, let us consider the
matrix Eg® Fg, which has signature 16. The following is a strategy for constructing
a smooth, closed, simply connected 4-manifold with Es® Fy as its intersection form.
Start with the simply connected 4-manifold K known as the K3 surface, given by
the solution set for the quartic % + y* + 24 + w* = 0 in CP3. Its intersection form
is represented by the matrix

EsOEs HOHDH

where H = ((1) (1)) is the hyperbolic matrix corresponding to the intersection form
of S? x §% and @ denotes the juxtaposition of blocks down the diagonal.
We have the obvious algebraic projection

Es®Es® HPHPH — EgP Eg.

We would succeed in constructing the desired manifold if this algebraic projection
were realised geometrically. That is, we wish to perform surgery on K with the
effect of removing the three hyperbolic pairs from the intersection form, resulting
in a closed 4-manifold with intersection form Eg & Eg. Let us attempt to do this
in the smooth category, and see where and why we fail.

Since K is smooth and simply connected, we know by the Hurewicz theorem that
the elements of Ha(K;Z) corresponding to the hyperbolic pairs in the intersection
form can be represented by maps S? — K, which we can take to be smooth immer-
sions in general position. Henceforth, immersions will be assumed without further
comment to be in general position. A single hyperbolic pair is shown schematically
on the left of Figure 1.1. According to the matrix H, the two spheres intersect
each other algebraically once, but in general there will be excess intersection points
geometrically. Additionally, the spheres may only be assumed to be immersed,
with algebraically zero self-intersections. Of course, the spheres corresponding to
different hyperbolic pairs might have algebraically trivial but geometrically non-
trivial intersections as well, but we ignore those for now. If the hyperbolic pair
could be represented by framed, embedded spheres which intersect exactly once,
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Figure 1.1. Trying to surger a hyperbolic pair. Left: Immersed
spheres, depicted schematically, which intersect each other alge-
braically once but geometrically thrice. Right: The desired situ-
ation, where we have embedded spheres which intersect geometri-
cally once.

such as on the right of Figure 1.1, we could do surgery on either of the two spheres
by cutting out a regular neighbourhood (diffeomorphic to S? x D?) and replacing
it with D3 x S1, with the effect of removing the corresponding hyperbolic matrix
from the intersection form. We say that two spheres in an ambient 4-manifold are
geometrically dual if they intersect at a single point. The existence of the second
sphere, geometrically dual to the first, ensures that this surgery would not change
the fundamental group of the ambient manifold. For this the second sphere does
not need to be embedded. The situation is entirely symmetric: we could do the
surgery on an embedding homotopic to the second sphere, with the same effect on
homology and the fundamental group.

This strategy is analogous to the idea behind the classification of closed, ori-
entable 2-manifolds, in which we reduce the genus of any given surface by identi-
fying a dual pair of simple closed curves in given homology classes, cutting out an
annular neighbourhood of one of them, and filling in the two resulting boundary
components with discs; the classification counts the number of such moves needed
to produce a sphere. The obstruction to carrying out this strategy in dimension
four lies in geometrically realising the algebraic intersection number, passing, as
it were, from the left to the right of Figure 1.1. In the smooth category, Donald-
son’s diagonalisation theorem [Don83] (Section 21.2.2) implies that this is a real
obstruction, since it shows there is no smooth, closed, simply connected 4-manifold
with intersection form Eg@® FEg. So we have seen why a naive attempt to do surgery
fails.

For surgery on non-simply connected manifolds, one seeks to remove hyperbolic
summands in the equivariant intersection form on Hs (M), the second homology of
the universal cover of a closed manifold M, thought of as a module over the group
ring Z[m(M)]. In this context intersection counts are algebraically trivial if they
are trivial over Z[m; (M)]. The principle in such a situation is still the same, namely
we wish to represent this algebraic situation geometrically.

1.1.3. Attempting to prove the s-cobordism theorem. A similar prob-
lem with disjointly embedding 2-spheres occurs when we try to prove the s-cobordism
theorem for 5-dimensional cobordisms between 4-manifolds. Let us try to imitate
the proof of the high dimensional smooth s-cobordism theorem, and see what ob-
structs the strategy from succeeding. Let N be a smooth, compact s-cobordism
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between two closed 4-manifolds My and My, that is, ON = — My U M7, each inclu-
sion M; < N is a homotopy equivalence, and the Whitehead torsion 7(N, M) is
trivial. Consider a relative handle decomposition of N built on My x [0, 1]. Since
the Whitehead torsion vanishes, the relative chain complex of finitely generated,
free Z[m1(N)]-modules for the pair (N, My) can be simplified algebraically so that
there are only 2-chains and 3-chains and the boundary map between them is an
isomorphism represented by the identity matrix in suitable bases (this might also
require some preliminary stabilisation in the case of nontrivial fundamental groups).
As before, we would like to represent this algebraic situation geometrically.

We find some initial success: since N is connected, we may assume there are no
0-handles or 5-handles, and since N has dimension five and is an h-cobordism, a
standard procedure called handle trading allows us to trade 1-handles for 3-handles,
and 4-handles for 2-handles (see the proof of Theorem 20.1). Thus we see that N
is built from My x [0, 1] by attaching only 2-handles and 3-handles, in that order.
Since N is an s-cobordism, we arrange by handle slides, after possibly stabilisation
by adding cancelling 2- and 3-handle pairs, that these 2-handles and 3-handles
occur in algebraically cancelling pairs. Let M/, denote the 4-manifold obtained
by attaching the 2-handles to My x {1} C My x [0,1]. By turning the 3-handles
of N upside down, we see that M;/, is also obtained by attaching 2-handles to
My x {1} € M; x [0,1]. In other words, M;/, can be obtained from either My
or M; by a sequence of surgeries on embedded circles. Since the inclusion of M
into N induces an isomorphism on fundamental groups, the attaching circles for
the 2-handles are null-homotopic in M. Similarly, the attaching circles in M; are
also null-homotopic in M;. In dimension four, homotopy implies isotopy for loops,
and so the surgeries are performed on standard trivial circles. This produces either
5% x 52 or $?xS? summands [Wal99, Lemma 5.5].

The belt spheres {0} x S? C D? x D3 of the 2-handles form a pairwise disjoint
collection of framed, embedded 2-spheres in M, /5. Each of these spheres has an
embedded, geometrically dual sphere coming from pushing the core of the corre-
sponding 2-handle union a null homotopy of the attaching circle into M ;. The
latter null homotopy provides an embedded disc since the attaching circle is triv-
ial. If the framing of the attachment is such that we get an S?xS? summand,
then this dual sphere need not be framed. Similarly, when we turn the handles
upside down, the attaching circles of the 3-handles attached to M/, become the
belt spheres for 2-handles attached to M7. By the same reasoning as above, the at-
taching spheres for 3-handles in M/, form a pairwise disjoint collection of framed,
embedded spheres in M, /; equipped with embedded, geometrically dual spheres,
which again need not be framed.

Recall that we have arranged that each belt sphere of a 2-handle intersects the
attaching sphere of the corresponding 3-handle algebraically once. However, they
may intersect multiple times geometrically. A schematic picture for a single pair of
2-handle belt sphere and 3-handle attaching sphere is shown on the left of Figure 1.2,
where as before we ignore possible interactions with other pairs. If the 3-handle
attaching spheres could be isotoped in M, /o to achieve the situation on the right of
the figure, for each pair, then the corresponding 2- and 3-handles could be cancelled.
Since cancelling all the relative handles of the cobordism (N, My) yields the product
My x [0,1], the proof would be complete. However such an isotopy is in general
not possible in the smooth category: Donaldson [Don87a] (Section 21.2.2) showed
there are h-cobordant, smooth, closed, simply connected 4-manifolds that are not
diffeomorphic. So we have seen why imitating the proof of the high dimensional
s-cobordism theorem does not succeed.
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+

Figure 1.2. An algebraically dual pair consisting of a 2-handle belt
sphere (red) and a 3-handle attaching sphere (blue) are shown. The
light curves denote the corresponding geometrically dual spheres.
Left: The belt sphere and the attaching sphere intersect alge-
braically once but geometrically thrice. Right: The desired sit-
uation where the belt sphere and attaching sphere intersect geo-
metrically once.

In summary, a key input needed in surgery as well as in the proof of the s-
cobordism theorem is the ability to remove pairs of algebraically cancelling inter-
section points between spheres, and thence geometrically realise algebraic inter-
section numbers. As mentioned above, this is in general not possible smoothly,
but for topological 4-manifolds hope remains. We discuss the surgery problem fur-
ther in Section 1.3.1, and we return to a discussion of the s-cobordism theorem in
Section 1.3.2.

1.2. The Whitney move in dimension four

Consider a map of smooth, oriented manifolds X¢ — Y24, In general position,
the only singular points are isolated, signed, transverse double points. By inserting
local kinks (see Figure 1.3 for a sketch), we can arrange that the sum of the signs of
the self-intersection points is zero. In the case of exactly two self-intersection points
of opposite sign, the situation is like in the left of Figure 1.4, with two arcs in the
image of X joining the two self-intersection points on different sheets. The circle
visible in the picture, consisting of two arcs joining the two intersection points, is
called a Whitney circle. A disc bounded by a Whitney circle is called a Whitney
disc. Suppose that the Whitney circle bounds an embedded Whitney disc W whose
interior lies in the exterior of the image of X in Y. Under a condition on the normal
bundle of W in Y described in the next paragraph, we can push one sheet of X
along W and over the other sheet, as indicated in Figure 1.4, which geometrically
cancels the two algebraically cancelling intersection points. This process is called
the Whitney trick or the Whitney move [Whid4].

For dim X = d > 3, the Whitney move turns out to be surprisingly simple. If
the Whitney circle is null-homotopic in Y, then by general position we can assume
it bounds an embedded Whitney disc W whose interior is disjoint from the image
of X. Any disc D with boundary a circle C' pairing self-intersection points in
the image of X determines a (d — 1)-dimensional sub-bundle of the normal bundle
vpcy|c of D restricted to C, by requiring that the sub-bundle be normal to one
sheet of the image of X and tangent to the other sheet. In order to perform the
Whitney move we need this sub-bundle over the circle C to extend over the entire
disc D. Standard bundle theory implies that the sub-bundle extends if and only
if it determines the trivial element in 7 (Grg_; (R??72)), where the Grassmannian
Grg_1(R?4=2) is the space of (d — 1)-dimensional subspaces in R?¢=2. When d > 3,
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Figure 1.3. Adjusting the algebraic self-intersection number of an
immersed submanifold by adding local kinks.

\—

Figure 1.4. The Whitney move. Left: A Whitney disc W is shown
in blue. Right: The Whitney move across W removes two inter-
section points.

71 (Grg_1(R?472)) = Z/2, and the nontrivial element corresponds to circles pairing
intersection points with the same sign. Since Whitney circles by definition pair
intersection points of opposite sign, the sub-bundle in question extends, and we
can perform the Whitney move.

Following the strategy outlined in the previous section, in dimensions at least
five the availability of the Whitney move is a key ingredient in the proof of the
s-cobordism theorem and the efficacy of surgery theory. The Whitney move orig-
inated in Whitney’s proof [Whi44] of his embedding theorem, which shows that
every smooth, compact manifold of dimension d embeds in R??. The proof finds an
immersion of a d-manifold M into R?? and then improves it to an embedding using
the Whitney move. A key step is that the disc guiding the Whitney move can be
embedded by general position. This only works for d > 3, but the Whitney embed-
ding theorem holds for all d > 1 since compact 1- and 2-dimensional manifolds are
classified, and for dimensions 1 and 2 the result can be checked directly.

In contrast to high dimensions, if the ambient dimension is four, even if a Whitney
circle is null-homotopic in Y, all we can conclude from general position is that
there exists a Whitney disc W whose interior intersects itself and the image of X in
isolated points. Moreover, even if an embedded Whitney disc can be found, since
71(Gry(R?)) = Z, pushing one sheet of X over the other along W may not cancel
the intersection points.

Let us investigate the 4-dimensional situation more concretely. Suppose we have
two algebraically cancelling intersection points between surfaces P and @ in an
ambient 4-manifold. A local model for a transverse intersection between surfaces in
a 4-manifold consists of the zy- and the zw-planes meeting at the origin in R*. A
key observation is that the two planes intersect a small 3-sphere around the origin
in a Hopf link (see Figure 1.5). A positive (respectively negative) intersection
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point gives a positive (respectively negative) Hopf link. A neighbourhood of a
Whitney circle for P and ), namely a union of two arcs connecting the algebraically
cancelling intersection points, is homeomorphic to S! x D3. The intersection of the
boundary of this S' x D3 with P and Q is then the band sum of the two Hopf
links corresponding to the two intersection points, where we use one band for each
of the two component arcs of the Whitney circle, as shown in Figure 1.6. Note
that we have a choice of how many times these bands twist, which corresponds to
the choice of framing of the Whitney circle. The correct choice of framing, namely
the untwisted framing, yields the Bing double of S* x {south pole} in the solid
torus St x southern hemisphere C S x §% = 9S! x D? (see Figure 1.6). Figure 1.7
shows the links we obtain in less than ideal situations such as when the signs of the
intersection points do not cancel or we have the wrong framing, i.e. one that does

not extend over a Whitney disc.
z z z z
7
G ()
y <7y N\ y y
x x T x x
w = —¢€ w = — w=0 w=E¢e

Figure 1.5. The Hopf link at a transverse intersection. Each of the
five images above shows the R3-slice of R* corresponding to the
w-coordinate as indicated. Only the central image, where w = 0,
contains the xy-plane, shown in yellow. The vertical lines in blue
trace out the zw-plane, as w is allowed to change. Note that the
zy- and zw-planes intersect at the origin. The red spheres, of
radius € in the central image, decrease in radius in either direction
until they become points when w = +e. Their union forms a copy
of S3, centred at the origin and of radius €. The two circles shown
in green (one of which appears only as moving points) form a Hopf
link, with one component in the zy-plane and the other in the zw-
plane. Note that the origin in the far left and far right picture is
both red and green.

N,

In the ideal situation, the surfaces P and @ intersect the boundary S! x S2? of
a neighbourhood of a Whitney circle in a Bing double of the Whitney circle. If
there were an embedded and framed Whitney disc for the Whitney circle, with
interior disjoint from P and @, it would provide a core for an ambient surgery
taking S' x S2 to the 3-sphere. Our Bing double would be mapped to a link in
this S3. If this resulting link is the unlink, it is easy to geometrically eliminate
the two algebraically cancelling intersection points: cap off the unlink with disjoint
embedded discs to obtain disjoint surfaces isotopic to the original ones.

1.3. Casson’s insight: geometric duals

We face the problem of finding embedded Whitney discs within 4-manifolds. In-
deed, there is no way to locally find such Whitney discs, due to the notion of slice
knots introduced by Fox and Milnor in the 1950s [FMG66], or more accurately,
due to the fact that there exist non-slice knots. A knot in S® = 9D* is said to
be topologically (respectively smoothly) slice if it bounds a locally flat (respec-
tively smoothly) embedded disc in D?*. Slice knots arise, for example, as cross
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Figure 1.6. Banding together, with untwisted framing, two Hopf
links lying in disjoint copies of 2, around two intersection points
produces a Bing double in S' x D? C S' x §2. Each of the three
lower pictures corresponds to the picture directly above it.

Figure 1.7. Left: When the paired intersection points have the
same sign, we get a 2-component link with linking number +2.
Right: An incorrectly framed Whitney circle produces a twisted
Bing double of the Whitney circle.

sections of knotted 2-spheres in 4-space. In the 1970s, obstructions to sliceness,
for example, in terms of the Seifert matrix [Lev69], had already been discovered.
At present, a great deal is known about obstruction theory for slice knots; for
example, work based on that of Cochran-Orr-Teichner [COT03, COT04], such
as [CT07,CHL09, CHL11,Chal4], gives an infinite sequence of obstructions to
topological sliceness, building upon the second order obstructions of Casson and
Gordon [CGT78]. There also exist several smooth obstructions, from gauge the-
ory [FS85, HK12], Heegaard-Floer homology [0S03, Hom14, HW16, 0SS17],
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etc. [Ras10,Lob09,LL16,DV16]. Since every knot in S bounds an immersed disc
in D*, but for non-slice knots it is impossible to remove the self-intersection points,
we have no hope of removing self-intersections of immersed discs in 4-manifolds in
general.

However, in 1974, Casson [Cas86] realised that in the surgery and s-cobordism
problems there is global information that may be exploited, namely the fact that
the spheres come in algebraically dual pairs. Casson also noticed that given two
surfaces in a 4-manifold, there is a relationship between their intersections and the
fundamental group of their complement. This is exhibited by the local model of
a transverse double point shown in Figure 1.5. Consider the complement of the
two intersecting planes in the small ball around the origin that is shown in the
figure. This complement deformation retracts to a torus, called the Clifford torus,
which is the common boundary of enlarged tubular neighbourhoods of the two
components of the Hopf link in S from Figure 1.5. So the fundamental group
of this complement is Z @ Z. On the other hand, the fundamental group of the
complement of two disjoint planes in R* is Z % Z. So in principle the intersection
point accounts for adding a relation (precisely, the commutator of the meridians for
the two planes) to a presentation of the fundamental group of the complement. This
is just the simplest example of a concept we will work with frequently, namely that
adding intersection points to our surfaces can improve the fundamental group of the
complement; curiously, increasing intersection points aids us in finding embeddings.

How can we use Casson’s ideas to help with the surgery and s-cobordism prob-
lems? In both situations, our goal is to remove algebraically cancelling pairs of
intersection points (possibly self-intersection points) for spheres S and T immersed
in a 4-manifold M, by finding pairwise disjoint, embedded, framed Whitney discs
with interiors in the complement of S and T'.

First we introduce some terminology. Let A be a subset of a 4-manifold M. We
say that A is 71 -negligible in M if the inclusion induced map 71 (M \ A) — w1 (M)
is an isomorphism. Note that this implies that any curve in M \ A that extends to a
map of a disc in M also extends to a map of a disc in the complement M ~\ A. This
condition will enable us to find Whitney discs whose interiors are in the complement
of the spheres we wish to embed.

Now suppose that A is the union of a collection of immersed spheres. By the
Seifert-van Kampen theorem, A is m1-negligible if and only if the meridional circle
of each sphere is null-homotopic in the complement of A. Geometrically, such a
null homotopy creates an immersed disc bounded by the meridional circle in the
complement which, together with a meridional disc, gives a sphere intersecting the
original immersed sphere in precisely one point. Thus 71-negligibility for a family
of immersed spheres {4;} in M is equivalent to the existence of geometrically dual
spheres. That is, there is a family of immersed spheres {B;} such that A; intersects
B; transversely at a single point for each ¢, the spheres {B;} may intersect one
another nontrivially, and A; and B; are disjoint for ¢ # j.

1.3.1. Surgery and geometric duals. In the surgery situation, our initial
goal is to represent a hyperbolic pair in the intersection form of an ambient 4-
manifold M by geometrically dual spheres Sand T , given representative spheres S
and T algebraically dual to one another and with vanishing self-intersection num-
bers (see Figure 1.1). We will modify S and T' by homotopies until they become
geometrically dual spheres S and 7. After that, we will seek to modify S to an
embedding.

Suppose there exists an immersed Whitney disc W in M for a pair of alge-
braically cancelling intersection points between S and T'. For example, this holds



1.3. CASSON’S INSIGHT: GEOMETRIC DUALS 11

when the fundamental group 71 (M) of the ambient manifold is trivial and the inter-
section points have opposite sign, or if one counts intersection points algebraically
in Z[m (M)] instead of in Z. In all likelihood, W meets both S and T'. The first
step is to push S and T off the interior of W as indicated in Figure 1.8 by so-called
finger moves, resulting in spheres S’ and T”. The spheres S’ and T” are homotopic
to S and T respectively, and intersect each other geometrically in the same way
as S and T, but have been made disjoint from the interior of W at the expense
of (possibly) increasing the number of self-intersections. Note that the algebraic
self-intersection numbers are still zero, because finger moves do not change them.
Next perform a Whitney move across W on either S’ or 77 to obtain new spheres
that are still homotopic to S and T, have two fewer intersection points but possi-
bly more (algebraically cancelling) self-intersections. Repeating this process finitely
many times yields a geometrically dual pair S and T. We have obtained our desired
geometrically dual spheres, at the expense of increasing self-intersections. We also
know that there are algebraically zero self-intersections for each of S and 7.

In order to perform a surgery that achieves the desired effect on second homology
we only need to embed one of the spheres, say S. We saw above that S has vanishing
algebraic self-intersection number. Note that S is m1-negligible due to the existence
of the geometric dual T. Thus, using again that the ambient manifold is simply
connected, or by having counted self-intersections in Z[r (M)], there exist Whitney
discs pairing the self-intersection points of S whose interiors lie in M ~. §. These
Whitney discs are only known to be immersed. If we could instead arrange for
pairwise disjoint, embedded, and framed Whitney discs with interiors disjoint from
S , we would be able to replace S by an embedded sphere. If, in addition, this latter
embedded sphere had a geometrically dual sphere, we could do surgery as desired.
Note that the geometrically dual sphere ensures that the fundamental group of
the ambient manifold remains unchanged after surgery. Such a geometrically dual
sphere could come from f, depending on how it interacts with the Whitney discs.
So if we can find pairwise disjoint, embedded, framed Whitney discs pairing the
self-intersection points of §, and they can be arranged to have interiors disjoint
from both S and f, then we will be done. Fortunately, this is exactly what the disc
embedding theorem does for us.

