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Abstract

The generalized Schoenflies theorem asserts that if ϕ ∶ Sn−1 → Sn is a topological
embedding and A is the closure of a component of Sn∖ϕ(Sn−1), then A ≅ Dn as long as
A is a manifold. This was originally proved by Barry Mazur and Morton Brown using
rather different techniques. We give both of these proofs.

1 Introduction
Let ϕ ∶ Sn−1 → Sn be a topological embedding with n ≥ 2. It follows from Alexander duality
(see [6, Theorem 3.44]) that Sn∖ϕ(Sn−1) has two connected components. Let A and B their
closures, so Sn = A∪B and A∩B = ϕ(Sn−1). If n = 2, then the classical Jordan-Schoenflies
theorem says that A ≅ D2 and B ≅ D2. However, this need not hold for n ≥ 3. Indeed, the
Alexander horned sphere is an embedding α ∶ S2 → S3 such that one of the two components
of S3 ∖α(S2) is not simply connected. In fact, something even worse is true: the closure of
the non-simply-connected component of S3 ∖ α(S2) is not even a manifold!

It turns out that this is the only thing that can go wrong.

Generalized Schoenflies Theorem. Let ϕ ∶ Sn−1 → Sn be a topological embedding with
n ≥ 2 and let A be the closure of a component of Sn∖ϕ(Sn−1). Assume that A is a manifold
with boundary. Then A ≅ Dn.

The generalized Schoenflies theorem was originally proved by Barry Mazur [7] and Morton
Brown [3] in rather different ways, though both approaches are striking and completely
elementary. These notes contain an exposition of both of these proofs.

Remark. In fact, Mazur proved a seemingly weaker theorem earlier than Brown which
Morse [9] proved implied the general result. The paper [9] of Morse appears in the same
volume as Brown’s paper [3].

Remark. The closures of the components of Sn ∖ϕ(Sn−1) are known as crumpled n-cubes.
When they are not manifolds, they have complicated fractal singularities. However, Bing
[2, Theorem 4] proved that a crumpled n-cube is a retract of Rn, and in particular is
contractible.

Remark. It is possible for the closures of both components of Sn ∖ ϕ(Sn−1) to be non-
manifolds; indeed, Bing [1] proved that the space obtained by “doubling” the closure of
the “bad” component of the complement of the Alexander horned sphere along the horned
sphere “boundary” is homeomorphic to S3.

Both proofs of the generalized Schoenflies theorem start by using the assumption that A
is a manifold to find a collar neighborhood of ∂A ≅ Sn−1, i.e. an embedding ∂A × [0,1]→ A
that takes (a,0) ∈ ∂A × [0,1] to a. The existence of collar neighborhoods is a theorem of
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Morton Brown [4]; we give a very short proof due to Connelly [5] in §2. Next, one considers
a small round disc D′ ⊂ Sn lying in ∂A × [0,1] ⊂ A. Setting D = Sn ∖D′, we have D ≅ Dn.
The strategy of both proofs is to parlay the homeomorphism D ≅ Dn into a homeomorphism
A ≅ Dn. They do this in different ways. Mazur’s proof, which we discuss in §3, uses a clever
infinite boundary connect sum to deduce the desired result. This argument resembles the
Eilenberg swindle in algebra; at a formal level, is is based on the ersatz “proof”

0 = (1 − 1) + (1 − 1) +⋯ = 1 + (−1 + 1) + (−1 + 1) +⋯ = 1.

Brown’s proof, which we discuss in §4, instead uses a technique called Bing shrinking to
understand the complement Sn ∖ (∂A × [0,1]).

2 Collar neighborhoods
In this section, we give a short proof due to Connelly [5] of the following theorem of Morton
Brown [4]. Recall that if M is a manifold with boundary, then a collar neighborhood of ∂M
is a closed neighborhood C of ∂M such that C ≅ ∂M × [0,1].

Theorem 2.1. Let M be a compact manifold with boundary. Then ∂M has a collar neigh-
borhood.

Proof. Define N to be the result of gluing ∂M × (−∞,0] to M by identifying (m,0) ∈
∂M × [−∞,0] with m ∈ ∂M . For s ∈ (−∞,0], let Ns ⊂ N be the subset consisting of M and
∂M × [s,0]. The theorem is equivalent to the assertion that M ≅ N−1, which we will prove
by “dragging” ∂M over the collar a little at a time using a sequence of homeomorphisms
ηi ∶ N → N .

