The generalized Schoenflies theorem

Andrew Putman

Abstract

The generalized Schoenflies theorem asserts that if $\phi: S^{n-1} \rightarrow S^{n}$ is a topological embedding and A is the closure of a component of $S^{n} \backslash \phi\left(S^{n-1}\right)$, then $A \cong \mathbb{D}^{n}$ as long as A is a manifold. This was originally proved by Barry Mazur and Morton Brown using rather different techniques. We give both of these proofs.

1 Introduction

Let $\phi: S^{n-1} \rightarrow S^{n}$ be a topological embedding with $n \geq 2$. It follows from Alexander duality (see [6, Theorem 3.44]) that $S^{n} \backslash \phi\left(S^{n-1}\right)$ has two connected components. Let A and B their closures, so $S^{n}=A \cup B$ and $A \cap B=\phi\left(S^{n-1}\right)$. If $n=2$, then the classical Jordan-Schoenflies theorem says that $A \cong \mathbb{D}^{2}$ and $B \cong \mathbb{D}^{2}$. However, this need not hold for $n \geq 3$. Indeed, the Alexander horned sphere is an embedding $\alpha: S^{2} \rightarrow S^{3}$ such that one of the two components of $S^{3} \backslash \alpha\left(S^{2}\right)$ is not simply connected. In fact, something even worse is true: the closure of the non-simply-connected component of $S^{3} \backslash \alpha\left(S^{2}\right)$ is not even a manifold!

It turns out that this is the only thing that can go wrong.
Generalized Schoenflies Theorem. Let $\phi: S^{n-1} \rightarrow S^{n}$ be a topological embedding with $n \geq 2$ and let A be the closure of a component of $S^{n} \backslash \phi\left(S^{n-1}\right)$. Assume that A is a manifold with boundary. Then $A \cong \mathbb{D}^{n}$.

The generalized Schoenflies theorem was originally proved by Barry Mazur [7] and Morton Brown [3] in rather different ways, though both approaches are striking and completely elementary. These notes contain an exposition of both of these proofs.

Remark. In fact, Mazur proved a seemingly weaker theorem earlier than Brown which Morse [9] proved implied the general result. The paper [9] of Morse appears in the same volume as Brown's paper [3].

Remark. The closures of the components of $S^{n} \backslash \phi\left(S^{n-1}\right)$ are known as crumpled n-cubes. When they are not manifolds, they have complicated fractal singularities. However, Bing [2, Theorem 4] proved that a crumpled n-cube is a retract of \mathbb{R}^{n}, and in particular is contractible.

Remark. It is possible for the closures of both components of $S^{n} \backslash \phi\left(S^{n-1}\right)$ to be nonmanifolds; indeed, Bing [1] proved that the space obtained by "doubling" the closure of the "bad" component of the complement of the Alexander horned sphere along the horned sphere "boundary" is homeomorphic to S^{3}.

Both proofs of the generalized Schoenflies theorem start by using the assumption that A is a manifold to find a collar neighborhood of $\partial A \cong S^{n-1}$, i.e. an embedding $\partial A \times[0,1] \rightarrow A$ that takes $(a, 0) \in \partial A \times[0,1]$ to a. The existence of collar neighborhoods is a theorem of

Morton Brown [4]; we give a very short proof due to Connelly [5] in §2. Next, one considers a small round disc $D^{\prime} \subset S^{n}$ lying in $\partial A \times[0,1] \subset A$. Setting $D=S^{n} \backslash D^{\prime}$, we have $D \cong \mathbb{D}^{n}$. The strategy of both proofs is to parlay the homeomorphism $D \cong \mathbb{D}^{n}$ into a homeomorphism $A \cong \mathbb{D}^{n}$. They do this in different ways. Mazur's proof, which we discuss in $\S 3$, uses a clever infinite boundary connect sum to deduce the desired result. This argument resembles the Eilenberg swindle in algebra; at a formal level, is is based on the ersatz "proof"

$$
0=(1-1)+(1-1)+\cdots=1+(-1+1)+(-1+1)+\cdots=1 .
$$

Brown's proof, which we discuss in $\S 4$, instead uses a technique called Bing shrinking to understand the complement $S^{n} \backslash(\partial A \times[0,1])$.