S 74 T S’ w T’
Q —
r—r_>

Figure 1.8. Trading intersections for self-intersections. A Whitney
disc W (black) pairing algebraically cancelling intersection points
between the spheres S (red) and T (blue) is shown in cross section.
For each intersection of .S with the interior of W, perform a homo-
topy of S to move the intersection point off W, at the expense of
creating two new (algebraically cancelling) self-intersections of S.
Do the same for T'. This results in the immersed spheres S’ (red)
and T” (blue) shown on the right.
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While for the purposes of this discussion we have restricted ourselves to a single
hyperbolic pair, in reality we will need to embed a collection of spheres disjointly,
with a collection of geometrically dual spheres. It is straightforward to extend the
argument to the case of several spheres. We explain 4-dimensional surgery in detail
in Chapter 22.

1.3.2. The s-cobordism theorem and geometric duals. In the s-cobordism
problem the setup is slightly different. Here S and T are not only algebraically dual,
but each is embedded and framed and comes with an embedded, possibly unframed,
geometric dual, S# and T# respectively. Again we just consider a single pair {S, T}
for the purposes of this discussion. The geometrically dual spheres already tell us
that S and T are mi-negligible individually, but they might not be so simultane-
ously, since for example, S# might intersect T'. Let us see how to arrange for S#
to be disjoint from 7" with the restriction that we are allowed to move S and T but
only by isotopies; this will keep them embedded, and also ensure that we are not
altering the cobordism we started with. First we arrange that the intersections be-
tween S# and T cancel algebraically by tubing S# into parallel copies of S. That is,
we repeatedly perform an ambient connected sum of S# and an appropriately ori-
ented copy of S inside M along a suitable arc, as in Figure 1.9. This might increase
the number of intersections between S# and T#, or of S# with itself, but we do
not mind. Now all the intersections between S# and T can be paired by Whitney
discs in M. Consider some such framed, immersed Whitney disc W. If we perform
the Whitney move on S# along W right now we would be in danger of creating
new intersections of S# with whatever W intersects, which a priori might be any
of S, T, S#, or T#. However, we do not mind intersections between S# and T#
nor self-intersections of S#. So the only problems are caused by intersections of W
with S or T

S#
T#

+ 1

T

Figure 1.9. Adjusting the intersection number of S# (light red)
and T (blue), by tubing S# into S (red) along a suitable arc. Do
this for every point of intersection between S# and T'. Afterwards,
the intersections of S# and T are algebraically cancelling. These
new intersections are marked on the right with signs.

We can remedy the T intersections by tubing W along T into push-offs of T#,
where the push-offs use sections of the normal bundle transverse to the 0-section.
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S# T \
INT

Figure 1.10. Obtaining a Whitney disc for intersections between
S# and T with interior in the complement of S U T. We see a
Whitney disc W (black) pairing intersection points between S#
(light red) and T' (blue). Remove intersection points of the inte-
rior of W with T by tubing W into the dual sphere T# (light blue).
This might create new intersections (not pictured) of W with S.
Remove intersections of W and S by pushing S off W in the direc-
tion of T, at the expense of creating a new pair of (algebraically
cancelling) intersection points between S and T'.

T#

This may lead to new intersections of W with S, and also with 7% if T# is not
framed. Consequently, the new W only has problematic intersections with S which,
in turn, can be removed by isotoping S off W by finger moves in the direction of T,
as shown in Figure 1.10. Since T# might not be framed and we have tubed W into
it, the framing of the normal bundle of W may no longer agree with the Whitney
framing. However, we can correct the framing at the expense of increasing the
intersections of W with S#, by twisting W around its boundary (see Section 15.2.2
for details). At this point, we have possibly made the new Whitney disc more
singular (if 7# meets W then tubing W into T# creates new self-intersections of
W) and created new (algebraically cancelling) intersections between S and T, but
this does not worry us for now. A Whitney move on S# along the new (framed)
W produces a (probably immersed) geometric dual for S away from T, as needed.

By applying a similar process, we can upgrade T# to a geometric dual for T which
does not intersect S, and thus arrange that SUT is mi-negligible. The algebraically
cancelling intersection points between S and T' may now be paired up with Whitney
discs whose interiors lie in the complement of S UT. However, as in Section 1.3.1
these Whitney discs are only known to be immersed. Note that we found these
immersed Whitney discs either by assuming that the ambient manifold is simply
connected, or by counting intersection numbers in the group ring Z[m (M)].

If we had pairwise disjoint, embedded, and framed Whitney discs in the comple-
ment of SUT instead, we could use them to perform Whitney moves and obtain a
pair of spheres, isotopic to S and T, and geometrically dual to one another. This
would complete the proof of the s-cobordism theorem. Once again, fortunately this
is what the disc embedding theorem will provide. As before, we have focussed on
a single pair of spheres {S, T}, and their duals {S#, T#}, but similar arguments
apply to the case of multiple pairs. Further details on the s-cobordism theorem can
be found in Chapter 20.

In conclusion, in both the surgery and s-cobordism problems in dimension four,
we can use geometrically dual spheres to find immersed Whitney discs with interiors
in the complement of the surfaces we are trying to separate. In both cases, we are
interested in finding pairwise disjoint, embedded, and framed Whitney discs instead.
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1.4. Casson handles

How can we promote the immersed Whitney discs obtained above to disjointly
embedded discs? Assume for this section that the ambient 4-manifold M is simply
connected. Note that the singularities of the Whitney discs are isolated double
points in the interior. At each such double point, we can find a double point loop,
that is a loop that starts at the double point, leaves along one branch and re-
turns along the other. We may use the same ideas as before to make these loops
null-homotopic in the exterior of the base spheres and the Whitney discs, and get
immersed discs bounded by them away from everything else. If these were pairwise
disjoint and embedded, and had the right framing, we could introduce an alge-
braically cancelling double point via adding a local kink, obtain a Whitney disc,
and do the Whitney move across this second level Whitney disc to replace our im-
mersed first level Whitney discs by embedded ones. This procedure is depicted in
Figure 1.11.

The next, and essential, insight of Casson is that we can keep iterating this
process, by finding layers upon layers of mutually disjoint immersed discs, with each
layer attached to the double point loops of the previous layer along the boundary
and with interiors disjoint from all previous layers. A closed tubular neighbourhood
of the resulting object after any finite number of steps is called a Casson tower. See
Figure 1.12 for a schematic picture. The base immersed disc in a Casson tower has
a circle boundary identified with a Whitney circle of the original immersed spheres.
An open tubular neighbourhood of the circle in the boundary of the Casson handle
is called the attaching region. Take the union of an infinite sequence of inclusions
of finite towers, where the boundaries of each stage other than the attaching region
are removed. This is called a Casson handle. The attaching region of a Casson
handle is the attaching region of any constituent Casson tower, which all coincide
by definition. Thus, in the case of a simply connected ambient manifold, we have
now replaced our immersed Whitney discs by disjointly embedded Casson handles.

Note that the fundamental group of a Casson tower is generated by the double
point loops at the self-intersections of the final layer of immersed discs, since each
successive layer of discs is glued on to a generating set for the fundamental group of
the previous stages. Consequently, a Casson handle, informally a Casson tower of
infinite height, is simply connected. Casson and Siebenmann proved the following
theorem.

Figure 1.11. Whitney move to resolve a self-intersection. On the
left we show a self-intersection point of a disc such that the double
point loop bounds an embedded and framed disc whose interior
is in the complement of the first disc. When we add a local kink
of the opposite sign, a Whitney circle bounding an embedded and
framed disc is visible on the right, using which we may perform
the Whitney move to resolve the original self-intersection.
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Figure 1.12. Schematic picture of the 2-dimensional spine of a Cas-
son tower of height three.

THEOREM 1.1 (Casson [Cas86, Lecture 1] (see also Siebenmann [Sie80])). Every
Casson handle is proper homotopy equivalent relative to its attaching region to the
open 2-handle (D? x D?,S* x D?).

This is extremely close to what we want. However, to complete our arguments
for the surgery and s-cobordism problems, we require not just a proper homotopy
equivalence, but rather a homeomorphism to D? x 10)27 relative to the attaching
region. In 1982, Freedman showed exactly this latter fact.

THEOREM 1.2 (Freedman [Fre82al). Every Casson handle is homeomorphic rel-
ative to its attaching region to the open 2-handle (D? x D? S* x D?).

One may then consider each Casson handle as one of the topologically embedded,
flat, framed Whitney discs that we have been so keen on finding, and perform the
Whitney move to delete the offending intersection points.

Based on Casson’s constructions outlined in this chapter, in the same paper
Freedman used Theorem 1.2 to establish that one can perform surgery on a well
chosen smooth 4-manifold to produce a closed topological 4-manifold homotopy
equivalent to any given simply connected 4-dimensional Poincaré complex. He also
established that every smooth, simply connected h-cobordism between closed 4-
manifolds is homeomorphic to a product. Moreover, he proved a more general
proper h-cobordism theorem which he then used to establish the Poincaré con-
jecture in dimension four as well as a classification of closed, simply connected,
topological 4-manifolds up to homeomorphism, assuming the fact, proved later by
Quinn [Qui82b], that every compact, connected topological 4-manifold admits a
smooth structure in the complement of a point. There are many more consequences
of Freedman’s work, which we describe in greater detail in Section 1.6.

1.5. The disc embedding theorem

Casson’s construction of Casson handles described above strongly depends on
the fact that the ambient manifold is simply connected. For manifolds with more
general fundamental groups, there exists a different construction, using layers of
surfaces as well as immersed discs, which for certain fundamental groups called
good groups (discussed below the statement of the theorem) produces what we
call a skyscraper. Using similar techniques as Freedman in [Fre82a], it can be
shown, as first described in [FQ90], that every skyscraper is homeomorphic to the
standard 2-handle, relative to the attaching region. This produces the celebrated
disc embedding theorem, which we state next and which is the focus of this book.

Below, \: Ho(M,0M)x Ho(M) — Z|71(M)] denotes the intersection form, where
M denotes the universal cover of a connected 4-manifold M. We postpone the
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detailed definition of this, and the precise definition of the self-intersection number
w of an immersed sphere in M, until Chapter 11. Recall that an embedded surface
¥ in a 4-manifold M is said to be flat if it extends to an embedding ¥ x R? «— M
that restricts to ¥ on ¥ x {0}.

DISC EMBEDDING THEOREM ([Fre82a; Fre84; FQ90, Theorem 5.1A; PRT20]).
Let M be a smooth, connected 4-manifold with nonempty boundary and such that
m1 (M) is a good group. Let

F=(fi,...,fn): (D*U---uD* 8" U---uS") & (M,0M)

be an immersed collection of discs in M with pairwise disjoint, embedded boundaries.
Suppose that F' has an immersed collection of framed dual 2-spheres

G=(g1,---,9n): S?U---US? 9 M,

that is M(fi, g;) = 0;; with A(gi,g;) =0 = p(g;) foralli,j=1,...,n.
Then there exists a collection of pairwise disjoint, flat, topologically embedded
discs
F=(fy,....f,): (D*u---uD*S*u---uS" — (M, 0M),
with geometrically dual, framed, immersed spheres
G=(g,,...,7,): S*U---US% % M,

such that, for every i, the discs f; and f; have the same framed boundary and g, is
homotopic to g;.

Roughly speaking, the disc embedding theorem states that given a collection of
immersed discs in a 4-manifold with algebraically dual spheres, nice enough funda-
mental group of the ambient manifold, and some restrictions on the intersections
of the discs and the dual spheres, we may upgrade the immersed discs to embed-
ded discs with the same boundary and tubular neighbourhoods, at the expense of
leaving the smooth category.

The hypothesised algebraically dual spheres {g;} in the theorem are needed for
m1-negligibility, and indeed that such dual spheres are required is precisely the
reason why the existence of non-slice knots does not contradict the disc embedding
theorem.

Good groups will be defined precisely in Chapter 12 and investigated further in
Chapter 19, once we have introduced the necessary terms. Briefly, the group needs
to satisfy the mi-null disc property, stated in Definition 12.12. For now, it suffices
to know that the class of good groups contains groups of subexponential growth
and is closed under subgroups, quotients, extensions, and colimits. For example,
finite groups, abelian groups, and indeed all solvable groups are good. Due to the
striking consequences of the disc embedding theorem, the question of which groups
are good is one of the most important open questions in 4-manifold topology. Of
course, the disc embedding theorem for simply connected 4-manifolds, which holds
since the trivial group is good, was itself a ground-breaking result.

Note that the ambient manifold is required to be smooth in the statement of the
disc embedding theorem. There exists a category preserving version of the theorem,
where ‘immersed’ discs in a topological manifold are promoted to embedded ones.
However, the proof requires the notion of topological transversality and smoothing
away from a point (see Section 1.6). These facts, established by Quinn [Qui88;
FQ90, Chapters 8 and 9], in turn depend on the disc embedding theorem in a
smooth 4-manifold stated above. The fully topological version of the disc embedding
theorem is beyond the scope of this book, since we will not discuss Quinn’s proof
of transversality. We summarise the developments in topological 4-manifold theory
that stemmed from the disc embedding theorem in Chapter 21.
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The proof of the disc embedding theorem will occupy us for almost the entire
book. As outlined in this chapter, the original proof in the simply connected case
consisted of building disjoint Casson handles with the same attaching region as
the original immersed discs and then showing that every Casson handle is home-
omorphic to the standard open handle D? x D? relative to its attaching region
(Theorem 1.2). Freedman’s proof of the latter fact consisted of embedding un-
countably many compactified Casson handles within the original Casson handle
and then applying techniques of decomposition space theory and Kirby calculus.

The proof in the remainder of this book will not use Casson handles, but rather
the alternate infinite tower construction alluded to above, called skyscrapers, con-
sisting of layers of both surfaces and immersed discs. Using skyscrapers simplifies
both the embedding and decomposition space theory steps of the proof. The proof
we shall present is an elaboration of the proof given in the book by Freedman and
Quinn [FQ90], using a modification of the constructive step given in [PRT20]. In
particular, each skyscraper is compact and we will show that it is homeomorphic
to D2 x D? relative to its attaching region, rather than the open 2-handle D? x D2.
We direct the reader to the outline of our proof in Chapter 2, where we point out
more precisely what is simplified and gained by the skyscraper approach.

REMARK 1.3. The geometrically dual spheres {g,} in the outcome of the disc
embedding theorem were asserted to exist in [FQ90, Theorem 5.1A], but no proof
was given. They are also not directly addressed in [Fre82a, Fre84]. They are
explicitly constructed in [PRT20] by modifying the constructive part of the proof
from [FQ90]. We also include the observation from [PRT20] that g, is homotopic
to g;. Asnoted earlier, the geometrically dual spheres are essential when performing
surgery to ensure that the fundamental group of the ambient manifold is not altered.
We describe the surgery procedure in Chapter 22. In Chapter 20 we also show how
to apply the version of the disc embedding theorem without geometrically dual
spheres in the outcome to prove the s-cobordism theorem.

1.6. After the disc embedding theorem

The consequences of the disc embedding theorem are many and far reaching,
including several foundational results in topological 4-manifold theory. In this sec-
tion, we list some of the most prominent of the disc embedding theorem’s many
applications.

1.6.1. Foundational results. We begin with normal bundles and transver-
sality for submanifolds of topological manifolds. Recall that an embedded surface
3 in a 4-manifold M is said to be locally flat if every point in ¥ admits a neigh-
bourhood U in M such that (U,U N ¥) is homeomorphic to (R, R?). A normal
bundle for a locally flat submanifold N C M of a topological 4-manifold M is a
vector bundle £ — N with an embedding of the total space E — M such that the
0-section agrees with the inclusion of N and such that F is extendable, where the
latter term means that if £ embeds as the open unit disc bundle of another vector
bundle F — N, then the embedding £ — M extends to an embedding F' — M
(see [FQ90, p. 137]).

THEOREM 1.4 ([FQ90, Section 9.3]). FEvery locally flat proper submanifold of a
topological 4-manifold has a normal bundle, unique up to ambient isotopy.

THEOREM 1.5 ([Qui88; FQ90, Section 9.5]). Let X1 and Yo be locally flat proper
submanifolds of a topological 4-manifold M that are transverse to OM. There is
an isotopy of M, supported in any given neighbourhood of X1 N Xs, taking X1 to a
submanifold ¥ that is transverse to Y.
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Here, transverse means that the points of intersection have coordinate neigh-
bourhoods within which the submanifolds appear as transverse linear subspaces.

It is worth pointing out that in the context of smooth manifolds, transversality
and the existence of normal bundles for submanifolds are among the basic results
of differential topology. For topological 4-manifolds, the disc embedding theorem
is a crucial component of the proofs, and without these results any work with
topological submanifolds would be well nigh impossible.

Freedman’s techniques were extended by Quinn to prove the 4-dimensional an-
nulus theorem, stated below.

THEOREM 1.6 (4-dimensional annulus theorem [Qui82b]). Let f: S* — Int D*
be a locally flat embedding. Then the region between f(S3) and S® = dD* is home-
omorphic to the annulus S® x [0, 1].

The result implies that connected sum of oriented topological 4-manifolds is well
defined, which had not been known previously. To see this, one notes that connected
sum of two 4-manifolds M; and My depends a priori on a choice of embeddings
D* < M; for i = 1,2. Suppose we are given two embeddings of D* in M;. First
produce an ambient isotopy of M; taking one ball to a proper sub-ball of the other.
Then apply the annulus theorem to produce an isotopy taking the sub-ball to the
bigger ball. Since isotopic embeddings of balls produce homeomorphic connected
sums, and since every orientation preserving homeomorphism of $2 is isotopic to the
identity [Fis60], it follows that the connected sum is well defined. See Section 21.4.4
for more discussion.

In the same paper, Quinn showed that topological 5-manifolds (not necessarily
compact) have topological handlebody structures. Combined with work of Kirby
and Siebenmann [KS77, Essay 3, Section 2], as well as Bing [Bin59, Theorem 8]
and Moise [Moi52a], this shows that a manifold (of any dimension) admits a topo-
logical handlebody structure if and only if it is not a non-smoothable 4-manifold.

Quinn also proved the following result about the smoothability of topological
4-manifolds.

THEOREM 1.7 ([Qui82b, Corollary 2.2.3; LT84; FQ90, Theorem 8.7; Qui86]).
The natural map TOP(4)/0(4) — TOP/O ‘is 5-connected. Moreover, every non-
compact, connected component of a topological 4-manifold admits a smooth struc-
ture.

In particular, every compact, connected, topological 4-manifold admits a smooth
structure in the complement of a point.

Chapter 21 contains a deeper discussion of these foundational results and their
implications.

1.6.2. Classification results. Roughly speaking, the disc embedding theo-
rem implies that in the topological category, 4-manifolds behave much like high
dimensional manifolds. Topological transversality and the existence of topological
handlebody structures on 5-manifolds yield the topological h-cobordism theorem for
4-manifolds [FQ90, Chapter 7], following the proof outlined earlier in this chap-
ter. This has far-reaching consequences of its own. For example, it implies the
topological 4-dimensional Poincaré conjecture.

THEOREM 1.8 (Poincaré conjecture [Fre82a)). Every homotopy 4-sphere is home-
omorphic to the 4-sphere.

We also obtain the topological s-cobordism theorem for 4-manifolds with good
fundamental group. Via the strategy pointed out earlier, the disc embedding theo-
rem implies that the surgery strategy applies topologically for good groups. More
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precisely, this means the following. Let X be a 4-dimensional Poincaré complex
with a lift of its Spivak normal fibration to a TOP-bundle. Suppose that m (X) is
a good group. Then there is a topological 4-manifold M homotopy equivalent to
X if and only if, up to choosing a different lift, the corresponding surgery obstruc-
tion in L4(Z[m1(X)]) vanishes. Moreover, for such an X, when the structure set is
nonempty, the surgery sequence

Ls(Z[m(X)]) = ST (X) = NTOP(X) = La(Z[r1(X)])

is defined and exact as a sequence of pointed sets. This uses the sphere embed-
ding theorem proven in Chapter 20. As we explain in Chapter 22, computing the
structure set STOF(X) can lead to classifications of manifolds within a fixed ho-
motopy type. By contrast, surgery does not work for smooth 4-manifolds, neither
of the h- and s-cobordism theorems hold [MS78,CS85,Don87a], and there is no
known definition of a nontrivial action of Ls(Z[r1(X)]) on the smooth structure set
SPIFF(X). The smooth 4-dimensional Poincaré conjecture remains open to date.

We will prove the sphere embedding theorem and discuss the use of the disc em-
bedding theorem in surgery, the s-cobordism theorem, and the Poincaré conjecture,
in Chapters 20, 21, and 22.

In the strategy mentioned above, in order to see that the topological structure set
STOP(X) for a given Poincaré complex X is nonempty, we need to build a closed
4-manifold such that the surgery obstruction vanishes. We are able to do so in the
simply connected case using the following theorem of Freedman [Fre82al].

THEOREM 1.9 ([Fre82a, Theorem 1.4’; FQ90, Corollary 9.3C]). Every integral
homology 3-sphere is the boundary of a contractible, compact, topological 4-manifold,
which is unique up to homeomorphism.

