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Dedicated to the memory of Raoul Bott



Preface

Ithas been more than two decades since Raoul Bott and I published Differential Forms
in Algebraic Topology. While this book has enjoyed a certain success, it does assume
some familiarity with manifolds and so is not so readily accessible to the average
first-year graduate student in mathematics. It has been my goal for quite some time
to bridge this gap by writing an elementary introduction to manifolds assuming only
one semester of abstract algebra and a year of real analysis. Moreover, given the
tremendous interaction in the last twenty years between geometry and topology on
the one hand and physics on the other, my intended audience includes not only budding
mathematicians and advanced undergraduates, but also physicists who want a solid
foundation in geometry and topology.

With so many excellent books on manifolds on the market, any author who un-
dertakes to write another owes to the public, if not to himself, a good rationale. First
and foremost is my desire to write a readable but rigorous introduction that gets the
reader quickly up to speed, to the point where for example he or she can compute
de Rham cohomology of simple spaces.

A second consideration stems from the self-imposed absence of point-set topology
in the prerequisites. Most books laboring under the same constraint define a manifold
as a subset of a Euclidean space. This has the disadvantage of making quotient
manifolds, of which a projective space is a prime example, difficult to understand.
My solution is to make the first four chapters of the book independent of point-set
topology and to place the necessary point-set topology in an appendix. While reading
the first four chapters, the student should at the same time study Appendix A to acquire
the point-set topology that will be assumed starting in Chapter 5.

The book is meant to be read and studied by a novice. It is not meant to be
encyclopedic. Therefore, I discuss only the irreducible minimum of manifold theory
which I think every mathematician should know. I hope that the modesty of the scope
allows the central ideas to emerge more clearly. In several years of teaching, I have
generally been able to cover the entire book in one semester.

In order not to interrupt the flow of the exposition, certain proofs of a more routine
or computational nature are left as exercises. Other exercises are scattered throughout
the exposition, in their natural context. In addition to the exercises embedded in the
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text, there are problems at the end of each chapter. Hints and solutions to selected
exercises and problems are gathered at the end of the book. I have starred the problems
for which complete solutions are provided.

This book has been conceived as the first volume of a tetralogy on geometry
and topology. The second volume is Differential Formsin Algebraic Topology cited
above. I hope that Volume 3, Differential Geometry: Connections, Curvature, and
Characteristic Classes, will soon see the light of day. Volume 4, Elements of Equiv-
ariant Cohomology, a long-running joint project with Raoul Bott before his passing
away in 2005, should appear in a year.

This project has been ten years in gestation. During this time I have benefited from
the support and hospitality of many institutions in addition to my own; more specif-
ically, I thank the French Ministere de I’Enseignement Supérieur et de la Recherche
for a senior fellowship (bourse de haut niveau), the Institut Henri Poincaré, the Institut
de Mathématiques de Jussieu, and the Departments of Mathematics at the Ecole Nor-
male Supérieure (rue d’Ulm), the Université Paris VII, and the Université de Lille,
for stays of various length. All of them have contributed in some essential way to the
finished product.

I owe a debt of gratitude to my colleagues Fulton Gonzalez, Zbigniew Nitecki,
and Montserrat Teixidor-i-Bigas, who tested the manuscript and provided many use-
ful comments and corrections, to my students Cristian Gonzalez, Christopher Watson,
and especially Aaron W. Brown and Jeffrey D. Carlson for their detailed errata and sug-
gestions for improvement, to Ann Kostant of Springer and her team John Spiegelman
and Elizabeth Loew for editing advice, typesetting, and manufacturing, respectively,
and to Steve Schnably and Paul Gérardin for years of unwavering moral support. I
thank Aaron W. Brown also for preparing the List of Symbols and the TgX files for
many of the solutions. Special thanks go to George Leger for his devotion to all of my
book projects and for his careful reading of many versions of the manuscripts. His
encouragement, feedback, and suggestions have been invaluable to me in this book
as well as in several others. Finally, I want to mention Raoul Bott whose courses
on geometry and topology helped to shape my mathematical thinking and whose
exemplary life is an inspiration to us all.

Medford, Massachusetts Loring W. Tu
June 2007
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A Brief Introduction

Undergraduate calculus progresses from differentiation and integration of functions
on the real line to functions on the plane and in 3-space. Then one encounters vector-
valued functions and learns about integrals on curves and surfaces. Real analysis
extends differential and integral calculus from R? to R”. This book is about the
extension of the calculus of curves and surfaces to higher dimensions.

The higher-dimensional analogues of smooth curves and surfaces are called man-
ifolds. The constructions and theorems of vector calculus become simpler in the more
general setting of manifolds; gradient, curl, and divergence are all special cases of the
exterior derivative, and the fundamental theorem for line integrals, Green’s theorem,
Stokes’ theorem, and the divergence theorem are different manifestations of a single
general Stokes’ theorem for manifolds.

Higher-dimensional manifolds arise even if one is interested only in the three-
dimensional space which we inhabit. For example, if we call a rotation followed by a
translation an affine motion, then the set of all affine motions in R3 is a six-dimensional
manifold. Moreover, this six-dimensional manifold is not R®.

We consider two manifolds to be topologically the same if there is a homeo-
morphism between them, that is, a bijection that is continuous in both directions. A
topological invariant of a manifold is a property such as compactness that remains
unchanged under a homeomorphism. Another example is the number of connected
components of a manifold. Interestingly, we can use differential and integral calculus
on manifolds to study the topology of manifolds. We obtain a more refined invariant
called the de Rham cohomology of the manifold.

Our plan is as follows. First, we recast calculus on R” in a way suitable for
generalization to manifolds. We do this by giving meaning to the symbols dx, dy,
and dz, so that they assume a life of their own, as differential forms, instead of being
mere notations as in undergraduate calculus.

While it is not logically necessary to develop differential forms on R” before the
theory of manifolds—after all, the theory of differential forms on a manifold in Part V
subsumes that on R", from a pedagogical point of view it is advantageous to treat R”
separately first, since it is on R” that the essential simplicity of differential forms and
exterior differentiation becomes most apparent.
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Another reason for not delving into manifolds right away is so that in a course
setting the students without the background in point-set topology can read Appendix A
on their own while studying the calculus of differential forms on R”".

Armed with the rudiments of point-set topology, we define a manifold and derive
various conditions for a set to be a manifold. A central idea of calculus is the approx-
imation of a nonlinear object by a linear object. With this in mind, we investigate
the relation between a manifold and its tangent spaces. Key examples are Lie groups
and their Lie algebras.

Finally we do calculus on manifolds, exploiting the interplay of analysis and
topology to show on the one hand how the theorems of vector calculus generalize,
and on the other hand, how the results on manifolds define new C® invariants of a
manifold, the de Rham cohomology groups.

The de Rham cohomology groups are in fact not merely C* invariants, but
also topological invariants, a consequence of the celebrated de Rham theorem that
establishes an isomorphism between de Rham cohomology and singular cohomology
with real coefficients. To prove this theorem would take us too far afield. Interested
readers may find a proof in the sequel [3] to this book.



1

Smooth Functions on a Euclidean Space

The calculus of C* functions will be our primary tool for studying higher-dimensional
manifolds. For this reason, we begin with a review of C* functions on R”.

1.1 C*° Versus Analytic Functions
Write the coordinates on R” as x!, ..., x" and let p= (pl, ..., p") be a point in
an open set U in R". In keeping with the conventions of differential geometry, the
indices on coordinates are superscripts, not subscripts. An explanation of the rules
for superscripts and subscripts is given in Section 4.7.

Definition 1.1. Let £ be a nonnegative integer. A function f: U — R is said to be
Ck at p if its partial derivatives 37 f/dx™ - - dx% of all orders j < k exist and are
continuous at p. The function f: U — Ris C*® at p if it is C* for all k > 0; in
other words, its partial derivatives of all orders

akf
Oxit ... 9xik
exist and are continuous at p. We say that f is C¥ on U if it is C* at every point in

U. A similar definition holds for a C* function on an open set U. A synonym for
C® is “smooth.”

Example 1.2.
(i) A C° function on U is a continuous function on U.
(i) Let f: R — Rbe f(x) = x!/3. Then

%x‘2/3 for x # 0,
undefined for x = 0.

Thus the function f is C° but not C! at x = 0.
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(iii) Let g: R — R be defined by
X X 3
g(x) =f fQ@)dt :/ A8 g = 2543,
0 0 4

Then g/'(x) = f(x) = x1/3,s0 g(x)is C! but not C? at x = 0. In the same way
one can construct a function that is C¥ but not C¥*! at a given point.

(iv) The polynomial, sine, cosine, and exponential functions on the real line are all
C*™.

The function f is real-analytic at p if in some neighborhood of p it is equal to
its Taylor series at p:

a . .
feO=fp)+Y. a—fi(p)(xl -p")
1 3 f

21 L~ 9xigxi
ij

(PO = pH —phy+---.

A real-analytic function is necessarily C*°, because as one learns in real anal-
ysis, a convergent power series can be differentiated term by term in its region of
convergence. For example, if

1 3 1 5

f(x)zsinx=x—§x +§x —

then term-by-term differentiation gives

1 1
Teoy _1_ 2, A
f'(x)=cosx =1 2!x +4!x .

The following example shows that a C*° function need not be real-analytic. The
idea is to construct a C* function f(x) on R whose graph, though not horizontal, is
“very flat” near O in the sense that all of its derivatives vanish at 0.

Fig. 1.1. A C®° function all of whose derivatives vanish at 0.
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Example 1.3 (A C* function very flat at 0). Define f(x) on R by

-2 forx > 0;

forx <O.

e

fx) = 0

(See Figure 1.1.) By induction, one can show that f is C* on R and that the
derivatives £® (0) = 0 for all kK > 0 (Problem 1.2).

The Taylor series of this function at the origin is identically zero in any neigh-
borhood of the origin, since all derivatives f ®)(0) = 0. Therefore, f(x) cannot be
equal to its Taylor series and f(x) is not real-analytic at 0.

1.2 Taylor’s Theorem with Remainder

Although a C*° function need not be equal to its Taylor series, there is a Taylor’s the-
orem with remainder for C* functions which is often good enough for our purposes.
We prove in the lemma below the very first case when the Taylor series consists of
only the constant term f (p).

We say that a subset S of R” is star-shaped with respect to a point p in S if for
every x in S, the line segment from p to x lies in S (Figure 1.2).

Fig. 1.2. Star-shaped with respect to p, but not with respect to g.