2 Collar neighborhoods

In this section, we give a short proof due to Connelly [5] of the following theorem of Morton Brown [4]. Recall that if M is a manifold with boundary, then a collar neighborhood of ∂M is a closed neighborhood C of ∂M such that $C \cong \partial M \times[0,1]$.

Theorem 2.1. Let M be a compact manifold with boundary. Then ∂M has a collar neighborhood.

Proof. Define N to be the result of gluing $\partial M \times(-\infty, 0]$ to M by identifying $(m, 0) \in$ $\partial M \times[-\infty, 0]$ with $m \in \partial M$. For $s \in(-\infty, 0]$, let $N_{s} \subset N$ be the subset consisting of M and $\partial M \times[s, 0]$. The theorem is equivalent to the assertion that $M \cong N_{-1}$, which we will prove by "dragging" ∂M over the collar a little at a time using a sequence of homeomorphisms $\eta_{i}: N \rightarrow N$.

Let $\left\{U_{1}, \ldots, U_{k}\right\}$ be an open cover of ∂M such that each U_{i} is equipped with an embed$\operatorname{ding} \phi_{i}: U_{i} \times[0,1] \rightarrow M$. Extend ϕ_{i} to an embedding $\psi_{i}: U_{i} \times(-\infty, 1] \rightarrow N$ in the obvious way. Let $\left\{\rho_{i}: U_{i} \rightarrow[0,1]\right\}_{i=1}^{k}$ be a partition of unity subordinate to the U_{i}. For $0 \leq a \leq 1$, define a function $\zeta_{a}:(\infty, 1] \rightarrow(-\infty, 1]$ via the formula

$$
\zeta_{a}(t)= \begin{cases}t-a & \text { if }-\infty<t \leq 0 \\ (1+2 a) t-a & \text { if } 0 \leq t \leq 1 / 2 \\ t & \text { if } 1 / 2 \leq t \leq 1\end{cases}
$$

In particular, $\zeta_{0}=\mathrm{id}$. Each function ζ_{a} is a homeomorphism satisfying $\zeta_{a}(0)=-a$ and $\left.\zeta_{a}\right|_{[1 / 2,1]}=$ id. For $1 \leq i \leq k$, let $\widehat{\eta}_{i}: U_{i} \times(-\infty, 1] \rightarrow U_{i} \times(-\infty, 1]$ be the homeomorphism given by the formula

$$
\widehat{\eta}_{i}(u, t)=\left(u, \zeta_{\rho_{i}(u)}(t)\right) .
$$

The homeomorphism $\widehat{\eta}_{i}$ is the identity outside the set $\operatorname{supp}\left(\rho_{i}\right) \times(-\infty, 1 / 2] \subset U_{i} \times(-\infty, 1]$. We can therefore extend it by identity to a homeomorphism $\eta_{i}: N \rightarrow N$. The homeomorphism $\eta_{1} \circ \eta_{2} \circ \cdots \circ \eta_{k}: N \rightarrow N$ then restricts to a homeomorphism between M and N_{-1}, as desired.

3 Schoenflies via infinite repetition

In this section, we give Barry Mazur's proof of the generalized Schoenflies theorem, which originally appeared in [7]. In fact, the paper [7] proves the following seemingly weaker theorem; we will deduce the general case using an argument of Morse [9]. We say that a subspace $D^{\prime} \subset \operatorname{Int}\left(S^{n-1} \times[0,1]\right)$ is a round n-disc if it is such when $S^{n-1} \times[0,1]$ is regarded as the usual tubular neighborhood of the equator in S^{n}.

Lemma 3.1. Let $\widehat{\phi}: S^{n-1} \times[0,1] \rightarrow S^{n}$ be an embedding with $n \geq 2$ and let A be the closure of the component of $S^{n} \backslash \widehat{\phi}\left(S^{n-1} \times 0\right)$ that contains $\widehat{\phi}\left(S^{n-1} \times(0,1]\right)$. Assume that there exists a round n-disc $D^{\prime} \subset \operatorname{Int}\left(S^{n-1} \times[0,1]\right)$ such that $D:=S^{n} \backslash \widehat{\phi}\left(\operatorname{Int}\left(D^{\prime}\right)\right)$ satisfies $D \cong \mathbb{D}^{n}$. Then $A \cong \mathbb{D}^{n}$.