The high dimensional counterpart of this statement follows from surgery the-
ory [Ker69]. The existence of such contractible 4-manifolds allows us to construct
a closed, simply connected, topological 4-manifold with any given nonsingular in-
tersection form, as follows. Let A: Z™ x Z™ — Z be a unimodular, symmetric,
bilinear form. Take the disjoint union L* ; By, of disc bundles over the 2-sphere of
the form

D? — By, — S?

of Euler number k;, where k; = A(e;, e;) is the ith diagonal entry of the matrix
representing A with respect to the standard basis of Z"™. Plumb these together
according to A\ to construct a smooth, simply connected, compact 4-manifold with
A as its intersection form and nonempty boundary. Since A is unimodular, the
boundary of this compact manifold is a homology sphere, which we cap off by the
(topological) contractible 4-manifold produced by Theorem 1.9. The result is the
desired closed, topological 4-manifold.

In arguably the most interesting case, that of A represented by the Fg matrix,
the topological manifold produced is called the Eg-manifold. As noted earlier, by
Rochlin’s theorem, there is no closed, simply connected, smooth 4-manifold realising
FEg as its intersection form and thus the smooth version of Theorem 1.9 does not
hold.

The existence of the Eg-manifold is extremely helpful in surgery. Given a lift for
the Spivak normal fibration for a simply connected 4-dimensional Poincaré complex
X, we obtain a 4-manifold M with a degree one normal map to X as mentioned
earlier. Take the connected sum of M with copies of the Eg-manifold to arrange
for the algebraic obstruction to surgery to vanish. Then we can apply the disc
embedding theorem to do surgery and establish that the topological structure set
STOP(X) is nonempty. See Chapter 22 for further details.
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Here is another application of Theorem 1.9. Starting with an integral homol-
ogy 3-sphere ¥, and doubling the contractible 4-manifold from Theorem 1.9 with
boundary ¥, we obtain a homotopy 4-sphere, which is homeomorphic to S* by the
topological 4-dimensional Poincaré conjecture. Thus we have the following theorem.

COROLLARY 1.10. Every integral homology 3-sphere admits a locally flat topolog-
ical embedding into S*.

Using Theorem 1.9, and a combination of surgery for the trivial group (which
recall is a good group) and the topological h-cobordism theorem, we may upgrade
the Milnor-Whitehead homotopy classification of topological 4-manifolds to the
following homeomorphism classification [Fre82a] (see also [FQ90] and [CH90]).
We say that a 4-manifold M is stably smoothable if M#k(S? x S?) admits a smooth
structure for some k.

THEOREM 1.11 (Homeomorphism classification of closed, simply connected, topo-
logical 4-manifolds [Fre82a, Theorem 1.5]). Fixz a symmetric, nonsingular, bilinear
form 0: F x F— 7Z on a finitely generated free abelian group F.

(1) If 6 is even, there exists a closed, topological, simply connected, (spin), ori-
ented 4-manifold, unique up to homeomorphism, whose intersection form
is isometric to (F,0). This 4-manifold is stably smoothable if and only if
the signature of 0 is divisible by 16.

(2) If 0 is odd, there are two homeomorphism classes of closed, topological,
simply connected, (non-spin), oriented 4-manifolds with intersection form
isometric to (F,0), one of which is stably smoothable and one of which is
not.

Let M and M’ be two closed, oriented, simply connected, topological 4-manifolds and
suppose that ¢: Ho(M;Z) — Ho(M';7Z) is an isomorphism that induces an isometry
between the intersection forms. If the intersection forms are odd, assume in addition
that M and M' are either both stably smoothable or both mot stably smoothable.
Then there is a homeomorphism G: M — M’ such that G, = ¢: Ho(M;Z) —
Hy(M'; 7).

In other words, every even, symmetric, integral, matrix with determinant +1
is realised as the intersection form of a unique closed, simply connected, oriented,
topological 4-manifold. For such matrices which are odd instead, we get two closed,
simply connected, oriented, topological 4-manifolds, exactly one of which is stably
smoothable.

On the other hand, by Donaldson’s Theorem A [Don83, Don87b], the only
definite intersection forms realised as the intersection form of a closed, smooth 4-
manifold (not necessarily simply connected) are the standard forms that are the

intersection forms of connected sums of CP? or connected sums of CP?. Thus
there is no closed, smooth 4-manifold with intersection form Eg & Eg. But by
Theorem 1.11, the form Eg ¢ FEg is realised as the intersection form of a closed,
simply connected, topological 4-manifold.

It is still an open question exactly which indefinite forms are realised by closed,
simply connected, smooth 4-manifolds. However, partial results exist. For example,
further work of Donaldson shows that there is no closed, simply connected, smooth
4-manifold with Fs ® Es ® H or Es® Fs® H @ H as its intersection form [Don86].
The 10/8 theorem of Furuta [Fur01], recently extended to a 10/8 + 4 theorem
by [HLSX18], obstructs the realisation of even more bilinear forms as the intersec-
tion form of closed, simply connected, smooth 4-manifolds. The latter theorem, as
well as some work of Donaldson, such as [Don87b], applies to certain non-simply
connected 4-manifolds.



1.6. AFTER THE DISC EMBEDDING THEOREM 21

Uniqueness also fails quite drastically in the smooth category. There are many
constructions of pairs of smooth manifolds that are homeomorphic but not diffeo-
morphic; these are known as ezotic pairs. For example, there are infinitely many
smooth 4-manifolds homeomorphic to the K3 surface, but not diffeomorphic to
it [FS98]; similar constructions exist for certain blow ups of the complex projective
plane [Don87a, FM88, Kot89, Par05, SS05, PSS05, AP08, BK08, AP10]. For
noncompact manifolds, the situation is even wilder. There are uncountably many
smooth manifolds that are homeomorphic, but not diffeomorphic, to R* with its
standard smooth structure [Tau87]. Such a manifold is called an ezotic R*. In-
deed, there is not a single smooth 4-manifold for which we know that only finitely
many distinct smooth structures exist.

The classification of closed, simply connected, topological 4-manifolds was stated
in terms of being stably smoothable. A compact 4-manifold M is stably smoothable
if and only if the Kirby-Siebenmann invariant ks(M) € Z/2 vanishes [FQ90, Sec-
tions 8.6 and 10.2B]. More accurately this is the obstruction for the stable tangent
microbundle of M to admit a lift to a PL-bundle. The existence of such a lift
implies that M is stably smoothable, which is also equivalent to M x R admitting
a smooth structure by smoothing theory [KS77, Essay V]. For closed, simply con-
nected, topological 4-manifolds with even intersection form, and more generally,
closed, topological, spin 4-manifolds, the Kirby-Siebenmann invariant is congru-
ent mod 2 to o(M)/8. Thus, a closed, simply connected, topological 4-manifold
with intersection form Fg @& Eg has vanishing Kirby-Siebenmann invariant. How-
ever, we saw earlier that Donaldson’s theorem [Don83] implies that this manifold
is not smoothable. As a result, a compact, topological 4-manifold with vanishing
Kirby-Siebenmann invariant, that is, a compact, stably smoothable, topological 4-
manifold, need not be smoothable. See [FQ90, Section 10.2B] for more details on
the Kirby-Siebenmann invariant.

We saw that there are two homotopy equivalent but non-homeomorphic closed,
simply connected, topological 4-manifolds with a given odd intersection form, one
manifold for each value of the Kirby-Siebenmann invariant. As we saw, the manifold
with vanishing Kirby-Siebenmann invariant is stably smoothable. The simplest
example of an odd unimodular intersection form, namely (1), is already interesting.
The two manifolds with this intersection form are CP? and its star partner xCP?,
sometimes called the Chern manifold.

To construct *CP?, attach a +1-framed 2-handle to a knot K in S® = §D*
with Arf(K) = 1. The resulting 4-manifold X;(K) has intersection form (1) and
boundary an integral homology sphere X, namely the result of +1-framed surgery
on S2 along K. Cap off this homology sphere with the contractible 4-manifold C
with boundary ¥ promised by Theorem 1.9 and call the resulting manifold N'. To
see that N’ is homeomorphic to *CP?, it suffices to show that ks(N’) = 1. For
this, observe that ks(IN') = ks(C') since the Kirby-Siebenmann invariant is additive
for 4-manifolds glued along their boundary and X;(K) is smooth (see [FNOP19,
Section 8] for more on the Kirby-Siebenmann invariant). Since C is contractible,
C' is a topological spin manifold. By [FQ90, page 165; GA70], ks(C) = p(X) =
Arf(K) = 1, where p(X) is the Rochlin invariant of X.

As an alternative construction, consider the connected sum Fg#CP?, where we

abuse notation to let Eg denote the Fg-manifold. One can compute that Eg#CP?
has intersection form

Es @ (~1) = 8(1) & (1),
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since these are both indefinite, symmetric, nonsingular, integral, bilinear forms with
the same rank, signature, and parity [Ser70, MH73]. The injection

7(1) ® (—1) = 8(1) ® (—1) X Eg & (—1)
on the level of intersection forms produces a connected sum decomposition
Eg#CP? = TCP*#CP2#N
for some closed 4-manifold N with intersection form (1); this uses the disc embed-
ding theorem as shown in [FQ90, Section 10.3]. This N has

ks(N) = ks(TCP*#CP?#N) = ks(Es#CP?) = 1

since ks(Fg) = 1, ks(CP?) = ks(CP?) = 0, and the Kirby-Siebenmann invariant is
additive under connected sum. Then we define *CP? to be N.

In general a star partner of a non-spin 4-manifold W is a manifold *W such
that *«IW#CP? is homeomorphic to W# % CP?, via a homeomorphism preserving
the decomposition of ms. For closed, simply connected, non-spin 4-manifolds, this
equation, together with [FQ90, Section 10.3], uniquely determines a 4-manifold
W, which gives the non-stably smoothable manifolds with odd intersection form
from Theorem 1.11. For more general fundamental groups it is not known precisely
when star partners of non-spin manifolds exist, nor when the star manifold is unique,
should one exist. See [Sto94, Tei97,RS97] for more on this question.

Compact, simply connected, topological 4-manifolds with fixed connected bound-
aries have also been classified using the disc embedding theorem [Boy86, Boy93,
Vog82,St093] in terms of the intersection form and the Kirby-Siebenmann invari-
ant. Classification results for closed, topological 4-manifolds exist for other families
of good groups as well. For example, closed, topological 4-manifolds with infinite
cyclic fundamental group are classified in terms of the spin type, the equivariant
intersection form, and the Kirby-Siebenmann invariant [FQ90, Theorem 10.7A,
page 173]. See Section 22.3.4 for further discussion.

As one last example, since free abelian groups are good, the following rigidity,
which is a special case of the Borel conjecture, follows from the surgery exact
sequence.

THEOREM 1.12. Let M be a closed, topological 4-manifold homotopy equivalent
to the torus T*. Then M is homeomorphic to T*.

1.6.3. Knot theory results. We end this chapter by giving a few applica-
tions of the disc embedding theorem in the realm of knot theory. First, Freedman
characterised the unknotted S% C S4 as follows.

THEOREM 1.13 ([FQ90, Theorem 11.7A]). If S C S* is a spherical 2-knot with
(St N\ S) 2 Z, then S is topologically isotopic to the unknot.

This is the analogue of the classical result that a 1-knot in S® is unknotted if and
only if the fundamental group of the complement is Z. The smooth counterpart of
Freedman’s result for 2-knots remains open.

For classical knots, the following is a central result. We give a sketch of the proof
to give a sense of how the disc embedding theorem and its various consequences
are necessary.

THEOREM 1.14 ([FQ90, Section 11.7; GT04]). Let K C S? be a knot with
Alexander polynomial Ak (t) = +t* for some k € Z. Then K is topologically slice,
that is K bounds a locally flat embedded disc in D*.

SKETCH OF PROOF. Let My denote the result of 0-framed Dehn surgery on S3
along K. We will construct a compact 4-manifold W with OW = M such that W
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is a homology circle whose fundamental group is normally generated by a meridian
of K. Given such a 4-manifold, the union of W with a 2-handle glued along a
meridian of K produces a homotopy 4-ball with boundary S2. By the classification
of simply connected 4-manifolds this is homeomorphic to D*, and the image of the
cocore of the attached 2-handle gives the desired locally flat (indeed flat) slice disc
for K. '

In order to construct W, observe that the spin bordism group Q37*"(S!) =
Q5P = 7/2 is detected by the Arf invariant of K. The Arf invariant can be
computed from the Alexander polynomial, and so vanishes. Thus there exists a
compact, spin 4-manifold V' with boundary My and a map to S! extending the
map to S' on My corresponding to a generator of H'(Mp;Z) and sending a posi-
tively oriented meridian to 1.

Perform surgery on circles in V' to obtain V' with 71 (V') 2 Z. The spin condition
on V implies that for every element of 7o (V') there is a fixed regular homotopy class
of immersions of S? having trivial normal bundle: the Euler number of the normal
bundle can be changed by +2 by adding local kinks. The Z-equivariant intersection
form on m2(V"’) is nonsingular and thus defines a surgery obstruction in L4(Z[Z]).
Here for nonsingularity we use the fact that Hy(Mg;Z[Z]) = 0, since Ag(t) is a
unit in Z[Z]. Moreover, we are using surgery for manifolds with boundary. It is
crucial here that the relevant fundamental group is Z, which is a good group. We
have that L4(Z[Z]) = 87 with generator the Eg form. Take the connected sum of V’
with copies of the Eg-manifold to produce V" with vanishing surgery obstruction.
This implies, by the exactness of the surgery sequence for manifolds with boundary,
that there exists a half-basis of Hy(V"') consisting of framed embedded spheres with
geometric duals (see the sphere embedding theorem in Chapter 20) on which we
can perform surgery to obtain a 4-manifold W. By construction, W is homotopy
equivalent to S, and so satisfies the desired conditions. O

Theorem 1.14 shows that there are many topologically slice knots. On the other
hand, smooth obstructions can show that many of these are not smoothly slice.
For example, the Whitehead double of the right-handed trefoil knot has Alexander
polynomial one but is not smoothly slice. In fact, the group of topologically slice
knots modulo smoothly slice knots is known to be quite large. It contains an infinite
rank summand and a subgroup isomorphic to (Z/2)* [End95,0SS17, HKL16]|.
There exists an infinite sequence of obstructions to smooth sliceness for topologically
slice knots [CHH13, CK17], similar to those mentioned earlier due to Cochran-
Orr-Teichner [COTO03].

Any knot K that is topologically slice but not smoothly slice can be used to
construct an exotic R* [Gom85, Lemma 1.1], as follows. Attach a O-framed 2-
handle to the 4-ball D* along K C dD*, to obtain the 4-manifold Xy(K). By
construction, Xo(K) is a smooth manifold, once we smooth the corners produced
by handle addition. Since K is topologically slice, there is a topological locally flat
embedding of X((K) into R*, taking the D* C X(K) to the unit 4-ball in R*. The
closure of the complement of this embedding

U:=R*\ Xo(K)

is connected and noncompact and thus admits a smooth structure by Theorem 1.7.
The smooth structures on Xo(K) and U glue together to give a smooth structure
on R*, since every homeomorphism of a 3-manifold, in this case 9X(K), is isotopic
to a diffeomorphism [Moi52a,Bin59]. Let R denote R* endowed with this smooth
structure. Note that the manifold X((K) embeds smoothly into R.

THEOREM 1.15. The smooth 4-manifold R is not diffeomorphic to R*.
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PROOF. Suppose, for the sake of a contradiction, that R is diffeomorphic to
R* with the standard smooth structure. Then Xy(K) embeds smoothly in the
standard R* and thus in the standard, smooth 4-sphere S*, produced by adding a
point to R*. Since any two embeddings of the standard ball in a connected, smooth
manifold are isotopic [RS72, Theorem 3.34], by the isotopy extension theorem, we
can assume that D* C X(K) is mapped to the lower hemisphere of S*. Then the
closure of the complement of the image of D* C X((K) in S* is also the standard
D*. The image of the 2-handle in X((K) then provides a smooth slice disc for K
in this complementary D*. Since K is not smoothly slice by hypothesis, we have
reached a contradiction. This establishes that R is an exotic R*. ]

We will discuss the use of the disc embedding theorem in surgery, the s-cobordism
theorem, the classification of closed, simply connected, topological 4-manifolds, and
the Poincaré conjecture in more detail in Chapters 20, 21, and 22. The proofs of
the other consequences of the disc embedding theorem presented in this chapter
are beyond the purview of this book, and we encourage the reader to study the
references given in this section. Primarily, the rest of the book proves the disc
embedding theorem in a smooth, connected ambient 4-manifold.



CHAPTER 2

Outline of the upcoming proof

Arunima Ray

We present an outline of the forthcoming proof of the disc embedding theorem,
to orient the reader before we begin. The nonorientable reader is requested to pass
to his or her orientation double cover before continuing. The remainder of this
book breaks up the proof into small digestible pieces. The goal of this chapter is
to describe how the pieces fit together. This outline is necessarily thin on specifics
and we take a few liberties with the precise definitions and proofs that we will give
later, in the interest of providing a general sense of what is to come. We hope
that this will be a helpful guide for the reader for when we delve into the proof in
earnest. In the course of reading this book, readers might choose to periodically
return to this outline to see where they are within the proof.

2.1. Preparation

We work within an ambient 4-manifold M with good fundamental group that is
additionally assumed to be smooth. Thus we will freely discuss immersions and
transversality.

Freedman’s disc embedding theorem (Section 1.5) states that given a collection
of properly immersed discs {f;} in such a 4-manifold, with a corresponding collec-
tion of framed, algebraically dual, immersed spheres {g;} (that is A(fi,g;) = d;;,
Agi, ;) =0, and p(g;) = 0 for all i, j), we can replace {f;} by a collection {f,} of
flat, disjointly embedded discs, such that f; and f, have the same framed boundary
for all i, and such that {f,} is equipped with a collection {g,} of geometrically dual
spheres, with g, homotopic to g; for each i. Geometrically dual means that f; and
g; are disjoint whenever ¢ # j, while f; and g, intersect transversely at a single
point for each i. The hypothesis that the ambient manifold has good fundamental
group is used in a single step of the proof, that we shall indicate below.

For the purposes of this outline we conflate the original immersions {f;} with
their image in M. The strategy to promote the original immersed discs {f;} to
disjointly embedded discs has two major steps. First, we build a pairwise disjoint
collection of complicated 4-dimensional objects called skyscrapers, which attempt
to approximate a pairwise disjoint collection of embedded, framed Whitney discs
for the intersections and self-intersections of {f;}. Second, we show that every
skyscraper is in fact homeomorphic, relative to its attaching region, to D? x DZ2.
As mentioned in the previous chapter, Freedman’s original proof used a different
infinite construction, called a Casson handle. We will point out below how our
proof, which is an elaboration of the proof in [FQ90] incorporating a modification
of the first step given in [PRT20], bypasses some of the technical complications of
the Casson handle approach.

The techniques from general topology that we will use to show that any skyscraper
is homeomorphic to the standard handle come from the realm of decomposition
space theory, sometimes known as Bing topology. We develop the specific results
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and techniques we need in Part I, exhibiting a proof of the Schoenflies theorem in
all dimensions to introduce the theory. Part I also includes an in depth discussion
of the Alexander horned sphere. Unsurprisingly perhaps, since the disc embedding
theorem is inherently a topological result (rather than a smooth one, for instance),
the techniques from Part I will be essential to the eventual proof of the disc em-
bedding theorem. In Part II, which may be read independently of Part I, we show
how to build skyscrapers. The vast majority of the constructions in Parts I and IT
are direct and hands on. Part III is an interlude which discusses good groups in
greater detail, shows how to apply the disc embedding theorem as well as the tech-
niques from Part II to topological 4-manifolds, and discusses some open questions
and conjectures. Part IV completes the proof of the disc embedding theorem by
showing that any skyscraper is homeomorphic to the standard handle, relative to
the attaching region. We indicate exactly which ingredients we need from Parts I
and IT at the beginning of Part IV. In contrast to the previous parts, the techniques
in Part IV are markedly more abstract and harder to visualise.

Next we sketch the proof of the disc embedding theorem. We reference precise
propositions and theorems in the upcoming proof whenever possible, and we use
the same notation as in these results.

2.2. Building skyscrapers

The skyscrapers we build will be the limit of a progression of iterated construc-
tions, such that each finite truncation is roughly speaking an approximation of an
embedded 2-handle. An obvious difference between a neighbourhood of an im-
mersed disc and that of an embedded disc is the double point loops traversing the
self-intersections. These are essential in the fundamental group of the image of the
immersion. In other words, in seeking to approximate an embedded 2-handle, we
should aim to construct something simply connected. This is a guiding principle
throughout the construction of skyscrapers. Recall that Casson handles were built
as a neighbourhood of an infinite tower of immersed discs, with each disc’s bound-
ary glued onto a double point loop of a previous disc in the tower. Skyscrapers will
be built similarly, except that there will be some surface stages between any two
disc stages. Now we begin explaining the construction of skyscrapers performed in
Part II.

STEP 1 (Modify the base discs until the intersections may be paired by Whitney
discs, Proposition 16.1). We start with the initial hypothesised immersed discs { f;}
and algebraically dual immersed spheres {g;}, where {g;} has trivial intersection
and self-intersection numbers by hypothesis. Tube all of the intersections and self-
intersections of {f;} into {g;} to arrange that the intersection and self-intersection
numbers of the new immersed discs {f/} are trivial. Note that {f;} and {f/} have
the same framed boundaries. Then we upgrade the algebraically dual spheres {g;}
to geometrically dual spheres {g;} for {f/}, using the ideas of Casson mentioned
in Chapter 1. This changes the {f/} by a regular homotopy, but we still call them
{f!} and the framed boundaries remain the same. Note that g; and g, are regularly
homotopic. Since the intersection and self-intersection numbers of the {f/} are zero,
the intersection points are paired by Whitney circles bounding framed, immersed
Whitney discs { Dy} in the ambient manifold. Tube any intersections of the interiors
of these Whitney discs with the {f/} into the geometrically dual spheres {g;}. Now
we have a collection {D}} of framed (but merely immersed) Whitney discs for the
intersections and self-intersections of the {f/}, with interiors in the complement of
the {f/}. Note that {D} } may intersect the spheres {g;}.

