
Chapter 2
The s-Cobordism Theorem

2.1 Introduction

In this chapter we want to discuss and prove the following theorem (in the smooth
category).

Theorem 2.1 (s-Cobordism Theorem) Let M0 be a closed connected smooth ma-
nifold with dim(M0) � 5 and fundamental group ⇡ = ⇡1(M0). Then:

(i) Let (W ; M0, f0,M1, f1) be a smooth h-cobordism over M0. Then W is trivial over
M0 if and only if its Whitehead torsion ⌧(W,M0) 2 Wh(⇡) vanishes;

(ii) For any x 2 Wh(⇡) there is a smooth h-cobordism (W ; M0, f0,M1, f1) over M0
with ⌧(W,M0) = x 2 Wh(⇡);

(iii) The function assigning to a smooth h-cobordism (W ; M0, f0,M1, f1) over M0 its
Whitehead torsion yields a bijection from the di�eomorphism classes relative
M0 of smooth h-cobordisms over M0 to the Whitehead group Wh(⇡).

The analogous statements hold in the PL category and in the topological category.

Here are some explanations. In the sequel we work in the smooth category
unless explicitly stated otherwise. An n-dimensional cobordism (sometimes also just
called a bordism) (W ; M0, f0,M1, f1) consists of a compact n-dimensional manifold
W , closed (n � 1)-dimensional manifolds M0 and M1, a disjoint decomposition
@W = @0W

›
@1W of the boundary @W of W , and di�eomorphisms f0 : M0 ! @0W

and f1 : M1 ! @1W . If we want to specify M0, we say that W is a cobordism over
M0. If @0W = M0, @1W = M1 and f0 and f1 are given by the identity or if f0 and f1
are obvious from the context, we briefly write (W ; @0W, @1W). Note that the choices
of the di�eomorphisms fi do play a role, although they are often suppressed in the
notation. Two cobordisms (W ; M0, f0,M1, f1) and (W 0; M0, f 00 ,M

0
1, f 01 ) over M0 are

di�eomorphic relative M0 if there is a di�eomorphism F : W ! W 0 with F� f0 = f 00 .
We call a cobordism (W ; M0, f0,M1, f1) an h-cobordism if the inclusions @iW ! W
for i = 0, 1 are homotopy equivalences. We call an h-cobordism over M0 trivial if
it is di�eomorphic relative M0 to the trivial h-cobordism (M0 ⇥ [0, 1]; M0 ⇥ {0},
M0 ⇥ {1}). We will discuss the Whitehead group in Sections 2.5 and 3.2.
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16 2 The s-Cobordism Theorem

Exercise 2.2 Let G be a finitely presented group and n � 6. Show that Wh(G) is
trivial if every n-dimensional h-cobordism with G as fundamental group is trivial.

Exercise 2.3 Classify all two-dimensional connected h-cobordisms.

We will later see that the Whitehead group of the trivial group vanishes. Thus the
s-Cobordism Theorem 2.1 implies the following theorem.

Theorem 2.4 (h-Cobordism Theorem) Every h-cobordism over a simply con-
nected closed smooth manifold M0 with dim(M0) � 5 is trivial.

The analogous statement holds in the PL category and in the topological category.

Theorem 2.5 ((Generalised) Poincaré Conjecture) The (Generalised) Poincaré
Conjecture holds for a closed topological manifold M with dim(M) � 5, namely,
if M is simply connected and its homology Hp(M) is isomorphic to Hp(Sn) for all
p 2 Z, then M is homeomorphic to Sn.

The (Generalised) Poincaré Conjecture also holds in the PL category.

Proof. We begin with dim(M) � 6. As M is simply connected and H⇤(M) � H⇤(Sn),
one can conclude from the Hurewicz Theorem and the Whitehead Theorem, see [178,
Theorem 4.32 on page 366 and Corollary 4.33 on page 367] or [431, Theorem IV.7.13
on page 181 and Theorem IV.7.17 on page 182], that there is a homotopy equivalence
f : M ! Sn. Let Dn

i ⇢ M for i = 0, 1 be two embedded disjoint disks. Put W =
M\(int(Dn

0 )
›

int(Dn
1 )). Then W turns out to be a simply connected h-cobordism. By

Theorem 2.4 there is a di�eomorphism F : (@Dn
0 ⇥ [0, 1], @Dn

0 ⇥ {0}, @Dn
0 ⇥ {1}) !

(W, @Dn
0 , @Dn

1 ) that is the identity on @Dn
0 = @Dn

0 ⇥{0} and induces some (unknown)
di�eomorphism f1 : @Dn

0 ⇥ {1} ! @Dn
1 . By the Alexander trick one can extend

f1 : @Dn
0 = @Dn

0 ⇥ {1} ! @Dn
1 to a homeomorphism f1 : Dn

0 ! Dn
1 . Namely, any

homeomorphism f : Sn�1 ! Sn�1 extends to a homeomorphism f : Dn ! Dn by
sending t · x for t 2 [0, 1] and x 2 Sn�1 to t · f (x). Now define a homeomorphism
h : Dn

0 ⇥ {0} [i0 @Dn
0 ⇥ [0, 1] [i1 Dn

0 ⇥ {1} ! M for the canonical inclusions
ik : @Dn

0 ⇥ {k} ! @Dn
0 ⇥ [0, 1] for k = 0, 1 by h|Dn

0 ⇥{0} = id, h|@Dn

0 ⇥[0,1] = F and
h|Dn

0 ⇥{1} = f1. Since the source of h is obviously homeomorphic to Sn, Theorem 2.5
follows.

In the case dim(M) = 5 one uses the fact that M is the boundary of a contractible
6-dimensional manifold W and applies the s-cobordism theorem to W with an
embedded disk removed. See also [439]. ut

Remark 2.6 (The Poincaré Conjecture does not hold in the smooth category)
Note that the proof of the Poincaré Conjecture in Theorem 2.5 works only in the
topological category and PL category, but not in the smooth category. In other words,
we cannot conclude the existence of a di�eomorphism h : Sn ! M . The proof in the
smooth case breaks down when we apply the Alexander trick. The construction of
f given by coning f yields only a PL homeomorphism f and not a di�eomorphism
if we start with a di�eomorphism f . The map f is smooth outside the origin of
Dn but not necessarily at the origin. We will see that not every di�eomorphism
f : Sn�1 ! Sn�1 can be extended to a di�eomorphism Dn ! Dn and that there exist
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so-called exotic spheres, i.e., closed smooth manifolds which are homeomorphic to
Sn but not di�eomorphic to Sn for some n. The classification of these exotic spheres
is one of the early very important achievements of surgery theory and one motivation
for its further development, see Chapter 12 and in particular Remark 12.36.

Figure 2.7 (Poincaré Conjecture).

homotopy n-sphere Sn�1 ⇥ [0, 1]

embedded
disks

f

idSn�1

�

Exercise 2.8 Show that any di�eomorphism f : S1 ! S1 can be extended to a
di�eomorphism F : D2 ! D2.

Remark 2.9 (Surgery Program) In some sense the s-Cobordism Theorem 2.1
is one of the first theorems where di�eomorphism classes of certain manifolds are
determined by an algebraic invariant, namely the Whitehead torsion. Moreover,
the Whitehead group Wh(⇡) depends only on the fundamental group ⇡ = ⇡1(M0)
whereas the di�eomorphism classes of h-cobordisms over M0 a priori depend on
M0 itself. The s-Cobordism Theorem 2.1 is one step in a program to decide whether
two closed manifolds M and N are di�eomorphic, which is in general a very hard
question. The idea is to construct an h-cobordism (W ; M, f , N, g) with vanishing
Whitehead torsion. Then W is di�eomorphic to the trivial h-cobordism over M ,
which implies that M and N are di�eomorphic. So the Surgery Program is:

(i) Construct a homotopy equivalence f : M ! N;
(ii) Construct a cobordism (W ; M, N) and a map (F, f , id) : (W ; M, N) !

(N ⇥ [0, 1]; N ⇥ {0}, N ⇥ {1});
(iii) Modify W and F relative boundary by so-called surgery so that F becomes

a homotopy equivalence and thus W becomes an h-cobordism. During these
processes one should make certain that the Whitehead torsion of the resulting
h-cobordism is trivial.