Let {U1, . . . , Uk} be an open cover of ∂M such that each Ui is equipped with an embed-
ding ϕi ∶ Ui × [0,1] →M . Extend ϕi to an embedding ψi ∶ Ui × (−∞,1] → N in the obvious
way. Let {ρi ∶ Ui → [0,1]}ki=1 be a partition of unity subordinate to the Ui. For 0 ≤ a ≤ 1,
define a function ζa ∶ (∞,1]→ (−∞,1] via the formula

ζa(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t − a if −∞ < t ≤ 0,
(1 + 2a)t − a if 0 ≤ t ≤ 1/2,
t if 1/2 ≤ t ≤ 1.

In particular, ζ0 = id. Each function ζa is a homeomorphism satisfying ζa(0) = −a and
ζa∣[1/2,1] = id. For 1 ≤ i ≤ k, let η̂i ∶ Ui × (−∞,1]→ Ui × (−∞,1] be the homeomorphism given
by the formula

η̂i(u, t) = (u, ζρi(u)(t)).

The homeomorphism η̂i is the identity outside the set supp(ρi)×(−∞,1/2] ⊂ Ui×(−∞,1]. We
can therefore extend it by identity to a homeomorphism ηi ∶ N → N . The homeomorphism
η1 ○ η2 ○ ⋯ ○ ηk ∶ N → N then restricts to a homeomorphism between M and N−1, as
desired.
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3 Schoenflies via infinite repetition
In this section, we give Barry Mazur’s proof of the generalized Schoenflies theorem, which
originally appeared in [7]. In fact, the paper [7] proves the following seemingly weaker
theorem; we will deduce the general case using an argument of Morse [9]. We say that a
subspace D′ ⊂ Int(Sn−1 × [0,1]) is a round n-disc if it is such when Sn−1 × [0,1] is regarded
as the usual tubular neighborhood of the equator in Sn.

Lemma 3.1. Let ϕ̂ ∶ Sn−1 × [0,1]→ Sn be an embedding with n ≥ 2 and let A be the closure
of the component of Sn∖ ϕ̂(Sn−1×0) that contains ϕ̂(Sn−1×(0,1]). Assume that there exists
a round n-disc D′ ⊂ Int(Sn−1× [0,1]) such that D ∶= Sn∖ ϕ̂(Int(D′)) satisfies D ≅ Dn. Then
A ≅ Dn.

Proof. We begin by introducing some notation. We will identify Sn−1 with

{(t1, . . . , tn) ∈ [0,1]n ∣ there exists some 1 ≤ i ≤ n with ti ∈ {0,1}}.

If C and C ′ are n-manifolds whose boundaries are identified with Sn−1 in a fixed way, then
define C +C ′ to be the result of identifying (1, t2, . . . , tn) ∈ ∂C ≅ Sn−1 with (0, t2, . . . , tn) ∈
∂C ′ ≅ Sn−1 for all (t2, . . . , tn) ∈ [0,1]n−1. It is easy to see that C +C ′ ≅ C ′ +C. If C1,C2, . . .
are n-manifolds whose boundaries are identified with Sn−1 in a fixed way, then we have

C1 ⊂ C1 +C2 ⊂ C1 +C2 +C3 ⊂ ⋯.

We will write C1 +C2 +⋯ for the union of this increasing sequence of spaces.
We now turn to the proof of Lemma 3.1. Let B be the closure of the component

of Sn ∖ ϕ̂(Sn−1 × 1) that is not contained in A. Both A and B are n-manifolds whose
boundaries are homeomorphic to Sn−1, and we will fix homeomorphisms between Sn−1 and
these boundaries. The first observation is that A + B ≅ D, and hence A + B ≅ Dn. To
see this, observe that the fact that D′ is a round n-disc in Int(Sn−1 × [0,1]) implies that
S ∶= (Sn−1 × [0,1])∖ Int(D′) is homeomorphic to an n-disc with the interiors of two disjoint
n-discs in its interior removed. Letting X and Y be the components of Sn∖ ϕ̂(Sn−1×(0,1))
ordered so that X ⊂ A and Y ⊂ B, the disc D is formed by gluing X and Y to two of the
boundary components of S. As is shown in Figure 1, the result is homeomorphic to A +B.

