LECTURE 9 & 10

the idea as the Eilenberg owndle in algebra:
Jenning. Any projective R-module A is stably free.
proof. A propertive <=> 3B o.t.
$$A \oplus B = F$$
 free
Three $(A \oplus B) \oplus (A \oplus B) \oplus ... = F^{\circ}$
 $= A \oplus (B \oplus A) \oplus (B \oplus ...) = A \oplus F^{\circ}$.

Next, we remove the condition that there is a standard spot.

The [Morne 1960]
For any
$$d \ge 1$$
 and a bicollared endedding $F: S^{d} = [-1,1] \xrightarrow{hp} \mathbb{R}^{d+1}$
there exists a self-homeomorphism $h: \mathbb{R}^{d+1} \ge \mathbb{R}$ and an $\varepsilon > 0$ so that
 $h \cdot F|_{S^{d} = [-\varepsilon,\varepsilon]}$ has a standard opot.
proof. We fix $p \in S^{d}$ (nay, north pole) and include $S^{d} \times [-1,1] = \mathbb{R}^{d+1}$ so that $p = 0 \in \mathbb{R}^{d+1}$

Let
$$D \in S^{d} \times (-1,1)$$
 be a small raced ball around p.
We can assume $F(p,o)=o \in \mathbb{R}^{d+1}$ (otherware, translate).
• Zet $B \subseteq \mathbb{R}^{d+1}$ be a standard round ball in \mathbb{R}^{d+1} cantered at p,

much that:
$$D \in B$$

 $B \in F(S^{d_{x}}(-1,1))$

• Zet $C := F^{-1}(B) \in S^{d_{x}}(-1,1).$

Then define
h:
$$\mathbb{R}^{d+1} \xrightarrow{\mathcal{P}} \mathbb{B} \xrightarrow{(\mathbb{F} \mid c)^{-1}} \mathbb{C}$$

where g is a homeomorphism s.t. $g\mid_{D} = |d_{D}$.
Note that h is a homeomorphism from \mathbb{R}^{d+1} to an open number of \mathbb{R}^{d+1}
and that:
 $h \circ \mathbb{F} : \mathbb{S}^{d} \times [-1,1] \longrightarrow \mathbb{R}^{d+1} \longrightarrow \mathbb{B} \longrightarrow \mathbb{C} \subseteq \mathbb{R}^{d+1}$
 $f^{-1}(0) \xrightarrow{\mathbb{F}} \mathbb{D} \xrightarrow{(U)} \mathbb{D} \xrightarrow{\mathbb{F}^{-1}} \mathbb{F}^{-1}(D)$
Thus, $h \circ \mathbb{F} \mid_{D} = |d_{D}$
If we now restrict \mathbb{F} to $\mathbb{S}^{d} \times [-\varepsilon,\varepsilon]$ such that: $\mathbb{D}^{d} \in \varepsilon,\varepsilon] \subseteq \mathbb{F}^{-1}(D)$
then we will have a specificities for \mathbb{I} .
 \mathbb{O}^{c} . Top Sansaffres Conjecture is true in all dimension.
proof: By Connedy every loc-flat sphere has a collor.
By Mare we can find a collar $\mathbb{F} : \mathbb{S}^{d} \times [-\varepsilon,\varepsilon] \longrightarrow \mathbb{R}^{d+1}$
go that $h \cdot \mathbb{F}$ has a standard spot.

By Mazer, the donures of the complement of hoFlstxo are humeomorphic to Dd+!

Precomposing that homeomorphismus with I we get denied result.

d.

In order to get a feeling for topological manifold we prove the following lendt
The proof relies in a steandard tool called the pack-pull agained.
THM. Let X and Y be compared top vacuifold.
Jf X*R is homeomorphic to Y*R, then X*S' is homeomorphic to Y*S'
proof. Fix h: X*R
$$\xrightarrow{\text{top}}$$
 Y*R.
Denote:
Xt := X*Ht and X_[t,n] := X×[t,n] ton eR
Ya := Y*Ia1 and Y_[a,1] := X×[t,n] a < b ∈ R.
Stop1. There exist if <0 and a **guide that
h(X_r) ∈ Y_[a,b]
h(X_s) ∈ Y_[b,c]
Yb ∈ h(X_{tr,s})
Noundly: Fix r arbitrary,
tree by comparison of X, Y find a ∈R st. h(Xr) n Y_{(-∞,a]} = Ø
then -II-
b> a at. h(Xr) n Y_[e,∞] = Ø
A>r at. Ye ∈ h(X_{tr,a})
c>6 st. h(X₁) n Y_[e,∞] = Ø
Atep2. Construct a homeomorphism Ψ : Y*R → Y×R
st.
 $\Psi |_{YX(R \setminus [a,c])} = Id$ and $\Psi(h(X_s)) =$ transductive of $h(X_r)$**

S OTHER APPLICATIONS oF PUSH-PULL

- Push-pull technologic was used by Brown in his proof of Collar and Bicollar Theorems. [1362] - Armotrong '70 used it to show that (bi) collars are unique up to isotopy.

- Kister und it to prove the Stretcumg Zemma - this is the key nop for his theorem:
KISTER'S THEOREM. Every topological n-manifold admits an
$$\mathbb{R}^n$$
-fibre bundle $\mathbb{R}^n \to T_{\mu}^{P}M$
with structure group Homeo. \mathbb{R}^n and an embedding e: $T_M \hookrightarrow M \times M$
onto a neighbourhood of $\Delta_M \in M \times M$
o.t. the following commutes $M \xrightarrow{\frown} T_M \xrightarrow{P} M$
fitting into this diagram
is railies a tangent microsimuse. If $for s = 0$ -neution II f^e II
Maxim Max M $\xrightarrow{P^n} M$
Moreover, such T_M is unique up to isomorphism.
def. Such a fibre bundle $T_M \longrightarrow M$ is called the topological tangent bundle of M.
Proposition. The tangent vertor bundle of a smooth manifold is a top, tangent bundle or neuro accure.

\$ 4-MANIFOLDS