The advantage of this approach will be that it can be reduced to problems in
homotopy theory and algebra, which can sometimes be handled by well-known
techniques. In particular one will sometimes get computable obstructions for two
homotopy equivalent manifolds to be di�eomorphic. Often surgery theory has proved
to be very useful, when one wants to distinguish two closed manifolds that have very
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similar properties. The classification of homotopy spheres, see Chapter 12, is one
example. Moreover, surgery techniques can be applied to problems that are of a
di�erent nature than di�eomorphism or homeomorphism classifications.

In this chapter we want to present the proof of the s-Cobordism Theorem and
explain why the notion of Whitehead torsion comes in. We will encounter a typical
situation in mathematics. We will consider an h-cobordism and try to prove that it
is trivial. We will introduce modifications that are designed to reduce the number of
handles and that we can apply to a handlebody decomposition without changing the
di�eomorphism type. If we could get rid of all handles, the h-cobordism would be
trivial. When attempting to cancel all handles, we run into an algebraic di�culty. A
priori this di�culty could be a lack of a good idea or technique. But it will turn out
to be a genuine obstruction and lead us to the definition of Whitehead torsion and
the Whitehead group.

Figure 2.10 (Surgery Program).

W

N

M

N ⇥ [0, 1]

f
�

F

idN

The rest of this chapter is devoted to the proof of the s-Cobordism Theorem 2.1
in the smooth category. Its proof is interesting and illuminating and it motivates the
definition of Whitehead torsion. The definition of Whitehead torsion itself and the
final step in the proof will appear in Chapter 3.

Guide 2.11 It is not necessary to go through the remainder of this chapter to com-
prehend the following chapters. It su�ces to understand the statement of the s-
Cobordism Theorem 2.1 and to read through Remark 2.9 about the Surgery Program.

It is even possible for the first reading to pretend that every s-cobordism is trivial
and the Whitehead group Wh(G) is trivial, which is known to be true in the simply
connected case and for many torsionfree groups G.
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2.2 Handlebody Decompositions

In this section we explain basic facts about handles and handlebody decompositions.

Definition 2.12 (Handlebody) The n-dimensional handle of index q or briefly
q-handle is Dq ⇥Dn�q . Its core is Dq ⇥ {0}. The boundary of the core is Sq�1 ⇥ {0}.
Its cocore is {0} ⇥ Dn�q and its transverse sphere is {0} ⇥ Sn�q�1.

Consider an n-dimensional manifold M with boundary @M . Given an embedding
�q : Sq�1 ⇥ Dn�q ,! @M , we say that the manifold M + (�q) defined by M [�q

Dq ⇥ Dn�q is obtained from M by attaching a handle of index q by �q .

Figure 2.13 (Handlebody).

D0 ⇥ D3 D1 ⇥ D2

D2 ⇥ D1 D3 ⇥ D0

Obviously M + (�q) carries the structure of a topological manifold. To get a
smooth structure, one has to use the technique of straightening the angle to get rid of
the corners at the place where the handle is glued to M . The boundary @(M + (�q))
can be described as follows. Delete from @M the interior of the image of �q . We
obtain a manifold with boundary together with a di�eomorphism from Sq�1⇥Sn�q�1

to its boundary induced by �q |Sq�1⇥Sn�q�1 . If we use this di�eomorphism to glue
Dq ⇥ Sn�q�1 to it, we obtain a closed manifold, namely, @(M + (�q)).

LetW be a compact manifold whose boundary @W is the disjoint sum @0W
›
@1W .

Then we want to construct W from @0W ⇥ [0, 1] by attaching handles as follows. Note
that the following construction will not change @0W = @0W ⇥ {0}. If �q : Sq�1 ⇥
Dn�q ,! @0W ⇥ {1} is an embedding, we get by attaching a handle the compact
manifold W1 = @0W ⇥ [0, 1] + (�q) that is given by @0W ⇥ [0, 1][�q Dq ⇥ Dn�q . Its
boundary is a disjoint sum @0W1

›
@1W1 where @0W1 is the same as @0W . Now we

can iterate this process where we attach a handle to W1 at @1W1. Thus we obtain a
compact manifold with boundary

W = @0W ⇥ [0, 1] + (�q1
1 ) + (�q2

2 ) + · · · + (�qrr )
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whose boundary is the disjoint union @0W
›
@1W where @0W is @0W ⇥ {0}. We call

a description of W as above a handlebody decomposition of W relative @0W .

Figure 2.14 (Handlebody decomposition).

@W ⇥ [0, 1]

2-handle

0-handle
1-handle

From Morse theory, see [189, Chapter 6], [298, part I], we obtain the following
lemma.

Lemma 2.15 Let W be a compact manifold whose boundary @W is the disjoint sum
@0W

›
@1W . Then W possesses a handlebody decomposition relative @0W , i.e., W

is up to di�eomorphism relative @0W = @0W ⇥ {0} of the form

W = @0W ⇥ [0, 1] + (�q1
1 ) + (�q2

2 ) + · · · + (�qrr ).

In order to show that W is di�eomorphic to @0W⇥[0, 1] relative @0W = @0W⇥{0},
we must get rid of the handles. For this purpose we have to find modifications of the
handlebody decomposition that reduce the number of handles without changing the
di�eomorphism type of W relative @0W .

Lemma 2.16 (Isotopy Lemma) Let W be an n-dimensional compact manifold
whose boundary @W is the disjoint sum @0W

›
@1W . Given isotopic embeddings

�q, q : Sq�1 ⇥ Dn�q ,! @1W , there is a di�eomorphism W + (�q) ! W + ( q)
relative @0W .

Proof. Let i : Sq�1 ⇥ Dn�q ⇥ [0, 1] ! @1W be an isotopy from �q to  q . Then one
can find a di�eotopy H : W ⇥ [0, 1] ! W with H0 = idW such that the composition
of H with �q ⇥ id[0,1] is i and H is stationary on @0W , see [189, Theorem 1.3 in
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Chapter 8 on page 184]. Thus H1 : W ! W is a di�eomorphism relative @0W and
satisfies H1 � �q =  q . It induces a di�eomorphism W + (�q) ! W + ( q) relative
@0W . ut

Lemma 2.17 (Di�eomorphism Lemma) Let W resp. W 0 be a compact mani-
fold whose boundary @W is the disjoint sum @0W

›
@1W resp. @0W 0› @1W 0. Let

F : W ! W 0 be a di�eomorphism that induces a di�eomorphism f0 : @0W ! @0W 0.
Let �q : Sq�1 ⇥ Dn�q ,! @1W be an embedding.

Then there is an embedding �
q : Sq�1 ⇥ Dn�q ,! @1W 0 and a di�eomorphism

F 0 : W + (�q) ! W 0 + (�q) that induces f0 on @0W .

Proof. Put �q = F � �q . ut

Lemma 2.18 Let W be an n-dimensional compact manifold whose boundary @W is
the disjoint sum @0W

›
@1W . Suppose that V = W + ( r ) + (�q) for q  r . Then V

is di�eomorphic relative @0W to V 0 = W + (�q) + ( r ) for appropriate �q .