Lemma 1.4 (Taylor’s theorem with remainder). Let f be a C* function on an
open subset U of R" star-shaped with respect to a point p = (p', ..., p™) in U.
Then there are C* functions g1(x), ..., gn(x) on U such that

"o . )
fO) = fp)+Y ("= pHei), gip)= a_;(”)'

i=1

Proof. Since U is star-shaped with respect to p, for any x in U the line segment
p+tx—p),0=<rt<1liesinU (Figure 1.3). So f(p + t(x — p)) is defined for
0<r=<l1.
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Fig. 1.3. The line segment from p to x.

By the chain rule,

d
TS+t —p) =) (' - >—<p +1(x = p)).

If we integrate both sides with respect to ¢ from O to 1, we get

Fp+ie—p)h =Y - p)f ot rte— pyar

Let

gi(x) = A —f(p+t(x — p)dt.

Then g; (x) is C*° and (1.1) becomes
f&) = f(p) =) (' = pHgix).
Moreover,
Lar af
i = —(p)dt = —(p).
gi(p) /0 axt P i P
Incasen = 1 and p = 0, this lemma says that
fx) = f(0)+xfi(x)
for some C* function f](x). Applying the lemma repeatedly gives
fix) = fi(0) + xfir1(x),

where f;, fi+1 are C* functions. Hence,

F) = £0) + x(f1(0) + xf(x))
= £(0) + x£1(0) + x*(f2(0) + xf3(x))

= £(0) + f1(0)x 4+ fr(O)x> 4+ + fi(O)x + fir1(o)x' Tl

(1.1

(1.2)
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Differentiating (1.2) repeatedly and evaluating at 0, we get

fx(©) = %f(k)(O), k=1,2,...,i.

So (1.2) is a polynomial expansion of f(x) whose terms up to the last term agree
with the Taylor series of f(x) at 0.

Remark 1.5. Being star-shaped is not such a restrictive condition, since any open ball
B(p,e) ={x eR" | [Ix — pll < €}

is star-shaped with respect to p. If f is a C* function defined on an open set U
containing p, then there is an € > 0 such that

p € B(p,e) CU.

When its domain is restricted to B(p, €), the function f is defined on a star-shaped
neighborhood of p and Taylor’s theorem with remainder applies.

NoTATION. It is customary to write the standard coordinates on R? as x, y, and the
standard coordinates on R3 as x, v, 2.

Problems

1.1. A function that is C? but not C3
Find a function /#: R — R that is CZ but not C3 at x = 0.

1.2.* A C* function very flat at 0
Let f(x) be the function on R defined in Example 1.3.

(a) Show by induction that for x > 0 and k > 0, the kth derivative f® (x) is of the
form pay(1/x) e~ '/* for some polynomial py; (y) of degree 2k in y.
(b) Prove that f is C* on R and that f®)(0) = 0 for all k > 0.

1.3. A diffeomorphism of an open interval with R
Let U C R" and V C R” be open subsets. A C>® map F: U — V is called a
diffeomorphism if it is bijective and has a C* inverse F~' : V — U.

(a) Show that the function f: (—m7/2,7/2) — R, f(x) = tanx, is a diffeomor-
phism.

(b) Find a linear function 4 : (a, b)) — (—1, 1), thus proving that any two finite open
intervals are diffeomorphic.

The composite f o h: (a, b) — R is then a diffeomorphism of an open interval to R.
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1.4. A diffeomorphism of an open ball with R”
(a) Show that the function h: (—m /2, w/2) — [0, 00),

e secx forx € (0,7m/2),
h(x) =
0 forx <0,

—1/x

is C*® on (— /2, /2), strictly increasing on [0, 77/2), and satisfies 2} = 0 for
all k > 0. (Hint: Let f(x) be the function of Example 1.3 and let g(x) = sec x.
Then h(x) = f(x)g(x). Use the properties of f(x).)

(b) Define the map F': B(0, 7/2) C R* — R" by

X
h(lx])— forx # 0,
F(x) = x|
0 for x = 0.

Show that F: B(0, 7/2) — R" is a diffeomorphism.

1.5.* Taylor’s theorem with remainder to order 2
Prove that if f: R> — R is C*, then there exist C* functions fi1, fi2, f»> on R?
such that

f of

d
—(0,0 —(0,0
8x( )x+ay( )y

+x2 fr(x, ¥) + xyfia(x, ¥) + ¥2 fax, ).

S, y) = f(0,0) +

1.6.* A function with a removable singularity
Let f: R? — R be a C* function with £ (0, 0) = 0. Define

L@t por ¢ # 0;

t,u) = !
g(t.u) {0 fort = 0.

Prove that g(¢, u) is C* for (¢, u) € R2. (Hint: Apply Problem 1.5.)

1.7. Bijective C* maps

Define f: R — R by f(x) = x>. Show that f is a bijective C® map, but that f~!
isnot C*°. (In complex analysis a bijective holomorphic map f: C — C necessarily
has a holomorphic inverse.)
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Tangent Vectors in R" as Derivations

In elementary calculus we normally represent a vector at a point p in R3 algebraically
as a column of numbers

or geometrically as an arrow emanating from p (Figure 2.1).

p
Fig. 2.1. A vector v at p.

A vector at p is tangent to a surface at p if it lies in the tangent plane at p
(Figure 2.2), which is the limiting position of the secant planes through p. Intuitively,
the tangent plane to a surface at p is the plane in R> that just “touches” the surface

at p.

Fig. 2.2. A tangent vector v to a surface at p.
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Such a definition of a tangent vector to a surface presupposes that the surface is
embedded in a Euclidean space, and so would not apply to the projective plane, which
does not sit inside an R” in any natural way.

Our goal in this chapter is to find a characterization of a tangent vector in R” that
would generalize to manifolds.

2.1 The Directional Derivative

In calculus we visualize the tangent space T, (R") at p in R" as the vector space of
all arrows emanating from p. By the correspondence between arrows and column
vectors, this space can be identified with the vector space R". To distinguish between
points and vectors, we write a point in R" as p = ( pl, ..., p") and a vector v in the
tangent space T, (R") as

We usually denote the standard basis for R" or T,,(R") by {e, ..., e;}. Thenv =
> v'e;. We sometimes drop the parentheses and write T,R" for T,,(R"). Elements
of T, (R") are called tangent vectors (or simply vectors) at p in R".
The line through a point p = (p!, ..., p") with direction v = (v1, ..., v,) in R”
has parametrization
ct)y=(p' + o', ..., pt+1v").

Its ith component ¢ (¢) is p’ 4 tv’. If f is C™ in a neighborhood of p in R” and v is
a tangent vector at p, the directional derivative of f in the direction v at p is defined

to be
Dyf = tim LEO I _ d
t—>0 t dt

f ().

=0

By the chain rule,

D,f = Z (0)—() Z”az : @.1)

In the notation D,, f, itis understood that the partial derivatives are to be evaluated
at p, since v is a vector at p. So D, f is a number, not a function. We write

;0
DU:ZUIW

for the operator that sends a function f to the number D, f. To simplify the notation
we often omit the subscript p if it is clear from the context.

p
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2.2 Germs of Functions

A relation on a set S is a subset R of S x S. Given x, y in S, we write x ~ y if and
only if (x, y) € R. The relation is an equivalence relation if it satisfies the following
three properties:

(i) reflexive: x ~ x forall x € S.
(i) symmetric: if x ~ y, then y ~ x.
(iii) transitive: if x ~ yand y ~ z, then x ~ z.

As long as two functions agree on some neighborhood of a point p, they will have
the same directional derivatives at p. This suggests that we introduce an equivalence
relation on the C* functions defined in some neighborhood of p. Consider the set of
all pairs (f, U), where U is aneighborhood of pand f: U — Risa C* function. We
say that (f, U) is equivalent to (g, V') if there is an open set W C U N V containing
p such that f = g when restricted to W. This is clearly an equivalence relation
because it is reflexive, symmetric, and transitive. The equivalence class of (f, U) is
called the germ of f at p. We write C;°(R") or simply C 7 if there is no possibility
of confusion, for the set of all germs of C*° functions on R" at p.

Example 2.1. The functions
1
fx)=+—
1—x
with domain R — {1} and
gy =Tl+x+x>+x 4.

with domain the open interval (—1, 1) have the same germ at any point p in the open
interval (—1, 1).

An algebra over a field K is a vector space A over K with a multiplication map
n:AxA— A,

usually written w(a, b) = a x b, such that foralla, b,c € Aandr € K,

(i) (associativity) (a x b) x c =a x (b x ¢),
(i1) (distributivity) (a +b) xc=a xc+b xcanda x (b+c)=a xb+a X c,
(iii) (homogeneity) r(a x b) = (ra) x b = a x (rb).

Equivalently, an algebra over a field K is a ring A which is also a vector space over
K such that the ring multiplication satisfies the homogeneity condition (iii). Thus, an
algebra has three operations: the addition and multiplication of a ring and the scalar
multiplication of a vector space. Usually we omit the multiplication sign and write
ab instead of a x b.

Addition and multiplication of functions induce corresponding operations on CS°,
making it into an algebra over R (Problem 2.2).
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2.3 Derivations at a Point

Amap L: V — W between vector spaces over a field K is called a linear map or a
linear operator if foranyr € K andu,v e V,

(i) L(u +v) = L(u)+ L(v);
(i) L(rv) =rL(v).

To emphasize the fact that the scalars are in the field K, such a map is also said to be
K-linear.
For each tangent vector v at a point p in R”, the directional derivative at p gives
a map of real vector spaces
D,: C ;o — R.

By (2.1), Dy, is R-linear and satisfies the Leibniz rule

Dy(fg) = (Dvf)g(p) + f(p)Dug. 2.2

essentially because the partial derivatives 9/9x’| p have these properties.
In general, any linear map D: C}° — R satisfying the Leibniz rule (2.2) is called
a derivation at p or a point-derivation of C;". Denote the set of all derivations at p
by D, (IR"). This set is in fact a real vector space, since the sum of two derivations at
p and a scalar multiple of a derivation at p are again derivations at p (Problem 2.3).
Thus far, we know that directional derivatives at p are all derivations at p, so
there is a map

¢: T,(R") — D,(R"), (2.3)

;0
v|—>DU= UZF
Flp

Since D, is clearly linear in v, the map ¢ is a linear operator of vector spaces.

Lemma 2.2. If D is a point-derivation of CS°, then D(c) = 0 for any constant
function c.

Proof. As we do not know if every derivation at p is a directional derivative, we need
to prove this lemma using only the defining properties of a derivation at p.