To keep the goal in sight, remember that we will eventually replace these im-
mersed Whitney discs {D},} by pairwise disjoint skyscrapers, which we will later
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see to be homeomorphic to 2-handles, allowing us to perform the Whitney move on
the {1},

It would be quite understandable for the reader to be somewhat confused at
this point, because it seems that no real progress has been made. We have simply
swapped the immersed discs {f;} in the original ambient manifold M for other
immersed discs {D} } in the new ambient manifold M ~ Jvf/. However, since
{D;,} is a collection of Whitney discs, it is equipped with a collection of transverse
capped surfaces, which will be a key ingredient in the next few steps. Transverse
capped surfaces are strictly better than algebraically dual spheres since they can
be used to produce arbitrarily many mutually disjoint geometrically dual spheres
at will, as we will indicate soon.

The transverse capped surfaces will be produced from Clifford tori. As mentioned
in Chapter 1, Clifford tori are found in a neighbourhood of a transverse intersection
between two surfaces in an ambient 4-manifold. More precisely, the two circle
factors in a Clifford torus are each meridians for one of the two intersecting surfaces.
The Clifford torus T for either of the intersections between surfaces P and @) paired
by a Whitney disc D’ intersects D’ exactly once and any meridian (respectively,
longitude) of T bounds a disc intersecting P (respectively, @) exactly once, namely
a meridional disc for P (respectively, @)). See Section 15.1 for more details.

A surface equipped with immersed discs bounded by a symplectic basis of curves
for its first homology is called a capped surface, and the discs are called the caps.
Capped surfaces have the following key property: they can be transformed into
(immersed) spheres, by cutting the base surface and gluing on parallel push-offs of
their caps to the base surface, as indicated by Figure 2.1. This process is called
contraction. Since each of the discs is used twice, provided the base surfaces are
mutually disjoint, the pairwise intersection and self-intersection numbers of the
family of spheres produced by contraction of a collection of capped surfaces are all
zero. Moreover, if a surface S intersects a cap of a capped surface, we can perform
a regular homotopy of S to ensure that it no longer intersects the sphere produced
by contraction. This is called a push off operation. However, if surfaces S and
S’ intersect dual caps of a capped surface, after contraction and pushing off, the
new versions of S and S’ will intersect in two (algebraically cancelling) points. See
Section 15.2.5 for more details about these operations.

@) (b)

Figure 2.1. (Symmetric) contraction of a capped surface to a
sphere. Here we show the situation for embedded caps. Left: A
torus with a dual pair of caps. Right: The result of contraction
along the pictured caps.
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STEP 2 (Modify the Whitney discs until they are equipped with transverse capped
surfaces, Proposition 16.1). For each Whitney disc Dy, pick a Clifford torus at
either of the two paired intersections. Choose a meridian and longitude of each
Clifford torus. These curves are capped by meridional discs for the {f/}, each of
which intersects the collection { f/} exactly once. Tube each such intersection point
into the spheres {g;} to make the discs disjoint from {f/}. Let {¥{} denote the
resulting collection of Clifford tori, equipped with these caps.

Take a parallel copy of each element of {¥{} and contract, then push off all inter-
sections of the discs { D} } with the caps of this parallel collection. This transforms
{D,.} into a collection of immersed discs {W}}, with the same framed boundaries as
the {D;.}. Let {Si} be the collection of immersed spheres produced by the contrac-
tion. Note that this collection is geometrically dual to {Wy} by construction. Tube
any intersection of the caps of the collection {¥¢} with {W;} into the collection
{Sk}. We still call the resulting capped surfaces {3 }.

Now we summarise the current situation. We have replaced the hypothesised
collection of immersed discs {f;} by a collection {f!}, with the same framed bound-
aries, whose intersections and self-intersections are paired by a collection of framed,
immersed Whitney discs {W}} equipped with a collection of geometrically dual
capped surfaces {3{}. That is, 3§ N W}, is empty whenever £ # k and consists of a
single (transverse) intersection in the base surface of £ when ¢ = k. We have also
arranged that the capped surfaces {£¢} and the interiors of {W}} lie in the com-
plement of {f/}. Moreover, since the caps of {£¢} were produced from embedded
discs by tubing into parallel copies of the spheres {g;} and the spheres {Si} were
produced by contraction, they have trivial intersection and self-intersection num-
bers. Additionally, since they were produced from Clifford tori, we know that the
tori {Xx} (not including the caps) lie in a regular neighbourhood of the {f/}. The
discs {f!} are also equipped with a collection of geometrically dual spheres {g;}.
The details of the construction so far are given in Proposition 16.1 and summarised
in Figure 2.2.

Due to the existence of {g;}, we know that M ~|Jvf/ also has good fundamental
group, and the latter will be our ambient manifold from now on. We will use the
spheres {g;} again, but set them aside for now. We work for a while with the sets
{Wg} and {2¢}.

STEP 3 (Promote the Whitney discs to capped surfaces, Proposition 16.2). First,
we eliminate the intersections and self-intersections of {W}} by tubing them into
parallel copies of the transverse capped surfaces {3¢}. This transforms them into
capped surfaces {W} } with the same framed boundary as {W}. Due to the trivial
intersection and self-intersection numbers of the caps of {X{}, we can make the
{W/} and the caps of {£¢} disjoint, so that the families {W/} and {3¢} remain
geometrically transverse. This requires creating another set of geometrically dual
spheres by contraction as before and tubing into them. The caps of {W/} and
{3¢} may change by a regular homotopy in this process, but we keep the same
notation. The fact that the bodies of the {¥¢} lie in a neighbourhood of {f/}
plays an important role in the separation we have just performed. In particular,
we needed the Whitney move to separate the caps of {W/} and {£¢}, and the fact
that the bodies of {¥¢} are located close to the boundary of the ambient manifold
allowed us to assume that the relevant Whitney discs do not intersect these bodies.
We postpone all further details to the actual proof.

Let us pause to describe an object called a capped grope. We could eliminate
(in the fundamental group) the essential curves on any connected surface with a
single boundary component by capping off a collection of curves that form a basis
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Figure 2.2. Summary of Proposition 16.1. The discs {f;} and {f/}
are in black, the spheres {g;} and {g}} are in blue, the Whitney
discs {Wy} are in red, and the transverse capped surfaces {X¢} are
in green.

for the first homology with immersed discs. Alternatively, we could cap off such
a collection of curves with further compact surfaces, so the fundamental group is
generated by essential curves on this new layer of surfaces. Continue to add such
surfaces iteratively to collections of curves forming a symplectic basis for the first
homology of the previous layer of surfaces. Taking a 4-dimensional neighbourhood
of the resulting object, at each stage, gives rise to a grope. A mneighbourhood
of the boundary of the base layer compact surface is called the attaching region
of the grope. The fundamental group of a grope is generated by a collection of
simple closed curves representing a basis for the first homology of the last layer of
attached surfaces. Cap off these curves with plumbed (thickened) discs, to obtain a
4-dimensional object called a capped grope. The plumbed 2-handles attached at the
latter step are called caps. Note that a capped grope with a single layer of surfaces
is nothing more than a (neighbourhood of a) capped surface. The fundamental
group of a capped grope is generated by the collection of double point loops of its



30 2. OUTLINE

caps. We describe gropes in much more detail in Section 12.1. Now we return to
our outline of the proof.

<
0 e

Figure 2.3. Schematic picture of the 2-dimensional spine of a height
three grope.

Figure 2.4. Schematic picture of the 2-dimensional spine of a height
two capped grope.

STEP 4 (Upgrade the Whitney discs further to capped gropes of height two,
Proposition 16.2). By another round of tubing into the capped surfaces {¥}, we
transform {W]} to capped gropes {G%} with two layers of surfaces. Note that
gropes are 4-dimensional objects, so we take a neighbourhood of the surfaces and
caps. Observe also that the caps of the gropes may intersect one another, but
the gropes are otherwise disjoint. By creating and using another collection of
geometrically transverse spheres, we once again ensure that the caps of {G§} do not
intersect the caps of {X7}, and as a result the collections are geometrically dual.

At this point, we have replaced the Whitney discs {Wy} for the intersections
and self-intersections of { f/} by a collection of capped gropes {Gf.} with two layers
of surfaces, equipped with a family of geometrically transverse capped surfaces
{X¢}, all lying, apart from the attaching region of {G¢}, in the ambient manifold
M~ Jvf], which we know to have good fundamental group. Note that the bodies
of the gropes are pairwise disjoint, but the caps may intersect. These two steps
are performed in Proposition 16.2 and bring us in our summary to the end of
Chapter 16.
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STEP 5 (Upgrade the capped gropes to 1-storey capped towers, Proposition 17.1).
In Proposition 17.3 we show that every capped grope with at least two layers of
surfaces contains a new capped grope with arbitrarily many layers of compact
surfaces and with the same attaching region. This procedure is called Grope Height
Raising. We apply this procedure to the gropes {G{,}. The resulting tall gropes
retain the set {37} as geometrically dual capped surfaces. By the contraction and
push off operations mentioned earlier, we ensure that the caps of the gropes are
mutually disjoint and have algebraically cancelling double points. Observe that
a capped grope has nontrivial fundamental group generated by the double point
loops of its caps.

At this point of the proof, we use the fact that the ambient 4-manifold has
good fundamental group to cap off these fundamental group generators with a new,
second layer of plumbed thickened discs in the ambient 4-manifold. This is the only
part of the proof that uses the good fundamental group hypothesis. A grope with
two layers of plumbed discs attached at the top is called a 1-storey capped tower.

We create another round of geometrically dual spheres from parallel copies of
the transverse capped surfaces {E¢} and use them to ensure that the newest set
of caps only intersect one another. This produces a collection of 1-storey capped
towers {7}, whose only intersections are among the last layer of caps, pairing
the intersections and self-intersections of {f/}. Note, for future reference, that the
constituent capped gropes of {7,°} may be assumed to have at least four surface
stages, by Grope Height Raising.

It is finally time to bring the spheres {g;}, which recall are geometrically dual
to the {f/}, out from storage. Right now, the collection {g;} may intersect the
1-storey capped towers {7,°} arbitrarily. We contract the capped surfaces {X7}
one last time to produce a final collection of geometrically transverse spheres { Ry},
this time for the 1-storey capped towers. Tube any intersections of the {g;} with
the 1-storey capped towers into the spheres { Ry}, to produce a new collection of
immersed spheres {g,}. Note that the {f/} and the {g,} are geometrically dual, and
moreover the 1-storey capped towers lie in the complement of both the {f/} and
the {g;}, except for where the attaching regions interact with {f/}. It is not too
hard to see that the spheres { Ry} are null-homotopic in M, since they arose from
Clifford tori (Lemma 17.11), from which it follows that for each ¢, the sphere g; is
homotopic to g}, which is homotopic to g;. The collection {g,} is the one promised
in the statement of the disc embedding theorem, and we will no longer modify this
collection.

The construction so far is summarised in Proposition 17.12. We have now reached
the end of the outline of Chapter 17.

From now on we completely forget the ambient 4-manifold and work solely within
the 1-storey capped towers {7,°}. Recall that the only intersections within the
family {7,°} are amongst the caps. Our proof will be complete if we can show that
every such collection of 1-storey capped towers contains pairwise disjoint 2-handles
with the same attaching regions, and indeed this is what we shall do. First, we will
show that any such collection of 1-storey capped towers contains a pairwise disjoint
collection of skyscrapers with the same attaching regions.

Since the only intersections within the collection {7,°} are amongst the caps,
the fundamental group of this collection is generated by double point loops in the
caps. Recall that our guiding principle was to build a simply connected object, so
we must somehow kill these curves. If we could replace the last layer of caps in a
1-storey capped tower by capped gropes, we would solve our current problem, but
develop new essential double point loops at the caps of these newly added capped
gropes. So we cap those off with new capped gropes, and so on. In other words,
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we iterate this process. If we stop after creating a finite number n of layers of
capped gropes, the resulting object is called an n-storey tower, where each layer of
capped gropes is called a storey. The attaching region of a tower is the attaching
region of the base grope. We give a picture of the 2-dimensional spine of a 2-
storey tower in Figure 2.5. As for capped gropes, the fundamental group of an
n-storey capped tower is generated by double point loops at the caps of the last
layer of capped gropes. Cap off these curves with plumbed thickened discs, to
obtain a 4-dimensional object called an n-storey capped tower. The plumbed 2-
handles attached at the last step are again called caps. The fundamental group of
a capped tower is freely generated by a collection of double point loops of its caps.

Figure 2.5. Schematic picture of the 2-dimensional spine of a 2-
storey tower with two surface stages in the first storey and one
surface stage in the second storey.

In Chapter 18, we show that we can find capped towers with arbitrarily many
storeys and the same attaching regions within a collection of 1-storey capped towers
with intersecting caps and at least four surface stages in each constituent capped
grope. This is the Tower Embedding Theorem Without Squeezing. Note that if
we had omitted the intervening surface stages in a tower we would have built a
collection of Casson towers. However the surface stages are very useful, both for
tower building and for other aspects of the argument, as we will see soon.

We have now seen how to build some very large iterated objects. However, while
at each stage we eliminated some troublesome curves in the fundamental group, we
keep finding new sets of problem curves. As for Casson towers, a key insight in this
phase of the proof is that we do not need to stop at a finite number of stages in
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a tower. A tower with infinitely many layers of capped gropes is called an infinite
tower, and is simply connected.

Let us address a second wish for our approximation of D? x D?, other than simple
connectivity. While an infinite tower is simply connected, it is clearly noncompact
and in particular, has infinitely many ends. Loosely speaking, a space has as many
ends as essentially distinct rays homeomorphic to [0, 00) that leave every compact
subset. For example the real line R has two ends while the plane R? has a single
end. The endpoint compactification of a space adds a point to each end and returns
a compact space. For example, the endpoint compactification of R is homeomor-
phic to the closed interval [0,1], while that of R? is homeomorphic to the sphere
52, Ideally we would like to not only build an infinite tower but rather its endpoint
compactification, called an infinite compactified tower. The endpoint compactifi-
cation of a tower can be easily defined abstractly, but the difficult step is to find
this compactification inside a given ambient manifold. For us, this will mean inside
each 1-storey capped tower 7,°. In order to embed the endpoint compactification,
we need some control over the higher storeys of a tower. We achieve this control
in Chapter 18. We prove the Tower Embedding Theorem (Theorem 18.9), which
shows that a collection of 1-storey capped towers with potentially intersecting caps
and at least four surface stages in each constituent capped grope contains within
it a collection of pairwise disjoint infinite compactified towers such that the higher
storeys are contained in arbitrarily small balls. We also note here, for future ap-
plication, that by contracting the top storey to discs, every 2-storey tower contains
a 1-storey capped tower and thus contains an infinite compactified tower, with
the same attaching region, such that the higher storeys are contained in arbitrarily
small balls. By Grope Height Raising, we can also incorporate into the construction
that each constituent capped grope has arbitrarily many layers of surfaces.

A skyscraper is an infinite compactified tower with two conditions on the number
of surface stages in the constituent capped gropes. We require that there are at
least four surface stages in each constituent capped grope, and that the number of
surface layers in the tower should dominate the number of cap layers in a precise
manner, which we do not state yet. In the next step of the proof, we replace the
1-storey capped towers found in the previous step by skyscrapers contained within
them with the same attaching region.

STEP 6 (Upgrade the 1-storey capped towers to skyscrapers, Theorem 18.9).
Apply the Tower Embedding Theorem to the 1-storey capped towers obtained in
the previous step of the proof. As mentioned earlier, this produces a pairwise
disjoint collection of infinite compactified capped towers, with the same attaching
regions, such that the higher storeys are contained in arbitrarily small balls. These
infinite compactified towers must satisfy some further conditions on the number of
surface stages to qualify as skyscrapers, but we can arrange for this by using Grope
Height Raising.

To summarise, we have replaced the Whitney discs {W},} pairing the intersections
and self-intersections of the {f/} by pairwise disjoint skyscrapers whose interiors
lie in the complement of the {f/} and the {g;}. This brings us to the end of
Chapter 18 and Part II. The proof so far is summarised in Proposition 18.12.
Observe that to complete the proof of the disc embedding theorem it suffices to show
that every skyscraper is homeomorphic to a standard 2-handle D? x D? relative to its
attaching region, since then the cores of these handles will provide framed disjointly
embedded Whitney discs pairing the intersections and self-intersections of the {f/}.
Performing the Whitney move over these will produce the desired collection of flat
embedded discs {f;} with the same framed boundary as the original discs {f;}
equipped with the collection {g;} of geometrically dual spheres. We already saw
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that the sphere g; is homotopic to the sphere g, for each i. The proof of the
disc embedding theorem modulo the fact, proved in Part IV, that skyscrapers are
standard, is given again at the end of Chapter 18.

2.3. Skyscrapers are standard

The next, and final, stage of the argument shows that every skyscraper is home-
omorphic to D? x D?, relative to its attaching region. This takes place in Part IV.
First we gather some facts about skyscrapers. Since skyscrapers are just a spe-
cial type of infinite compactified tower, the Tower Embedding Theorem gives us
the Skyscraper Embedding Theorem (Theorem 18.10): any two consecutive storeys
of a skyscraper contains an embedded skyscraper with the same attaching region.
Moreover, the boundary of a skyscraper is rather nice. We study skyscrapers and
their boundaries using the techniques of Kirby calculus in Chapter 13. We will be
particularly interested in the complement of the attaching region in the boundary
of a skyscraper, which we call the vertical boundary. In Chapter 13, we learn that
the vertical boundary for a tower with finitely many storeys is the complement of
a link in a solid torus with many components. This link is obtained by performing
successive iterations of ramified Bing and Whitehead doubling on the core of the
solid torus (see Figures 2.6 and 2.7). Here, ramification corresponds to taking par-
allel copies of a link component. More precisely, we perform ramified Bing doubling
for each layer of surfaces, and we perform ramified Whitehead doubling for each
layer of discs within the tower. For an infinite tower, the vertical boundary is the
complement in a solid torus of the infinite intersection of neighbourhoods of such
doubled links.

(a) (b)

Figure 2.6. The Bing double (left) and a Whitehead double (right)
of the core of a solid torus.

The ends of an infinite tower correspond to the number of branches in this con-
struction, and so by definition the endpoint compactification corresponds to adding
a single point per branch. One of the key inputs from Part I is that if the sur-
face/Bing stages dominate the disc/Whitehead stages (corresponding to the second
condition on the number of surface stages in a skyscraper), the infinite intersection
above is such that, after endpoint compactification has added a point for each con-
nected component, the resulting vertical boundary is homeomorphic to the solid
torus again. The compactified vertical boundary can be identified with the quo-
tient space of D? x S, where each connected component of the infinite intersection
is crushed to a point. So this quotient space of D? x S! is homeomorphic to D? x S*.
This is called boundary shrinking and is one of the reasons we insisted upon having
surface stages in a skyscraper in the first place. For Casson towers/handles, the
corresponding picture has no Bing steps, and we do not get boundary shrinking.
Freedman’s original proof circumvents this issue in a clever way, the key idea of
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Figure 2.7. A link obtained by performing ramified Bing and
Whitehead doubling on the core of a solid torus, namely the com-
plement of the red circle in S3.

which we describe in Chapter 7 (Chapter 7 is not necessary for our proof that
skyscrapers are standard).

The practical upshot of the previous paragraph is that the vertical boundary of
a skyscraper is homeomorphic to D? x S'. Moreover, from these last few facts it
follows that the total boundary of a skyscraper is homeomorphic to S3, which is a
valuable sanity check that we are indeed on the right track towards showing that
every skyscraper is homeomorphic to D? x D2.

Returning to the proof, recall once again that our only remaining task is to
show that a skyscraper, denoted by S , is homeomorphic to D? x D2, relative to
the attaching region. The strategy is to find a sufficiently large common subset
of both spaces, and for each space, quotient by identifying the closures of the
connected components of the complement of the common subset to points. We will
show that the two quotients are homeomorphic, and that the two original spaces
S and D? x D? are homeomorphic to their respective quotients. Since the proof is
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reasonably complicated, we give a more detailed sketch of the remaining steps in
Chapter 27.

0_S§

7 (0,0) T
0L H central hole s
O_H

Figure 2.8. The design in a skyscraper S (top) and in the stan-
dard handle H := D? x D? (bottom). The bottom picture uses
coordinates (s, 8;r, @), namely polar coordinates in the two factors
of D? x D?. The # coordinate is suppressed and only ¢ = 0,7 are
shown.