Proof. By transversality and the assumption (q � 1) + (n � 1 � r) < n � 1, we can
show that the embedding �q |Sq�1⇥{0} : Sq�1 ⇥ {0} ,! @1(W + ( r )) is isotopic to an
embedding that does not meet the transverse sphere of the handle ( r ) attached by
 r [189, Theorem 2.3 in Chapter 3 on page 78]. This isotopy can be embedded in a
di�eotopy on @1(W+( r )). Thus the embedding �q : Sq�1⇥Dn�q ,! @1(W+( r )) is
isotopic to an embedding whose restriction to Sq�1⇥{0} does not meet the transverse
sphere of the handle ( r ). Since we can isotope an embedding Sq�1 ⇥ Dn�q ,!
W + ( r ) so that its image becomes arbitrary close to the image of Sq�1 ⇥ {0}, we
can isotope �q : Sq�1 ⇥Dn�q ,! @1(W + ( r )) to an embedding that does not meet a
closed neighbourhood U ⇢ @1(W + ( r )) of the transverse sphere of the handle ( r ).
There is an obvious di�eotopy on @1(W + ( r )) that is stationary on the transverse
sphere of ( r ) and moves any point on @1(W + ( r )), which belongs to the handle
( r ) but not to U, to a point outside the handle ( r ). Thus we can find an isotopy
of �q to an embedding �

p that does not meet the handle ( r ) at all. Obviously
W + ( r ) + (�q) and W + (�q) + ( r ) agree. By the Isotopy Lemma 2.16 there is a
di�eomorphism relative @0W from W + ( r ) + (�q) to W + ( r ) + (�q). ut

Example 2.19 (Cancelling handles) Here is a standard situation where attaching
first a q-handle and then a (q + 1)-handle does not change the di�eomorphism type
of an n-dimensional compact manifold W with the disjoint union @0W

›
@1W as

boundary @W . Let 0  q  n � 1. Consider an embedding

µ : Sq�1 ⇥ Dn�q [
Sq�1⇥Sn�1�q

+
Dq ⇥ Sn�1�q

+ ,! @1W

where Sn�1�q
+ is the upper hemisphere in Sn�1�q = @Dn�q . Note that the source

of µ is di�eomorphic to Dn�1. Let �q : Sq�1 ⇥ Dn�q ! @1W be its restriction to
Sq�1 ⇥ Dn�q . Let �q+1

+ : Sq
+ ⇥ Sn�q�1

+ ,! @1(W + (�q)) be the embedding given by

Sq
+ ⇥ Sn�q�1

+ = Dq ⇥ Sn�q�1
+ ⇢ Dq ⇥ Sn�q�1 = @(�q) ⇢ @1(W + (�q)).
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It does not meet the interior of W . Let �q+1
� : Sq

� ⇥ Sn�1�q
+ ,! @1(W + (�q)) be

the embedding obtained from µ by restriction to Sq
� ⇥ Sn�1�q

+ = Dq ⇥ Sn�1�q
+ .

Then �q+1
� and �q+1

+ fit together to yield an embedding  q+1 : Sq ⇥ Dn�q�1 =

Sq
�⇥Sn�q�1

+ [
Sq�1⇥Sn�q�1

+
Sq
+⇥Sn�q�1

+ ,! @1(W+(�q)). Then it is not di�cult to check
that W+(�q)+( q+1) is di�eomorphic relative @0W to W since up to di�eomorphism
W+(�q)+( q+1) is obtained from W by taking the boundary connected sum of W and
Dn along the embedding µ of Dn�1 = Sn�1

+ = Sq�1⇥Dn�q[
Sq�1⇥Sn�1�q

+
Dq ⇥Sn�1�q

+

into @1W .

Figure 2.20 (Handle cancellation).

1-handle

S ⇥ [0, 1]

2-handle

This cancellation of two handles of consecutive index can be generalised as
follows.

Lemma 2.21 (Cancellation Lemma) Let W be an n-dimensional compact manifold
whose boundary @W is the disjoint sum @0W

›
@1W . Let �q : Sq�1 ⇥ Dn�q ,! @1W

be an embedding. Let q+1 : Sq⇥Dn�1�q ,! @1(W+(�q)) be an embedding. Suppose
that  q+1(Sq ⇥ {0}) is transversal to the transverse sphere of the handle (�q) and
meets the transverse sphere in exactly one point.

Then there is a di�eomorphism relative @0W from W to W + (�q) + ( q+1).

Proof. Given any neighbourhood U ⇢ @(�q) of the transverse sphere of (�q), there
is an obvious di�eotopy on @1(W + (�q)) that is stationary on the transverse sphere
of (�q) and moves any point on @1(W + (�q)), which belongs to the handle (�q) but
not to U, to a point outside the handle (�q). Thus we can achieve that  q+1 maps
the lower hemisphere Sq

� ⇥ {0} to points outside (�q) and on the upper hemisphere
Sq
+ ⇥ {0} it is given by the obvious inclusion Dq ⇥ {x} ,! Dq ⇥ Dn�q = (�q) for

some x 2 Sn�q�1 and the obvious identification of Sq
+ ⇥ {0} with Dq ⇥ {x}. Now it

is not hard to construct a di�eomorphism relative @0W from W + (�q) + ( q+1) to
W modelling the standard situation of Example 2.19. ut

The Cancellation Lemma 2.21 will be our only tool to reduce the number of
handles. Note that one can never get rid of one handle alone, there must be at
least two handles involved simultaneously. The reason for this is that the Euler
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characteristic �(W, @0W) is independent of the handle decomposition and can be
computed by

Õ
q�0(�1)q · pq , where pq is the number of q-handles, see Section 2.3.

We call an embedding Sq⇥Dn�q ,! M for q < n into an n-dimensional manifold
trivial if it can be written as the composition of an embedding Dn ,! M and a fixed
standard embedding Sq ⇥ Dn�q ,! Dn. We call an embedding Sq ,! M for q < n
trivial if it can be extended to a trivial embedding Sq ⇥ Dn�q ,! M . We conclude
from the Cancellation Lemma 2.21 the following result.

Lemma 2.22 Let �q : Sq�1⇥Dn�q ,! @1W be a trivial embedding. Then there is an
embedding �q+1 : Sq ⇥ Dn�1�q ,! @1(W + (�q)) such that W and W + (�q)+ (�q+1)
are di�eomorphic relative @0W .

Consider a compact n-dimensional manifold W whose boundary is the disjoint
union @0W

›
@1W . In view of Lemma 2.15 and Lemma 2.18 we can write it as

W � @0W ⇥ [0, 1] +
p0’
i=1

(�0
i ) +

p1’
i=1

(�1
i ) + · · · +

pn’
i=1

(�ni ) (2.23)

where � means di�eomorphic relative @0W .

Notation 2.24 Put for �1  q  n

Wq := @0W ⇥ [0, 1] +
p0’
i=1

(�0
i ) +

p1’
i=1

(�1
i ) + · · · +

pq’
i=1

(�qi );

@1Wq := @Wq � @0W ⇥ {0};

@�1Wq := @1Wq �
pq+1fi
i=1

�q+1
i (Sq ⇥ int(Dn�1�q)).

Note for the sequel that @�1Wq ⇢ @1Wq+1.

Lemma 2.25 (Elimination Lemma) Fix an integer q with 1  q  n � 3. Suppose
that pj = 0 for j < q, i.e., W looks like

W = @0W ⇥ [0, 1] +
pq’
i=1

(�qi ) +
pq+1’
i=1

(�q+1
i ) + · · · +

pn’
i=1

(�ni ).

Fix an integer i0 with 1  i0  pq . Suppose that there is an embedding  q+1 : Sq ⇥
Dn�1�q ,! @�1Wq with the following properties:

(i) The restriction  q+1 |Sq⇥{0} is isotopic in @1Wq to an embedding
 q+1

1 : Sq ⇥ {0} ,! @1Wq that meets the transverse sphere of the handle (�qi0 )
transversally and in exactly one point and is disjoint from the transverse sphere
of �qi for i , i0;

(ii) The restriction  q+1 |Sq⇥{0} is isotopic in @1Wq+1 to a trivial embedding
 q+1

2 : Sq ⇥ {0} ,! @�1Wq+1.
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Then W is di�eomorphic relative @0W to a manifold of the shape

@0W ⇥ [0, 1] +
’

i=1,2,...,pq,
i,i0

(�qi ) +
pq+1’
i=1

(�q+1
i ) + ( q+2) +

pq+2’
i=1

(�q+2
i ) + · · · +

pn’
i=1

(�ni ).