By R-linearity, D(c) = ¢D(1). So it suffices to prove that D(1) = 0. By the
Leibniz rule

D(1)=D(1 x1)=D(1) x 1 +1 x D(1) =2D(1).
Subtracting D (1) from both sides gives 0 = D(1). O

Theorem 2.3. The linear map ¢: T,(R") — D,(R") defined in (2.3) is an isomor-
phism of vector spaces.
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Proof. To prove injectivity, suppose D, = 0 for v € T}, (R™). Applying D, to the
coordinate function x/ gives

. .9
0= D,(x)) = Zv’ —
- ox!

x) = E v’(Sij:v].
p i

Hence, v = 0 and ¢ is injective.

To prove surjectivity, let D be a derivation of at p and let ( f, V) be arepresentative
of a germ in C;’f’. Making V smaller if necessary, we may assume that V' is an open
ball, hence star-shaped. By Taylor’s theorem with remainder (Lemma 1.4) there are
C° functions g; (x) in a neighborhood of p such that

. . b
fO) =)+ Y (' = pHgix), gilp) = a_){f(p)'

Applying D to both sides and noting that D(f (p)) = Oand D(p’) = 0by Lemma?2.2,
we get by the Leibniz rule

Df(x) =Y (Dx)gi(p) + Y _(p' — p")Dgi(x)
iy Of
=2 (D)2 (p).
X
This proves that D = D, for v = (Dxl, ..., Dx"). O

This theorem shows that one may identify the tangent vectors at p with the
derivations at p. Under the identification T,,(R") ~ D,(IR"), the standard basis
{e1, ..., ey} for T,(R") corresponds to the set {8/8x1|p, ...,0/0x"|,} of partial
derivatives. From now on, we will make this identification and write a tangent vector
v= (..., ") =Y vie; as

]
U:Zl)lﬁ

The vector space D, (R") of derivations at p, although not as geometric as arrows,
turns out to be more suitable for generalization to manifolds.

p

2.4 Vector Fields

Avector field X on an open subset U of R" is a function that assigns to each point p
in U a tangent vector X, in T,(R"). Since T, (R") has basis {0/0x'|,}, the vector
X is a linear combination

, peU.
P

: d
Xp=2 d"(P) 5

We say that the vector field X is C™ on U if the coefficient functions a' are all C*
onU.
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Example 2.4. On R? — {0}, let p = (x, y). Then

. -y a n by a
VxZ4y2ox o \/x24y23y

is the vector field of Figure 2.3.

Fig. 2.3. A vector field on RZ — {0}.

One can identify vector fields on U with column vectors of C* functions on U:

al

;0
XZZGIW

The ring of C* functions on U is commonly denoted C*°(U) or F(U). Since
one can multiply a C* vector field by a C*° function and still get a C*° vector field,
the set of all C* vector fields on U, denoted X(U), is not only a vector space over
R, but also a module over the ring C*>°(U). We recall the definition of a module.

Definition 2.5. If R is a commutative ring with identity, then an R-module is a set A
with two operations, addition and scalar multiplication, such that

(1) under addition, A is an abelian group;
(2) forr,s € Randa,b € A,
(i) (closure) ra € A;
(i1) (identity) if 1 is the multiplicative identity in R, then la = a;
(iii) (associativity) (rs)a = r(sa);
(iv) (distributivity) (r + s)a =ra + sa,r(a +b) =ra +rb.

If R is a field, then an R-module is precisely a vector space over R. In this sense,
a module generalizes a vector space by allowing scalars in a ring rather than a field.
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2.5 Vector Fields as Derivations

If X is a C* vector field on an open subset U of R” and f is a C* function on U,
we define a new function X f on U by

(Xf)(p)=X,f forany peU.
Writing X = Y a’d/0x!, we get

; d
(Xf)(p) = Za’(p)a—)’:,.(m,

or o
Xf= —,
f=)d5
which shows that X f is a C*° function on U. Thus, a C* vector field X gives rise
to an R-linear map

C®WU) — C*®W)
f— Xf.
Proposition 2.6 (Leibniz rule for a vector field). If X is a C* vector field and f

and g are C* functions on an open subset U of R", then X (fg) satisfies the product
rule (Leibniz rule):

X(fe) =(Xf)g+ fXg.
Proof. At each point p € U, the vector X, satisfies the Leibniz rule:

Xp(fe)=Xpfelp)+ f(p)Xpg.

As p varies over U, this becomes an equality of functions:

X(fg) = Xfg+ fXg. o

If A is an algebra over a field K, a derivation of Aisa K-linearmap D: A — A
such that
D(ab) = (Da)b+aDb foralla,b € A.

The set of all derivations of A is closed under addition and scalar multiplication and
forms a vector space, denoted Der(A). As noted above, a C* vector field on an open
set U gives rise to a derivation of the algebra C*°(U). We therefore have a map

¢: X(U) — Der(C*®(U)),

Just as the tangent vectors at a point p can be identified with the point-derivations of
C;O, so the vector fields on an open set U can be identified with the derivations of the
algebra C*°(U), i.e., the map ¢ is an isomorphism of vector spaces. The injectivity of
@ is easy to establish, but the surjectivity of ¢ takes some work (see Problem 19.11).

Note that a derivation at p is not a derivation of the algebra C°. A derivation at
p is amap from C° to R, while a derivation of the algebra C7° is a map from C}°
to Cp°.
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Problems

2.1. Vector fields
Let X be the vector field x 8/dx + yd/dy and f(x, y, z) the function x% + y? + z2
on R3. Compute Xf.

2.2. Algebra structure on C;"
Define carefully addition, multiplication, and scalar multiplication in C°. Prove that
addition in C}° is commutative.

2.3. Vector space structure on derivations at a point
Let D and D’ be derivations at p in R”, and ¢ € R. Prove that

(a) the sum D + D’ is a derivation at p.
(b) the scalar multiple ¢ D is a derivation at p.

2.4. Product of derivations

Let A be an algebra over a field K. If Dy and D, are derivations of A, show that
D1 o D;isnot necessarily a derivation (itis if Dj or D, = 0),but D1 o Dy — D3 o D
is always a derivation of A.
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Alternating k-Linear Functions

This chapter is purely algebraic. Its purpose is to develop the properties of alternating
k-linear functions on a vector space for later application to the tangent space at a point
of a manifold.

3.1 Dual Space

If V and W are real vector spaces, we denote by Hom(V, W) the vector space of
all linear maps f: V — W. Define the dual space V* to be the vector space of all
real-valued linear functions on V:

V* = Hom(V, R).

The elements of V* are called covectors or 1-covectors on V.

In the rest of this section, assume V to be a finite-dimensional vector space. Let
{e1,...,e,} be a basis for V. Then every v in V is uniquely a linear combination
v =Y vie withv' € R. Leta’: V — R be the linear function that picks out the
ith coordinate, o/ (v) = v'. Note that &' is characterized by

Oli(e')Z(Si.: ! lfl:]’
TN o it #£ .

1

Proposition 3.1. The functions a*, ..., a" form a basis for V*.

Proof. We first prove thata!, ..., " span V*. If f € V*andv =) vie; in V, then
f) =Y vfe) =) flede ).

Hence, '
f=Y flend,

which shows that !, ..., a" span V*,
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To show linear independence, suppose Y ¢c;a’ = 0 for some ¢; € R. Applying
both sides to the vector e; gives

O=Zciai(ej)=2c‘i8§- =cj, j=1,...,n

1 ..., a" are linearly independent. O

Hence, o
This basis {ocl, ..., a"} for V* is said to be dual to the basis {ey, ..., e,} for V.

Corollary 3.2. The dual space V* of a finite-dimensional vector space V has the
same dimension as V.

Example 3.3 (Coordinate functions). With respect to a basis ey, ..., e, for a vector
space V,every v € V can be written uniquely as a linear combination v = Y b' (v)e;,
where b' (v) € R. Leta!, ..., a" be the basis of V* dual to el,...,e,. Then

o (v) = o be(v)ej = be'(v)ai(ej) = Zb-/(v)aj. =b'(v).
j j j

Thus, the set of coordinate functions b', ..., b" with respect to the basis ey, ..., e,
is precisely the dual basis to ey, .. ., e,.

3.2 Permutations

Fix a positive integer k. A permutation of the set A = {1, ..., k} is a bijection o : A
— A. The product To of two permutations 7 and o of A is the compositiont c 0 : A
— A, in that order; first apply o, then 7. The cyclic permutation (a; a3 - -- a,) is the
permutation o such that o (a1) = a2, o(az) = a3, ..., o(a,—1) = (a;), o(a;) = ay,
and such that o fixes all the other elements of A. The cyclic permutation (aj a> - - - a;,)
is also called a cycle of length r or an r-cycle. A transposition is a cycle of the form
(a b) that interchanges a and b, leaving all other elements of A fixed.
A permutation o : A — A can be described in two ways: as a matrix

1 2 k
o) o) - o)
or as a product of disjoint cycles (aj - - - ay )(b1--- b)) - - .

Example 3.4. Suppose the permuation o : {1, 2,3,4,5} — {1, 2,3,4,5} maps 1, 2,
3,4,5t02,4,5,1, 3 in that order. Then

12345
2[24513]=(124)(35).
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Let S be the group of all permutations of the set {1, ..., k}. A permutation is
even or odd depending on whether it is the product of an even or an odd number of
transpositions. From the theory of permutations we know that this is a well-defined
concept: an even permutation can never be written as the product of an odd number
of transpositions and vice versa. The sign of a permutation o, denoted sgn(o) or
sgn o, is defined to be +1 or —1 depending on whether the permutation is even or
odd. Clearly, the sign of a permutation satisfies

sgn(ot) = sgn(o) sgn(t)
foro, v € S.
Example 3.5. The decomposition
(12345)=1504)13)(12)
shows that the 5-cycle (1 2 3 4 5) is an even permutation.

More generally, the decomposition

(arap --- ay) = (a1 ar)(ay ar—1) -+ - (a1 az)(a; az)

shows that an r-cycle is an even permutation if and only if r is odd, and an odd
permutation if and only if  is even. Thus one way to compute the sign of a permutation
is to decompose it into a product of cycles and to count the number of cycles of even
length. For example, the permutation o in Example 3.4 is odd because (1 2 4) is even
and (3 5) is odd.

An inversion in a permutation ¢ is an ordered pair (o (i), o (j)) such thati < j
but o (i) > o (j). Thus, the permutation ¢ in Example 3.4 has five inversions: (2, 1),
4, 1), G, 1), (4,3),and (5, 3).

A second way to compute the sign of a permutation is to count the number of
inversions as in the following proposition.

Proposition 3.6. A permutation is even if and only if it has an even number of inver-
sions.

Proof. By multiplying o by a number of transpositions, we can obtain the identity.
This can be achieved in k steps.

