LECTURE 11
§4-MANIFOLDS
We saw: Smalt's h-cobordimu theorem + Barden-Matur. Stalkings 1-coberdimu theoreen apply to cobordinus W with $\operatorname{dim} W \geqslant 6$.
For $\operatorname{dim} W=5$ we could prove the Normal Form Lemma, but could not proceed further mince the Whitney trick fail.
nay The [Freedman 1982]-s-cobordinm Theorem in $\operatorname{dim} 5$ If $\left(W, \partial_{0} W, \partial_{1} W\right)$ is an h-cobordimu with $\operatorname{dmW} W=5$ and trial Wllutenead torsion $W h\left(W, \partial_{0} W\right) \in W_{l}\left(\pi_{1} W\right)$ and $\pi_{1} W$ is a good group. then W is topologically trivial,
ie. there is a homeomompuim $\left(W, \partial_{0} W, \partial_{1} W\right) \cong\left(\partial_{0} W_{\times}[0,1], \partial_{0} W \times\{0\}, \partial_{0} W \times\{14)\right.$.
proof. As before (ne Lecture 6): Step 0 Remove 0 -and 5 -handles Lena.
Step 1 Normal Form Lemma umping Hackle reading Lena
trade catch 1-hcudre h for a 3-houcle. as follows: note: we are in care $k=1$ which we oar worms for $\operatorname{dim} W=5$ as well :
Let $L \leq \partial h^{1}$ be a push - off of the core of h^{1}.
Then $\partial \leq \partial_{0} W$ bands an arc $\alpha \leq \partial_{0} W$, attaching region of all other 1 -haunches and 2 -handles

$\Longrightarrow A:=L u \alpha: \mathbb{S}^{1} \longleftrightarrow \partial_{1} W^{\leq 2}$ goes over h^{1} geometrically once
Lemma The arc α can be chosen so that $A:=L \cup \alpha: S^{n} \hookrightarrow \partial_{1} W^{\leq 2}$ is mull homotoppic.
proof. $\pi_{1} W \leq 2 \cong \pi_{1} W$ (arne attaching higher cells does not chacuge π_{1})
$\pi_{1} \partial_{1}\left(W^{\leq 2}\right) \stackrel{\cong}{\leftrightharpoons} \pi_{1} W^{\leq 2}$ (turn $W^{\leq 2}$ unite down, hounder are index 5-1>2
$\pi_{1} \partial_{0} W \stackrel{ }{\cong} \pi_{1} W$. (by the h-cobordiom assumption) ane 5-2>2)
$\Rightarrow \pi_{1} \partial_{1} W^{\leq 2} \cong \pi_{1} \partial_{0} W$.

A might be nontrivial $[A] \neq 0 \in \pi_{1} \partial_{1} W^{\leq 2} \cong \pi_{1} W^{\leq 2} \cong \pi_{1} \partial_{0} W_{\text {, }}$ Let β be a loop in $\partial_{0} W$ realizing this class, chosen no that it mines all att sprees of 1 -aud 2 -Lourdes. Thus, β ives in $\partial_{1} W$, and replaying α with $\alpha \beta^{-1}$ gives $A:=L \cdot \alpha \beta^{-1} \simeq *$ in $\partial_{1} W \leq 2$

Cor. A bounds an embedded $\operatorname{dim} \Delta$ in $\partial_{1} W \leq 2$.
proof. We $\operatorname{saw} A \simeq *$ in the 4 manifold $\partial_{1} W \leq 2$.
Them Trannversality $\Rightarrow A$ bounds an immersed disk $f: D^{2} q+\partial W^{2}$.
[Recall: $T_{h m}\left[T_{h e m}\right]$ f $A: M \rightarrow N$ a moth map aud $B \leq N$ a compact nulomumitold then there is au aumbecut isotopy of N. taming A to A^{\prime} owe thank $A^{\prime} \pitchfork B$. Merevere, the inotiry au ce assumed to ce the identity outside of any peen nod of B.
Cor. If $D^{2} \xrightarrow{f} N$ a smooth mans sit. $f\left(\partial D^{2}\right)=\alpha$
then \exists ale. isotwy of N s.t. $f^{\prime} \AA f^{\prime}$ and $f^{\prime}\left(\partial D^{2}\right)=\alpha$. \qquad
Do Finger Moves $\Rightarrow A$ bounds an eculedded dim $\Delta: D^{2} \Delta \partial_{1} W^{\leq 2}$.

cont of Handle Trading:
now we can thicuen Δ into a "mushroom" = cancelling 2-13-par n cancell h^{2} and h^{1}, so h^{3} left.