Proof. Since  q+1 |Sq⇥{0} is isotopic to  q+1
1 and  q+1

2 is trivial, we can extend  q+1
1

and  q+1
2 to embeddings denoted in the same way  q+1

1 : Sq ⇥ Dn�q�1 ,! @1Wq and
 q+1

2 : Sq ⇥ Dn�1�q ,! @�1Wq+1 with the following properties:  q+1 is isotopic to
 q+1

1 in @1Wq ,  q+1
1 does not meet the transverse spheres of the handles (�qi ) for

i , i0,  q+1
1 |Sq⇥{0} meets the transverse sphere of the handle (�qi0 ) transversally and

in exactly one point,  q+1 is isotopic to  q+1
2 within @1Wq+1, and  q+1

2 is trivial,
see [189, Theorem 1.5 in Chapter 8 on page 180]. Because of the Di�eomorphism
Lemma 2.17 we can assume without loss of generality that there are no handles of
index � q + 2, i.e., pq+2 = pq+3 = · · · = pn = 0. It su�ces to show for appropriate
embeddings �q+1

i and  q+2 that

@0W ⇥ [0, 1] +
pq’
i=1

(�qi ) +
pq+1’
i=1

(�q+1
i )

� @0W ⇥ [0, 1] +
’

i=1,2,...,pq,i,i0

(�qi ) +
pq+1’
i=1

(�q+1
i ) + ( q+2)

where � means di�eomorphic relative @0W . Because of Lemma 2.22 there is an
embedding  q+2 satisfying

@0W ⇥ [0, 1] +
pq’
i=1

(�qi ) +
pq+1’
i=1

(�q+1
i )

� @0W ⇥ [0, 1] +
pq’
i=1

(�qi ) +
pq+1’
i=1

(�q+1
i ) + ( q+1

2 ) + ( q+2).

We conclude from the Isotopy Lemma 2.16 and the Di�eomorphism Lemma 2.17
for appropriate embeddings  q+2

k for k = 1, 2

@0W ⇥ [0, 1] +
pq’
i=1

(�qi ) +
pq+1’
i=1

(�q+1
i ) + ( q+1

2 ) + ( q+2)

� @0W ⇥ [0, 1] +
pq’
i=1

(�qi ) +
pq+1’
i=1

(�q+1
i ) + ( q+1) + ( q+2

1 )

� @0W ⇥ [0, 1] +
pq’

i=1,2,...,pq,i,i0

(�qi ) + (�
q
i0
) + ( q+1) +

pq+1’
i=1

(�q+1
i ) + ( q+2

2 ).
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We get from the Di�eomorphism Lemma 2.17 and the Cancellation Lemma 2.21 for
appropriate embeddings �q+1

i and  q+2
3

@0W ⇥ [0, 1] +
pq’

i=1,2,...,pq,i,i0

(�qi ) + (�
q
i0
) + ( q+1) +

pq+1’
i=1

(�q+1
i ) + ( q+2

2 )

� @0W ⇥ [0, 1] +
pq’

i=1,2,...,pq,i,i0

(�qi ) +
pq+1’
i=1

(�q+1
i ) + ( q+2

3 ).

This finishes the proof of the Elimination Lemma 2.25. ut

2.3 Handlebody Decompositions and CW -Structures

Next we explain how we can associate to a handlebody decomposition (2.23) a CW-
pair (X, @0W) such that there is a bijective correspondence between the q-handles of
the handlebody decomposition and the q-cells of (X, @0W). The key ingredient is that
the projection (Dq ⇥ Dn�q, Sq�1 ⇥ Dn�q) ! (Dq, Sq�1) is a homotopy equivalence
and actually, as we will explain later, a simple homotopy equivalence.

Recall that a (relative) CW-complex (X, A) consists of a pair of topological spaces
(X, A) together with a filtration

X�1 = A ⇢ X0 ⇢ X1 ⇢ . . . ⇢ Xq ⇢ Xq+1 ⇢ . . . ⇢ [q�0Xq = X

such that for any q � 0 there exists a pushout of spaces

›
i2Iq Sq�1

›
i2Iq �q

i
//

✏✏

Xq�1

✏✏›
i2Iq Dq

›
i2Iq �

q

i
// Xq

and X carries the colimit topology with respect to this filtration. The map �qi is
called the attaching map and the map (�q

i , �
q
i ) is called the characteristic map of

the q-cell belonging to i 2 Iq . The pushouts above are not part of the structure, only
their existence is required. Only the filtration {Xq | q � �1} is part of the structure.
The path components of Xq � Xq�1 are called the open cells. The open cells coincide
with the sets �q

i (Dq � Sq�1). The closure of an open cell �q
i (Dq � Sq�1) is called a

closed cell and turns out to be �q
i (Dq).

Suppose that X is connected with fundamental group ⇡. Let p : eX ! X be the
universal covering of X , i.e., a covering with simply connected total space. PutfXq = p�1(Xq) and eA = p�1(A). Then (eX, eA) inherits a CW-structure from (X, A) by
the filtration {fXq | q � �1}. The cellular Z⇡-chain complex C⇤(eX, eA) has as q-th
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Z⇡-chain module the singular homology Hq(fXq,ùXq�1) with Z-coe�cients and the
⇡-action coming from the deck transformations. The q-th di�erential dq is given by
the composition

Hq(fXq,ùXq�1)
@q��! Hq�1(ùXq�1)

iq�! Hq�1(ùXq�1,ùXq�2)

where @q is the boundary operator of the long exact sequence of the pair
(fXq,ùXq�1) and iq is induced by the inclusion. If we choose for each i 2 Iq a lift
(f�q

i ,
f�qi ) : (Dq, Sq�1) ! (fXq,ùXq�1) of the characteristic map (�q

i , �
q
i ), we obtain a

Z⇡-basis {bi | i 2 Iq} for Cq(eX, eA) if we define bi as the image of a generator in
Hq(Dq, Sq�1) � Z under the map Hq(f�q

i ,
f�qi ) : Hq(Dq, Sq�1) ! Hq(fXq,ùXq�1) =

Cq(eX, eA). We call {bi | i 2 Iq} the cellular basis. Note that we have made sev-
eral choices in defining the cellular basis. We call two Z⇡-bases {↵j | j 2 J} and
{�k | k 2 K} for Cq(eX, eA) equivalent if there is a bijection � : J ! K and elements
✏j 2 {±1} and �j 2 ⇡ for j 2 J such that ✏j · �j · ↵j = ��(j). The equivalence class
of the basis {bi | i 2 Iq} constructed above only depends on the CW-structure on
(X, A) and is independent of all further choices such as (�q

i , �
q
i ), its lift (f�q

i ,
f�qi ),

and the generator of Hq(Dq, Sq�1).
Now suppose we are given a handlebody decomposition (2.23). We want to define

a finite n-dimensional relative CW-complex (X, @0W) and a homotopy equivalence

( f , id) : (W, @0W) '�! (X, @0W). (2.26)

For this purpose we construct by induction over q = �1, 0, 1, . . . , n a sequence
of spaces X�1 = @0W ⇢ X0 ⇢ X1 ⇢ X2 ⇢ . . . ⇢ Xn together with homotopy
equivalences fq : Wq ! Xq such that fq |Wq�1 = fq�1 and (X, @0W) is a CW-
complex with respect to the filtration {Xq | q = �1, 0, 1, . . . , n}. Then f will be fn.
The induction beginning with f1 : W�1 = @0W ⇥ [0, 1] ! X�1 = @0W is given by
the projection. The induction step from (q � 1) to q is done as follows. We attach
for each handle (�qi ) for i = 1, 2, . . . , pq a cell Dq to Xq�1 by the attaching map
fq�1 � �qi |Sq�1⇥{0}. In other words, we define Xq by the pushout

›pq
i=1 Sq�1

›pq

i=1 fq�1��q

i
|
Sq�1⇥{0}

//

✏✏

Xq�1

✏✏›pq
i=1 Dq

// Xq .
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Recall that Wq is the pushout

›pq
i=1 Sq�1 ⇥ Dn�q

›pq

i=1 �
q

i
//

✏✏

Wq�1

✏✏›pq
i=1 Dq ⇥ Dn�q

// Wq .

Define a space Yq by the pushout

›pq
i=1 Sq�1

›pq

i=1 �
q

i
|
Sq�1⇥{0}

//

✏✏

Wq�1

✏✏›pq
i=1 Dq

// Yq .