(1) First, look for the number 1 among o (1), 6(2), ..., o (k). Every number pre-
ceding 1 in this list gives rise to an inversion. Suppose 1 = o(i). Then
(o), 1),...,(c(@ — 1), 1) are inversions of . Now move 1 to the begin-
ning of the list across the i — 1 elements o (1), ..., o (i — 1). This requires i — 1
transpositions. Note that the number of transpositions is the number of inversions
ending in 1.

(2) Nextlook for the number 2 in the list: 1,0 (1),...,0( —=1),0(+1),...,0k).
Every number other than 1 preceding 2 in this list gives rise to an inversion
(o(m),2). Suppose there are i such numbers. Then there are i inversions
ending in 2. In moving 2 to its natural position 1, 2, o (1), 0(2), ..., we need to
move it across i> numbers. This requires i, transpositions.
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Repeating this procedure, we see that for each j = 1,...,k, the number of
transpositions required to move j to its natural position is the same as the number
of inversions ending in j. In the end we achieve the ordered list 1, 2, ..., k from
o(1),0(2),...,o0(k) by multiplying o by as many transpositions as the total number
of inversions in o'. Therefore, sgn(c) = (—1)#inversionsin o O

3.3 Multilinear Functions

Denote by V¥ = V x - .. x V the Cartesian product of k copies of a real vector space
V. Afunction f: VK — R is k-linear if it is linear in each of its k arguments

fCG..,av+bw,...)=af(..,v,...)+bf(...,w,...)

fora,b € R and v, w € V. Instead of 2-linear and 3-linear, it is customary to say
“bilinear’” and “trilinear.” A k-linear function on V is also called a k-tensor on V.
We will denote the vector space of all k-tensors on V by L (V). If f is a k-tensor on
V, we also call k the degree of f.

Example 3.7. The dot product f (v, w) = v - w on R" is bilinear:

vow = E viw',
where v =) v'e; and w = Y w'e;.

Example 3.8. The determinant f (v1, ..., v,) = det[v; - - - v, ], viewed as a function
of the n column vectors vy, ..., v, in R”?, is n-linear.

Definition 3.9. A k-linear function f: V¥ — R is symmetric if
F o), s Vo) = fU1, -0y vk)
for all permutations o € Si; it is alternating if
f oy, .- Vo)) = (sgno) f(vr, ..., vk)
forall o € Sy.

Example 3.10.
(i) The dot product f (v, w) = v - w on R” is symmetric.
(ii) The determinant f(vy, ..., v,) = det[v; - - - v,] on R”" is alternating.

We are especially interested in the space Ay (V) of all alternating k-linear functions
on a vector space V for k > 0. These are also called alternating k-tensors, k-
covectors, or multicovectors on V. For k = 0, we define a O-covector to be a constant
so that Ag(V) is the vector space R. A 1-covector is simply a covector.
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3.4 Permutation Action on k-Linear Functions

If f is a k-linear function on a vector space V and o is a permutation in Sy, we define
a new k-linear function o f by

@HWr, ..., ) = f(Vo)s---» Vok))-

Thus, f is symmetric if and only if o f = f forall o € S and f is alternating if and
onlyifof = (sgno) f forallo € S.

When there is only one argument, the permutation group S is the identity group
and a 1-linear function is both symmetric and alternating. In particular,

A(V)=L(V)=V*
Lemma 3.11. If o, Tt € Sk and f is a k-linear function on V, then t(o ) = (t0) f.
Proof. Forvy,...,v eV,

(@ f) (i, vk) = (@) Weq)ys - -5 Ve())
= (of)(wi,...,wr) (etting w; = v))
= f(Wo(1)s -+ s Wa(k))
= f(Vre)r--+» V(o)) = fVro)D)s -+ Vo) k)
= (to)f(v1,..., vk). O

In general, if G is a group and X is a set, a map

GxX—>X

(0, x) > 0 -x

is called a left action of G on X if

(i) 1-x = x where 1 is the identity in G and x is any element in X, and
(i) t-(c-x)=(to)-xforallt,o0 € G,x € X.

In this terminology, we have defined a left action of the permutation group Si on the
space Ly (V) of k-linear functions on V. Note that each permutation acts as a linear
function on the vector space L (V) since o f is R-linear in f.

A right action of G on X is defined similarly; it is a map X x G — X such that

i x-1=x,
@) x-0)-t=x-(071)

forallo,7 € Gand x € X.

Remark 3.12. In some books the notation foro f is f“. Inthatnotation, (f7)" = f*,
not f°°.
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3.5 The Symmetrizing and Alternating Operators

Given any k-linear function f on a vector space V, there is a way to make a symmetric
k-linear function Sf from it:

(SHOL ) = Y fQo(1)s -5 Vo)

oeSk

or, in our new shorthand,

Sf=Y of.

oeSk
Similarly, there is a way to make an alternating k-linear function from f. Define

Af = Z(sgn o)of.

oSk

Proposition 3.13.
(i) The k-linear function Sf is symmetric.
(ii) The k-linear function Af is alternating.

Proof. We prove (ii) only and leave (i) as an exercise. If T € S,

T(Af) =) (sgno)r(of)

o €Sk

= Z(sgna)(ra)f (Lemma 3.11)

oeSk

= (sgn ) Z (sgnto)(to)f

OGSk

= (sgnt)Af,
since as o runs through all permutations in Sk, so does 7o O
Exercise 3.14 (Symmetrizing operator). Show that the k-linear function Sf is symmetric.

Lemma 3.15. If f is an alternating k-linear function on a vector space V, then

Af = (k).

Proof.
Af =) Ggno)of = ) (sgno)(sgno)f = kD f. o

o €Sk o ESk

Exercise 3.16 (The alternating operator). If f is a 3-linear function on a vector space V,
what is (Af)(vy, v2, v3), where vy, vp, v3 € V?



3.7 The Wedge Product 25

3.6 The Tensor Product

Let f be a k-linear function and g an ¢-linear function on a vector space V. Their
tensor product is the (k + £)-linear function f ® g defined by

(fRYWr, ..., vkpe) = fU, .., VEWkt1s - -+ s Vo).

Example 3.17 (Euclidean inner product). Let ey, . . ., e, be the standard basis for R”
andleta!, ..., o beits dual basis. The Euclidean inner product on R” is the bilinear
function (, ): R” x R" — R defined by

(v, w) = Zviwi

forv=">" vie;and w = 3 w'e;. We can express (, ) in terms of the tensor product:

(v, w) = Z viw! = Zai(v)ai(w)
= Z(a" ® a')(v, w).

Hence, (, ) =); o' ® . This notation is often used in differential geometry to
describe an inner product on a vector space.

Exercise 3.18 (Associativity of the tensor product). Check that the tensor product of multi-
linear functions is associative: if f, g, and & are multilinear functions on V, then

(f®Vh=fR(Eh).

3.7 The Wedge Product

If two multilinear functions f and g on a vector space V are alternating, then we
would like to have a product that is alternating as well. This motivates the definition
of the wedge product: for f € Ap(V)and g € A¢(V),

1

ng:M

A(f ®g); 3.1

or explicitly,

(fAQWr, ..., Vkpe)
1
=0 Z (sgn o) f(Wo(1), - -+ Vo)) & Wo (k1) - - - » Vohtt))-  (3.2)
0 ESk+e

By Proposition 3.13, f A g is alternating.
When k£ = 0, the element f € Ag(V) is simply a constant c. In this case, the
wedge product ¢ A g is scalar multiplication, since the right-hand side of (3.2) is
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1
7 Z (sgno)cg(g(1y, - - - » Vo(e)) = cg(v1, ..., Vg).

’ UES{

Thusc A g =cgforc e Rand g € Ag(V).

The coefficient 1/(k!£!) in the definition of the wedge product compensates for
repetitions in the sum: for every permutation o € Si4¢, there are k! permutations t
in Sy that permute the first k arguments v, (1), . . . , Vs (k) and leave the arguments of g
alone; for all 7 in Sk, the resulting permutations o 7 in Sk, contribute the same term
to the sum since

(sgnot) f(Vor(1)s -+ s Vor (k) = (sgnot)(sgn 1) f(Vs(1), - - - » Vo (k))
= (sgno) f(e(1), -+ +» Vo ())s

where the first equality follows from the fact that (z(1), ..., 7(k)) is a permutation of
(1, ..., k). So we divide by k! to get rid of the k! repeating terms in the sum coming
from the permutations of the k arguments of f; similarly, we divide by ¢! on account
of the £ arguments of g.

Example 3.19. For f € A>(V) and g € A1(V),
A(f ® g)(v1, v2,v3) = f(v1, v2)g(v3) — f(v1, v3)g(v2) + f(v2, v3)g(V1)
— fv2, v1)g(v3) + f(v3, v1)g(v2) — f(v3, v2)g(V1).
Among these 6 terms, there are three pairs of equal terms:
f i, v2)g(w3) = —f(v2, v1)g(v3), andsoon.
Therefore, after dividing by 2,
(f A1, v, v3) = f(v1,v2)g(v3) — f (w1, v3)g(v2) + f(v2, v3)g(V1).

One way to avoid redundancies in the definition of f A g is to stipulate that in the
sum (3.2),0(1), ..., o(k) be in ascending order and o (k + 1), ..., o (k + £) also be
in ascending order. We call a permutation o € Sky¢ a (k, £)-shuffle if

o(l)<---<o(k) and otk+1)<---<ok+1?).
Then one may rewrite (3.2) as
(f A1, ..,y Vkte)

= E (sgn a)f(vg(l), PR vg'(k))g(vo'(k_l’_l), ey vg(k+g)). (3.3)
(k,£)-shuffles
o

Written this way, the definition of (f A g)(v1, ..., Ukse) is a sum of (kze) terms,

instead of (k + £)! terms.

Example 3.20 (Wedge product of two covectors). If f and g are covectors on a vector
space V and vy, v € V, then by (3.3)

(f A )i, ) = fv)gw2) — f(v2)g(vr).

Exercise 3.21 (Wedge product of two 2-covectors). For f, g € A, (V), write out the definition
of f A g using (2, 2)-shuffles.
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3.8 Anticommutativity of the Wedge Product
It follows directly from the definition of the wedge product (3.2) that f A g is bilinear
in f andin g.
Proposition 3.22. The wedge product is anticommutative: if f € Ax(V) and g €
Ay¢(V), then

fAag=(E=Drgnf
Proof. Define T € Si4¢ to be the permutation

B I B e R
k41 k+e 1 o k|

This means that

tD=k+1,....,t(0)=k+ 4,7+ 1) =1,..., 7+ k) =k.