Proof. We begin by introducing some notation. We will identify S^{n-1} with

$$
\left\{\left(t_{1}, \ldots, t_{n}\right) \in[0,1]^{n} \mid \text { there exists some } 1 \leq i \leq n \text { with } t_{i} \in\{0,1\}\right\} .
$$

If C and C^{\prime} are n-manifolds whose boundaries are identified with S^{n-1} in a fixed way, then define $C+C^{\prime}$ to be the result of identifying $\left(1, t_{2}, \ldots, t_{n}\right) \in \partial C \cong S^{n-1}$ with $\left(0, t_{2}, \ldots, t_{n}\right) \in$ $\partial C^{\prime} \cong S^{n-1}$ for all $\left(t_{2}, \ldots, t_{n}\right) \in[0,1]^{n-1}$. It is easy to see that $C+C^{\prime} \cong C^{\prime}+C$. If C_{1}, C_{2}, \ldots are n-manifolds whose boundaries are identified with S^{n-1} in a fixed way, then we have

$$
C_{1} \subset C_{1}+C_{2} \subset C_{1}+C_{2}+C_{3} \subset \cdots .
$$

We will write $C_{1}+C_{2}+\cdots$ for the union of this increasing sequence of spaces.
We now turn to the proof of Lemma 3.1. Let B be the closure of the component of $S^{n} \backslash \widehat{\phi}\left(S^{n-1} \times 1\right)$ that is not contained in A. Both A and B are n-manifolds whose boundaries are homeomorphic to S^{n-1}, and we will fix homeomorphisms between S^{n-1} and these boundaries. The first observation is that $A+B \cong D$, and hence $A+B \cong \mathbb{D}^{n}$. To see this, observe that the fact that D^{\prime} is a round n-disc in $\operatorname{Int}\left(S^{n-1} \times[0,1]\right)$ implies that $S:=\left(S^{n-1} \times[0,1]\right) \backslash \operatorname{Int}\left(D^{\prime}\right)$ is homeomorphic to an n-disc with the interiors of two disjoint n-discs in its interior removed. Letting X and Y be the components of $S^{n} \backslash \widehat{\phi}\left(S^{n-1} \times(0,1)\right)$ ordered so that $X \subset A$ and $Y \subset B$, the disc D is formed by gluing X and Y to two of the boundary components of S. As is shown in Figure 1, the result is homeomorphic to $A+B$.

Since $A+B \cong \mathbb{D}^{n}$, we have

$$
A+B+A+B+\cdots \cong \mathbb{D}^{n}+\mathbb{D}^{n}+\mathbb{D}^{n}+\cdots
$$

As is shown in Figure 1, this implies that $A+B+A+B+\cdots$ is homeomorphic to the upper half space

$$
\left\{\left(s_{1}, \ldots, s_{n}\right) \in \mathbb{R}^{n} \mid s_{1} \geq 0\right\} .
$$

For a space M, let $\mathcal{P}(M)$ be the one-point compactification of M. The above identification of $A+B+A+B+\cdots$ implies that $\mathcal{P}(A+B+A+B+\cdots) \cong \mathbb{D}^{n}$. In a similar way, the fact that $B+A \cong \mathbb{D}^{n}$ implies that $\mathcal{P}(B+A+B+A+\cdots) \cong \mathbb{D}^{n}$. We therefore deduce that

$$
\mathbb{D}^{n} \cong \mathcal{P}(A+B+A+B+\cdots) \cong A+\mathcal{P}(B+A+B+A+\cdots) \cong A+\mathbb{D}^{n} \cong A,
$$

as desired.

Figure 1: LHS: A drawing of D. The outer boundary component is $\partial D=\partial D^{\prime}$. The inner two boundary components are the places to which X and Y are glued. The left square is homeomorphic to A and the right square is homeomorphic to B. RHS: The space $A+B+A+B+\cdots$ is homeomorphic to $\mathbb{D}^{n}+\mathbb{D}^{n}+\mathbb{D}^{n}+\cdots$, which is homeomorphic to the upper half space $\left\{\left(s_{1}, \ldots, s_{n}\right) \in \mathbb{R}^{n} \mid s_{1} \geq 0\right\}$.