Since A +B ≅ Dn, we have

A +B +A +B +⋯ ≅ Dn +Dn +Dn +⋯.

As is shown in Figure 1, this implies that A +B +A +B +⋯ is homeomorphic to the upper
half space

{(s1, . . . , sn) ∈ Rn ∣ s1 ≥ 0}.

For a space M , let P(M) be the one-point compactification of M . The above identification
of A+B +A+B +⋯ implies that P(A+B +A+B +⋯) ≅ Dn. In a similar way, the fact that
B +A ≅ Dn implies that P(B +A +B +A +⋯) ≅ Dn. We therefore deduce that

Dn ≅ P(A +B +A +B +⋯) ≅ A +P(B +A +B +A +⋯) ≅ A +Dn ≅ A,

as desired.
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Figure 1: LHS: A drawing of D. The outer boundary component is ∂D = ∂D′. The inner two
boundary components are the places to which X and Y are glued. The left square is homeomorphic
to A and the right square is homeomorphic to B. RHS: The space A+B+A+B+⋯ is homeomorphic
to Dn +Dn +Dn +⋯, which is homeomorphic to the upper half space {(s1, . . . , sn) ∈ Rn ∣ s1 ≥ 0}.

Proof of the generalized Schoenflies theorem. We recall the setup. Let ϕ ∶ Sn−1 → Sn be a
topological embedding and let A be the closure of a component of Sn ∖ ϕ(Sn−1). Assume
that A is a manifold. Our goal is to prove that A ≅ Dn. Using Theorem 2.1, we can
extend ϕ to an embedding ϕ̂ ∶ Sn−1 × [0,1] → Sn whose image lies in A. Choose some
point p0 ∈ Sn−1 × (0,1). We will regard Sn−1 × [0,1] as lying in Sn as the standard tubular
neighborhood of the equator. Using this convention, we can compose everything in sight
with a rotation and assume that ϕ̂(p0) = p0. Let D′ ⊂ Sn−1 × (0,1) be a small round
disc around p0. Choosing a second point q0 ∈ Sn ∖A, we will construct a continuous map
f ∶ Sn ∖ {q0}→ Sn with the following properties.

• The map f is a homeomorphism onto its image, which is an open subset of Sn.
• The embedding f ○ ϕ̂ ∶ Sn−1 × [0,1]→ Sn restricts to the identity on D′.

The embedding f ○ ϕ̂ will thus satisfy the conditions of Lemma 3.1 and we will be able to
conclude that f(A) ≅ Dn, and hence that A ≅ Dn.

It remains to construct f . Let B be a small open round ball around p0 in Sn such that
B lies in ϕ̂(Sn−1 × (0,1)) and such that D′ ⊂ B. Let g ∶ Sn ∖{q0}→ B be a homeomorphism
such that g∣D′ = id. Also, let C = ϕ̂−1(B). Define f ∶ Sn ∖ {q0}→ Sn to be the composition

Sn ∖ {q0}
g
Ð→ B

(ϕ̂∣C)−1

ÐÐÐÐ→ C ↪ Sn.

The map f clearly satisfies the above conditions, and the theorem follows.

4 Schoenflies via Bing shrinking
In this section, we give Morton Brown’s proof of the generalized Schoenflies theorem, which
originally appeared in [3]. Before we launch into the details, we discuss the strategy of
the proof. Let ϕ ∶ Sn−1 → Sn be a topological embedding and let A be the closure of a
component of Sn ∖ ϕ(Sn−1). Assume that A is a manifold with boundary. Using Theorem
2.1, we can extend ϕ to an embedding ϕ̂ ∶ Sn−1 × [0,1] → Sn whose image lies in A. Our
goal is to prove that A ≅ Dn. Let X and Y be the two components of Sn ∖ ϕ̂(Sn−1 × (0,1)),
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ordered so that X ⊂ A. The key observation is that there exists a surjective map f ∶ Sn → Sn

that collapses X and Y to points x and y, respectively, and is otherwise injective. Clearly
f restricts to a surjection from A to a disc Dn ⊂ Sn. What Brown showed was that X has
a certain topological property that ensures that A ≅ A/X.