Define (gq, fq�1) : (Yq,Wq�1) ! (Xq, Xq�1) by the pushout property applied to
homotopy equivalences given by fq�1 : Wq�1 ! Xq�1 and the identity maps on Sq�1

and Dq . Define (hq, id) : (Yq,Wq�1) ! (Wq,Wq�1) by the pushout property applied
to homotopy equivalences given by the obvious inclusions Sq�1 ! Sq�1 ⇥ Dn�q

and Dq ! Dq ⇥ Dn�q and the identity on Wq�1. The resulting maps are homotopy
equivalences of pairs since the left vertical arrows in the three pushouts above are
cofibrations, see [60, page 249]. Choose a homotopy inverse (h�1

q , id) : (Wq,Wq�1) !
(Yq,Wq�1). Define fq by the composite gq � h�1

q .
In particular we see that the inclusions Wq ! W are q-connected since the

inclusion of the q-skeleton Xq ! X is q-connected for a CW-complex X .
Denote by p : eW ! W the universal covering with ⇡ = ⇡1(W) as group of deck

transformations. Let fWq be the preimage of Wq under p. Note that this is the universal
covering for q � 2 since each inclusion Wq ! W induces an isomorphism on the
fundamental groups. Define the handlebody Z⇡-chain complex C⇤(eW, g@0W) to be
the Z⇡-chain complex whose q-th chain group is Hq(fWq,ùWq�1) and whose q-th
di�erential is given by the composition

Hq(fWq,ùWq�1)
@q��! Hq�1(ùWq�1)

iq�! Hq�1(ùWq�1,ùWq�2)

where @q is the boundary operator of the long homology sequence associated to the
pair (fWq,ùWq�1) and iq is induced by the inclusion. The map ( f , id) : (W, @0W) '�!
(X, @0W) of (2.26) induces an isomorphism of Z⇡-chain complexes

C⇤(ef , idù@0W
) : C⇤(eW, g@0W) ��! C⇤(eX, g@0W). (2.27)

Each handle (�qi ) determines an element
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[�qi ] 2 Cq(eW, g@0W) (2.28)

after choosing a lift (f�q
i ,
f�qi ) : (Dq ⇥ Dn�q, Sq�1 ⇥ Dn�q) ! (fWq,ùWq�1) of its

characteristic map (�q
i , �

q
i ) : (Dq ⇥ Dn�q, Sq�1 ⇥ Dn�q) ! (Wq,Wq�1), namely, the

image under the map Hq(f�q
i ,
f�qi ) of the preferred generator in Hq(Dq⇥Dn�q, Sq�1⇥

Dn�q) � H0({⇤}) = Z. This element is only well defined up to multiplication by
an element � 2 ⇡. The elements {[�qi ] | i = 1, 2, . . . , pq} form a Z⇡-basis for
Cq(eW, g@0W). Its image under the isomorphism (2.27) is a cellular Z⇡-basis.

If W has no handles of index  1, i.e., p0 = p1 = 0, one can express C⇤(eW, g@0W)
also in terms of homotopy groups as follows. Fix a base point z 2 @0W and a liftez 2 g@0W . All homotopy groups are taken with respect to these base points. Let
⇡⇤(W⇤,W⇤�1) be the Z⇡-chain complex whose q-th Z⇡-module is ⇡q(Wq,Wq�1) for
q � 2 and zero for q  1 and whose q-th di�erential is given by the composition

⇡q(Wq,Wq�1)
@q��! ⇡q�1(Wq�1)

⇡q�1(i)�����! ⇡q�1(Wq�1,Wq�2).

The Z⇡-action comes from the canonical ⇡1(A)-action on the group ⇡q(Y, A) and
the ⇡1(Y ) action on ⇡q(Y ), see [178, Section 4.A] or [431, Theorem I.3.1 on
page 164], and the identification ⇡1(Wq�1) ! ⇡1(W) = ⇡ coming from the in-
clusions Wq�1 ! W . Note that ⇡q(Y, A) is abelian for any pair of spaces (Y, A) for
q � 3 and is abelian also for q = 2 if A is simply connected or empty. For q � 2 the
Hurewicz homomorphism is an isomorphism, see [178, Theorem 4.32 on page 366]
or [431, Corollary IV.7.11 on page 181], ⇡q(fWq,ùWq�1) ! Hq(fWq,ùWq�1) and the
projection p : eW ! W induces isomorphisms ⇡q(fWq,ùWq�1) ! ⇡q(Wq,Wq�1). Thus
we obtain an isomorphism of Z⇡-chain complexes

C⇤(eW, g@0W) ��! ⇡⇤(W⇤,W⇤�1). (2.29)

Fix a path wi in W from a point in the transverse sphere of (�qi ) to the base point z.
Then the handle (�qi ) determines an element

[�qi ] 2 ⇡q(Wq,Wq�1). (2.30)

It is represented by the obvious map (Dq ⇥ {0}, Sq�1 ⇥ {0}) ! (Wq,Wq�1) together
with wi . It agrees with the element [�qi ] 2 Cq(eW, g@0W) defined in (2.28) under the
isomorphism (2.29) if we use the lift of the characteristic map determined by the
path wi .

Exercise 2.31 Let M be a closed odd-dimensional manifold. Show that for any
handlebody decomposition the number of handles of odd index is equal to the
number of handles of even index.

Exercise 2.32 Let M be a closed connected manifold that possesses a handlebody
decomposition without handles of index one. Show that M is simply connected.
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Exercise 2.33 Show that a handlebody decomposition for W = Sn ⇥ Sn must have
at least one 0-handle, two n-handles and one 2n-handle. Describe one.

2.4 Reducing the Handlebody Decomposition

In the next step we want to get rid of the handles of index zero and one in the
handlebody decomposition (2.23).

Lemma 2.34 Let W be an n-dimensional manifold for n � 6 whose boundary is the
disjoint union @W = @0W

›
@1W . Then the following statements are equivalent:

(i) The inclusion @0W ! W is 1-connected;
(ii) We can find a di�eomorphism relative @0W

W � @0W ⇥ [0, 1] +
p2’
i=1

(�2
i ) +

p3’
i=1

(�3
i ) + · · · +

pn’
i=1

(�ni ).

Proof. (ii) ) (i) has already been proved in Section 2.3. It remains to conclude (ii)
provided that (i) holds.

We first get rid of all 0-handles in the handlebody decomposition (2.23). It
su�ces to give a procedure to reduce the number of handles of index 0 by one. As
the inclusion @0W ! W is 1-connected, the inclusion @0W ! W1 induces a bijection
on the set of path components. Given any index i0, there must be an index i1 such
that the core of the handle �1

i1
is a path connecting a point in @0W ⇥ {1} with a point

in (�0
i0
). We conclude from the Di�eomorphism Lemma 2.17 and the Cancellation

Lemma 2.21 that (�i0 ) and (�1
i1
) cancel one another, i.e., we have

W � @0W ⇥ [0, 1] +
’

i=1,2,...,p0,i,i0

(�0
i ) +

’
i=1,2,...,p1,i,i1

(�1
i ) + · · · +

pn’
i=1

(�ni ).

Hence we can assume p0 = 0 in (2.23).
Next we want to get rid of the 1-handles assuming that the inclusion @0W ! W

is 1-connected. It su�ces to give a procedure to reduce the number of handles of
index 1 by one. We want to do this by constructing an embedding  2 : S1 ⇥ Dn�2 ,!
@�1W1 that satisfies the two conditions of the Elimination Lemma 2.25, and then
applying the Elimination Lemma 2.25. Consider the embedding  2

+ : S1
+ = D1 =

D1 ⇥ {x} ,! D1 ⇥ Dn�1 = (�1
1) for some fixed x 2 Sn�2 = @Dn�1. The inclusion

@�1W0 ! @1W0 = @0W ⇥ {1} induces an isomorphism on the fundamental group
since @�1W0 is obtained from @1W0 = @0W ⇥ {1} by removing the interior of a finite
number of embedded (n � 1)-dimensional disks. Since by assumption the inclusion
@0W ! W is 1-connected, the inclusion @�1W0 ! W induces an epimorphism on
the fundamental groups. Therefore we can find an embedding  2