Proof of the generalized Schoenflies theorem. We recall the setup. Let $\phi: S^{n-1} \rightarrow S^{n}$ be a topological embedding and let A be the closure of a component of $S^{n} \backslash \phi\left(S^{n-1}\right)$. Assume that A is a manifold. Our goal is to prove that $A \cong \mathbb{D}^{n}$. Using Theorem 2.1, we can extend ϕ to an embedding $\widehat{\phi}: S^{n-1} \times[0,1] \rightarrow S^{n}$ whose image lies in A. Choose some point $p_{0} \in S^{n-1} \times(0,1)$. We will regard $S^{n-1} \times[0,1]$ as lying in S^{n} as the standard tubular neighborhood of the equator. Using this convention, we can compose everything in sight with a rotation and assume that $\widehat{\phi}\left(p_{0}\right)=p_{0}$. Let $D^{\prime} \subset S^{n-1} \times(0,1)$ be a small round disc around p_{0}. Choosing a second point $q_{0} \in S^{n} \backslash A$, we will construct a continuous map $f: S^{n} \backslash\left\{q_{0}\right\} \rightarrow S^{n}$ with the following properties.

- The map f is a homeomorphism onto its image, which is an open subset of S^{n}.
- The embedding $f \circ \widehat{\phi}: S^{n-1} \times[0,1] \rightarrow S^{n}$ restricts to the identity on D^{\prime}.

The embedding $f \circ \widehat{\phi}$ will thus satisfy the conditions of Lemma 3.1 and we will be able to conclude that $f(A) \cong \mathbb{D}^{n}$, and hence that $A \cong \mathbb{D}^{n}$.

It remains to construct f. Let B be a small open round ball around p_{0} in S^{n} such that B lies in $\widehat{\phi}\left(S^{n-1} \times(0,1)\right)$ and such that $D^{\prime} \subset B$. Let $g: S^{n} \backslash\left\{q_{0}\right\} \rightarrow B$ be a homeomorphism such that $\left.g\right|_{D^{\prime}}=$ id. Also, let $C=\widehat{\phi}^{-1}(B)$. Define $f: S^{n} \backslash\left\{q_{0}\right\} \rightarrow S^{n}$ to be the composition

$$
S^{n} \backslash\left\{q_{0}\right\} \xrightarrow{g} B \xrightarrow{\left(\left.\widehat{\phi}\right|_{C}\right)^{-1}} C \hookrightarrow S^{n} .
$$

The map f clearly satisfies the above conditions, and the theorem follows.

4 Schoenflies via Bing shrinking

In this section, we give Morton Brown's proof of the generalized Schoenflies theorem, which originally appeared in [3]. Before we launch into the details, we discuss the strategy of the proof. Let $\phi: S^{n-1} \rightarrow S^{n}$ be a topological embedding and let A be the closure of a component of $S^{n} \backslash \phi\left(S^{n-1}\right)$. Assume that A is a manifold with boundary. Using Theorem 2.1, we can extend ϕ to an embedding $\widehat{\phi}: S^{n-1} \times[0,1] \rightarrow S^{n}$ whose image lies in A. Our goal is to prove that $A \cong \mathbb{D}^{n}$. Let X and Y be the two components of $S^{n} \backslash \widehat{\phi}\left(S^{n-1} \times(0,1)\right)$,
ordered so that $X \subset A$. The key observation is that there exists a surjective map $f: S^{n} \rightarrow S^{n}$ that collapses X and Y to points x and y, respectively, and is otherwise injective. Clearly f restricts to a surjection from A to a disc $\mathbb{D}^{n} \subset S^{n}$. What Brown showed was that X has a certain topological property that ensures that $A \cong A / X$.