This topological property enjoyed by X is that X is cellular, which we now define. A
subset X of an n-manifold is cellular if for all open sets U containing X, we can write
X = ⋂∞i=1Ci, where for all i ≥ 1 the set Ci satisfies

Ci ⊂ U and Ci ≅ Dn and Ci+1 ⊂ Int(Ci).

Since each Ci is closed, this implies that X is closed. Before we state the main consequence
of being cellular, we must introduce some terminology for collapsing subsets of manifolds.
Let M be a compact manifold with boundary and let X1, . . . ,Xs be pairwise disjoint closed
subsets of M . The result of collapsing the sets X1, . . . ,Xs is the quotient space M/ ∼,
where for distinct z, z′ ∈M we have z ∼ z′ if and only if there exists some 1 ≤ i ≤ s such that
z, z′ ∈Xi. The projection M →M/ ∼ is the collapse map of X1, . . . ,Xs.

Lemma 4.1. Let M be a compact n-manifold with boundary and let X1, . . . ,Xs be pairwise
disjoint cellular subsets of Int(M). Define M ′ to be the result of collapsing X1, . . . ,Xs.
Then M is homeomorphic to M ′.

Proof. Using induction, it is enough to deal with the case s = 1, so let X ⊂ Int(M) be a
cellular subset. We will construct a surjective map f ∶M →M such that f ∣M∖X is injective
and such that there exists some x0 ∈M with f−1(x0) = X. These conditions ensure that f
is the collapse map of X, so M will be homeomorphic to the result of collapsing X.

Write X = ⋂∞i=1Ci, where for all i ≥ 1 we have

Ci ⊂ Int(M) and Ci ≅ Dn and Ci+1 ⊂ Int(Ci).

The surjective map f will be the limit of a sequence of homeomorphisms fi ∶ M → M
that are constructed inductively. First, f1 = id. Next, assume that fi ∶ M → M has been
constructed for some i ≥ 1. We have

fi(Ci) ≅ Dn and fi(Ci+1) ≅ Dn and fi(Ci+1) ⊂ Int(fi(Ci)).

We can therefore choose a homeomorphism ĝi+1 ∶ fi(Ci) → fi(Ci) that restricts to the
identity on ∂(fi(Ci)) and satisfies diam(ĝi+1(fi(Ci+1))) ≤ 1

i+1 . Extend ĝi+1 by the identity
to a homeomorphism gi+1 ∶M →M and define fi+1 = gi+1 ○ fi.

We now prove that for all p ∈M , the sequence of points fj(p) approaches a limit. There
are two cases. If p ∈X, then fj(p) ∈ fj(Cj) for all j. By construction, we have

f1(C1) ⊃ f2(C2) ⊃ f3(C3) ⊃ ⋯ and lim
j→∞

diam(fj(Cj)) = 0.

The set ∩∞j=1fj(Cj) therefore reduces to a single point x0 and limj→∞ fj(p) = x0. If instead
p ∉X, then something even stronger happens: the sequence of points

f1(p), f2(p), f3(p), . . .
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is eventually constant. Indeed, if k ≥ 1 is such that p ∉ Ck, then fj(p) = fj−1(p) for j ≥ k.
Thus limj→∞ fj(p) equals fj(p) for j ≫ 0.

We can therefore define a map f ∶M →M via the formula

f(p) = lim
j→∞

fj(p) (p ∈ Dn).

It is clear that f is a continuous map and that f−1(x0) =X. To deduce the lemma, we must
show that f is surjective and that f ∣M∖X is injective.

We begin with surjectivity. Clearly the image of f contains x0, so it is enough to show
that it contains an arbitrary point q ∈M ∖ {x0}. For ℓ≫ 0, we have q ∉ fℓ(Cℓ), and hence
f−1

ℓ (q) ∉ Cℓ and f(f−1
ℓ (q)) = fℓ(f−1

ℓ (q)) = q, so q is in the image of f .
We next prove that f ∣M∖X is injective. Consider distinct point r, r′ ∈ M ∖X. We can

find m ≫ 0 such that f(r) = fm(r) and f(r′) = fm(r′). Since fm is a homeomorphism, we
therefore have f(r) ≠ f(r′). The lemma follows

Remark. The technique used to prove Lemma 4.1 is called Bing shrinking; it was intro-
duced by Bing in [1] to prove that the double of the Alexander horned ball is homeomorphic
to the 3-sphere and plays a basic role in many delicate results in geometric topology.