STEP 7 (Find a common subset of 8 and D? x D2, Sections 28.3 and 28.4). By
the Skyscraper Embedding Theorem, we know that any two successive storeys of
the given skyscraper S contains an embedded skyscraper with the correct attaching
region. Split up the storeys of the skyscraper into consecutive pairs, and then apply
the Skyscraper Embedding Theorem to each pair. Apply the same process — split
into pairs of consecutive storeys and apply the Skyscraper Embedding Theorem — to
each of the newly found skyscrapers, and iterate. In this manner we find uncount-
ably many skyscrapers embedded within the original S, , all with the same attaching
region. Since the vertical boundary of each embedded skyscraper is homeomorphic
to D? x S, we have also found uncountably many copies of D? x S' inside S. In
Section 28.3, we use these vertical boundary solid tori as guides to fill up most of the
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space within S using collars within the finite storeys of the embedded skyscrapers.
These collars get thinner as we climb up the storeys of any given skyscraper. The
region of S filled up by these collars and the endpoints of the embedded skyscrapers
is called the design in the skyscraper S. The corresponding abstract space is called
the design. Note that the design in the skyscraper contains the full D? x S! vertical
boundaries of the embedded skyscrapers, along with corresponding tapering collars.

Next, we need to embed the design in D? x D?. The image of this embedding
is called the design in the standard handle D* x D?. We define this embedding
in Section 28.4 using the Kirby diagrams for skyscrapers studied in Chapter 13.
This embedding has the property that the solid tori corresponding to the vertical
boundaries of embedded skyscrapers in 8 are mapped to D2 x S: C D? x D2 for
certain values of r, where S} C D? is the circle of radius 7 € [0,1]. By definition
there is a homeomorphism between the design in 8 and the design in D? x D2
The closures of the connected components of the complement of the design in S
are called the gaps and those in D? x D? are called the holes. The design in both
a skyscraper and the standard handle are shown in Figure 2.8.

From the construction of the design, it will be straightforward to show that the
quotient of S by the gaps is homeomorphic to the quotient of D? x D? by the holes,
but this by itself does not tell us very much. What we need to understand is the
relationship between Sand S /gaps and between D? x D? and D? x D? /holes. This
is exactly the purview of the field of decomposition space theory from Part I. In
certain situations, results in decomposition space theory tell us that the quotient
map collapsing a collection of subsets of a space X into distinct points (one for each
subset) is approzimable by homeomorphisms, which means that there is a sequence
of homeomorphisms converging to the quotient map. In this situation, we say that
the collection of subsets is shrinkable or that it shrinks. In particular, this means
that the quotient space is homeomorphic to the original space. We have already
seen an instance of this when we saw that the vertical boundary of a skyscraper is
homeomorphic to D? x S'. If we could show that the collection of holes and the
collection of gaps are shrinkable, we would have a sequence of homeomorphisms
that would prove the theorem.

Naive wish: & = §/gaps >~ D? x D?/holes = D? x D?.

Unfortunately, it turns out that the collections of holes and of gaps are not shrink-
able. Indeed, from our work with Kirby diagrams, we see that the holes in the
standard D? x D? are in fact copies of S' x D3, corresponding to neighbourhoods
of the components of an iterated mixed ramified Bing-Whitehead link in a solid
torus (x[0,1]). Thus the holes cannot shrink, since any shrinkable set must be
simply connected. Luckily, we can make a reasonably elementary modification to
the holes and gaps to make them shrinkable.

STEP 8 (Modify the holes and gaps, Section 28.5). As noted, the holes in the
standard D? x D? are in fact copies of S* x D3, corresponding to neighbourhoods
of the components of an iterated mixed ramified Bing-Whitehead link in a solid
torus (x[0,1]). Recall that uncountably many solid tori of the form D? x S} are
contained in the design in the standard handle. Moreover, each hole has such a
solid torus arbitrarily close to it. Inside these solid tori we can find embedded discs
to cap off longitudes of each hole. These discs were christened red blood cell discs
by Freedman, since suppressing the fourth dimension each hole with such a disc
glued on looks like a red blood cell (see Figure 2.9).

Since the red blood cell discs are contained within the design in the standard
handle, their interiors do not intersect the holes. The holes, after they have been
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Figure 2.9. A red blood cell.

plugged with a disjoint collection of red blood cell discs, are called holes™. Note
that this entire process was possible since we had helpful solid tori close to the
holes. This is another payoff of boundary shrinking, which does not hold for Casson
handles.

Using the identification between the design in the skyscraper and the design in
the standard handle, and the fact that the red blood cell discs are located inside
the latter, we can find corresponding discs for the gaps within the design in the
skyscraper. Once we cap off the gaps with these discs, we obtain the gaps™.

Now the holest and gaps™ are at least simply connected, so we have some hope
that they will shrink, and indeed they do.

Informed desire: & 2 8/gaps™ = D? x D?/holes™ 2 D? x D?

relative to the attaching regions S' x D2?. Showing that these three homeomor-
phisms exist is our remaining task.

STEP 9 (Show that D? x D? =2 D? x D? /holes™, Proposition 28.21). We will show
that the holest shrink. This is called the o shrink and follows from the Starlike
Null Theorem, which states that null, recursively starlike-equivalent decompositions
shrink (Corollary 9.18). In order to apply this theorem, we show that the collection
of holest is null, meaning that only finitely many of the holes™ have diameter
larger than any given € > 0, and that each hole™ is recursively starlike-equivalent,
meaning roughly that it is built out of starlike pieces.

Similarly to the case for holes and gaps, it is quite easy to see that S /gaps™
D? x D?/holes™. By the previous step, we now also know that D? x D? /holes™
D? x D2,

STEP 10 (Show that S is homeomorphic to g/gaps*‘, Section 28.6.3). The last
remaining step is to show that the gaps™ shrink; this is called the 3 shrink. We use
the Ball to Ball Theorem (Theorem 10.1), which gives a sufficient condition for a
surjective map f: D* — D* to be approximable by homeomorphisms. Recall that
this means there are homeomorphisms arbitrarily close to the given surjective map,
and moreover, these homeomorphisms agree with f on a collar of D*. This might
seem rather incongruous right now, since in order to apply this theorem to the
quotient map by gaps™, it seems like we would need to know that Sisa ball, which
is what we are trying to prove. We are able to apply the theorem without employing
a circular argument by a clever trick. The Collar Adding Lemma (Lemma 25.1) tells
us that if we add a collar to a skyscraper, then the resulting space is homeomorphic
to a ball D*. The more well known 3-dimensional analogue of this fact about the
complement of the Alexander horned ball is discussed in Chapter 4. Extend the
quotient map S-S /gaps™ via the identity on collars, using the fact that the total
boundary of S is 53, which follows from boundary shrinking.

We know now that both the domain and codomain of this extended map is
homeomorphic to D*. Then to apply the Ball to Ball Theorem, we need to show

1R
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that the collection of gaps™ is null and that their image in the quotient is nowhere
dense. The former follows from our construction and the latter from straightforward
point set topology. Then, the Ball to Ball Theorem applied to the extended map
on collars yields a homeomorphism that agrees with the map on the added collars.
In particular, throvvlng away the collars, such a homeomorphism restricts to a
homeomorphism S8 / gapst = D? x D2 which completes the proof of the disc
embedding theorem.

2.4. Reader’s guide

We remind the reader one last time that Part I provides an introduction to
decomposition space theory, proving the theorems that we need in the later proof.
Part II describes how to build skyscrapers starting from the hypothesis of the
disc embedding theorem. Part IV proves that every skyscraper is homeomorphic
to the standard 2-handle, relative to the attaching region. Part III, an interlude
describing applications of the disc embedding theorem, uses techniques from Part IT
but is not needed for the proof of the disc embedding theorem. Parts I and II are
largely independent of each other. In Part IV, we primarily need three results
from Part I: the starlike null theorem, shrinking of mixed ramified Bing-Whitehead
decompositions, and the Ball to Ball Theorem. The reader who already knows
decomposition space theory, or who is willing to accept these results, may skip
Part I. The precise input that one needs from Parts I and II for the proof in
Part IV is summarised in Chapter 26. It should also be possible, therefore, to read
Part IV now, and refer backwards for results and definitions when needed.






Part 1

Decomposition space theory



In the first part of this book, we give a streamlined account of the field of decom-
position space theory, sometimes called Bing topology, optimised for its eventual use
in the last part of the proof of the disc embedding theorem in Part IV. In Chap-
ter 3 we present two proofs of the Schoenflies theorem in the topological category
as an introduction to topological manifold theory. In Chapter 4 we lay out the
foundations of decomposition space theory, stating and proving the central Bing
shrinking criterion. In Chapter 5 we give a detailed investigation of the comple-
ment of the Alexander horned ball, which we call the Alexander gored ball. Using
this we describe the Bing decomposition of S® and show that it shrinks. In Chap-
ter 6 we present an example of a decomposition that does not shrink, arising as a
variant of the Bing decomposition. The Whitehead decomposition from Chapter 7
is not directly used later, but was a key component of Freedman’s original proof
of the disc embedding theorem using Casson handles, and illustrates an interesting
phenomenon that taking the product with R often converts a decomposition that
does not shrink into one that does. In Chapter 8 we study mized ramified Bing-
Whitehead decompositions in detail. These will be central to our work in Part IV.
In Chapter 9 we prove the starlike null theorem, which shows that null, recursively
starlike-equivalent decompositions shrink and in Chapter 10 we prove the ball to
ball theorem; the latter two are crucial for the final steps of the proof of the disc
embedding theorem.



CHAPTER 3

The Schoenflies theorem after Mazur, Morse, and
Brown

Stefan Behrens, Allison N. Miller, Matthias Nagel, and Peter
Teichner

We introduce some basic techniques in the study of topological manifolds by
means of a discussion of the Schoenflies theorem. First we present the proof of
Mazur and Morse using the Eilenberg swindle and a technique called push-pull.
These techniques exemplify the kind of arguments often used in the study of topo-
logical manifolds. Then we explain Brown’s alternative proof of the Schoenflies
theorem as an introduction to decomposition space theory, or shrinking.

The Schoenflies problem is a fundamental question about spheres embedded in
Euclidean space. Denote the d-dimensional Euclidean space by R?, the closed unit
disc or ball in R? by D9, and the d-dimensional sphere by S¢. We identify S¢
with the boundary D% 1. The original Schoenflies problem can be stated as the
conjecture that for all d, every continuous embedding of S¢ into R¥*! extends to a
continuous embedding of DTt into R4+,

In 1913, the 1-dimensional case, more commonly known as the Jordan curve the-
orem, was proved in full generality by Caratheodory [Car13] and Osgood-Taylor
[OT13] using elaborate methods from complex analysis. The 2-dimensional case
was studied in the 1920s by Alexander who first circulated an unpublished man-
uscript claiming a proof but soon discovered a counterexample [Ale24], which is
now called the Alexander horned sphere, shown in Figure 3.1. Later, Alexander
found that the Schoenflies conjecture holds in dimension two given the existence of
a bicollar [Ale30].

DEFINITION 3.1. A continuous embedding f: S¢ — R*! has a bicollar if f
extends to a continuous embedding F': S x [—1,1] — R¥*! such that F restricted
to S x {0} is equal to f. We say that F is a bicollared embedding of S.

With the bicollared hypothesis added, the following became known as the Schoen-
flies conjecture.

CONJECTURE 3.2 (Schoenflies). For all d, every bicollared embedding of S into
Rt extends to a continuous embedding of D1 into R4+,

In the thirty years that followed almost no progress was made. In the 1950s
there was pervasive pessimism among manifold topologists regarding the topological
category. A watershed moment came in 1959 when Mazur gave his partial proof of
the Schoenflies conjecture [Maz59], which we now explain.

3.1. Mazur’s theorem

Mazur’s proof uses a principle known as the Eilenberg swindle, which appears, for
example, in the proof of the following observation in commutative algebra. Let A

43
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Figure 3.1. The Alexander horned sphere. Perform the indicated
infinite construction, then add in a Cantor set to compactify the
union of the tubes and obtain a topological embedding of a 2-
sphere in R3. The complement of the interior region is not simply
connected since, for example, the red circle is not null-homotopic.

be any projective module over some ring. Since A is projective, it can be written
as a direct summand A ® B = F where I is a free module and B is some module.
Then on one hand we have

(AeB)¢(A®B)®(AeB)®---=F™
while, on the other hand, a different grouping of the summands gives
Ad(BaoA)a(BaoA)dBaA)d-- - =ZAdF~

since the direct sum is associative and BOA X AP B = F. Thus, F*° = Ad F>.
In other words, A becomes an infinite dimensional free module upon direct sum
with an infinite dimensional free module. That is, any projective module is stably
free in the infinite dimensional context.

ExAMPLE 3.3 (Do knots have inverses?). The following is a standard application
of the Eilenberg swindle in topology. Knots in R?® (or S$?) can be added by forming
connected sums. We ask whether, given a knot A, there is a knot B such that the
connected sum A# B is ambiently isotopic to the trivial knot U, that is, A#B = U.
We think of knots as strands within a cylinder, and indeed, every knot is the “braid

||| @

Figure 3.2. Adding knots in cylinders. The boxes denote tangles,
that is, the braid closure of the strand lying within the box labelled
A (respectively, B) is the knot A (respectively, B).

closure” of such a knotted strand. Then, the connected sum operation is realised
by stacking cylinders next to each other, as shown in Figure 3.2. This operation
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is both commutative and associative. To see the commutativity, start with A# B,
shrink B so that it becomes very small compared to A, slide it along A to the other
side, and let it grow again.

Assume that a knot A has an inverse B, that is A#B = U. This implies we
can unknot A# B using an ambient isotopy entirely supported in the two cylinders.
Now the swindle works as follows. Take the connected sum of infinitely many copies
of A#B and think of the resulting knot as living in a cone, which in turn lives in a
cylinder, as shown in Figure 3.3. The cone forces the summands to get progressively
smaller, so they limit to a point at the tip of the cone. Then we have an ambient

Figure 3.3. By stacking cylinders together, we construct the con-
nected sum of infinitely many copies of A#B in a cone.

isotopy
(A#B)#(A#B)#(A#B)# - = #2,U = U

while a different grouping gives another ambient isotopy

A#(B#A)#(B#A)#(BH#A)F - = AF#F#Z,U) = A
where we use the fact that B#A = U and apply infinitely many small ambient
isotopies. Thus, A must be ambiently isotopic to the trivial knot. This proves that
a nontrivial knot does not admit an inverse.

The above proof has the drawback that it loses category, that is we may have
started with smooth or piecewise linear knots but the conclusion holds only in the
topological category, since the ambient isotopy we constructed may not be smooth
or piecewise linear at the cone point: we obtain a homeomorphism of S® sending A
to the unknot, rather than a diffeomorphism. Other proofs of the non-cancellation

of knots, such as the proof using additivity of the Seifert genus, do not have this
drawback.

Mazur used the Eilenberg swindle to give a proof of the Schoenflies theorem, with
a hypothesis about a standard spot.

DEFINITION 3.4. Let i: S% x [~1,1] — R*! be a bicollared embedding with a
point p € S such that i(p,0) = 0. Write R%*! as R x R and then the function 4
as (i1,i) where i;: S% x [-1,1] — R? and ip: S x [-1,1] — R.

We say that (p,0) € S% x [~1,1] is a standard spot of i if there is a standard
d-dimensional disc D* C §¢ around p such that

(a) the function i maps D? x {0} to a standard round disc in R? x {0} and
(b) for each ¢ € D?, the interval {q} x [~1,1] in S¢ x [~1, 1] is mapped by i
such that i(q,t) = (i1(q,0),¢).
Note that, in particular, the closure of the complement of D¢ in S¢ is also a standard
disc. Morally, this definition means that i is “as standard as possible” around p.
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THEOREM 3.5 (Mazur [Maz59]). Let d > 1 and let i: S x [~1,1] — R+!
be a bicollared embedding with a standard spot. Then i extends to a continuous
embedding of DL,

PROOF. Let i: S% x [~1,1] — R¥*! be the given bicollared embedding with a
standard spot (p,0). By passing to the one-point compactification of R*! we can
consider 7 to be an embedding S? x [~1,1] < S+, Let D? C S¢ be the disc in the
definition of the standard spot. Cut out the image i(D?x[—3, 1]) = i(D%) x [ 3, &]
around i(p,0). By definition, we have removed a standard ball from S9! so the
closure of the complement is also a standard ball (in particular, this does not assume

the Schoenflies theorem).

Next, we claim that the space S*1\i(S? x [—1, 1]) has two components, as

indicated in Figure 3.4 in the case d = 1. To see this, let X :=i(S% x [-3, ]) and
let Y := S9+1 < X. Then S = X Ui(sax{—1,1}) Y, and so the Mayer-Vietoris

sequence yields
Hy(S™1) — Ho (S x { = 1,1}) = Ho(X) @ Ho(Y) — Ho(S*!) — 0.

To apply the Mayer-Vietoris sequence, we use that i(S¢ x {£31}) sits inside a
larger collar, so is itself bicollared. Since d > 1, we have that H;(S%*!) = 0 and
7 = Hy(S4') = Hy(S?) = Hy(X). We compute that Hy(Y) = Z? and so Y has
two connected components as claimed. We call these two pieces AT and A~, where
A~ is the piece contained in R4 C Sa+1,

We also see from the existence of the standard spot that the boundary of A* is a
d-dimensional sphere that is decomposed into two standard d-dimensional discs P+
and Q*, as shown in Figure 3.4, where P* = i(D¢ x {-1}), P~ = i(D? x {1}),
and Q7 are the closures of the complementary regions.

Pt
At

Figure 3.4. Mazur’s partial proof of the Schoenflies conjecture.
Red denotes the image i(S?). The standard spot is shown around
the origin. Let A* denote the connected components of the com-
plement of i(S? x [—3, ]). The boundary i(S¢ x {—1}) is decom-
posed into PTUQ™ and i(S? x {1}) is decomposed into P~ UQ™.
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Consider the space
A" Ug AT := A7 Ug- i((S? \ D) x [—%, %]) Ug+ AT.
By definition, this is the closure of the complement in S of i(D?® x [, 3]), and
we have already established that it is homeomorphic to D%+, Next we show that
the space

A" Up AT = A" Up- i(D? x [-3, 3])) Ups AT

is also homeomorphic to D!, To see this, note that P* and QT are ambiently
isotopic in AT, via some ambient isotopy

FE:0A% x[0,1] — 0A%,

with Fi\aAiX{o} = Id, since P* and Q* may be considered to be the standard
northern and southern hemispheres of the d-dimensional sphere 9A*. By construc-
tion, AT is collared. Thus there is an embedding dA* x [0, 1] — A* with A x {1}
mapped homeomorphically to dA*. Then, we have the following homeomorphism
obtained by inserting the ambient isotopies into the boundary collars.

A™ Up- 0A= x[0,1] Up- i(D*x[-3,3]) Up+ OAT x[0,1] Upsr AT

[ I [

A7 Up- 047 x[0,1] Ug- i((S4\ D) x [-3,1]) Ug+ 9AT x[0,1] Up+ AT

The middle map is obtained using the abstract homeomorphism D¢ = §d < Dd.
The diagram shows that A~ Up At =2 A~ Ug At = DI+ as desired.

We are now ready for the Eilenberg swindle. We have the following sequence of
homeomorphisms.

D = (A7 Ug AT) Up- i(D? x [—%, %}) Up+ (A~ Ug AT) Up- -+ U {oo}
> A Ug- i((S?\ D7) x [—%7 é]) Ug+ (AT Up A7) Ug- -+ U {oo}
~ 4 L ET 11
= A7 Ug- i((S7\ DY) x [=3,5]) Ug+ D™ yg- DT U {0}
= A Ug- (ST~ DY) x [, 1]) Uge D!
~ A,

For the first homeomorphism above, we are using the fact that A~ Ug A+ = D4+!
and that gluing infinitely many balls in pairs along balls of one lower dimension
in their boundaries and then taking the one-point compactification gives another
ball. The second step is the Eilenberg swindle, where the re-bracketing occurs. The
third step uses that AT Up A~ = D91 as shown above. Then we use again the
fact that a compactified infinite sequence of balls glued together along balls of one
lower dimension is homeomorphic to a ball. The last homeomorphism is easier: the
boundary connected sum of finitely many balls is homeomorphic to a ball, and since
0A~ is collared, boundary connected sum with a ball along part of its boundary
is trivial. We have now shown that the space A~ is homeomorphic to D?!. Note
that the closure of the component of the complement of i(S?¢ x {0}) in R4*+! C §d+1
is A~ equipped with a boundary collar and thus is also homeomorphic to D1,
The proof is then completed by the Alexander trick, which provides an extension
of a given homeomorphism S¢ — S to a homeomorphism D41 — D+1, O
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Note that we could reverse the roles of A~ and AT in the proof above to conclude
that A% is also a ball. Thus, we have shown that given a bicollared embedding
i: 8% «— 891 with a standard spot, both of the connected components of the
complement S+ < i(S?) have closures homeomorphic to D?*!. Next we show
that the standard spot is not required.

3.2. Morse’s theorem

Mazur’s work generated a lot of interest in the problem of removing the standard
spot hypothesis. This was solved in 1960 in a paper by Morse [Mor60] using a
technique called push-pull. We introduce it by proving a theorem that uses the
technique.

THEOREM 3.6 (Application of push-pull). Let X andY be compact metric spaces.
If X x R is homeomorphic to Y x R, then X x S' is homeomorphic to Y x S*.

PrROOF. Let h: X xR — Y x R be a homeomorphism. The key point in this
argument will be that Y x R has two product structures, the intrinsic one and the
one induced from X x R via h.

Let X; denote X x {t} for t € R and let X[, denote X x [t,u] for [t,u] C R.
Similarly, let Y, denote Y x {s} for s € R and let Y}, ;) denote Y x [r, s] for [r, s] C R.
By compactness of X and Y, there exist a < ¢ < e and b < d such that

(1) Y, Y, Yo, h(Xp), and h(X,) are pairwise disjoint in Y x R,

(2) h(Xp) € Vg,

(3) Ye C h(Xpp,ap), and

(4) h(Xd) - Yv[c,e]a
as illustrated in the leftmost panel in Figure 3.5. This may be achieved by first
fixing @, and then choosing as follows.