Then
o(l)=ctl+1),...,0(k) =01l + k),
ok+ 1) =ot(l),...,ok+£) =oc1t(l).
Forany vy, ..., vkqpe €V,

A(f @ &) (1, ..., Vkte)
= Z (sgno) f (Vo (1), - - s Vo (k)8 (Vo (k+1)s - - - » Vo (k+6))

0 ESk+¢

= Z (sgno) f (Voz(e+1)s - - - » Vor(e+k)& Wor(1): - - -+ Vor(e))

0 E€Sk+e
(sgnT) D (sgnoT)gWor(l)s - - -+ Vor(®) f Wor(es1)s - - -+ Vor(eth)
0 ESk+e
= (sgn1)A(g ® (v, ..., Vite).
The last equality follows from the fact that as o runs through all permutations in Sy ¢,

sodoes oT.
We have proved

A(f®g) = (sgn1)A(g ® f).

Dividing by k!€! gives

frg=(gn)gAf.
Exercise 3.23 (The sign of a permutation). Show that sgnt = (— l)k[. O
Corollary 3.24. If f is a k-covector on V and k is odd, then f A f = 0.
Proof. By anticommutativity,

FAf=EDRAS

=—fnF

since k is odd. Hence, 2 f A f = 0. Dividing by 2 gives f A f = 0. O
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3.9 Associativity of the Wedge Product

If f is a k-covector and g is an £-covector, we have defined their wedge product to

be the (k + £)-covector
1
frg= MA(f@)g).

To prove the associativity of the wedge product, we will follow Godbillon [7] by first
proving the following lemma on the alternating operator A.

Lemma 3.25. Suppose f is a k-linear function and g an £-linear function on a vector
space V. Then

() AA(f) ® g) = k'A(f ® g), and
(i) A(f @ A(g)) = LIA(f ® g).

Proof. (i) By definition,

AAN®Y = )Y Ggo)o | D (senn)(f)®¢

O ESk+e TESK
We can view t € S as a permutation in Si¢ such that
t(i)=i fori=k+1,...,k+¢.

For sucha t,
THeg=1(f®8.

Hence,

AAN O = Y. D (gno)sgn)@)(f ®g).

0 ESk4r0 TESK

Let w = ot € Sky¢. Foreach u € Sk, there are k! ways to write 4 = ot with
0 € Skt and T € S, because each 7 € S; determines a unique o by the formula
o = ut~'. So the double sum above can be rewritten as

AAH®g) =k Y (senpu(f ®g)

MESk+e

=klIA(f ® g).
The equality in (ii) is proved in the same way. O

Proposition 3.26 (Associativity of the wedge product). Let V be a real vector space
and f, g, h alternating multilinear functions on V of degrees k, £, m, respectively.
Then

(fA@ANh=fN(gAh).
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Proof. By the definition of the wedge product,

1
(f/\g)/\hZWA((f/\g)@h)

= &+ Olm! K11 AA(f®g)®h)

(k+ 0!

= mf\((f ®g) ®h) (by Lemma 3.25(i))

1
= A @ ®h.
Similarly,

1 1
f/\(g/\h)zm/‘<f®m/‘(g®h))

1
= WA(f ® (g ®h)).

Since the tensor product is associative, we conclude that
(fAQNh=FfN(AD). o
By associativity, we can omit the parentheses in a multiple wedge product such
as (f A g) A h and write simply f A g A h.
Corollary 3.27. Under the hypotheses of the proposition,
1
AU ®g®h).
This corollary easily generalizes to an arbitrary number of factors: if f; €
Ay (V), then

fAgAnh=

1
fl/\---/\fr=mA(fl®“'®fr)- (3.4

In particular, we have the following proposition. We use the notation [b;] to denote

the matrix whose (7, j)-entry is b’]

Proposition 3.28 (Wedge product of 1-covectors). If«', ..., aX are linear functions
on a vector space V and vy, ..., vx € V, then
@' A ndd) L., v = deta (v))].

Proof. By (3.4),

@ A AL ) =A@ ® @) (L )
=Y (sgno)a' (o) - @ (Vo)
(TESk

= det[e’ (v))]. a]
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3.10 A Basis for k-Covectors

Let eq, ..., e, be a basis for a real vector space V, and let al, ..., o" be the dual
basis for V*. Introduce the multi-index notation
I'=(@1,...,0)
and write e; for (e;,, ..., ¢;) and al forait A -+ A @ik,
A k-linear function f on V is completely determined by its values on all k-tuples
(eiy,...,e,). If f is alternating, then it is completely determined by its values on
(eiy,...,e;) with 1 <ij < --- < iy < n; that is, it suffices to consider e; with

I in ascending order. Suppose I, J are ascending multi-indices of length k. By
Proposition 3.28,

1 if I =J;

1 _
CD=00 ipr 2,

Proposition 3.29. The alternating k-linear functions o', I = (iy < --- < i), form
a basis for the space A (V) of alternating k-linear functions on V.

Proof. First, we show linear independence. Suppose Zc;al =0, ¢ € R,
and [ runs over ascending multi-indices of length k. Applying both sides to ey,
J =01 < < i), we get

0=> cra'(es) =cy.

since among all ascending multi-indices I of length k there is only one equal to J.
This proves that the o/ are linearly independent.
To show that the o/ span Ai(V), let f € Ax(V). We claim that

f=Y flend,

where I runs over all ascending multi-indices of length k. Let g = > f(ep)a’.
By k-linearity and the alternating property, if two k-covectors agree on all ey,
J = (j1 <--- < ji), then they are equal. But

gle) =) flenal(e)) =) flens) = fle).

Therefore, f =g =Y f(epa!. |

Corollary 3.30. If the vector space V has dimension n, then the vector space Ax (V)
of k-covectors on 'V has dimension (Z)

Proof. An ascending multi-index I = (i; < --- < i) is obtained by choosing a
subset of kK numbers from 1, ..., n. This can be done in (Z) ways. O

Corollary 3.31. If k > dim V, then Ay (V) = 0.

Proof. In all A+ Aalk, at least two of the factors must be the same, say «. Because
a is a I-covector, @ A a = 0 by Corollary 3.24, so a’! A--- Aa'* = 0. O
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Problems

3.1. Tensor product of covectors

Letey, ..., e, be abasis for a vector space V and let al, ..., o" beits dual basis for
V*. Suppose [g;;] € R"*" is an n x n matrix. Define a bilinear function f: V x V
— Rby

S, w) = Zgijviwj

forv =) v'e;andw = Y w’e; in V. Describe f in terms of the tensor product of
o' and /.

3.2. Hyperplanes

(a) Let V be a vector space of dimensionn and f: V — R anonzero linear functional.
Show that dim ker f = n — 1. Alinear subspace of V of dimension n — 1 is called
a hyperplane in V.

(b) Show that a nonzero linear functional on a vector space V is determined up to a
constant by its kernel, a hyperplane in V. In other words, if f and g: V — R
are nonzero linear functionals and ker /' = ker g, then g = ¢f for some constant
ceR.

3.3. A basis for k-tensors

Let V be a vector space of dimension n with basis ey, ..., e,. Let al) ... o" bethe
dual basis for V*. Show that a basis for the space Ly (V) of k-linear functions on V
is {¢"! ® --- ® a'*} for all multi-indices (i1, ..., ;). In particular, this shows that
dim Ly(V) = n*.

3.4. Alternating k-tensors
Let w be a k-tensor on a vector space V. Prove that w is alternating if and only if @
changes sign whenever two successive arguments are interchanged:

a)(...,vi+1,v,-,...):—a)(...,vi,v,-+1,...)
fori=1,...,k—1.

3.5. Alternating k-tensors
Let w be a k-tensor on a vector space V. Prove that w is alternating if and only if
w(vy, ..., vr) = 0 whenever two of the vectors vy, ..., v are equal.

3.6. Wedge product and scalars
Let V be a vector space. Fora,b € R, f € Ax(V) and g € A¢(V), show that
af ANbg = (ab) f N g.

3.7. Transformation of a wedge product of covectors
Suppose two sets of covectors on a vector space V, o, ..., oFand !, ..., ¥, are
related by

k
w’:Za}rf, i=1,...,k,
Jj=1
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fora k x k matrix A = [a;.]. Show that

o' A Ao = (detA) T A A TR

3.8. Transformation rule for a k-covector

Let w be a k-covector on a vector space V. Suppose two sets of vectors uy, ..., Ug
and vy, ..., vg in V are related by

i
W:Za;vi, j=1,...,k,
j=l1

for a k x k matrix A = [a;.]. Show that
w(uy,...,ux) = (det A)w(vy, ..., vg).

3.9.*% Linear independence of covectors
Letal, ..., a* be 1-covectors on a vector space V. Show that al A A # 0if
and only if !, ..., &F are linearly independent in the dual space V*.

3.10.* Exterior multiplication
Let o be anonzero 1-covector and w a k-covector on a finite-dimensional vector space
V. Show that o A w = 0 if and only if ® = « A T for some (k — 1)-covector Tt on V.

3.11. Pullback of a k-covector
For any linear map L: V — W of vector spaces and any positive integer k, there is
a pullback map L*: Ap(W) — A (V) defined by

L*(f)(wi, ..., u) = f(L(1), ..., L))

forall vy, ..., vr € V. Show thatif L: V — V is alinear operator of a vector space
V of dimension n, then L*: A,(V) — A, (V) is multiplication by the determinant
of L.
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Differential Forms on R”

In this chapter we apply the multilinear algebra of Chapter 3 to define differential
forms on an open subset of R”. Differential forms provide a way to unify the main
theorems of vector calculus in R.

4.1 Differential 1-Forms and the Differential of a Function

The cotangent space to R" at p, denoted by T;‘(R”) or T;,"R”, is defined to be the
dual space (T,R")* of the tangent space T, (R"). Thus, an element of the cotangent
space T];‘ (R™) is a covector or a linear functional on the tangent space 7, (R"). In
parallel with the definition of a vector field, a covector field or a differential 1-form w
on an open subset U of R” is a function that assigns to each point p in U a covector
wp € T;," (R™). We call a differential 1-form a 1-form for short.

From any C* function f: U — R, we can construct a 1-form df, called the
differential of f, as follows. For p € U and X, € T,U, define

df)p(Xp) = Xp f.

Let x!, ..., x" be the standard coordinates on R". We saw in Section 2.3 that the
set {9/0x! [ps...,0/0x"|p} is a basis for the tangent space T),(R").
Proposition 4.1. Ifx', ..., x" are the standard coordinates on R", then at each point

p € R", {(dxl)p, ..., (dx™)p} is the basis for the cotangent space T;(R") dual to
the basis {9/9x' lps ..., 0/0x"|,} for the tangent space T,(R").