To make use of Lemma 4.1, we need a way of recognizing when a set is cellular. This
is subtle in general, but for closed subsets X of the interior of a disc Dn it turns out that
X is cellular if the conclusion of Lemma 4.1 holds, namely if the result of collapsing X is
homeomorphic to Dn. We will actually need the following slight strengthening of this fact.

Lemma 4.2. Let X1, . . . ,Xs be pairwise disjoint closed subsets of Int(Dn). Define M ′ to
be the result of collapsing X1, . . . ,Xs and let π ∶ Dn →M ′ be the collapse map. Assume that
there exists an embedding M ′ ↪ Sn that takes π(Int(Dn)) ⊂ M ′ to an open subset of Sn.
Then each Xi is cellular.

Proof. The proof will be by induction on s. The base case will be s = 0, in which case the
lemma has no content. Assume now that s > 0 and that the lemma is true for all smaller
collections of sets. Let f ∶ Dn → Sn be the composition of π and the embedding given by
the assumptions and let xi = f(Xi) for 1 ≤ i ≤ s. Let U be an open set in Dn with Xs ⊂ U ,
so xs ∈ f(U). Fix a metric on Sn, and for all δ > 0 let Bδ ⊂ Sn be the ball around xs of
radius δ. Choose ϵ > 0 such that Bϵ ⊂ f(U) and such that xi ∉ Bϵ for 1 ≤ i ≤ s− 1. For j ≥ 1,
let hj ∶ Sn → Sn be an injective continuous map such that hj(f(Dn)) ⊂ Bϵ/j and such that
hj ∣Bϵ/(j+1) = id. Next, define gj ∶ Dn → Dn via the formula

gj(z) =
⎧⎪⎪⎨⎪⎪⎩

z if z ∈Xs,

f−1 ○ hj ○ f(z) if z ∉Xs.

This expression makes sense since hj ○ f(z) ≠ xs if z ∉ X, so f−1 ○ hj ○ f(z) is a single well-
defined point. Since hj ∣Bϵ/(j+1) = id, the function gj restricts to the identity on f−1(Bϵ/(j+1)),
and hence gj is a continuous map. Set Cj = gj(Dn) ⊂ Dn. By construction, Cj is the result
of collapsing X1, . . . ,Xs−1. We can therefore apply our inductive hypothesis to deduce that
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Xi is cellular for 1 ≤ i ≤ s − 1; here we are using the fact that Dn can be embedded in Sn.
Applying Lemma 4.1, we get that Cj ≅ Dn. We also also have

Xs ⊂ f−1(Bϵ/(j+1)) ⊂ Cj ⊂ f−1(Bϵ/j) ⊂ U.

The sets Cj thus satisfy the conditions in the definition of a cellular set, so Xs is also cellular,
as desired.

Proof of the generalized Schoenflies theorem. The setup is just as in the beginning of this
section. Let ϕ ∶ Sn−1 → Sn be a topological embedding and let A be the closure of a
component of Sn ∖ ϕ(Sn−1). Assume that A is a manifold. Using Theorem 2.1, we can
extend ϕ to an embedding ϕ̂ ∶ Sn−1 × [0,1] → Sn whose image lies in A. Let X and Y be
the two components of Sn ∖ ϕ̂(Sn−1 × (0,1)), ordered so that X ⊂ A. As in the beginning
of this section, let f ∶ Sn → Sn be the collapse map of X and Y . Let D′ ⊂ Sn ∖ (X ∪ Y ) be
a small round disc. Letting D = Sn ∖D′, we have D ≅ Dn. The restriction of f to D is the
composition of the collapse map of X and Y (considered as subsets of D) with an inclusion
into Sn. Applying Lemma 4.2, we deduce that X and Y are cellular (in fact, we only need
this for X). Finally, applying Lemma 4.1 we see that A ≅ A/X ≅ Dn, as desired.
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