This topological property enjoyed by X is that X is cellular, which we now define. A subset X of an n-manifold is cellular if for all open sets U containing X, we can write $X=\bigcap_{i=1}^{\infty} C_{i}$, where for all $i \geq 1$ the set C_{i} satisfies

$$
C_{i} \subset U \quad \text { and } \quad C_{i} \cong \mathbb{D}^{n} \quad \text { and } \quad C_{i+1} \subset \operatorname{Int}\left(C_{i}\right) .
$$

Since each C_{i} is closed, this implies that X is closed. Before we state the main consequence of being cellular, we must introduce some terminology for collapsing subsets of manifolds. Let M be a compact manifold with boundary and let X_{1}, \ldots, X_{s} be pairwise disjoint closed subsets of M. The result of collapsing the sets X_{1}, \ldots, X_{s} is the quotient space M / \sim, where for distinct $z, z^{\prime} \in M$ we have $z \sim z^{\prime}$ if and only if there exists some $1 \leq i \leq s$ such that $z, z^{\prime} \in X_{i}$. The projection $M \rightarrow M / \sim$ is the collapse map of X_{1}, \ldots, X_{s}.

Lemma 4.1. Let M be a compact n-manifold with boundary and let $X_{1}, \ldots, X_{\text {s }}$ be pairwise disjoint cellular subsets of $\operatorname{Int}(M)$. Define M^{\prime} to be the result of collapsing X_{1}, \ldots, X_{s}. Then M is homeomorphic to M^{\prime}.

Proof. Using induction, it is enough to deal with the case $s=1$, so let $X \subset \operatorname{Int}(M)$ be a cellular subset. We will construct a surjective map $f: M \rightarrow M$ such that $\left.f\right|_{M \backslash X}$ is injective and such that there exists some $x_{0} \in M$ with $f^{-1}\left(x_{0}\right)=X$. These conditions ensure that f is the collapse map of X, so M will be homeomorphic to the result of collapsing X.

Write $X=\bigcap_{i=1}^{\infty} C_{i}$, where for all $i \geq 1$ we have

$$
C_{i} \subset \operatorname{Int}(M) \quad \text { and } \quad C_{i} \cong \mathbb{D}^{n} \quad \text { and } \quad C_{i+1} \subset \operatorname{Int}\left(C_{i}\right) .
$$

The surjective map f will be the limit of a sequence of homeomorphisms $f_{i}: M \rightarrow M$ that are constructed inductively. First, $f_{1}=\mathrm{id}$. Next, assume that $f_{i}: M \rightarrow M$ has been constructed for some $i \geq 1$. We have

$$
f_{i}\left(C_{i}\right) \cong \mathbb{D}^{n} \quad \text { and } \quad f_{i}\left(C_{i+1}\right) \cong \mathbb{D}^{n} \quad \text { and } \quad f_{i}\left(C_{i+1}\right) \subset \operatorname{Int}\left(f_{i}\left(C_{i}\right)\right) .
$$

We can therefore choose a homeomorphism $\widehat{g}_{i+1}: f_{i}\left(C_{i}\right) \rightarrow f_{i}\left(C_{i}\right)$ that restricts to the identity on $\partial\left(f_{i}\left(C_{i}\right)\right)$ and satisfies $\operatorname{diam}\left(\widehat{g}_{i+1}\left(f_{i}\left(C_{i+1}\right)\right)\right) \leq \frac{1}{i+1}$. Extend \widehat{g}_{i+1} by the identity to a homeomorphism $g_{i+1}: M \rightarrow M$ and define $f_{i+1}=g_{i+1} \circ f_{i}$.

We now prove that for all $p \in M$, the sequence of points $f_{j}(p)$ approaches a limit. There are two cases. If $p \in X$, then $f_{j}(p) \in f_{j}\left(C_{j}\right)$ for all j. By construction, we have

$$
f_{1}\left(C_{1}\right) \supset f_{2}\left(C_{2}\right) \supset f_{3}\left(C_{3}\right) \supset \cdots \quad \text { and } \quad \lim _{j \rightarrow \infty} \operatorname{diam}\left(f_{j}\left(C_{j}\right)\right)=0 .
$$

The set $\cap_{j=1}^{\infty} f_{j}\left(C_{j}\right)$ therefore reduces to a single point x_{0} and $\lim _{j \rightarrow \infty} f_{j}(p)=x_{0}$. If instead $p \notin X$, then something even stronger happens: the sequence of points

$$
f_{1}(p), f_{2}(p), f_{3}(p), \ldots
$$

is eventually constant. Indeed, if $k \geq 1$ is such that $p \notin C_{k}$, then $f_{j}(p)=f_{j-1}(p)$ for $j \geq k$. Thus $\lim _{j \rightarrow \infty} f_{j}(p)$ equals $f_{j}(p)$ for $j \gg 0$.