� : S1
� ,! @�1W0 with

 2
� |S0 =  2

+ |S0 such that the map  2
0 : S1 = S1

+ [S0 S1
� ! @1W1 given by  2

+ [  2
� is
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nullhomotopic in W . One can isotope the attaching maps �2
i : S1 ⇥ Dn�2 ! @1W1 of

the 2-handles (�2
i ) so that they do not meet the image of  2

0 because the sum of the
dimension of the source of  2

0 and of S1⇥ {0} ⇢ S1⇥Dn�2 is less than the dimension
(n�1) of @1W1 and one can always shrink inside Dn�2. Thus we can assume without
loss of generality by the Isotopy Lemma 2.16 and the Di�eomorphism Lemma 2.17
that the image of  2

0 lies in @�1W1. The inclusion @1W2 ! W is 2-connected. Hence
 2

0 is nullhomotopic in @1W2. Let h : D2 ! @1W2 be a nullhomotopy for  2
0 . Since

2 · dim(D2) < dim(@1W2), we can change h relative to S1 into an embedding. (Here
we need for the first time the assumption n � 6.) Since D2 is contractible, the normal
bundle of h and thus of  2

0 =  
2
+ [  2

� are trivial. Therefore we can extend  2
0 to an

embedding  2 : S1 ⇥ Dn�1 ,! @�1W1 that is isotopic to a trivial embedding in @1W2,
meets the transverse sphere of the handle (�1

1) transversally and in exactly one point,
and does not meet the transverse spheres of the handles (�1

i ) for 2  i  p1. Now
Lemma 2.34 follows from the Elimination Lemma 2.25. ut

Now consider an h-cobordism (W ; @0W, @1W). Because of Lemma 2.34 we can
write it as

W � @0W ⇥ [0, 1] +
p2’
i=1

(�2
i ) +

p3’
i=1

(�3
i ) + · · · .

Lemma 2.35 (Homology Lemma) Suppose n � 6. Fix 2  q  n � 3 and i0 2
{1, 2, . . . , pq}. Let f : Sq ,! @1Wq be an embedding. Then the following statements
are equivalent:

(i) The embedding f is isotopic to an embedding g : Sq ,! @1Wq such that g
meets the transverse sphere of (�qi0 ) transversally and in exactly one point and
is disjoint from transverse spheres of the handles (�qi ) for i , i0;

(ii) Let ef : Sq ! fWq be a lift of f under p|gWq
: fWq ! Wq . Let [ef ] be the image of

the class represented by ef under the obvious composition

⇡q(fWq) ! ⇡q(fWq,ùWq�1) ! Hq(fWq,ùWq�1) = Cq(eW).

Then there is a � 2 ⇡ with
[ef ] = ±� · [�qi0 ].

Proof. (i)) (ii) We can isotope f so that f |Sq

+
: Sq
+ ! @1Wq looks like the canonical

embedding Sq
+ = Dq ⇥ {x} ,! Dq ⇥ Sn�1�q = @(�qi0 ) for some x 2 Sn�1�q and

f (Sq
� ) does not meet any of the handles (�qi ) for i = 1, 2, . . . , pq . One easily checks

that then (ii) is true.

(ii) ) (i) We can isotope f so that it is transverse to the transverse spheres of the
handles (�qi ) for i = 1, 2, . . . , pq . Since the sum of the dimension of the source of
f and of the dimension of the transverse spheres is the dimension of @1Wq , the
intersection of the image of f with the transverse sphere of the handle (�qi ) consists
of finitely many points xi,1, xi,2, . . . , xi,ri for i = 1, 2, . . . , pq . Fix a base point y 2 Sq .
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It yields a base point z = f (y) 2 W . Fix for each handle (�qi ) a path wi in W
from a point in its transverse sphere to z. Let ui, j be a path in Sq with the property
that ui, j(0) = y and f (ui, j(1)) = xi, j for 1  j  ri and 1  i  pq . Let vi, j be
any path in the transverse sphere of (�qi ) from xi, j to wi(0). Then the composite
f (ui, j) ⇤ vi, j ⇤ wi is a loop in W with base point z and thus represents an element
denoted by �i, j in ⇡ = ⇡1(W, z). It is independent of the choice of ui, j and vi, j since
Sq and the transverse sphere of each handle (�qi ) are simply connected. The tangent
space Txi, j @1Wq is the tangent space of the handle (�qi ) at xi, j and is the direct sum of
Tf �1(xi, j )S

q and the tangent space of the transverse sphere {0}⇥ Sn�1�q of the handle
(�qi ) at xi, j . All these three tangent spaces come with preferred orientations. We
define elements ✏i, j 2 {±1} by requiring that it is 1 if these orientations fit together
and �1 otherwise. Now one easily checks that

[ef ] =
pq’
i=1

ri’
j=1

✏i, j · �i, j · [�qi ]

where [�qi ] is the element associated to the handle (�qi ) after the choice of the path
wi , see (2.28) and (2.30). We have by assumption [ef ] = ±� · [�qi0 ] for some � 2 ⇡.
We want to isotope f so that f does not meet the transverse spheres of the handles
(�qi ) for i , i0 and does meet the transverse sphere of (�qi0 ) transversally and in
exactly one point. Therefore it su�ces to show in the case that the number

Õpq
i=1 ri

of all intersection points of f with the transverse spheres of the handles (�qi ) for
i = 1, 2, . . . , pi is bigger than one that we can change f by an isotopy so that this
number becomes smaller. We have

±� · [�qi0 ] =
pq’
i=1

ri’
j=1

✏i, j · �i, j · [�qi ].

Recall that the elements [�qi ] for i = 1, 2, . . . , pq form a Z⇡-basis. Hence we can find
an index i 2 {1, 2, . . . , pq} and two di�erent indices j1, j2 in {1, 2, . . . , ri} such that
the composite of the paths f (ui, j1 ) ⇤ vi, j1 ⇤ v�i, j2 ⇤ f (u�i, j2 ) is nullhomotopic in W and
hence in @1Wq and the signs ✏i, j1 and ✏i, j2 are di�erent. Now by the Whitney trick,
see [301, Theorem 6.6 on page 71], [435], we can change f by an isotopy so that
the two intersection points xi, j1 and xi, j2 disappear, the other intersection points of
f with transverse spheres of the handles (�qi ) for i 2 {1, 2, . . . , pq} remain and no
further intersection points are introduced. For the application of the Whitney trick
we need the assumption n � 1 � 5 and when q = 2 or q = n � 3 an additional
assumption on fundamental groups. One of the referees pointed out that we did not
address the second assumption. In our situation it turns out that this requirement
is always fulfilled, a subtlety explained in the book by Scorpan [373, pages 51-53]
in dimensions (n � 1) � 5. (What happens for (n � 1) = 4 is discussed in [373,
pages 57-58].) This finishes the proof of the Homology Lemma 2.35. ut
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Lemma 2.36 (Modification Lemma) Let f : Sq ,! @�1Wq be an embedding and let
xj 2 Z⇡ be elements for j = 1, 2 . . . , pq+1. Then there is an embedding g : Sq ,!
@�1Wq with the following properties:

(i) f and g are isotopic in @1Wq+1;
(ii) For a given lift ef : Sq ! fWq of f one can find a lift eg : Sq ! fWq of g such that

we get in Cq(eW)

[eg] = [ef ] +
pq+1’
j=1

xj · dq+1[�q+1
j ]

where dq+1 is the (q + 1)-th di�erential in C⇤(eW, g@0W).

Proof. Any element in Z⇡ can be written as a sum of elements of the form ±� for
� 2 ⇡. Hence it su�ces to prove for a fixed number j 2 {1, 2 . . . , pq}, a fixed element
� 2 ⇡, and a fixed sign ✏ 2 {±1} that one can find an embedding g : Sq ,! @�1Wq

that is isotopic to f in @1Wq+1 and satisfies for an appropriate lifting eg
[eg] = [ef ] + ✏ · � · dq+1[�q+1

j ].

