LECTURE 11 § 4-MANIFOLDS

We saw: Small's h-colordina theorem + Barden - Marur Hallings 1-colordina theorem apply to colordinus W with dim $W \ge 6$. For $\dim W = 5$ we could prove the Normal Form Lemma, but could not proceed further nince the Whitney trick fails. all finite stayps e.g. all abelian groups hey [hm [Freedman 1982] - 5-cobording Theorem in dim 5 -If $(W, \partial_0 W, \partial_1 W)$ is an h-cobordinu with dmW = 5 and trivial Whitehead torsion Whi(W, & W) & Whi(The W) and The W is a good group. then W is topologically trivial, i.e. there is a homeomorphism $(W, 2, W, 3, W) \cong (2, W \times [0, 1], 2, W \times [0], 2, W \times [1])$ proof. As before (nee Zeiture 6): Step 0 Remove 0- and 5-handles Zeinna. Step1 Normal Torm Terrina uning Haudle rading Jeuma - trade call 1-hourde bit for a 3-haudle, as follows: note: We are M care K=1 which we now works for Irin W=5 on well: Let L = 2h' be a push-off of the core of h. Then 2 L = 2. W bounds an arc 2 = 2. W. attacking regions of all other 1-handles and 2-handles (nonce doW(US*0', US*0') is still connected. - A nurvives to 2,W=2 -> A:=Lud: S' in 2, Wer goes over h' geometrically once Hermina: The arc of an le chosen so that $A := Lud : S^2 \longrightarrow \partial_1 W^{\epsilon_2}$ is null humotypic. $\pi_{*}W^{\leq 2} \xrightarrow{\cong} \pi_{*}W$ (once attacking higher cells does not change π_{*}) Noof. $\pi_1 \partial_1 (W^{\leq 2}) \xrightarrow{\simeq} \pi_1 W^{\leq 2}$ (turn $W^{\leq 2}$ upride down, handles are index 5-1 >2 aus 5-2 >2) $\pi_{1} \partial_{N} \longrightarrow \pi_{1} W$. (by the h-cobordian assumption) $T_{1} \partial_{1} W^{\epsilon_{2}} \cong T_{1} \partial_{2} W$ =

A might be nontrivial $[A] \neq 0 \in \pi_{0} \partial_{1} W^{\leq 2} \cong \pi_{1} W^{\leq 2} \cong \pi_{1} \partial_{0} W$ Let 15 be a loop in 2. W realizing this class, chosen no that it minutes all att. spheres of 1- and 2-handles. Thus, B lives in 2, W? and replaning d with dp^{5} gives $A := L \cdot dp^{-1} \simeq *$ in $\partial_{1} W^{\leq 2}$ \Box for A bounds an embedded dim \triangle in ∂W^{ϵ_2} . proof. We saw A ~ * in the 4-manufold 2, W=2. Thum Transversality => A bounds an immersed disc f: D9+2.W. Recall: Thm [Thum] If A: M-N a smooth may and B=N a compare nubmanifold Then there is an anticut isotopy of N. taking A to A' such that A' A B. Moreover, the isotopy can be assumed to be the identity outside of any open nord of B. Cor. If $\mathbb{D}^2 \xrightarrow{f} \mathbb{N}$ a smooth incup s.t. $f(\partial \mathbb{D}^2) = \alpha$ From \exists and, isotropy of \mathbb{N} s.t. $f' \land f'$ and $f'(\partial \mathbb{D}^2) = d$. Do Finger Noves => A bounds an embedded dinn $\Delta: \mathbb{D}^{L} \subseteq \mathcal{J}_{*} \mathbb{W}^{\leq 2}$. Namely: and of Handle Trading: now we can thicken rightarrow into a "mushroom" = cancelling 2-/3-par ~ cancell h2 and h1, so h3 left. П

Step 2. Algebraically caucilling pairs:

$$0 - C_{3}^{\text{tr}} \xrightarrow{C_{2}^{\text{tr}}} - 0$$
with δ_{3}^{tr} represented by the identity metrix
(uning Wh(W 2W)=0 and Hawle Steps)
 \Rightarrow In the middle level $W_{12} := 2, (W^{\leq 2})$ where $W^{\leq 2} = 2, W \cdot [0;] \cup 2$ -baselies
we have the belt opheres $B_{1}, \dots, B_{r}: S^{2} \longrightarrow W_{12}$ of 2-baselies ($1 + 1 + S = D^{2} \cdot D^{2}$)
and the attaching opheres $A_{1}, \dots, A_{r}: S^{2} \longrightarrow W_{12}$ of 3-baselies ($5^{1} + 1^{2} = D^{2} \cdot D^{2}$)
to that:
 $- \operatorname{each} \{B_{1}\}$ and $\{A_{2}\}$ is a collection of pairwise disjoint. framed, subcodes opheres
 $- \widehat{T}(A_{1} \cap B_{1}) = \delta_{11} = \int_{0}^{1} \frac{1 + j}{1 + j} \in \mathbb{Z}[\pi; W_{12}]$
WANT: (solupe A_{2} no that there intervation numbers are itedined gumetrically,
no that we can caucil rach pair of handles, $i - 1, \dots, r$.
Zumma W. There exist framed immersed Whitney does $W_{11}: D^{2} \rightarrow W_{12}$, $m = 1 \dots r^{r}$
pairing up all universated intervations between A_{3} and B_{3} .
picof. As before, if intervation points have the same group elemant but opposite signs
three there to a nullhomotypic Whitney cach between threa.
By general position. There is an immersed Whitney down.
H it is not framed, we can do based any truths to it:
due there to a nullhow of same of orazing (more) interactions with B_{3} .

Note that in general not only Wm are not embedded, but they also internet A; and Bi, so doing Whitney moves upn't mane A; and Bi geom. cancelling. To remove W-A and W-B internetions we use geom. duals Â; and B: constructed as follows.

- Zermina.[#]. There are collections of <u>unfigured</u> immerred apheres $\{B_i^{\sharp}\}$ and $\{A_i^{\sharp}\}$ that <u>are</u> geometrically dual to the collections $\{B_i\}$ and $\{A_i\}$ <u>respectively</u>. i.e. B_i^{\sharp} $(\Phi B_j = A_i^{\sharp} + A_j = \emptyset$ unless i=j when they are each a point.
- Zermina^A. After au isotrycy of $\{A_i\}$, There is a collection of framed immersed apheres $\{\hat{B}_i\} \cup \{\hat{A}_i\}$ that is geometrically dual to the collection $\{B_i\} \cup \{A_i\}$, i.e. $\hat{C}_i \cap D_j = \emptyset$ unless i=j and C=D when = 1pt, for $C, D \in \{A, B\}$

proofs of these next time.