Proof. By definition,
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If w is a 1-form on an open subset U of R”, then by Proposition 4.1, at each point
p in U there is a linear combination

wp =Y _ai(p) (dx'),,

for some a; (p) € R. As p varies over U, the coefficients a; become functions on U,
and we may write ® = Y_ a; dx'. The covector field w is said to be C* on U if the
coefficient functions a; are all C* on U.

If x, y, and z are the coordinates on R3, thendx, d y, and dz are 1-forms on R3. In
this way, we give independent meaning to what was merely a notation in elementary
calculus.

Proposition 4.2 (The differential in terms of coordinates). If f: U — R isa C*®
Sfunction on an open set U in R", then

df :Za—f.dxf. 4.1)

ox!

Proof. By Proposition 4.1, at each point p in U,
df)p = ai(p)(dx), 4.2)

for some constants a; (p) depending on p. Thus, df = Y a; dx' for some functions
a; onU. Toevaluate a;, apply both sides of (4.2) to the coordinate vector field 9/9x/:

d ; d ;
df <@)=Za,dx (g):Za,SJ =4daj.
1 l
On the other hand, by the definition of the differential,

df <i>—£ O

ax/ ) oxi
Equation (4.1) shows that if f is a C* function, then the 1-form df is also C*°.

Example 4.3. Differential 1-forms occur naturally, even if one is interested only in
tangent vectors. Every tangent vector X, € T),(R") is a linear combination of the
standard basis vectors:

: ad
Xp ZZbZ(XP)@ p
i

In Example 3.3 we saw that at each point p € R", we have b (X ) = (dx')p(X)p).
Hence, the coefficient b' of a vector with respect to the standard basis 9/ axt, ...,
d/0x" is none other than the dual form dx' on R".
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4.2 Differential k-Forms

More generally, a differential form w of degree k or a k-form on an open subset U
of R" is a function that assigns to each point p in U an alternating k-linear function
on the tangent space T,,(R"), i.e., w, € Ax(T,R"). Since A1(T,R") = T];‘ (R™), the
definition of a k-form generalizes that of a 1-form in the preceding section.

By Proposition 3.29, a basis for Ax(T,R") is

dxll,zdx;,]/\-.-/\dx;,", 1<ij<---<ip<n.

Therefore, at each point p in U, w), is a linear combination

I . .
a)p=Za1(p)dxp, 1<ij<---<ip<mn,

and a k-form w on U is a linear combination

w:Za;dx’,

with function coefficients a; : U — R. We say that a k-form w is C* on U if all the
coefficients a; are C*° functions on U.

Denote by QX (U) the vector space of C*° k-forms on U. A 0-form on U assigns
to each point p in U an element of Ao(7,R") = R. Thus, a 0-form on U is simply a
function on U, and Q*(U) = C®(U).

Since one can multiply C*® k-forms by C* functions, the set QX (U) of C*®
k-forms on U is both a vector space over R and a module over C*°(U). With the
wedge product as multiplication, the direct sum Q*(U) = B;_, Qk(U) becomes an
algebra over R as well as a module over C*°(U). As an algebra, it is anticommutative
and associative.

Remark 4.4. There are no differential forms of degree > n on an open subset of R",
other than the zero differential form. This is_ because if deg dx' > n, then in the
expression dx’ at least two of the 1-forms dx’» must be the same, forcing dx! = 0.

Example 4.5. Let x, y, 7 be the coordinates on R3. The C* 1-forms on R3 are
a(x,y,z)dx +b(x,y,z2)dy +c(x,y,2)dz,
where a, b, ¢ range over all C* functions on R3. The C* 2-forms are
a(x,y,2)dyANdz+b(x,y,2)dx Ndz+c(x,y,2)dx Ndy

and the C*° 3-forms are
a(x,y,z)dx ndy Ndz.

Exercise 4.6 (A basis for 3-covectors). Let x 1, xz, x3, x4 be the coordinates on R4 and pa

point in R*. Write down a basis for the vector space A3(Tp (R4)).
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4.3 Differential Forms as Multilinear Functions on Vector Fields

If w is a C* 1-form and X is a C* vector field on an open set U in R”, we define a
function w(X) on U by the formula

(X)) =wy(X,), peU.

Written out in coordinates,

a):Zaidxi, X=ij%,
)

o(X) = (Zéli dxi) (be%) = Zaibia

which shows that w(X) is C* on U. Thus, a C* 1-form on U gives rise to a
map: X(U) — C*(U).

This function is actually linear over the ring C*°(U) since if f € C*°(U), then
o(fX) = fo(X). Let F(U) = C*°(U). In this notation, a 1-form on U gives rise
to an F(U)-linear map: X(U) — F(U).

Similarly, a k-form on U gives rise to a k-linear map over F(U):

XWU) x -+ x X(U)(k times) — FU).

Exercise 4.7 (Wedge product of a 2-form with a 1-form). Let w be a 2-form and t a 1-form
onR3. If X, Y, Z are vector fields on M, then

wATX, Y, Z)= 7

4.4 The Exterior Derivative

To define the exterior derivative of a C*° k-form on an open subset U of R", we
first define it on O-forms: the exterior derivative of a C* function f € C*®(U) is its
differential

df = Z;—fidxi e Q'(U).

Definition 4.8. If o = 3_, a; dx' € QK(U), then

9 .
dw:ZdaI A dx! =Z Z%dx] Adx! e @Nw).
I I j

Example 4.9. Let w be the 1-form f dx+g dy on R?, where f and g are C* functions
on R2. To simplify the notation, write f; = df/dx, f, = df/dy. Then
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do=df ndx +dg Nndy
= (frdx + fydy) Ndx + (gcdx + gydy) ANdy
= (gx — fy)dx Ady.

In this computation dy Adx = —dx Ady and dx A dx = 0 by the anticommutativity
property of the wedge product (Proposition 3.22 and Corollary 3.24).

An algebra A over afield K is said to be graded if it can be written as a direct sum
A=B2, AF of vector spaces over K so that the multiplication map sends A x A*
to AK*tt. The notation A = Do A¥ means that each element of A is uniquely a
finite sum

a=aj+---+a,,
where ai; € Al

Example 4.10. The polynomial algebra A = R[x, y] is graded by the degree: A*
consists of all homogeneous polynomials of degree k in the variables x and y.

Example 4.11. The algebra Q*(U) of C* differential forms on U is also graded by
the degree.

Definition 4.12. Let A = @,fioAk be a graded algebra over a field K. An antideriva-

tion of the graded algebra A is a K -linear map D: A — A such that for w € A¥ and
T € AL,

D(wt) = (Dw)T + (—=1)*wDT. 4.3)

If the antiderivation sends AX to A¥*™ then we say that it is an antiderivation of
degree m. (The degree m could be negative.)

Proposition 4.13.
(i) The exterior differentiationd : Q*(U) — Q*(U) is an antiderivation of degree 1:

dwAT) = (dw) AT+ (=)0 A dT.
(i) d% = 0.
(i) If f € C®U) and X € X(U), then (df)(X) = Xf.

Proof.
(1) Since both sides of (4.3) are linear in @ and in 7, it suffices to check the equality
forw = fdx! and t = gdx’. Then

dw A1) =d(fgdx! ndx")

0 .
= Z (fg) dx' Adx' Adx’
ox!

af . I 7 g 1 J
=2del/\dx /\gdx +Zfﬁdxl/\dx Adx’.
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In the second sum, moving the 1-form (3g/dx") dx' across the k-form dx! results in
the sign (—1)* by anticommutativity. Hence,

ag .

_ k 1 J

dlwAnt)=do At +(=1) E fdx /\de’/\dx
=do AT+ (—Dfo Adr.

(ii) Again, by the R-linearity of d, it suffices to show that d?w = 0 for w = f dx’.
We compute:

d*(fdx") :d(Za—fidxi Adx’)

—Za Iy ldeAdx Adx!.
X

In this sum if i = j, then dx/ Adx’ = 0;if i # j, then 8* f/9x'0x/ is symmetric in
i and j, butdx’/ A dx' is alternating in i and j, so the terms with i # j pair up and
cancel out. For example,

52 2
0~ f °f 2 1
S Tox 2d)c Adx* + 532941 dx” Ndx
9% f 1 2 9% f 2
=ax18x2dx Adx ~|—a 2( dx' Adx?*) =0.

(iii) Let X = >"a’d/0x'. Then
] . -9
@fx = (Z —f.dxf> (Zag)
= Z —ai = Xf. O

Proposition 4.14 (Characterization of the exterior derivative). The three proper-
ties of Proposition 4.13 characterize uniquely exterior differentiation on an open set
U inR"; thatis, if 1) D: Q*(U) — Q*(U) is an antiderivation of degree 1 such that
(ii) D* = 0 and (iii) for f € C®°(U) and X € X(U), (Df)(X) = Xf, then D = d.

Proof. Since every k-form on U is a sum of terms such as f dx’! A --- A dx*, by
linearity it suffices to show that D = d on a k-form of this type. Applying the three
properties, we get

D(fdx"" A+ Adx')
= D(f Dx"' A--- A Dx'*)  (by (iii), Dx' = dx")
= Df A (Dx"" A--- A Dx*) (by (i) and (ii), since D*> = 0)
=df Adx" A--- Adx™)  (by (iii) again)
=d(fdx" A Adx™).
Hence, D = d on Q*(U). O
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4.5 Closed Forms and Exact Forms

A k-form w on U is closed if dw = 0; it is exact if there is a (k — 1)-form t such
that w = dt on U. Since d*> = 0, every exact form is closed. In the next section we
will discuss the meaning of closed and exact forms in the context of vector calculus
on R3.

Exercise 4.15 (A closed 1-form on the punctured plane). Define a 1-form w on R? — {0} by
! (=ydx +xdy)
w=—F"x(— X X .
x2 + y2 Y Y
Show that w is closed.

A collection of vector spaces {Vk},fio with linear maps di: V¥ — VK*1 such
that dx+1 o dy = 0 is called a differential complex or a cochain complex. For any
open subset U of R", the exterior derivative d makes the vector space Q*(U) of C*°
forms on U into a cochain complex, called the de Rham complex of U:

Q)L Q' wy S Ry — -

The closed forms are precisely the elements of the kernel of d and the exact forms
are the elements of the image of d.

4.6 Applications to Vector Calculus

The theory of differential forms unifies many theorems in vector calculus on R3. We
summarize here some results from vector calculus and then show how they fit into
the framework of differential forms.

A vector-valued function on R? is the same as a vector field. Recall the three
operators on scalar- and vector-valued functions on R3:

rad 1 di
{scalar func.} = {vector func.} = {vector func.} = {scalar func.}

[ fx
gradf = | fy |,
WE
P [9/0x P Ry — Q;
curl [ Q| =1]9d/oy | x| Q| =| —(Ry — P |,
| R | d/0z R Ox — Py
mp
div{Q|=P+0y+R;
R
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0
Proposition A. curl(gradf) = [ 0 |.
0
P
Proposition B. div | curl | O =0.
R

Proposition C. On R3, a vector field F is the gradient of some scalar function f if
and only ifcurl F = 0.