Step 2 Algebraically cancelling pairs:

$$
0 \rightarrow C_{3}^{\tilde{\mu}} \xrightarrow{\delta_{3}^{\tilde{\mu}}} C_{2}^{\tilde{\mu}} \rightarrow 0
$$

with $\delta_{3}^{\tilde{u}}$ represented by the identity matrix
(using Th $(W \partial W)=0$ and Itandle Slides)
$\Rightarrow J n$ the middle level $W_{1 / 2}:=\partial_{1}\left(W^{\leq 2}\right)$ where $W^{\leq 2}=\partial_{0} W_{x}[0,1] \cup 2$-handles we have the belt wheres $B_{1}, \ldots . B_{r}: S^{2} \longrightarrow W_{1 / 2}$ of 2 -handles $\left(\{0\} \times S^{2} \leq D^{2} \times D^{3}\right)$ Lemma \#. There are collections of unframed immersed spheres $\left\{B_{i}^{\#}\right\}$ and $\left\{A_{i}^{\#}\right\}$ and the attaching spheres $A_{1}, \ldots, A_{r}: S^{2} \longrightarrow W_{1 / 2}$ of 3-haudles $\left.\left(S^{2} \times 10\right\} \leq D^{3} \times D^{2}\right)$ so that:

- each $\left\{B_{i}\right\}$ and $\left\{A_{j}\right\}$ is a collection of pairwise disjoint. framed, embedded spheres

$$
-\tilde{I}\left(A_{j} \oplus B_{i}\right)=\delta_{i j}=\left\{\begin{array}{ll}
1 & i=j \\
0 & i \neq j
\end{array} \in \mathbb{Z}\left[\pi_{1} W_{1 / 2}\right]\right.
$$

WANT: Isotope A_{j} so that there intersection mules are realised geometrically, so that we can cancel reach pair of handles. $i=1, \ldots, r$.

Lemma W. There exist framed immersed Whitney discs $W_{m}: \mathbb{D}_{q}^{2}, W_{1 / 2}, m=1, \ldots, r^{\prime}$ pains up all unwauted intersections between A_{j} and B_{i}.
proof. As before, if intersection points have the same group element lect opposite signs then there is a nullhomotonic Whitney circle between them.
By general position, there is au immersed Whitney dine.
It it is not framed, we can do bamdary twists to it:
thin correiks the framing at the expense of creating (more) intersections with B_{i}.

Note that in general not only Wm are not eubledded. Gut they also intersect A_{j} and B_{i}, so doing Whitney moves won't mauve A_{j} and B_{i} geom. cancelling. To remove $W-A$ and $W-B$ intersections we use geom. duals \hat{A}_{j} and \widehat{B}_{i} constructed as follows. that are geometrically dual to the collections $\left\{B_{i}\right\}$ and $\left\{A_{i}\right\}$ respectively. i.e. $B_{i}^{\#} \pitchfork B_{j}=A_{i}^{\#} \pitchfork A_{j}=\varnothing \quad$ unless $i=j$ when they are each a point.

Lemma. After au inothry of $\left\{A_{i}\right\}$,
There is a collection of framed immersed spheres $\left\{\hat{B}_{i}\right\} \cup\left\{\hat{A}_{i}\right\}$ that is geometrically dual to the collection $\left\{B_{i}\right\} \cup\left\{A_{i}\right\}$,
ie. $\quad \hat{C}_{i} \pitchfork D_{j}=\varnothing$ unless $i=j$ and $C=D$ when $=\{p t\}$. for $C, D \in\{A, B\}$
proofs of these next time.

Lemma W-improved. The disus W_{m} can be modified to have the interior disjont from all A_{j} and B_{i}.
proof. We cal tube each intersection of W_{m} with A_{j} into \widehat{A}_{j} and each intersection of W_{m} with B_{i} into \widehat{B}_{i}.

Since \hat{A}_{j} and \hat{B}_{i} framed, disus W_{m} stay framed after the tubing.