We can therefore define a map $f: M \rightarrow M$ via the formula

$$
f(p)=\lim _{j \rightarrow \infty} f_{j}(p) \quad\left(p \in \mathbb{D}^{n}\right) .
$$

It is clear that f is a continuous map and that $f^{-1}\left(x_{0}\right)=X$. To deduce the lemma, we must show that f is surjective and that $\left.f\right|_{M \backslash X}$ is injective.

We begin with surjectivity. Clearly the image of f contains x_{0}, so it is enough to show that it contains an arbitrary point $q \in M \backslash\left\{x_{0}\right\}$. For $\ell \gg 0$, we have $q \notin f_{\ell}\left(C_{\ell}\right)$, and hence $f_{\ell}^{-1}(q) \notin C_{\ell}$ and $f\left(f_{\ell}^{-1}(q)\right)=f_{\ell}\left(f_{\ell}^{-1}(q)\right)=q$, so q is in the image of f.

We next prove that $\left.f\right|_{M \backslash X}$ is injective. Consider distinct point $r, r^{\prime} \in M \backslash X$. We can find $m \gg 0$ such that $f(r)=f_{m}(r)$ and $f\left(r^{\prime}\right)=f_{m}\left(r^{\prime}\right)$. Since f_{m} is a homeomorphism, we therefore have $f(r) \neq f\left(r^{\prime}\right)$. The lemma follows

Remark. The technique used to prove Lemma 4.1 is called Bing shrinking; it was introduced by Bing in [1] to prove that the double of the Alexander horned ball is homeomorphic to the 3 -sphere and plays a basic role in many delicate results in geometric topology.

To make use of Lemma 4.1, we need a way of recognizing when a set is cellular. This is subtle in general, but for closed subsets X of the interior of a disc \mathbb{D}^{n} it turns out that X is cellular if the conclusion of Lemma 4.1 holds, namely if the result of collapsing X is homeomorphic to \mathbb{D}^{n}. We will actually need the following slight strengthening of this fact.

Lemma 4.2. Let X_{1}, \ldots, X_{s} be pairwise disjoint closed subsets of $\operatorname{Int}\left(\mathbb{D}^{n}\right)$. Define M^{\prime} to be the result of collapsing X_{1}, \ldots, X_{s} and let $\pi: \mathbb{D}^{n} \rightarrow M^{\prime}$ be the collapse map. Assume that there exists an embedding $M^{\prime} \leftrightarrow S^{n}$ that takes $\pi\left(\operatorname{Int}\left(\mathbb{D}^{n}\right)\right) \subset M^{\prime}$ to an open subset of S^{n}. Then each X_{i} is cellular.

Proof. The proof will be by induction on s. The base case will be $s=0$, in which case the lemma has no content. Assume now that $s>0$ and that the lemma is true for all smaller collections of sets. Let $f: \mathbb{D}^{n} \rightarrow S^{n}$ be the composition of π and the embedding given by the assumptions and let $x_{i}=f\left(X_{i}\right)$ for $1 \leq i \leq s$. Let U be an open set in \mathbb{D}^{n} with $X_{s} \subset U$, so $x_{s} \in f(U)$. Fix a metric on S^{n}, and for all $\delta>0$ let $B_{\delta} \subset S^{n}$ be the ball around x_{s} of radius δ. Choose $\epsilon>0$ such that $B_{\epsilon} \subset f(U)$ and such that $x_{i} \notin B_{\epsilon}$ for $1 \leq i \leq s-1$. For $j \geq 1$, let $h_{j}: S^{n} \rightarrow S^{n}$ be an injective continuous map such that $h_{j}\left(f\left(\mathbb{D}^{n}\right)\right) \subset B_{\epsilon / j}$ and such that $\left.h_{j}\right|_{B_{\epsilon /(j+1)}}=$ id. Next, define $g_{j}: \mathbb{D}^{n} \rightarrow \mathbb{D}^{n}$ via the formula

$$
g_{j}(z)= \begin{cases}z & \text { if } z \in X_{s} \\ f^{-1} \circ h_{j} \circ f(z) & \text { if } z \notin X_{s}\end{cases}
$$