Choose b so that (1) is satisfied for a and b.

e Choose ¢ > a so that (1) and (2) are satisfied for a, b, and c.

e Choose d > b so that (1) and (3) are satisfied for a, b, ¢, and d.
e Choose e > ¢ so that (1) and (4) are satisfied.

Now we construct a self-homeomorphism y of Y x R as the composition

X:C’_IO‘PYOPXOC'7

where the steps are illustrated in Figure 3.5. The maps Px and Py will constitute
the actual pushing and pulling while C, which we might call cold storage, makes
sure that nothing is pushed or pulled unless it is supposed to be.

The maps are obtained as follows:

e The map C rescales the intrinsic R-coordinate of ¥ x R such that C'(Y4,¢)
lies below h(X3) and leaves h(X4) untouched. We require C to be the iden-
tity on Yeyc 00) and Y(_ 4], for € small enough so that Y. . C h(Xp q)-

e The map Px pushes h(X,) down to h(X,) along the R-coordinate induced
by h, that is, the image of the product structure of X xR, without moving
C(Yr[a,c])'

e The map Py pulls h(X,) = (Px o C o h)(X4) up along the intrinsic R-
coordinate of Y x R so that it lies above the support of C~!, again without
moving C(Y[q,). This can be done in such a way that Py is supported
below Y.

The map x is the identity outside of Y[, .. Observe that x leaves h(X;) untouched

and that x(h(Xy)) appears as a translate of h(X}) in the intrinsic R-coordinate.
By repeating the above process infinitely many times we construct a homeomor-

phismy: Y xR — Y xR so that H :=oh: X xR — Y xR is periodic. Here, in the
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Figure 3.5. The push-pull construction. Each panel depicts the
space Y x R. The blue and yellow regions denote h(X[ q) and
Ya,q» Tespectively. Note that the regions overlap.

construction of y we use the fact that x has support in [a, €] and thus, each point in
Y x R is moved finitely many times in the definition of ¥. Therefore we may com-
pose infinitely many homeomorphisms in this case. The periodic homeomorphism
H induces a homeomorphism X x S' — Y x S! as desired. O

REMARK 3.7. The converse of Theorem 3.6 is not true in general. There exist
compact manifolds X and Y such that X x S* and Y x S! are diffeomorphic but
X xR and Y x R are not even homotopy equivalent [Cha65, Theorem 3.9].

REMARK 3.8. The compactness hypothesis of Theorem 3.6 is necessary. That is,
there exist examples of noncompact metric spaces X and Y such that X x R and
Y xR are homeomorphic but X x S! and Y x S' are not, as follows. Let 3g,n denote
the compact, orientable surface with genus g and n boundary components. Note
that X, 1 x [0, 1] is homeomorphic to ¥g 24+1 % [0, 1]. Indeed, both are obtained from
D3 by attaching 2g¢ orientable 1-handles, and there is an essentially unique way to
attach orientable 3-dimensional 1-handles to D3. Let X and Y be the interiors of
Y41 and Xg 2441, respectively. Then X x R and Y x R are homeomorphic (indeed,
diffeomorphic) since they are the interiors of the homeomorphic spaces ¥, 1 x [0, 1]
and g 2441 x [0, 1], respectively. However, the end of X x S! is homotopy equivalent
to a torus, but the set of ends of Y x S' is homotopy equivalent to the disjoint
union of 2¢g + 1 copies of tori. Therefore X x S! is not homeomorphic to Y x S*.

Morse used the technique of push-pull to prove the following theorem.

THEOREM 3.9 (Morse [Mor60]). For all d, every bicollared embedding S x
[0,1] — R has a standard spot after applying a self-homeomorphism of RI+L.

PROOF (SKETCH). Consider a bicollared embedding i: S¢ x [-1,1] — R*+!
and fix a point p € S?. Up to translation, we can assume that i(p,0) = 0. Choose
local coordinates on a standard disc D? C S? containing p, which yields an induced
local coordinate system on i(D? x [~1,1]) € R%*!  as shown in Figure 3.6.

In this new local coordinate system on R4+!, the embedded sphere has a standard
spot, so it remains to extend it to a global coordinate system. We achieve this by
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Figure 3.6. Creating a standard spot. On the left, the disc D?
appears as the central horizontal red segment. The blue vertical
lines show the induced coordinate system on D? x [0,1]. A col-
lection of standard round spheres are indicated in green. On the
right, we show the image of D? x [0,1] in R¢*!. The proof of
Theorem 3.9 compares the intrinsic round spheres (black) with the
induced round spheres (green).

using a push-pull argument. The idea is to compare the standard polar coordinate
system in R%*! with the one induced by i. Again, by compactness we can find
interlaced pairs of standard d-dimensional spheres in R and homeomorphically
mapped spheres, as indicated in Figure 3.6. Then by using push-pull, we can find
an isotopy that transforms one of the homeomorphically mapped spheres into a
translate of the other homeomorphically mapped sphere along the standard radial
coordinate and preserves a neighbourhood of the origin. Then extend the local
chart by periodicity to cover all of R%*1, O

Combining the results of Mazur and Morse we immediately deduce the following
theorem.

THEOREM 3.10 (Schoenflies theorem). Let d > 1. Ewvery bicollared embedding
of 8% into R extends to a continuous embedding of D!,

As a historical note, by the time Morse had augmented Mazur’s argument with
his theorem, Brown had already given an independent and complete proof of the
Schoenflies theorem, which we will discuss shortly.

We observe that the utility of the push-pull technique is in gaining control over a
homeomorphism in one linear direction. As we will see, a major technical problem
when working with topological manifolds is to gain control of a homeomorphism
in many directions simultaneously. Results in this direction culminated in Kirby’s
work on the torus trick [Kir69].

We end this section by stating some more applications of push-pull to topological
manifolds.

THEOREM 3.11 ([Bro62, Theorem 3]). A locally bicollared codimension one em-
bedding in any topological manifold is globally bicollared.

THEOREM 3.12 ([Bro62, Theorem 2]). The boundary of every topological mani-
fold is collared.
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THEOREM 3.13 ([Arm70, Theorem 2]). Any two locally flat collars for either
a codimension one submanifold or for the boundary of a topological manifold are
ambiently isotopic to one another.

3.3. Shrinking cellular sets

At the end of this chapter, we will give Brown’s alternative proof of the Schoenflies
theorem. In this section, we set the stage by introducing certain elementary notions
from decomposition space theory, a field of ideas that will be central to the proof of
the disc embedding theorem. In this section we follow [Bro60] and [Dav07].

Figure 3.7. A cellular set (red) in D?. The boundaries of embedded
discs (black) converging to the cellular set are shown.

DEFINITION 3.14. Let M? be a d-dimensional manifold. A subset X C M? is
said to be cellular if it is the intersection of countably many nested closed balls
in M?, that is if there exist embedded, closed d-dimensional balls B; C M¢%, i > 1,
with B; = D9, such that B;41 C Int B; and X = (-, B;.

Figure 3.7 illustrates that the letter
X = {(z,y) € D* | a® =, || < 1/2}

is a cellular subset of D?. Most of the cellular sets in this section will be denoted
by the symbol X. We begin with some elementary properties of cellular sets.

PROPOSITION 3.15. Ewvery cellular subset X of a manifold M is closed and com-
pact.

PROOF. Let {B;} be the nested balls as in Definition 3.14. Then X = (2, B;
is closed as an intersection of closed sets. Further X is compact since it is a closed
subset of the compact space Bj. O

PROPOSITION 3.16. Let X be a cellular set in a d-dimensional manifold M and let

U be an open set with X C U. Then there exist embedded, closed d-dimensional balls
B; CU, i>1 with B; 2 D% and B;;1 C Int B; for all i such that X = Niey Bi-

PROOF. By definition there exist embedded, closed d-dimensional balls B; C
M, i > 1, with B; & D? such that B;y; C Int B; and X = (;o, B;. It suffices
to show that there exists a j such that B; C U. Suppose not. Then for all ¢,
B; N (M ~\U) is nonempty. Choose a point xz; € B; N (M ~U) C By for each i.
Since Bj is sequentially compact, the sequence {x;} has a convergent subsequence
{x;,}, converging to some = € By. We assert that « € (| B;. To see this, note that
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x;, € By, for all k. Fix ¢. Then for k > ¢, x;, € B;, C B;,. Since B;, is closed,
x € B;,. Thus z € B;, for all £, so x € (| B; as asserted. We therefore have that
x € (\B; = X CU and {x;,} is contained in the closed set M ~ U, which is a
contradiction since closed sets contain their limit points. O

REMARK 3.17. Note that cellularity is not an intrinsic property of a space X but
rather depends on its specific embedding within the ambient space. For example,
there exist non-cellular embeddings of a closed arc in S® [Edw80].

The key property of cellular sets is that they can be shrunk by homeomorphisms,
as seen in the following proposition.

PRrROPOSITION 3.18. Let X be a cellular set in a d-dimensional manifold M and
let U be an open set with X C U. For every € > 0 there exists a homeomor-
phism he: M — M such that he is the identity outside U and diam h(X) < e.

PRrROOF. By Proposition 3.16, there is a a closed ball B in U such that X C
Int B. Since X is closed by Proposition 3.15, there exists a collar N of 9B disjoint
from X. Find a ball D in B ~ N such that diam D < e. Now pick a homeo-
morphism s.: B — B which is the identity on the boundary 0B and maps the
complement of the collar N into D. Consequently, s.(X) C D and therefore
diam s.(X) < e. The map h. is obtained by extending s. to all of M by the
identity map. O

For a homeomorphism h. as in the statement above, we say that h.: M — M
shrinks X in U to diameter less than €.

Our eventual goal is to use decomposition space theory, specifically the idea of
shrinking, to approximate certain functions by homeomorphisms. Next we define
precisely what this means.

Let X and Y be compact metric spaces. Recall that the uniform metric is defined
by setting d(f,g) = sup,cx dy (f(z),g(z)) for functions f,g: X — Y. We denote
the metric space of continuous functions from X to Y, equipped with the uniform
metric, by C(X,Y). This is known to be a complete metric space [Mun00, The-
orems 43.6 and 45.1]. Observe that the metric space C(X, X) contains the sub-
space C4(X, X) of functions f: X — X with f|4 = Id4, for any subset A C X.
This is a closed set in C(X, X) and thus is itself a complete metric space under the
induced metric. The following definition formalises the notion of approximating
functions by homeomorphisms.

DEFINITION 3.19. Let X and Y be compact metric spaces and let f: X — Y be
a surjective continuous map. The map f is said to be approximable by homeomor-
phisms if there is a sequence of homeomorphisms {h,: X — Y}22; that converges
to fin C(X,Y).

In particular a necessary condition for f to be approximable by homeomorphisms
is that X and Y are homeomorphic. In applications, frequently we will not know
that X and Y are homeomorphic until we have shown that a map f: X — Y is
approximable by homeomorphisms.

We will often wish to approximate quotient maps by homeomorphisms. This
will only be meaningful when the quotient spaces are metric spaces. We record the
following fact for use in this chapter. This will later be subsumed by Corollary 4.13.

Given a surjective map f: X — Y between topological spaces, we say that a
subset C' C X is saturated (with respect to f) if whenever f~!(y) intersects C, for
some y € Y, we have f~!(y) C C, or in other words the set C is a union of fibres

of f.
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PROPOSITION 3.20. Let M be a compact d-dimensional manifold, possibly with
nonempty boundary. Let X C Int M be a cellular set. Then the quotient M /X is a
compact metric space.

PROOF. Fix some metric on M inducing its topology. The quotient M/X is
compact since M is compact. We show that M/X is Hausdorff. Let x denote the
image of X in M/X. Choose y,z € M/X with y # z. Consider the quotient map
m: M — M/X. The restriction of 7 to the saturated open set M ~\ X is an open,
continuous bijection and thus a homeomorphism. If y,z # x, then 7~ !(y) and
7 1(2) are distinct points in M ~. X with disjoint open neighbourhoods in M ~ X
which are mapped by 7 to disjoint open neighbourhoods in M/X. Moreover, since
M is a metric space, we can find disjoint open neighbourhoods of X and 71(y)
in M. These are saturated open sets and are thus mapped to (disjoint) open
sets in M/X separating x and y. Therefore M/X is Hausdorff. This finishes the
proof since the continuous image of a compact metric space in a Hausdorff space is
metrisable [Wil70, Corollary 23.2, p. 166]. O

A simple class of quotient maps consists of those where a unique point in the
codomain has more than one point in its pre-image. In other words, such a map
is many to one on this pre-image but one to one everywhere else. The following
terminology will be helpful in describing such maps.

DEFINITION 3.21. Let f: X — Y be a map between topological spaces. The
set f~1(y), where y € Y, is called an inverse set of f if |f~1(y)| > 1.

The following proposition shows that crushing a cellular set to a point does not
change the homeomorphism type of a manifold.

PROPOSITION 3.22. Let M be a compact d-dimensional manifold, possibly with
nonempty boundary. Let X C Int M be a cellular set. Then the quotient map w: M —
M/X is approximable by homeomorphisms. In particular, the quotient space M /X
is homeomorphic to M.

Before giving the proof, we recall the following elementary lemma, since we will
use it frequently.

LEMMA 3.23 (Closed map lemma). Every continuous map from a compact space
A to a Hausdorff space B sends closed subsets of A to closed subsets of B.

PROOF. Let U C A be closed. Then U is compact as a closed set in a compact
space. Continuous maps preserve compactness, so f(U) is compact. Finally, a
compact subset of a Hausdorff space is closed, so f(U) C B is closed. O

PROOF OF PROPOSITION 3.22. Fix metrics on M and M/X, using Proposi-
tion 3.20. Most of the proof will consist of building a surjective, continuous function
f: M — M which has X as its unique inverse set.

Since X is cellular, there is a family {B;} of closed balls with By C Int M,
Biy1 C Int B; for all ¢, and (), B; = X. We inductively define a family of home-
omorphisms f;: M — M, starting with fo = Idp;. Assume that f; is already
defined for some i. From the proof of Proposition 3.18, there is a homeomorphism
h;: M — M shrinking f;(B;+1) in f;(B;) to diameter less than ij%v that restricts
to the identity outside Int f;(B;). Define f;11 = h; o f;. Note that diam f;(B;) < %
for all i by construction.

Next we will show that the sequence { f;} in the complete metric space Copr (M, M)
is Cauchy. Fix integers m > n. Note that f,, = f, outside B,. For every
point x € B,, we have that f,,(2), fo(z) € fu(By,) and as diam f,(B,) < %

n’

we get d(fin(2), fn(x)) < L. This implies that d(fn, fn) < = in Copnr (M, M) and so
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{fi} is a Cauchy sequence. We define f to be the limit of the sequence {f;}, which
exists since Cops (M, M) is complete. By construction if « ¢ B;, then f(z) = fi(z).

Next, we show that f has the correct inverse sets. Let z € M be such that z ¢ B;
for some i, and let x € X. Then

d(f(2), f(x)) = d(fi(2), f(z)) = d(fi(2), fi(Bi41)) > 0.
Above, in the penultimate inequality, we use the fact that f(z) € f;(Bi+1). In the
final inequality, we use that B; 11 C Int B;, so for every z ¢ B;, dx(z, Bi+1) > 0.
The inequality follows since f; is a homeomorphism on M \ Int B;;1. Thus f(X)
is disjoint from f(M \ X). Additionally, note that diam f;(X) < 1 for all i and
thus f(X) consists of a single point y. As a result, f~1(y) = X.

Next we show that f~1(z) for 2 # y consists of precisely one element. Note
that f~1(2) € M ~ X. Thus f~1(2) = (f|lamr-x) ' (2) and it suffices to show that
flarx is injective. Given any two points p, ¢ € M~ X, there exists some ¢ such that
p,q ¢ B;. Then, f(p) = fi(p) and f(q) = fi(q). Since each f; is a homeomorphism
and therefore injective, this completes the proof that X is the unique inverse set
of f.

Finally we are ready to investigate the quotient map w: M — M/X directly.
Note that the surjective map f descends to a map M/X — M via the quotient
map and we obtain a bijective continuous function f: M/X — M.

M4f>M

b

By the closed map lemma (Lemma 3.23), f is a homeomorphism. Note that f =
fom.
Given the sequence of homeomorphisms {f;: M — M} converging to f, consider
the functions
(F lofi: M — M/X).

. . ——1 —1
These are homeomorphisms since f = and f; are. The sequence {m; := f ~ o f;}
converges to

1 —-—1 =
Flof=F 'ofor=n
. . ——1. . .
as desired, since f = is uniformly continuous. O

There is no need to restrict ourselves to the case of a single cellular set. We will
show next that any finite collection of cellular sets in a manifold can be crushed to
individual points (one per cellular set) while preserving the homeomorphism type
of the manifold. We will need the following proposition.

PRrROPOSITION 3.24. Let f: X — Y and g:' Y — Z be maps between compact
metric spaces that are approrimable by homeomorphisms. Then go f: X — Z is
also approximable by homeomorphisms.

We will use the next elementary result from analysis [Rud76, Theorem 4.19] in
the proof of the proposition, but also many times in the future, so we record it here.

THEOREM 3.25 (Heine-Cantor theorem). Let Y be a metric space, let X be a
compact metric space, and let f: X — Y be a continuous function. Then f is
uniformly continuous.

PROOF OF PROPOSITION 3.24. Let € > 0. The Heine-Cantor theorem (Theo-
rem 3.25) implies that since Y is compact and g is continuous, the function g: ¥ —
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Z is uniformly continuous. Thus there is a § > 0 such that dz(g(y),g(y")) <
whenever y,3’ € Y are such that dy (y,y’) < 4.

Recall that for two functions f, f': X — Y, the uniform metric is defined by
d(f, f) = supyex dy (f(x), f/(x)). Similarly for functions g,¢’: Y — Z we have
d(g,9") = supyey dz(f(y), f'(y)). Let {fn: X — Y} be a sequence of homeomor-
phisms converging to f and let {g,,: Y — Z} be a sequence of homeomorphisms
converging to g. That is, there exists N > 0 such that d(f, f,) < 0 whenever
n > N, and similarly there exists M > 0 such that d(g, gm) < § whenever m > M.

Let L be the maximum of M and N. Then for every x € X and every n > L,
dy (f(x), fn(x)) < 6. By the uniform continuity property,

dz(9(f(x)), 9(fu(2))) < 3.

Also, for every x € X and for every n > L, we have

dz(9(fa(@)), gn(fn(2))) < 5

Thus for every x € X and for every n > L, we have

dz(9(f (), gn(fn(@))) < dz(9(f(2)), 9(fn(2))) + dz(9(fn(2)), gn(fn(2)))

£ g
<§+§—€.

[S])

Therefore d(g o f,gn o frn) < € for every n > L, and so g, o f, — go f. Since
gn © frn is a homeomorphism for every n, this proves that g o f is approximable by
homeomorphisms. O

PROPOSITION 3.26. Let M be a compact d-dimensional manifold, possibly with
nonempty boundary. Let {X1,...,X,} be a finite collection of pairwise disjoint
cellular sets in Int M. Then the quotient map w: M — M/{Xy,...,X,} is ap-
proximable by homeomorphisms. In particular, the quotient M/{X1,..., X} is
homeomorphic to M.

We point out that the space M/{Xi,...,X,} is the quotient where the col-
lection of cellular subsets X7, ..., X, is crushed to n distinct points, rather than
M/\U{X1,...,Xn}, where all the X; are identified to a single point.

PROOF OF PROPOSITION 3.26. We give a proof by induction. For the case
n = 1, see Proposition 3.22. Suppose that the quotient map on M crushing any
given pairwise disjoint collection of n — 1 cellular sets in Int M is approximable by
homeomorphisms, for some n > 2. The quotient map m: M — M/{Xy,..., X,}
factors as the composition

M — M/X, — M/{X1,...,X,}.

The first quotient map is approximable by homeomorphisms by Proposition 3.22.
The second map is approximable by homeomorphisms by the inductive hypothe-
sis. Here we are using the fact that {Xs,..., X, } is mapped to a pairwise dis-
joint collection of cellular sets in M/X; by the quotient map. This follows from
Proposition 3.16 and the fact that the quotient map M — M /X, is a homeomor-
phism when restricted to M ~ X;. Compositions of maps between compact metric
spaces which are approximable by homeomorphisms are themselves approximable
by homeomorphisms according to Proposition 3.24. This completes the proof that
7 is approximable by homeomorphisms. ]

For the application to the Schoenflies theorem, we will need the following propo-
sition.

PROPOSITION 3.27. Let f: 8% — S% be a continuous surjection for some d with
exactly two inverse sets A and B. Then each of A and B is cellular.
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To prove Proposition 3.27, we will need the following lemma.

LEMMA 3.28. Let f: D — S? be a continuous function such that X C Int D¢ is
the only inverse set of f and f(Int D?) is open in S®. Then X is cellular in D?.