Consider the embedding tj : Sq = Sq ⇥ {z} ⇢ Sq ⇥ Sn�2�q ,! @(�q+1
j ) ⇢ @1Wq for

some point z 2 Sn�2�q = @Dn�1�q . It is in @1Wq+1 isotopic to a trivial embedding.
Choose a pathw in @�1Wq connecting a point in the image of f with a point in the image
of tj . Without loss of generality we can arrange w to be an embedding. Moreover, we
can thicken w : [0, 1] ! @�1Wq to an embedding w : [0, 1] ⇥ Dq ,! @�1Wq such that
w({0}⇥Dq) and w({1}⇥Dq) are embedded q-dimensional disks in the images of f
and tj and w((0, 1) ⇥ Dq) does not meet the images of f and tj . Now one can form a
new embedding, the connected sum g := f ]wtj : Sq ! @�1Wq . It is essentially given
by restriction of f and tj to the part of Sq which is not mapped under f and tj to the
interior of the disks w({0} ⇥ Dq), w({1} ⇥ Dq), and w |[0,1]⇥Sq�1 . Since tj is isotopic
to a trivial embedding in @1Wq+1, the embedding g is isotopic in @1Wq+1 to f . Recall
that we have fixed a lifting ef of f . This determines a unique lifting of eg, namely,
we require that ef and eg coincide on those points where f and g already coincide.
For an appropriate element �0 2 ⇡ one gets [eg] = [ef ] + �0 · dq+1([�q+1

j ]) since
tj : Sq ! @1Wq ⇢ Wq is homotopic to �q+1

j |Sq⇥{0} : Sq ⇥ {0} = Sq ! Wq in Wq .
We can change the path w by composing it with a loop representing � · (�0)�1 2 ⇡.
Then we get for the new embedding g that

[eg] = [ef ] + � · dq+1([�q+1
j ]).

If we compose tj with a di�eomorphism Sq ! Sq of degree �1, we still get an
embedding g that is isotopic to f in @1Wq+1 and satisfies

[eg] = [ef ] � � · dq+1([�q+1
j ]).

This finishes the proof of the Modification Lemma 2.36. ut
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Lemma 2.37 (Normal Form Lemma) Let (W ; @0W, @1W) be a compact h-
cobordism of dimension n � 6. Let q be an integer with 2  q  n � 3.

Then there is a handlebody decomposition that has only handles of index q and
(q + 1), i.e., there is a di�eomorphism relative @0W

W � @0W ⇥ [0, 1] +
pq’
i=1

(�qi ) +
pq+1’
i=1

(�q+1
i ).

Proof. In the first step we show that we can arrange W�1 = Wq�1, i.e., pr = 0 for
r  q � 1. We do this by induction over q. The induction beginning with q = 2 has
already been carried out in Lemma 2.34. In the induction step from q to (q + 1) we
must explain how we can decrease the number of q-handles, provided that there are
no handles of index < q. In order to get rid of the handle (�q1 ), we want to attach a
new (q+1)-handle and a new (q+2)-handle such that (�q1 ) and the new (q+1)-handle
cancel and the new (q + 1)-handle and the new (q + 2)-handle cancel each other.
The e�ect will be that the number of q-handles is decreased by one at the cost of
increasing the number of (q + 2)-handles by one.

Fix a trivial embedding q+1 : Sq⇥Dn�1�q ,! @�1Wq . As the inclusion @0W ! W
is a homotopy equivalence, Hp(eW, g@0W) = 0 for all p � 0. Since the p-th homology
of C⇤(eW, g@0W) is Hp(eW, g@0W) = 0, the Z⇡-chain complex C⇤(eW, g@0W) is acyclic.
Since Cq�1(eW, g@0W) is trivial, the q-th di�erential of C⇤(eW, g@0W) is zero and hence
the (q + 1)-th di�erential dq+1 is surjective. We can choose elements xj 2 Z⇡ such
that

[�q1 ] =
pq+1’
i=1

xj · dq+1([�q+1
i ]).

Since ↵ :=  
q+1 |Sq⇥{0} ! @�1Wq is nullhomotopic, [e↵] = 0 in Hq(fWq,ùWq�1).

We conclude from the Modification Lemma 2.36 that we can find an embedding
 q+1 : Sq ⇥ Dn�1�q ,! @�1Wq such that � :=  q+1 |Sq⇥{0} is isotopic in @1Wq+1 to ↵
and we get

[e�] = [e↵] +
pq+1’
i=1

xj · dq+1([�q+1
i ]) = [�q1 ].

Because of the Homology Lemma 2.35 the embedding � =  q |Sq⇥{0} is isotopic
in @1Wq to an embedding � : Sq ,! @1Wq that meets the transverse sphere of (�q1 )
transversally and in exactly one point and is disjoint from the transverse spheres of
all other handles of index q. By construction  q+1 is isotopic in @1Wq+1 to the trivial
embedding  q+1. Now we can apply the Elimination Lemma 2.25. This finishes the
proof that we can arrange W�1 = Wq�1.

Next we explain the dual handlebody decomposition. Suppose that W is obtained
from @0W ⇥ [0, 1] by attaching one q-handle (�q), i.e., W = @0W ⇥ [0, 1] + (�q).
Then we can interchange the role of @0W and @1W and try to build W from @1W by
handles. It turns out that W can be written as
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W = @1W ⇥ [0, 1] + ( n�q) (2.38)

by the following argument.
Let M be the manifold with boundary Sq�1 ⇥ Sn�1�q obtained from @0W by

removing the interior of �q(Sq�1 ⇥ Dn�q). We get

W � @0W ⇥ [0, 1] [Sq�1⇥Dn�q Dq ⇥ Dn�q

= M ⇥ [0, 1] [Sq�1⇥Sn�1�q⇥[0,1]⇣
Sq�1 ⇥ Dn�q ⇥ [0, 1] [Sq�1⇥Dn�q⇥{1} Dq ⇥ Dn�q

⌘
.

Inside Sq�1 ⇥ Dn�q ⇥ [0, 1] [Sq�1⇥Dn�q⇥{1} Dq ⇥ Dn�q we have the following sub-
manifolds

X := Sq�1 ⇥ 1/2 · Dn�q ⇥ [0, 1] [Sq�1⇥1/2·Dn�q⇥{1} Dq ⇥ 1/2 · Dn�q;

Y := Sq�1 ⇥ 1/2 · Sn�1�q ⇥ [0, 1] [Sq�1⇥1/2·Sn�1�q⇥{1} Dq ⇥ 1/2 · Sn�1�q .

The pair (X,Y ) is di�eomorphic to (Dq ⇥ Dn�q,Dq ⇥ Sn�1�q), i.e., it is a handle
of index (n � q). Let N be obtained from W by removing the interior of X . Then
W is obtained from N by adding an (n � q)-handle, the so-called dual handle. One
easily checks that N is di�eomorphic to @1W ⇥ [0, 1] relative @1W ⇥ {1}. Thus (2.38)
follows.

Suppose that W is relatively @0W of the shape

W � @0W ⇥ [0, 1] +
p0’
i=1

(�0
i ) +

p1’
i=1

(�1
i ) + · · · +

pn’
i=1

(�ni ).

Then we can conclude inductively using the Di�eomorphism Lemma 2.17 and (2.38)
that W is di�eomorphic relative to @1W to

W � @1W ⇥ [0, 1] +
pn’
i=1

(�0
i ) +

pn�1’
i=1

(�1
i ) + · · · +

p0’
i=1

(�ni ). (2.39)

This corresponds to replacing a Morse function f by � f . The e�ect is that the
number of q-handles now becomes the number of (n � q)-handles.

Now applying the first step to the dual handlebody decomposition for q replaced
by (n� q � 1) and then considering the dual handlebody decomposition of the result
finishes the proof of the Normal Form Lemma 2.37. ut

2.5 Handlebody Decompositions and Whitehead Groups

Let (W, @0W, @1W) be an n-dimensional compact h-cobordism for n � 6. By the
Normal Form Lemma 2.37 we can fix a handlebody decomposition for some fixed
number 2  q  n � 3
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W � @0W ⇥ [0, 1] +
pq’
i=1

(�qi ) +
pq+1’
i=1

(�q+1
i ).