Since every 1-form on R3 is a linear combination with function coefficients of
dx,dy, and dz, we can identify 1-forms with vector fields on R3 via

P
Pdx+ Qdy+Rdz<«— | QO
R

Similarly, the 2-forms on R3 can also be identified with vector fields on R3:

P
PdyAndz+ QdzAdx +Rdx Andy <— | QO
R

In terms of these identifications, the exterior derivative of a O-form f is

af/ox

0 0 a

df:a—fdx+a—fdy+a—fdz<—> daf/dy | = gradf;
* Y < af/dx

the exterior derivative of a 1-form is

d(Pdx + Qdy+ Rdz)
=(Ry— Q)dy ndz— (Ry — P,)dz Adx + (Qx — Py)dx ndy, (4.4)

which corresponds to

P Ry - Q;
cul [ Q| = | =Ry — Py |;
R 0, - P,

the exterior derivative of a 2-form is

d(PdyAndz+ QdzAdx + Rdx Ady)
=(Py+ 0Oy + R)dx Andy ndz, 4.5)

which corresponds to
P
div| Q| =P+ 0,+R,.
R
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Thus, after appropriate identifications, the exterior derivatives d on 0-forms, 1-
forms, and 2-forms are simply the three operators grad, curl, and div. In summary,
on an open subset U of R3, there are identifications

Q) — o'w) —4 Q) — QW)

11 4 A
C>®(W) —d) XW) T XW) T C>® ().

gra

Propositions A and B express the property d> = 0 of the exterior derivative.

A vector field (P, Q, R) on R3 is the gradient of a C® function f if and only if
the corresponding 1-form P dx + Q dy + Rdz is df. Proposition C expresses the
fact that a 1-form on R is exact if and only if it is closed.

On the other hand, Proposition C need not be true on a region other than R3, as
the following well-known example from calculus shows.

Example 4.16. If U = R? — {z-axis}, and F is the vector field

—y X
F= : , 0
e )

onR3, then curl F = 0, but F is not the gradient of any C* function on U. The reason
isthatif F were the gradient of a C*° function f on U, then by the fundamental theorem
for line integrals, the line integral

y X
- dx + d
/c x24y2 2y

over any closed curve C would be zero. However, on the unit circle C, with x = cos¢
and y = sin# for 0 < ¢t < 2, this integral is

2w
/—ydx +xdy=/ —(sint) d(cost) + (cost)d(sint) = 2m.
c 0

In terms of differential forms, the 1-form

—y X
w= dx +
x2+y2 x2+y2

dy

is closed but not exact on U.

It turns out that whether Proposition C is true for a region U depends only on
the topology of U. One measure of the failure of a closed k-form to be exact is the
quotient vector space

__ {closed k-forms on U’}

HYU) = ,
{exact k-forms on U}
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called the kth de Rham cohomology of U.

The generalization of Proposition C to any differential form on R” is called the
Poincaré lemma: for k > 1, every closed k-form on R” is exact. This is of course
equivalent to the vanishing of the kth de Rham cohomology H*(R") for k > 1. We
will prove it in Chapter 26.

4.7 Convention on Subscriptsand Superscripts

In differential geometry it is customary to index vector fields with subscripts
e, ..., ey, and differential forms with superscripts o, ... 0" Being 0-forms, co-
ordinate functions take superscripts, x1, ..., x". Their differentials, being 1-forms,
should also have superscripts, and indeed they do, dx!, ... dx". Coordinate vector
fields 9/0x', ..., d/dx™ are considered to have subscripts because the i in 3/9x,
although a superscript for x', is in the lower half of the fraction.

Coefficient functions can have superscripts or subscripts depending on whether
they are the coefficient functions of a vector field or of a differential form. For a
vector field X = ) a'e;, the coefficient functions a' have superscripts; the idea is
that the superscript in a’ “cancels out” the subscript in ¢;. For the same reason, the
coefficient functions b; in a differential form w = ) b; dx/ have subscripts.

The beauty of this convention is that there is a “‘conservation of indices” on the
two sides of the equality sign. For example, with ¢; = 3/9x",

w(X) = (ij dxf) ( ai%) =Y bid"

after cancellation of superscripts and subscripts, both sides of the equality sign have
zero net index. As another example, if X = )" a’d/dx’, then

a = (dx")(X).

Here both sides have a net superscript i. This convention is a useful mnemonic aid
in some of the transformation formulas of differential geometry.

Problems

4.1. A 1-form on R3
Let o be the 1-form zdx — dz and X be the vector field y 8/dx + x 8/dy on R3.
Compute w(X) and dw.

4.2. A 2-form on R3
At each point p € R3, define a bilinear function @ pon Ty (R3) by

al b!

3 al bl
wp(@ b) =w, a’ |, | b? = p’ det |:a2 b2:| )
a3 b3
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for tangent vectors a,b € T) (R3 ), where p3 is the third component of p =
( pl, pz, p3). Since w), is an alternating bilinear function on T, (R?), w is a 2-form
on R3. Write  in terms of the standard basis dx’ A dx/ at each point.

4.3. Exterior calculus
Suppose the standard coordinates on R? are called r and 6 (this R? is the (r, 6)-plane,
not the (x, y)-plane). If x = r cos6 and y = r sin 6, calculate dx, dy, and dx A dy
in terms of dr and d6.

4.4. Exterior calculus

Suppose the standard coordinates on R> are called p, ¢, and 6. If x = p sin ¢ cos 6,
y = psin¢sind, and z = p cos ¢, calculate dx, dy, dz, and dx A dy A dz in terms
of dp, d¢, and d6.

4.5. Wedge product
Let o be a 1-form and B a 2-form on R3. Then

o =aq dx! +ap dx? + a3 dx3,

B =bidx* Adx®+bydx® Adx' +bydx' Adx>.
Compute @ A 8.

4.6. Wedge product and cross product

To a 1-covector « = aydx + apdy + a3dz on R3 we associate the vector v, =
(a1, a2, az) in R3; to a 2-covector y = c1dy Adz+ cadz Adx +c3dx Ady onR3,
we associate the vector v, = (c1, ¢2, ¢3). Show that under this correspondence, the
wedge product of 1-covectors corresponds to the cross product of vectors in R3: if
a=aydx +aydy+azdzand B = by dx + bydy + b3 dz, then vopg = Vo X Vg.

4.7.* Interior multiplication
If w is a k-covector on a vector space V and v € V, the interior multiplication or
contraction of w with v is the (k — 1)-covector ¢, defined by

(o) (2, ..., ) = 0(v, V2, ..., Vk)
forall vy, ..., v € V. Ifa!, ..., o are 1-covectors on V, prove that
k -~
L@ Ao Add) = 2:(—1)l+1()(’(1))ot1 Ao Adi A Ak,
i=1

where the caret ~ over ' means that o' is omitted from the wedge product. (Hint:
Use the determinant formula for the wedge product of 1-covectors (Proposition 3.28).)

4.8.* Interior multiplication
Keeping the same notation as in the preceding problem, prove that

(@) ty oty =05
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(b) forw € Ap(V)and t € Ap(V),
LwAT) = (Lyw) AT+ (—l)ka) A lyT.

Thus, ¢, is an antiderivation of degree —1 whose square is zero. (Hint for (b): By
the linearity of ¢,, we may assume that @ and t are products of 1-covectors. Apply
Problem 4.7.)

4.9. Commutator of derivations and antiderivations
LetA = Gal‘ziOAk be a graded algebra over a field K. A superderivation of A of degree
m is a K-linear map D: A — A such that D(A%) ¢ (Akt™) and for all a € A¥ and
be A",

D(ab) = (Da)b + (—=1)*"a(Db).

If Dy and D; are two superderivations of A of respective degrees m and m, define
their commutator to be

[D1, D21 = D1 o Dy — (=1)"""2 D3 o Dy.

Show that [Dy, D] is a superderivation of degree m| + mj. (A superderivation is
said to be even or odd depending on the parity of its degree. An even superderivation
is a derivation; an odd superderivation is an antiderivation.)
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Manifolds

Intuitively, a manifold is a generalization of curves and surfaces to arbitrary dimen-
sion. While there are many different kinds of manifolds—topological manifolds,
C*-manifolds, analytic manifolds, and complex manifolds, in this book we are con-
cerned mainly with smooth manifolds.

5.1 Topological Manifolds

We first recall a few definitions from point-set topology. For more details, see Ap-
pendix A. A topological space is second countable if it has a countable basis. A
neighborhood of a point p in a topological space M is any open set containing p. An
open cover of M is a collection {Uy}qca of open sets in M whose union Uo[e 4 Uy
isM.

Definition 5.1. A topological space M is locally Euclidean of dimension n if every
point p in M has a neighborhood U such that there is a homeomorphism ¢ from U
onto an open subset of R". We call the pair (U, ¢: U — R") achart, U a coordinate
neighborhood or a coordinate open set, and ¢ a coordinate map or a coordinate
system on U. We say that a chart (U, ¢) is centered at p € U if ¢(p) = 0. A chart
(U, ¢) about p simply means that (U, ¢) isachartand p € U.

Definition 5.2. A topological manifold of dimension n is a Hausdorff, second count-
able, locally Euclidean space of dimension 7.

For the dimension to be well defined, we need to know that for n # m an open
subset of R” is not homeomorphic to an open subset of R”. This is indeed true, but is
not easy to prove (see [4] for a discussion and further references). We will not pursue
this point as we are mainly interested in smooth manifolds, for which the analogous
result is easy to prove (Corollary 8.8). Of course, if a topological manifold has
several connected components, it is possible for each component to have a different
dimension.
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Example 5.3. The Euclidean space R” is covered by a single chart (R, 1gn), where
Ign : R" — R” is the identity map. Itis the prime example of a topological manifold.
Every open subset of R” is also a topological manifold, with chart (U, 1y).

Recall that the Hausdorff condition and second countability are “hereditary prop-
erties”’; that is, they are inherited by subspaces: a subspace of a Hausdorff space is
Hausdorff (Proposition A.23) and a subspace of a second countable space is second
countable (Proposition A.19). So any subspace of R” is automatically Hausdorff and
second countable.

Example 5.4 (The cusp). The graph of y = x?/3 in R? is a topological manifold
(Figure 5.1(a)). By virtue of being a subspace of R?, it is Hausdorff and second
countable. Itis locally Euclidean, because it is homeomorphic to R via (x, x*/3) > x.