PROOF. Let D denote the codomain D?. Let X = f~!(y) for some y € S9.
Since X C Int D and we know that f(Int D) is open in S?, there is an ¢ > 0 such
that the standard disc B.(y) of radius € around y in S? is contained in f(Int D).
Next, choose some z € S¢ not in Im(D). In particular, we have z # y. Let
V be a standard open ball neighbourhood of z in S such that S\ V is a d-
dimensional disc B with B.(y) C f(D) € S* <V = B. For every n € N, choose
some homeomorphism s, /gn 5% — S% that restricts to the identity on the small
disc B, jon+1(y) and squeezes the rest of B into B./on (y). In a ball containing B, this
could, for instance, be defined radially, and then extended to all of S¢, stretching
out V' so0 as to cover the complement of B, 5- (y). Using this function we now define
a map o./on: D — D by setting

(2) x ifreX
g, n|\T) =
=/ floscmof(z) ifaxé¢X.

Here, o /yn is defined i.e. f~! may be used, because f is injective on D ~ X and
5¢/on0f does not map x toy = f(X) aslong as x € D~X. By the closed map lemma
(Lemma 3.23), f: D — S% is a closed map. The restriction f: D~ X — S?~ {y}
is also closed as a restriction of a closed map to a saturated set. As a consequence,
the composition

f_losg/2n0f|D\X:D\X—>D\X

is continuous. Define U := ffl(BE/zwl (y)) 2 X. Then by construction o, jon |y =
Idy. We deduce that o./9n is continuous since both fto 5¢/2n © flpx and
0. /on|u are continuous. Furthermore, the map o./9» is injective because the maps
0c/on|px and o./on|x are injective and have disjoint images. As a result the
image Im o, /9» € D is Hausdorff and by the closed map lemma (Lemma 3.23) the

map o./gn: D — Imo,/on is a closed map. Thus, the inverse 0572” : Imogjpn — D
is continuous and o, /o» is an embedding. Therefore o, /5. (D) is homeomorphic to
a ball for every n. To finish the proof, observe that the balls B,, := 0. /on (D) C D,
forn=1,2,..., exhibit X as a cellular set. In particular note that B,,+1 C Int B,
since o, /2n (OD) lies in f~1(B./an) but not in f~1 (B, jgn+1). O

PROOF OF PROPOSITION 3.27. In an attempt to reduce confusion, let S and
T denote the two copies of S¢. That is, we have a function f: S — T. We show
that B is cellular. Let a := f(A) and b := f(B). Since A and B are precisely the
two inverse sets of f, we know that they are closed and disjoint. Thus, there exists
some standard open ball U C S disjoint from AU B such that if D := S\ U, then D
is a standard closed d-dimensional ball and AU B C Int D.

Then we claim that f(Int D) is open in 7. Note that f is a closed map by
the closed map lemma (Lemma 3.23). Thus f(U) is closed. But then f(Int D) =
T~ f(U) is open as claimed.

Then since a,b € f(Int D) are distinct, there exists some open set V C f(Int D)
with a € V and b ¢ V. Choose a homeomorphism h: T" — T taking f(D) to V
bijectively and fixing some smaller neighbourhood W C V of a. Recall that D C S.
Define a map ¢: D — S as follows.

K ifze f7H (W)
w(x)_{f_lohOf(x) ifxe D\ A
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The function above is defined and continuous since f is injective away from A and
Band f~'oho f(z) =z on f~1(W).

We also check that B € Int D is the only inverse set of ¢. This follows since h
maps f(D) into V and f is injective away from A and B. To finish, we need to show
that +(Int D) is open in S. We check by hand that ¢ (Int D) = f~' o ho f(Int D).
We know from before that f(Int D) is open in 7. Then f~! o ho f(Int D) is open
since h is a homeomorphism and f is continuous. Now apply Lemma 3.28 to the
map ¢: D — S to conclude that B is cellular. A similar proof shows that A is
cellular. O

3.4. Brown’s proof of the Schoenflies theorem

After our lengthy interlude in the previous section, we return to the Schoenflies
theorem, which we restate below in an equivalent form.

THEOREM 3.29 (Schoenflies theorem [Bro60]). Let i: S9! < S9 be a continu-
ous embedding admitting a bicollar. Then the closure of each component of S ~
i(S9=1) is homeomorphic to DY.

Figure 3.8. Brown’s proof of the Schoenflies theorem. Going from
left to right, the regions labelled A and B are collapsed to a point
each, stretching out a neighbourhood of the equator in the process.

PROOF. By the bicollar hypothesis there exists J: S9! x [~1,1] — S such
that J|ga-1 x {0} equals i. From elementary homology computations as in the proof
of Theorem 3.5, it follows that the complement of the image of J in S? has exactly
two connected components. Denote their closures by A and B, where A meets
J(S41 x {1}).

Observe that the quotient space S?/{A, B} is homeomorphic to S?, due to the
existence of the bicollar. In other words, S?/{A, B} can be identified with the
(unreduced) suspension of S?~!  which is homeomorphic to S¢, as indicated in
Figure 3.8. Thus we have the composition

f:8¢ " S1{A, BY =5 89,
where = denotes homeomorphism and 7 denotes the quotient map. This map
f: 8% — S9 has exactly two inverse sets, namely A and B, and is surjective. By
Proposition 3.27, each of A and B is cellular.
Let D denote the closed northern hemisphere of S¢, thought of as a subset

of the codomain S%. By definition, D is a copy of the d-dimensional ball. Let
U:=AU(J(S%¥ ! x(0,1])), that is, U is the component of S¢ \ i(S¢~1) containing
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A. Then we have the restriction f|7: U — D whose unique inverse set is A which
is cellular in S and thus in U by Proposition 3.16.

Our goal is to apply Proposition 3.22 to U. To do so, we first need to show
that U is a manifold (with boundary). The only possible failure could be near the
boundary. As a subspace of S¢, U is already Hausdorff and second countable, so
we only need to show that it is locally Euclidean. Let E := J(S%"* x [0, §]). Note
that U = U U E. Moreover f restricts to a continuous bijection from E to some
collar of dD. This collar of D is closed by the closed map lemma (Lemma 3.23).
Therefore f|g is a homeomorphism, so U is a manifold as needed.

Then we have the following diagram:

| A

T/A.

The map f is constant on the fibres of the quotient map 7: U — U/A and thus
descends to the map f, which is a homeomorphism by the closed map lemma
(Lemma 3.23). Next, since A is cellular, the map 7 is approximable by home-
omorphisms by Proposition 3.22. Let 7: U — U/A be any such approximating
homeomorphism. Then fo7: U — D is a homeomorphism. It follows that U is
homeomorphic to the d-dimensional ball D = D% as claimed. O



CHAPTER 4

Decomposition space theory and the Bing
shrinking criterion

Christopher W. Dawvis, Boldizsdr Kalmdr, Min Hoon Kim, and Henrik
Rauping

We begin this chapter with the Bing shrinking criterion, characterising the maps
between compact metric spaces that are approximable by homeomorphisms. This
formalises the shrinking arguments employed in the previous chapter in Brown’s
proof of the Schoenflies theorem.

Then we study decompositions and decomposition spaces: a decomposition is
a collection of pairwise disjoint subsets of a given space and the corresponding
decomposition space is the quotient space arising from identifying each of the con-
stituent subsets of a decomposition to a point. The Bing shrinking criterion is a
powerful tool to prove that, in favourable cases, the decomposition space is home-
omorphic to the original space, and indeed that the quotient map is approximable
by homeomorphisms. We will be interested in studying some fascinating examples
of this phenomenon in the chapters to follow. In this chapter, we develop some
of the basic theory, showing that the decomposition spaces corresponding to up-
per semi-continuous decompositions of compact metric spaces are well behaved. In
particular, the decomposition space of an upper semi-continuous decomposition of
a compact metric space is again a compact metric space.

4.1. The Bing shrinking criterion

As demonstrated by Brown’s proof of the Schoenflies theorem, shrinking is a pow-
erful tool in the topological category. Here is a natural generalisation of the results
from the previous chapter, in the context of shrinking infinitely many sets. The
following statement is due to Bing [Bin52], and the proof given is from [Edw80].

THEOREM 4.1 (Bing shrinking criterion). Let X andY be compact metric spaces.
Let f: X — Y be a surjective continuous map. Let W C X be an open set
containing every inverse set of f. Then f is approzimable by homeomorphisms
agreeing with f on X ~ W if and only if for every € > 0 there exists a self-
homeomorphism h: X — X that restricts to the identity map on X ~ W and
satisfies the following conditions.

(i) For all z € X, we have that dy (f(z), f o h(z)) <e.
(ii) For all y € Y, we have that diamx h(f~1(y)) < e.

The first condition implies that h is close to the identity as measured in the
target space Y and can be restated using the uniform metric as d(f, foh) < e. The
second condition indicates that the inverse sets are shrunk by h. Morally speaking,
the theorem says that finding a coherent way of shrinking inverse sets is equivalent
to approximating by homeomorphisms.

59
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PrOOF. Throughout the proof the word ‘homeomorphism’ will mean a home-
omorphism that restricts to the identity map on X ~\ W. One direction is relatively
easy. Given a sequence of approximating homeomorphisms h,: X — Y and ¢ > 0,
compositions of the form h;! o h, ., satisfy (i) and (ii) of Theorem 4.1 as long
as n and k, are large enough.

The other, more interesting, direction can be proved by elementary methods.
However, we give the proof due to Edwards [Edw80] using the Baire category
theorem.

THEOREM 4.2 (Baire category theorem). In a complete metric space, the inter-
section of any countable collection of open and dense sets is dense.

Our goal is to construct a uniformly convergent sequence of approximating home-
omorphisms for f. Consider the space C(X,Y") of continuous maps from X to Y
equipped with the uniform metric. Since Y is compact, Y is complete, and there-
fore the space C(X,Y) is a complete metric space [Mun00, Theorem 43.6]. Let E
denote the closure of the set

S:={foh|h: X - X is a homeomorphism}.

Note that f € F, by taking h = Id. Moreover, E C C(X,Y) is a closed subset of a
complete metric space and is thus itself a complete metric space. For each positive
integer n, let F1 denote the set

E. :={g€ E|diamx g '(y) < % for every y € Y}.

By hypothesis, each E'1 is nonempty. More precisely, take some € < % and find an
h satisfying (ii) in the hypotheses. Then g = f o h™! € F1, so E1 is nonempty.

Next we show that E1 is open in E. This is the content of the next two claims.

CLAIM. For each g € E1 there is an o > 0 such that whenever dx (z,x’) > 1/n,
then dy (g(z), g(z')) > a.

To see the claim, suppose for a contradiction that it is false. Then there would ex-
ist sequences {;}, {z}} in X such that dx (z;,z;) > L for all i, but dy (g(z;), g(z}))
converges to 0. Since X x X is a compact metric space, there is a convergent sub-
sequence of {(x;, «})} with limit (z,2”) € X x X. Note that dx (z,2’) > 1.

We assert that g(x) = g(2’). Suppose that this were false; then write § :=
dy (9(x),g(z")) > 0. Choose an N such that

dy (g9(x), g(x:)) < B/3
and

dy (9(2"), g(a7)) < B/3
whenever i > N. We have then, for every ¢ > N, that

B =dy(g(x),g(z")) < dy(g(z), g(xi)) + dy (g9(:), g(2})) + dy (g9(x7), g(2"))
< 2B/3 +dy (g(x:), g(a)).

Thus 8/3 < dy(g(x;),g(x})) for all i > N, which contradicts the hypothesis that
dy (9(x;),9(x})) = 0 as i — co. Thus g(z) = g(z') as asserted.

But g(z) = g(z') implies that x and 2’ both lie in g~ (g(z)). Then with y = g(z)
we know that diamx g~ (y) < 1 since g € E1. Thus, we have that dx (z,2") < L
This contradicts the hypothesis that dx (z,z") > %, which completes the proof of
the claim. We use the claim just proven in the proof of the next claim.

CrLAM. Let g € E1. For a as in the previous claim, if ¢’ € E satisfies d(g,qg') <
S, then g € Ex.
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Suppose that the claim is false. Let ¢’ € E such that d(g,9') < § but ¢’ ¢ E1.

Then there exist z,2’ € X with dx(z,2’) > 1 but ¢'(z) = ¢/(2/) = y for some
y €Y. Then

dy (g9(x), g(2")) < dy(g(x),y) + dy (g(z'),y) = dy (9(x), ¢’ (x)) + dy (g(z"), g’ (z"))
<a/24+a/2=aq,

[0

where for the last inequality we are using that d(g,¢’) < §. However, by the
previous claim, dy (g(x), g(z’)) > «, which is a contradiction, proving the current
claim.

We have now shown that E1 is open as desired, since for any fixed g € 1, we
have shown that there exists @ > 0 so that every ¢’ with d(g,¢") < § is contained
in E%. In other words, we have found an open neighbourhood of g in E%.

Now we show that F1 is dense in F for each n. Let g € F, and let N C E be a
neighbourhood of ¢ in B. Let n > 0 be such that B,(g) € N. To show that E1 is
dense, we want to show that there is a g € B, (¢g) N E1. This will show that e\;ery
neighbourhood of g intersects E1 . !

Since E is the closure of S, there is a homeomorphism h: X — X such that
d(f oh,g) < 2. Use conditions (i) and (ii) in the hypotheses of Theorem 4.1 to
obtain a homeomorphism H: X — X for which

(a) d(f,foH)< 3,and

(b) for every y € Y the diameter diamx H(f~*(y)) is small enough so that

diamx h™H(H(f ' (y)) < 3,

as follows. Note that h~!: X — X is uniformly continuous by the Heine-Cantor the-
orem, since X is compact. Thus there exists § > 0 such that dx (h=1(z),h~1(2")) <
L whenever dx(z,2') < §. We then have H from the hypotheses of Theorem 4.1
using € = min{n/2,8}. As a result diamx H(f '(y)) < &, from which it follows
that diamx h ™ (H(f(y))) < + as desired, as well as d(f, fo H) < Z.

Denote the map fo H ! oh by g. Then diamx g~ (y) < % for every y € Y and
thusge FE 1. In addition, we have

d(g,9) < d(g,foh)+d(foh,g) <3 +d(foh,g).
But

d(foh,g)=d(foh,foH toh)=d(f,foH ") =d(foH,foH *oH)
—d(fo H.f) <

where the first equality follows from the definition of g and the second and third
from the fact that i and H are bijections. Thus, we see that d(g,g) < 4 + 2 =17,
s0 g € B,(g). This means that every neighbourhood N of g intersects E1, and so
FE 1 is dense in E as desired.

Now, by the Baire category theorem (Theorem 4.2), the set By = (), E1 is dense
in E. In particular, Fy is nonempty and contains maps arbitrarily close to f. But
every element of Ey is a bijection since the inverse sets have to be points. By the

closed map lemma, every continuous map from a compact space to a Hausdorff
space is closed, and thus the elements of Ey are homeomorphisms. O

4.2. Decompositions

The Bing shrinking criterion (Theorem 4.1) leads us to the field of decomposition
space theory in general. As in the previous chapter, we will be interested in crush-
ing pairwise disjoint subsets to (distinct) points. However, unlike in the previous
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chapter, we will usually be interested in crushing infinitely many subsets, possibly
even uncountably many subsets, of a given space to points. We will investigate
whether the resulting object is homeomorphic to the original space. When con-
sidering infinitely many subsets, it might not be possible to shrink everything in a
controlled manner as in Proposition 3.26, since whenever we shrink some subsets,
the others might stretch out, leading to a subtle and beautiful theory. We will
investigate these questions in depth for some interesting examples in the next few
chapters.

In the rest of this chapter we cover some of the foundations of the field of de-
composition space theory. An extensive account is given in [Dav07], although the
terminology used therein differs slightly from ours.

DEFINITION 4.3. A decomposition of a topological space X is a collection
D = {Ai}ier
of pairwise disjoint subsets A; C X, called the decomposition elements, indexed by
some index set I.
Given a decomposition D of X, the decomposition space is the quotient space X /D
obtained by factoring out X by the sets A € D. Colloquially, each A; is crushed

to a point. We endow X/D with the quotient topology and usually denote the
corresponding quotient map by 7: X — X/D.

Note that X/D is different from X/ |J
crushed to a single point.

;er D¢ where the entire set |J;o; A; is

REMARK 4.4. In the literature, a decomposition is often required to be a partition
of the given space. Of course, any decomposition D = {A;},c; for a space X as in
Definition 4.3 can be completed to a partition by adding singletons for each point
in X \{U;c; Ai without altering the corresponding decomposition space. We prefer
our definition since it reduces the number of sets that need to be specified. On
the other hand, it is permitted, and may often happen, that some decomposition

elements are singleton sets.

In practice, when we wish to describe a decomposition, we will usually only
describe a defining sequence.

DEFINITION 4.5. A defining sequence for a decomposition of a topological space
X is a sequence {C;}22; where each C; C X is compact and C;4+1 C Int C; for each
1. The decomposition elements of the decomposition associated with this defining
sequence are the connected components of ﬂfil C;.

The defining sequence for a decomposition will often be produced by an iterated
construction using a single pattern, which we call a defining pattern. We explain
this process by the following example.

EXAMPLE 4.6. We give the defining sequence and a corresponding defining pat-
tern for the decomposition that we will study in detail in the next chapter. On the
left of Figure 4.1 we show a 2-component link embedded in the standard unknotted
solid torus in 3. This link is the Bing double of the core of the solid torus, and we
have already encountered it in Chapter 1. Thicken up the two components of the
link to solid tori S' x D? embedded in the interior of the larger S* x D2. This is
the defining pattern.

Now iterate the embedding: at each stage, embed the same pattern, with no
twisting, inside each of the solid tori of the previous stage. Note that this doubles
the number of components. On the right of Figure 4.1, we show the second stage of
this process. Each iteration produces the next term of the defining sequence. The
corresponding decomposition, which is called the Bing decomposition, consists of
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Figure 4.1. The defining pattern of the Bing decomposition (left)
and its second stage (right).

the connected components of the infinite intersection of these nested solid tori, by
definition. We shall return to this example in detail in Chapter 5.

In our discussion of decompositions we will often wish to modify the defining
sequence of a decomposition by isotopies. The following proposition shows that
this does not change the homeomorphism type of the corresponding decomposition
space.

PROPOSITION 4.7. Let {C;}52, be a defining sequence for a decomposition D for
a d-dimensional manifold M, where each C; is a d-dimensional submanifold with
boundary within M. Let ¢g: M — M be a homeomorphism. For each i > 1,
let ¢;: C; — C; be a homeomorphism restricting to the identity on the boundary.
Extend ¢; over M wia the identity on M ~ C;. Let D' denote the decomposition
of M given by the defining sequence C} = ¢;_1 0--- 0 ¢o(C;) for each i. Then the
decomposition spaces M /D and M /D' are homeomorphic.

PrOOF. Construct a homeomorphism between M/D and M /D’ using the map
¢p on M\ C; and the map ¢;o---o¢g on C; \C;41, and by sending each component
of N;2, C; (that is, any decomposition element) to the corresponding component
of ;2 C/. The infinite composition is defined since any given point is nontrivially
affected by at most finitely many ¢;. O

In light of the above proposition, we will regard two decompositions as the same
if they can be related by such a sequence of homeomorphisms. We will see in
Section 5.2 that the homeomorphism type of the individual decomposition elements
need not be preserved by this operation. However, since we are only interested in
the homeomorphism type of the entire decomposition space, it is only ever necessary
(for us) to consider decompositions up to this notion of equivalence.

4.3. Upper semi-continuous decompositions

This section contains some of the elementary theory of decomposition spaces.
We will concern ourselves with upper semi-continuous decompositions, which we
soon define. We will show in this section that the decomposition spaces for these
decompositions are particularly well behaved.

DEFINITION 4.8. Let X be a space with a decomposition D = {A;};c; and
let 7: X — X/D denote the quotient map. Given a subset S C X, define its
D-saturation as

7w (8)) = Sul J{Ai | AinS #0}.
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We say that S is D-saturated if S = 7~1(7(S9)), that is if S is saturated with respect
to m. Note that the D-saturation of S is the smallest saturated subset of X (with
respect to m: X — X/D) that contains S.
For a subset S C X, we also consider the largest saturated subset of S, defined
by
S i=S~a(n(X N 9) =S~ J{Aai A g S}

DEFINITION 4.9. A decomposition D of a topological space X is said to be upper
semi-continuous if for each open subset U C X, the set U* is also open and each
decomposition element A € D is closed and compact.

- .
| b

(a) (b)

Figure 4.2. Two decompositions of the plane are shown. Each line
segment depicted above is closed. In each case, there is precisely
one black decomposition element, denoted by b, and infinitely many
red decomposition elements. On the left, the red decomposition el-
ements decrease in length converging to . On the right, the lengths
of the red decomposition elements strictly increase as we move to
the right and the bottom end points converge to b.

The decomposition on the left is easily seen to be upper semi-
continuous by Proposition 4.10(3), since we can find small satu-
rated neighbourhoods for each decomposition element. For the de-
composition on the right, the black decomposition element b does
not have small saturated neighbourhoods and thus the decompo-
sition is not upper semi-continuous, by Proposition 4.10(3).

Now we give some useful equivalent formulations for upper semi-continuity of
decompositions. For example, we can use these characterisations to check that
Figure 4.2 gives an example, and a non-example, of an upper semi-continuous de-
composition of the plane.

PROPOSITION 4.10. Let D = {A;};er be a decomposition of a space X with A;
closed and compact for every i. Then the following are equivalent.

(1) The decomposition D is upper semi-continuous.

(2) The quotient map m: X — X/D is closed.