Recall that the Z⇡-chain complex C⇤(eW, g@0W) is acyclic. Hence the only non-
trivial di�erential dq+1 : Hq+1(ùWq+1, fWq) ! Hq(fWq,ùWq�1) is bijective. Recall that
{[�q+1

i ] | i = 1, 2 . . . , pq+1} is a Z⇡-basis for Hq+1(ùWq+1, fWq) and {[�qi ] | i =
1, 2 . . . , pq} is a Z⇡-basis for Hq(fWq,ùWq�1). In particular pq = pq+1. The matrix
A, which describes the di�erential dq+1 with respect to these bases, is an invertible
(pq, pq)-matrix over Z⇡. Since we are working with left modules, dq+1 sends an
element x 2 ZGn to x · A 2 ZGn, or equivalently, dq+1([�q+1

i ]) = Õn
j=1 ai, j[�qj ].

Next we define an abelian group Wh(⇡) as follows. It is the set of equivalence
classes of invertible matrices of arbitrary size with entries in Z⇡ where we call an
invertible (m,m)-matrix A and an invertible (n, n)-matrix B over Z⇡ equivalent if we
can pass from A to B by a sequence of the following operations:

(i) B is obtained from A by adding the k-th row multiplied by x from the left to
the l-th row for x 2 Z⇡ and k , l;

(ii) B is obtained by taking the direct sum of A and the (1, 1)-matrix I1 = (1), i.e.,

B looks like the block matrix
✓

A 0
0 1

◆
;

(iii) A is the direct sum of B and I1. This is the inverse operation to (ii);
(iv) B is obtained from A by multiplying the i-th row from the left by a trivial unit,

i.e., by an element of the shape ±� for � 2 ⇡;
(v) B is obtained from A by interchanging two rows or two columns.

The group structure is given on representatives A and B as follows. By taking the
direct sum A� Im and B � In with the identity matrices Im and In of size m and n for
appropriate m and n one can arrange that A � Im and B � In are invertible matrices
of the same size and can be multiplied. Define [A] · [B] by [(A � Im) · (B � In)]. The
zero element 0 2 Wh(⇡) is represented by In for any positive integer n. The inverse
of [A] is given by [A�1]. We will show later in Lemma 3.8 that the multiplication is
well defined and yields an abelian group Wh(⇡).

Exercise 2.40 Show that the Whitehead group of the trivial group vanishes.

Exercise 2.41 Let t 2 Z/5 be a generator. Consider the (1, 1)-matrix given as
(1 � t � t�1) over Z[Z/5]. Show that it represents a non-trivial element in Wh(Z/5).

Lemma 2.42 (i) Let (W, @0W, @1W) be an n-dimensional compact h-cobordism
for n � 6 and A be the matrix defined above. If [A] = 0 in Wh(⇡), then the
h-cobordism W is trivial relative @0W .

(ii) Consider an element u 2 Wh(⇡), a closed manifold M of dimension n � 1 � 5
with fundamental group ⇡ and an integer q with 2  q  n � 3. Then we can
find an h-cobordism of the shape
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W = M ⇥ [0, 1] +
pq’
i=1

(�qi ) +
pq+1’
i=1

(�q+1
i )

such that [A] = u.

Proof. (i) Let B be a matrix which is obtained from A by applying one of the
operations (i), (ii), (iii), (iv), and (v). It su�ces to show that we can modify the given
handlebody decomposition in normal form of W with associated matrix A such that
we get a new handlebody decomposition in normal form whose associated matrix is
B.

We begin with (i). Consider W 0 = @0W ⇥ [0, 1] + Õpq
i=1(�

q
i ) +

Õpq+1
j=1, j,l(�

q+1
j ).

Note that we get from W 0 our h-cobordism W if we attach the handle (�q+1
l ). By the

Modification Lemma 2.36 we can find an embedding �q+1
l : Sq ⇥ Dn�1�q ,! @1W 0

such that �q+1
l is isotopic to �q+1

l and we get
 ü
�
q+1
l |Sq⇥{0}

�
=

 ü
�q+1
l |Sq⇥{0}

�
+ x · dq+1([�q+1

k ]).

If we attach to W 0 the handle (�q+1
l ), the result is di�eomorphic to W relative @0W

by the Isotopy Lemma 2.16. One easily checks that the associated invertible matrix
B is obtained from A by adding the k-th row multiplied by x from the left to the l-th
row.

The claim for the operations (ii) and (iii) follows from the Cancellation
Lemma 2.21 and the Homology Lemma 2.35. The claim for the operation (iv)
follows from the observation that we can replace the attaching map of a handle
�q : Sq ⇥ Dn�1�q ,! @1Wq by its composition with f ⇥ id for some di�eomorphism
f : Sq ! Sq of degree �1 and that the base element [�qi ] can also be changed to
� · [�qi ] by choosing a di�erent lift along fWq ! Wq . Operation (v) can be realised
by interchanging the numeration of the q-handles and (q + 1)-handles.

(ii) Fix an invertible matrix A = (ai, j) 2 GL(n,Z⇡). Choose trivial pairwise disjoint
embeddings �2

i : S1 ⇥ Dn�2 ,! M0 ⇥ {1}. Consider

W2 = M0 ⇥ [0, 1] + (�2
1) + (�

2
2) + · · · + (�

2
n).

As the embeddings �2
i are trivial, there are embeddings �3

i : S2 ⇥Dn�3 ,! @1W2 and
lifts e�3

i : S2 ⇥ Dn�3 ! ù@1W2 such that in ⇡2(fW2, g@0W)

[e�3
i |S2⇥{0}] =

n’
j=1

ai, j · [�2
j ].

Put W = W2 + (�3
1) + (�

3
2) + · · · + (�

3
n). One easily checks that W is an h-cobordism

over M0 with a handlebody decomposition realising the matrix A. This finishes the
proof Lemma 2.42. ut
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If ⇡ is trivial, then Wh(⇡) is trivial. Hence Lemma 2.42 (i) implies already the
h-Cobordism Theorem 2.4.

Remark 2.43 (Strategy to finish the proof of the s-Cobordism Theorem 2.1)
As soon as we have shown that [A] 2 Wh(⇡) agrees with the Whitehead torsion
⌧(W,M0) of the h-cobordism W over M0 and that this invariant depends only on the
di�eomorphism type of W relative M0, the s-Cobordism Theorem 2.1 (i) will follow.

Obviously Lemma 2.42 (ii) implies the s-Cobordism Theorem 2.1 (ii). We will
later see that assertion (iii) of the s-Cobordism Theorem 2.1 follows from asser-
tions (i) and (ii) if we have more information about the Whitehead torsion, namely
the sum and the composition formulas. All this will be carried out in Section 3.3

2.6 Notes

The h-Cobordism Theorem 2.4 is due to Smale [379]. The s-Cobordism Theorem 2.1
is due to Barden, Mazur, and Stallings, see [20, 291]. In the PL category proofs can
be found in [367, 6.19 on page 88]. Its topological version follows from Kirby
and Siebenmann [219, Conclusion 7.4 on page 320]. More information about the
s-Cobordism Theorem can be found for instance in [215], [301], [367, page 87-90].
The s-Cobordism Theorem is known to be false for dim(M0) = 4 in general, by the
work of Donaldson [135], but it is true for n = dim(M0) = 4 for good fundamental
groups in the topological category by results of Quinn and Freedman [37, 157, 158,
159]. Counterexamples in the case dim(M0) = 3 are constructed by Matsumoto and
Siebenmann [288] and Cappell and Shaneson [82] where the relevant 4-dimensional
s-cobordism is a topological manifold. It is not known whether one can choose
the s-cobordism to be smooth in these counterexamples. It follows from Kwasik
and Schultz [236] and Perelman’s proof of the Thurston Geometrisation Conjecture,
see [222, 311], that every h-cobordism between two orientable closed 3-manifolds
is an s-cobordism. The Poincaré Conjecture, see Theorem 2.5, is known in all
dimensions where dimension 3 is due to the work of Perelman, see [222, 310, 311,
331, 332, 333], and dimension 4 is due to Freedman, see [37, 157, 158, 159]. The first
proof of the Poincaré Conjecture in the topological category in dimension � 5 was
given by Newman [319] using engulfing theory. The smooth version of the Poincaré
Conjecture holds in dimensions  3, is open in dimension 4, and is discussed in
dimensions � 5 in Remark 12.36.