This expression makes sense since $h_{j} \circ f(z) \neq x_{s}$ if $z \notin X$, so $f^{-1} \circ h_{j} \circ f(z)$ is a single welldefined point. Since $\left.h_{j}\right|_{B_{\epsilon /(j+1)}}=$ id, the function g_{j} restricts to the identity on $f^{-1}\left(B_{\epsilon /(j+1)}\right)$, and hence g_{j} is a continuous map. Set $C_{j}=g_{j}\left(\mathbb{D}^{n}\right) \subset \mathbb{D}^{n}$. By construction, C_{j} is the result of collapsing X_{1}, \ldots, X_{s-1}. We can therefore apply our inductive hypothesis to deduce that
X_{i} is cellular for $1 \leq i \leq s-1$; here we are using the fact that \mathbb{D}^{n} can be embedded in S^{n}. Applying Lemma 4.1, we get that $C_{j} \cong \mathbb{D}^{n}$. We also also have

$$
X_{s} \subset f^{-1}\left(B_{\epsilon /(j+1)}\right) \subset C_{j} \subset f^{-1}\left(B_{\epsilon / j}\right) \subset U .
$$

The sets C_{j} thus satisfy the conditions in the definition of a cellular set, so X_{s} is also cellular, as desired.

Proof of the generalized Schoenflies theorem. The setup is just as in the beginning of this section. Let $\phi: S^{n-1} \rightarrow S^{n}$ be a topological embedding and let A be the closure of a component of $S^{n} \backslash \phi\left(S^{n-1}\right)$. Assume that A is a manifold. Using Theorem 2.1, we can extend ϕ to an embedding $\widehat{\phi}: S^{n-1} \times[0,1] \rightarrow S^{n}$ whose image lies in A. Let X and Y be the two components of $S^{n} \backslash \widehat{\phi}\left(S^{n-1} \times(0,1)\right)$, ordered so that $X \subset A$. As in the beginning of this section, let $f: S^{n} \rightarrow S^{n}$ be the collapse map of X and Y. Let $D^{\prime} \subset S^{n} \backslash(X \cup Y)$ be a small round disc. Letting $D=S^{n} \backslash D^{\prime}$, we have $D \cong \mathbb{D}^{n}$. The restriction of f to D is the composition of the collapse map of X and Y (considered as subsets of D) with an inclusion into S^{n}. Applying Lemma 4.2, we deduce that X and Y are cellular (in fact, we only need this for X). Finally, applying Lemma 4.1 we see that $A \cong A / X \cong \mathbb{D}^{n}$, as desired.

References

[1] R. H. Bing, A homeomorphism between the 3 -sphere and the sum of two solid horned spheres, Ann. of Math. (2) 56 (1952), 354-362.
[2] R. H. Bing, Retractions onto spheres, Amer. Math. Monthly 71 (1964), 481-484.
[3] M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76.
[4] M. Brown, Locally flat imbeddings of topological manifolds, Ann. of Math. (2) 75 (1962), 331-341.
[5] R. Connelly, A new proof of Brown's collaring theorem, Proc. Amer. Math. Soc. 27 (1971), 180-182.
[6] A. Hatcher, Algebraic topology, Cambridge Univ. Press, Cambridge, 2002.
[7] B. Mazur, On embeddings of spheres, Bull. Amer. Math. Soc. 65 (1959), 59-65.
[8] B. Mazur, On embeddings of spheres, Acta Math. 105 (1961), 1-17.
[9] M. Morse, A reduction of the Schoenflies extension problem, Bull. Amer. Math. Soc. 66 (1960), 113-115.

Andrew Putman
Department of Mathematics Rice University, MS 136 6100 Main St. Houston, TX 77005
andyp@math.rice.edu