(8) If U is an open neighbourhood of C, where C' is either some A; or {x} for
some x € X~ J,.; A;, then U contains a D-saturated open neighbourhood

of C.

icl

PROOF. (1) = (2) Suppose that D is an upper semi-continuous decomposition.
For every closed subset C' C X, the set (X \ C)* is open by definition. Note that
(X NO) = X 7 Yn(C0)), and thus 7= (7 (C)) is closed in X. Hence 7(C) is
closed in X/D for every closed C C X by definition of the quotient topology.
(2) = (1) Suppose that 7: X — X/D is a closed map. Then for any open subset
UCX,U*=U-~7n"Yn(X \U)) is open since X \ U and 7 are closed, and 7 is
continuous. Each A; is closed and compact by hypothesis.
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(1) = (3) Given any such set U, the set U* is a D-saturated neighbourhood of C.
(3) = (1) Given an open set U C X, let © € U*. Then, either there exists A;
such that = € A; C U*, or v € U™ \ [J;¢; A since U* is D-saturated. In either
case, by hypothesis, there is some D-saturated open neighbourhood of x within U.
Since this neighbourhood is D-saturated, it lies in U* as needed. Thus U* is open.
Each A; is closed and compact by hypothesis. U

We record the following property of upper semi-continuous decompositions for
later use in Remark 7.6.

PROPOSITION 4.11. Suppose that D; are upper semi-continuous decompositions
of the spaces X; fori =1,2. Then the space (X1/D1) x (X2/D2) is homeomorphic
to the space (X1 X X2)/(D1 x Ds), where the decomposition D1 X Dy of X1 x Xo
has decomposition elements of the form Al x AL, A} x {xo}, or {x1} x A, where
AL € Dy; AL € Dy; and z; € X; ~\JD; for all i.

PRrROOF. Define f: (X1 X XQ)/(Dl X DQ) — (Xl/Dl) X (XQ/DQ) by [((El, (EQ)} —
([x1], [x2]). As a set map, f is well defined and bijective by construction. The
following diagram commutes, where p is the quotient map X; x X5 — (X7 X
X2)/(D1xD3) and m = m1 X7a is the product of the quotient maps m;: X; — X;/D;.

X1 x Xo i (XI/DI) X (XQ/DQ)

|

(X1 X XQ)/(Dl X Dg)

Since m = f o p is continuous, the defining property of quotient spaces implies that
f is continuous. By Proposition 4.10, m; and 7o are closed maps. Since D; is upper
semi-continuous, m; 1(y) is compact for every y € X;/D; and for each 4. It follows
that the product m = 71 x 73 is closed (see for example [Him65, Theorem 1]). We
remark that compactness of 7, ! (y) for each 4,y is required since the product of two
closed maps is not closed in general. If C' C (X; x X3)/(D; x D) is closed, then
p~1(C) is closed and hence f(C) = 7(p~1(C)) is closed. We see that the bijective
map f is continuous and closed, and so is a homeomorphism. O

We are ready to prove the key property of upper semi-continuous decompositions,
namely that a decomposition space for a compact metric space with respect to an
upper semi-continuous decomposition is itself a compact metric space.

PROPOSITION 4.12. Let D be an upper semi-continuous decomposition of a topo-
logical space X .

(1) If X is Hausdorff, then X/D is also Hausdorff.
(2) If X is second countable, then X/D is also second countable.

PROOF. Let m: X — X/D be the quotient map. Since D is upper semi-
continuous, by Proposition 4.10, we know that 7 is a closed surjective map. More-
over, each 7~ 1(y) is compact for y € X/D, since it is either a decomposition element
or a singleton set.

(1) Let y; and yo be two distinct points in X/D. Then 7~ 1(y;) and 7 1(y2) are
disjoint compact subsets in X. Since each 7=1(y;) is compact and X is Hausdorff,
it is elementary to show that there are two disjoint open subsets U; and Us in X
such that 7=1(y;) C U;. Since 7 is a closed map, each set m(X \ U;) is closed, and
thus we have open neighbourhoods

W;:=X/D\n(X \TU;)
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of y;. Note that if z € X \ U;, then m(z) ¢ W;. That is, 7=1(W;) C U;. Since
Uy and U; are disjoint, W7 and Wy are also disjoint. This shows that X/D is
Hausdorff.
(2) Let {U; }ien be a countable basis for the topology on X. For each finite subset
I CN, let
W= X/D~a(X ~|JUi).
iel
Since 7 is a closed map,
{Wr | I C N is finite}
is a countable collection of open subsets of X/D. We next show that {W; | I C
N is finite} is a basis for the topology on X/D.

Let y be a point in X/D and let W be an open neighbourhood of y. Express
7-1(W) as a union of elements of {U; };cn. Then since 771(y) is a compact subset
of 7~ 1(W), there is a finite subset I C N such that 7~ *(y) € U,c; Ui € 7~ H(W).
Then y € Wy = X/D \ (X \ U,¢; Ui), since otherwise 7! (y) N X \ |JU; would
be nonempty. Moreover, we have

X/DNW =n(X 7' (W) Ca(X ~|JUi) = X/D W
iel
This implies that W; C W. Therefore, X/D is second countable with a countable
basis {W; | I C N finite}. O

COROLLARY 4.13. Let D be an upper semi-continuous decomposition of a compact
metric space X. Then X/D is a compact metric space.

PRrROOF. Since X is a compact metric space, it is Hausdorff and second count-
able. Compact, Hausdorff spaces are normal [Mun00, Theorem 32.3] and normal
spaces are regular, so X is regular. Since D is upper semi-continuous, X /D is Haus-
dorff and second countable by Proposition 4.12. Compactness of X/D is immediate
since X is compact. Since X/D is regular and second countable, by Urysohn’s
metrisation theorem (see e.g. [Mun00, Theorem 34.1]), X/D is metrisable. See
also [Wil70, Corollary 23.2, p. 166] which shows that the continuous image of a
compact metric space in a Hausdorff space is metrisable. 0

REMARK 4.14. While Corollary 4.13 is stated only for compact metric spaces, in
fact the decomposition space of any metric space with respect to an upper semi-
continuous decomposition is metrisable [Sto56, Han54, McA54] (see also [Dav07,
Proposition 2.2]).

1 2
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1 2 7 8
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27 27 27 27 27 27 27 27
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Figure 4.3. Constructing the ternary Cantor set.
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REMARK 4.15. Corollary 4.13 asserts the existence of a metric on a decomposition
space. This abstractly available metric may be elusive in practice. An illuminating
1-dimensional example of this phenomenon comes from the ternary Cantor set €.
Consider the decomposition of the unit interval given by the closures of the ‘middle
third’ intervals which are removed in the construction of € (see Figure 4.3). In other
words, consider the decomposition of [0, 1] given by the connected components of
[0,1] \ €. From Proposition 4.10(3), it is easy to see that the decomposition is
upper semi-continuous, and thus Corollary 4.13 says that the decomposition space is
metrisable. Indeed, the decomposition space is homeomorphic to the interval, which
later we will see as an easy corollary of Theorem 9.16 on the shrinkability of null
decompositions with recursively starlike-equivalent elements (see Example 9.17).

How could one measure length in this decomposition space? A natural attempt
consists of imagining a taxi driving through the interval and turning the meter
off when it is within any decomposition element. Unfortunately, since the Cantor
set has measure zero, the taxi ride would be free, and so this does not produce a
metric. Despite the failure of this naive attempt, we do know by Corollary 4.13
that some abstract metric exists on the decomposition space. One needs such a
metric in order to be able to apply the Bing shrinking criterion (Theorem 4.1).
For the case at hand, once we know the decomposition shrinks, and therefore that
the decomposition space is homeomorphic to [0, 1], of course there is no problem
defining a metric, by pulling back the standard metric from [0, 1]. But this pull back
metric cannot be the “taxi metric”. In general, we may not be able to produce,
even a fortiori, a nice metric that we can attempt to visualise. But it will suffice
for our purposes to know that a metric exists.

4.4. Shrinkability of decompositions

Now that we have singled out the appropriate class of spaces and decompositions
for our purposes, namely compact metric spaces and upper semi-continuous decom-
positions, we introduce the important concept of shrinkability for decompositions.
With the Bing shrinking criterion (Theorem 4.1) and the aim of deciding when a
quotient map 7: X — X/D is approximable by homeomorphisms in mind, we make
the following definition.

DEFINITION 4.16 (Shrinkability). Let D be an upper semi-continuous decompo-
sition of a compact metric space X. The decomposition D is shrinkable if for every
€ > 0 there exists a self-homeomorphism h: X — X such that

(i) for all € X, we have that dx,p(7(z), 7o h(z)) < &, and
(ii) for all A € D, we have diamx h(A) < ¢,
where dx/p is some chosen metric on X/D.

Given an open set W C X containing all the non-singleton decomposition el-
ements, we say D is shrinkable fizing X ~ W if for every € > 0 there exists a
homeomorphism h: X — X with properties (i) and (ii), and that fixes the set
X ~ W pointwise.

We say the decomposition D is strongly shrinkable if for every open set W C
X containing all the non-singleton decomposition elements, D is shrinkable fixing
X\W.

REMARK 4.17. For manifolds, shrinkable and strongly shrinkable are equivalent
notions [Dav07, p. 108, Theorem 13.1]. A counterexample to the general statement
for non-manifolds can be constructed using [Dav07, Examples 7.1 and 7.2], as
indicated in [Dav07, p. 112, Exercise 13.2].

Note that the above definition merely applies the Bing shrinking criterion to
the quotient map 7: X — X/D. In other words, a decomposition is shrinkable
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if and only if the corresponding quotient map 7: X — X/D is approximable by
homeomorphisms. This is formalised by the following theorem.

THEOREM 4.18. Let D be an upper semi-continuous decomposition of a compact
metric space X. The decomposition D is shrinkable if and only if the quotient map
m: X — X/D is approzimable by homeomorphisms.

Moreover, given an open set W C X containing all the non-singleton elements
of D, the decomposition D is shrinkable fixzing X ~W if and only if w is approximable
by homeomorphisms such that each of the homeomorphisms agrees with m on X ~W.

The decomposition D is strongly shrinkable if and only if w is approzimable by
homeomorphisms such that each of the homeomorphisms agrees with m on X ~ W
for every open set W C X containing all the non-singleton decomposition elements.

Thus in order to show that the quotient map m: X — X/D is approximable
by homeomorphisms, or equivalently, that the decomposition D of X shrinks, it
suffices to construct a family of self-homeomorphisms h: X — X having properties
(i) and (ii) in Definition 4.16. In the next few chapters we investigate a series
of interesting decomposition spaces. In each case, we will either construct such
self-homeomorphisms, or show that they cannot exist.

REMARK 4.19. As obliquely indicated by Definition 4.16, the choice of metric
on the decomposition space X/D for a compact metric space X with respect to an
upper semi-continuous decomposition D does not affect the shrinkability of D. One
way to see this is via Theorem 4.18. Given metrics d; and dy on X/D inducing its
topology, the identity map Id: (X/D,d;) — (X/D,ds) is uniformly continuous by
the Heine-Cantor theorem. Then by composing with this identity map it is easy
to see that the quotient map from X to (X/D,d;) is approximable by homeomor-
phisms if and only if the quotient map from X to (X/D,ds) is approximable by
homeomorphisms.

We finish the chapter by considering cellular sets.

DEFINITION 4.20. A decomposition D of a manifold M is said to be cellular if
each element of D is cellular.

In Chapter 3, we saw some examples of (finite) cellular decompositions which
shrink. We now show that every decomposition of a manifold that shrinks must
be cellular. However, we will soon see that there exist cellular decompositions of
manifolds that do not shrink.

PROPOSITION 4.21. Let D be an upper semi-continuous decomposition of a com-
pact n-dimensional manifold M. If D shrinks, then D is cellular.

PrOOF. Fix a metric on M. Since M is a compact metric space and D is upper
semi-continuous, the decomposition space M /D is a compact metrisable space by
Corollary 4.13. Fix a metric on M/D. Let m: M — M/D be the quotient map.
Let A € D and let W C M be an open set with A C W. It will suffice to find an
open set B with closure B = D™ and with AC BC BCW.

Let 45 > 0 be the distance from 7(A) to the compact set 7(M ~ W), where the
distance is positive since m(A) ¢ 7(M ~ W). For i = 1,2,3, define U; C M/D to
be the open ball of radius 0 centred at w(A). Observe that the collection

U:={M~ 7 Us),m YU\ TUy), n 1 (Us) ~ A, m 1 (UL)}

forms an open cover of M. Let V be an open cover of M such that for all V' € V,
we have that V = D" and moreover, the closure V is contained in some element of
U. Note that this last condition is stronger than V being a refinement of U, but is
nonetheless satisfied, since M is an n-manifold.
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Since M is compact, by the Lebesgue number lemma (see e.g. [Mun00, Lemma 27.5])
there exists a Lebesgue number 7 € R for the cover V, such that every set of diam-
eter less than 7 is contained in an element of V. Let € := min{4d, n}.

Since the decomposition D shrinks, by definition (Definition 4.16), there exists
a homeomorphism h: M — M such that dy;/p(7(z), 7o h(z)) < ¢ for all z € M
and diamps h(A) < ¢ for all A € D. Then since diamys h(A) < € < 5, there is
some B’ € V with h(A) C B’ and B’ = D". Define B := h~!(B’). Since h is a
homeomorphism, we have that B = D™,

Now we show that A C B C B C W, which will complete the proof. We need
only show that B C W since A C B by construction. Suppose for a contradiction
that B ¢ W. Then let w € BN W C M ~ W. Then we claim that h(w) €
M ~ 77 1(Us). To see this, suppose for a contradiction (within a contradiction)
that h(w) € 7= 1(Uz). Then 7o h(w) € Us. Moreover, since w € M ~. W, we know
that m(w) € 7(M ~ W). By hypothesis, d;/p(m(w), 7o h(w)) < e. Then we have

46 = dpryp(m(A), 7(M N~ W)) < dpyp(m(A), 70 h(w)) + dprp(m o h(w), 7 (M ~ W))
< diamyyp Us + dpryp (7 0 h(w), w(w))
<20+¢
<36

which is a contradiction. Above we used that m(A), 7o h(w) € Ua, w(w) € (M ~
W), and that ¢ < §. This contradiction implies that h(w) € M ~ 7~ 1(Us).

We continue with the outer reductio ad absurdum, namely showing that assuming
B ¢ W leads to a contradiction. From h(w) € M ~ 7= 1(Us), it follows that
h(w) ¢ 7= (Uz) ~ A and h(w) ¢ 7= (Uy), since (M ~ 71 (Usa)) N (71 (U2) N A) =
)= (M~ 7Y Uz))na=Y(Uy).

Next we consider the set B’. By the definition of V, the set B’ is contained in
some element of . We also know that h(w) € B’. Then B’ Z 7~ 1(U;) \. A since
h(w) ¢ m=Y(Us) \ A. Similarly, B’ ¢ 7~(Uy) since h(w) ¢ 7=1(Uy). Thus

F Q M ~ 7T71(U2) U ’/Til(Ug AN Ul) =M 7T71(U1).

Since h(A) C B’, for every e € A we have that h(e) € B’. We claim that
additionally h(e) € #~*(U;). This follows since dys/p(m(e), m o h(e)) < e < & so
that 7o h(e) € Uy since w(e) = w(A).

So we have that

hie) en Y (U)NB' Ca ' (U)NM 7 ({U,) =0

Since this is impossible, we deduce that B C W, so A C B C B C W as desired.
This completes the proof of Proposition 4.21. O






CHAPTER 5

The Alexander gored ball and the Bing
decomposition

Stefan Behrens and Min Hoon Kim

We introduce the Alexander gored ball, which is what we call the closure of the
complement of the Alexander horned ball in S3. We give three equivalent de-
scriptions of the Alexander gored ball. In the final description, we present it as a
decomposition space of D3. By taking the double of the Alexander gored ball we
obtain a decomposition space of S3, with respect to the Bing decomposition that
we saw in Example 4.6. We present Bing’s proof that this decomposition shrinks,
which implies that the double of the Alexander gored ball is homeomorphic to S3.
This instructive case study will introduce us to the subtleties of decompositions,
particularly those with infinitely many non-singleton decomposition elements. Sim-
ilar ideas appear here as in the upcoming 4-dimensional arguments, but being in
three dimensions, visualisation is significantly easier. Moreover, the Bing decom-
position is closely related to the gropes that will appear in Part II, and a variant
of it will appear in the proof of the disc embedding theorem.

The idea of shrinking first arose in a paper of Bing [Bin52]. The main focus
of Bing’s paper [Bin52] was the Alexander horned sphere. In the 1930s Wilder
[Wil49, Problem 4.6] had considered the question of whether the double of the
exterior of the Alexander horned ball is homeomorphic to S3. His interest arose
from the fact that this doubled object has an obvious involution interchanging
the two halves; if it turned out to be homeomorphic to S2, this would give an
interesting involution on the 3-sphere, namely one whose fixed point set is a very
wild 2-sphere. Consequently, the topological involution would not be conjugate to
a smooth involution. While he provided some evidence that his space was the 3-
sphere, Wilder was unable to produce a conclusive proof and his question remained
unanswered until Bing’s paper.

5.1. Three descriptions of the Alexander gored ball

The Alexander horned sphere is shown in Figure 5.1. As depicted, the construc-
tion consists of iterating the following procedure. Starting at n = 1, in the nth
step, first remove 27*! open discs from S?. Attach 2"*! annuli, along half of their
boundary components, with linking between the middle pair of each set of four.
Finally cap off the right hand boundaries of the 27*! annuli with 2"*! smaller
discs. Attach an infinite sequence of annuli and discs in this way, together with a
final collection of points at the limit. This produces the Alexander horned sphere.

If instead we attach solid tubes to D3, followed by the final set of limit points,
the resulting object is a 3-dimensional ball topologically embedded into R? and
therefore into S3. We call this the Alexander horned ball. Its boundary is the
Alexander horned sphere.

71
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Figure 5.1. The Alexander horned sphere. A typical nontrivial
element of the fundamental group of its complement is shown in
red.

The closure of the complement of the Alexander horned ball in S3 is what we
call the Alexander gored ball, denoted by A. We now give three descriptions of A.

5.1.1. An intersection of 3-balls in D?. The first description is an inside
out version of Figure 5.1. Starting with the standard 3-ball, drill two pairs of holes,
creating two “almost tunnels” which are “almost linked,” as in the left picture
of Figure 5.2. This space is still homeomorphic to a ball. The left two-thirds
of Figure 5.1, with the eight skinniest tubes and everything to the right of them
removed, should be compared with the left picture of Figure 5.2. We assert that
the left picture of Figure 5.2 can be thought of as the left two—thirds of Figure 5.1
“turned inside—out.” The two clasped tubes in the middle of Figure 5.1 correspond
to the two clasped tubes in the left picture in Figure 5.2. The small stumps in the
left picture of Figure 5.2 correspond to the top and bottom tubes of the middle
four tubes in Figure 5.1.

Now repeat this construction infinitely many times, each time drilling twice as
many almost tunnels as before, in the gaps where the previous tunnels were not
quite completed. The next step is indicated on the right of Figure 5.2, which
can be thought of as Figure 5.1 (minus the dots) turned inside-out. The space
obtained after any finite number of iterations is still homeomorphic to a ball in the
original D3. The Alexander gored ball is the infinite intersection of these nested
balls. However, note that this sequence of balls does not describe A as a cellular
subset of D3 since, in particular, none of the balls are contained in the interior of
the previous ball in the sequence.

5.1.2. A (3-dimensional) grope. There is an equivalent picture of A as an
infinite union of thickened, punctured tori with some limit points added in. The
construction proceeds as follows. Let T be the 2-dimensional torus with an open
disc removed and let T := T x [0, 1]. We also fix a standard meridian-longitude pair
of curves u, A\ C T.

Start with a single copy Ty of T and attach two extra copies Tgy and To; along
annular neighbourhoods of g x {0} in T'x{0} and of A\g x {1} in T'x {1} respectively.
Index the meridians and longitudes according to the corresponding copy of T. Next,
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Figure 5.2. The Alexander gored ball as a countable intersection
of 3-balls in D?3.

<3

Figure 5.3. The Alexander gored ball as a grope. The 2-
dimensional spine of the first three stages is shown on the left
and the branching pattern is depicted as a tree on the right.

attach four more copies Toog, Too1, To1o and Tpy1 along annular neighbourhoods of
Moo X {0}, AOO X {1}, Mo1 X {0} and )\01 X {1}

respectively. Iterate this procedure infinitely many times, each iteration adding
twice as many copies of T as in the previous stage. The result is an infinite union
of copies of T indexed by the vertices of a tree as indicated in Figure 5.3. The finite
stages are examples of 3-dimensional gropes, and the infinite union is an infinite
3-dimensional grope.

This process can be done carefully so that the resulting space is embedded in
3-space, and in a way that forces the longitudes and meridians to get smaller and
smaller in the successive stages so that they will ultimately converge to points. By
inspecting the construction, these limit points form a Cantor set in 3-space. Indeed,
they correspond to the limit points of the dyadic tree in Figure 5.3, which in turn
correspond to infinite sequences of Os and 1s.

We claim that this infinite union of thickened punctured tori together with the
limit points is homeomorphic to A. To see this we first look at D? carefully.
Figure 5.4 shows a picture of D? x [—1,1] = D3, and two thickened arcs embedded
in D? x [~1,1] in a clasp, much like in Figure 5.2, but here with the missing smaller
plugs, also copies of D? x [—1, 1], temporarily put back in. The complement of these
two thickened arcs is homeomorphic to T. To assist with seeing this, in Figure 5.5
we show a copy of T in the complement of the thickened arcs, and it is not too
hard to see that sweeping this left and rig