(a) Cusp (b) Cross
Fig. 5.1.

Example 5.5 (The cross). Show that the cross in R? in Figure 5.1 with the subspace
topology is not locally Euclidean at p, and so cannot be a topological manifold.

Solution. If a space is locally Euclidean of dimension #n at p, then p has a neighbor-
hood U homeomorphic to an open ball B := B(0, €) C R" with p mapping to 0.
The homeomorphism: U — B restricts to a homeomorphism: U — {p} — B — {0}.
Now B — {0} is either connected if » > 2 or has two connected components if n = 1.
Since U — { p} has four connected components, there can be no homeomorphism from
U — {p} to B — {0}. This contradiction proves that the cross is not locally Euclidean
at p. [}

5.2 Compatible Charts

Definition 5.6. Two charts (U,¢: U — R"), (V,¢¥: V — R") of a topological
manifold are C*°-compatible if the two maps

oy Ly UNV) > pUNV), VYodp l:ip(UNV)—Yy(UNV)

are C* (Figure 5.2). These two maps are called the transition functions between the
charts. If U NV is empty, then the two charts are automatically C°°-compatible.
To simplify the notation, we will sometimes write Uyg for Uy N Ug and Uyg,, for
U,NUgNU,.
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puny) U Vv
Fig. 5.2. The transition function ¥ o qb*l is defined on ¢ (U N V).

Since we are interested only in C°°-compatible charts, we often omit to mention
C®° and speak simply of compatible charts.

Definition 5.7. A C* atlas or simply an atlas on a locally Euclidean space M is a
collection {(Uy, ¢¢)} of C*°-compatible charts that cover M, i.e., such that M =

UO( U‘Y'

Although the C* compatibility of charts is clearly reflexive and symmetric, it
is not transitive. The reason is as follows. Suppose (Ui, ¢1) is C°°-compatible
with (Uy, ¢), and (U, ¢p) is C*°-compatible with (Us, ¢3). Note that the three
coordinate functions are simultaneously defined only on the triple intersection Uj23.
Thus, the composite

G300 = @300, )0 (2o h)

is C* but only on ¢ (Uj23), not necessarily on ¢ (U;3) (Figure 5.3). A priori we
know nothing about ¢3 o ¢fl on ¢1 (U3 — Ujz3) and so we cannot conclude that
(U1, ¢1) and (U3, ¢3) are C*°-compatible.

KRN ETA T N
(2N
¢1(U123) v \

N

Fig. 5.3. ¢3 0 ¢; ! is C* on ¢ (Uy23).

We say that a chart (V, ¥) is compatible with an atlas { (U, ¢)} if it is compatible
with all the charts (U, ¢, ) of the atlas.

Lemma 5.8. Let {(Uy, ¢o)} be an atlas on a locally Euclidean space. If two charts
(V,¥) and (W, o) are both compatible with the atlas {(Uy, ¢)}, then they are
compatible with each other.
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Proof. (See Figure 5.4.) Let p € V. N W. We need to show that o o ¥~ is C* at
Y (p). Since {(Uy, ¢y)} is an atlas for M, p € U, for some «. Then p is in the triple
intersection VN W N U,.

[ ] [ ]
v (p) buov ! Ga(D)  gog! o(p)

Fig. 5.4. Two charts (V, ¥), (W, o) compatible with an atlas.

By the remark above, o o ¥ ! = (0 o ¢Ojl) o(po oy HisC®ony(VNAWN
Uy), hence at ¥ (p). Since p is an arbitrary point of V N W, this proves that o o 1~
is C*® on y(V N W). Similarly, ¥ o 0~ is C*® on o (V N W). O

5.3 Smooth Manifolds

An atlas 2 on a locally Euclidean space is said to be maximal if it is not contained in
a larger atlas; in other words, if 901 is any other atlas containing 2, then 9T = 2.

Definition 5.9. A smooth or C* manifold is a topological manifold M together with
a maximal atlas. The maximal atlas is also called a differentiable structure on M.
A manifold is said to have dimension n if all of its connected components have
dimension n. A manifold of dimension # is also called an n-manifold.

In Corollary 8.8 we will prove that if an open set U C R” is diffeomorphic to an
open set V C R™, then n = m. As a consequence, the dimension of a manifold at a
point is well defined.

In practice, to check that a topological manifold M is a smooth manifold, it is
not necessary to exhibit a maximal atlas. The existence of any atlas on M will do,
because of the following proposition.

Proposition 5.10. Any atlas % = {(Uy, ¢o)} on a locally Euclidean space is con-
tained in a unique maximal atlas.
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Proof. Adjoin to the atlas 2 all charts (V;, ;) that are compatible with 2. By
Proposition 5.8 the charts (V;, ;) are compatible with one another. So the enlarged
collection of charts is an atlas. Any chart compatible with the new atlas must be
compatible with the original atlas [ and so by construction belongs to the new atlas.
This proves that the new atlas is maximal.

Let 9t be the maximal atlas containing 2l that we have just constructed. If 90U is
another maximal atlas containing 2, then all the charts in 97 are compatible with 2
and so by construction must belong to 9. This proves that 9" C 9. Since both are
maximal, 9V = 9. Therefore, the maximal atlas containing 2l is unique. O

In summary, to show that a topological space M is a C°° manifold, it suffices to
check:

(i) M is Hausdorff and second countable,
(i1) M has a C* atlas (not necessarily maximal).

From now on by a manifold we will mean a C* manifold. We use the words
smooth and C* interchangeably.

5.4 Examples of Smooth Manifolds

Example 5.11. The Euclidean space R" is a smooth manifold with a single chart
(R, .., r™), where r1, ..., r" are the standard coordinates on R",

Example 5.12. Any open subset V of a manifold M is also a manifold. If {(Uy, ¢«)}
is an atlas for M, then {(Uy NV, ¢« |u,nv} is an atlas for V, where ¢ |y,nv : Us NV
— R denotes the restriction of ¢, to the subset U, N V.

Example 5.13 (The graph of a smooth function). For U an open subset of R” and
f: U — R™a C* function, the graph of f is defined to be the subspace

L) =1{(x, f(x)) € U xR"}.

The two maps

¢:I'(f) = U, (x, f(x)) = x,

and
I x f: U —T(f), x = (x, f(x))

are continuous and inverse to each other, and so are homeomorphisms. The graph
['(f) ofa C* function f: U — R™ has an atlas with a single chart (I'(f), ¢), and is
therefore a C°° manifold. This shows that many of the familiar surfaces of calculus,
for example an elliptic paraboloid or a hyperbolic paraboloid, are manifolds.

Example 5.14. For any two positive integers m and n let R”*" be the vector space
of all m x n matrices. Since R™*" is isomorphic to R™", we give it the topology of
R™"*, The general linear group GL(n, R) is by definition
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GL#,R) :={A € R"" | det A # 0} = det_l(R — {0}).
Since the determinant function
det: R"*" — R

. . . 2 . .
is continuous, GL(n, R) is an open subset of R"*" >~ R"" and is therefore a manifold.

Ui

/2 ARy
W by | 3

U>

Fig. 5.5. Charts on the unit circle.

Example 5.15 (The unit circle in the plane). The equation x> + y?> = 1 defines the
unit circle S' in R?. We can cover the unit circle by four open sets: the upper
and lower semicircles Uy, Uj, and the right and left semicircles U3, Us. On Up and
U,, the coordinate function x is a homeomorphism onto the open interval (—1, 1)
in the x-axis. Thus, ¢;(x,y) = x fori = 1,2. Similarly, on Uz and Us, y is a
homeomorphism onto the open interval (—1, 1) in the y-axis (Figure 5.5).

Itis easy to check that on every nonempty pairwise intersection Uy NUg, g o ¢, !
is C*°. For example, on U N U3,

$3 0 b7 (X) = 3x, V1 —x2) = V1 —x2,
which is C®°. On Up N Uy,

fao 0y (1) = dulx, —v/1—x2) = /1 -2,

which is also C*°. Thus, {(U;, d),-)};‘z1 is an atlas on S!. By Proposition 5.10, this
atlas is contained in a unique maximal atlas. Hence, the unit circle is a manifold.

Example 5.16 (The product manifold). If M and N are C* manifolds, then M x N
with its product topology is Hausdorff and second countable (Corollary A.25 and
Proposition A.26). To show that M x N is a manifold, it remains to exhibit an atlas
on it.

Proposition 5.17 (An atlas for a product manifold). If {(Uy, ¢,)} and {(V;, ¥;)}
are atlases for M and N, respectively, then

{(Ua X Vi, o X Y12 U x Vi = R™)}
is an atlas on M x N. Therefore, if M and N are manifolds, then so is M x N.
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Proof. Problem 5.4. O

Example 5.18. Tt follows from Proposition 5.17 that the infinite cylinder S! x R and
the torus §! x S! are manifolds (Figure 5.6).

~ -

Infinite cylinder Torus

Fig. 5.6.

Since M x N x P = (M x N) x P is the successive product of pairs of spaces,
if M, N and P are manifolds, then sois M x N x P. Thus, the n-dimensional torus,
S x .- x S! (n times), is a manifold.

Problems

5.1. The real line with two origins
Let A and B be two points not on the real line R. Consider the set S = (R — {0}) U
{A, B}.

For any two positive real numbers ¢, d, define
[A(_C’ d) = (_C, O) U {A} U (01 d)

and similarly for /p(—c, d), with B instead of A. Define a topology on S as follows:
On (R — {0}), use the subspace topology inherited from R, with open intervals as
a basis. A basis at A is the set {I4(—c,d) | c,d > 0}; similarly, a basis at B is
{Ig(—c,d) | c,d > 0}.
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(a) Prove that the map h: I4(—c,d) — (—c, d) defined by

h(x)=x forx € (—c,0)U(0,d),
h(A) =0,

is a homeomorphism.

(b) Show that S is locally Euclidean and second countable, but not Hausdorff.

N

Fig. 5.7. Sphere with a hair.

5.2. Sphere with a hair
Prove that the sphere with a hair in R? (Figure 5.7) is not locally Euclidean at g.
Hence it cannot be a topological manifold. (Hint: Mimic Example 5.5.)

Us U

Us Uy Us Uy

Fig. 5.8. Charts on the unit sphere.

5.3. Charts on the sphere
Let S? be the unit sphere

x2+y2+z2:1

in R3. Define in S? the six charts corresponding to the six hemispheres—the front,
rear, right, left, upper, and lower hemispheres (Figure 5.8):
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U ={(x,y.2)€S$* x>0}, ¢i1(x,y.2) =2,
Ur={(x.y,2) €S |x <0},  ¢a(x,y.2) = (y,2).
Us={(x.y,2) €S |y>0}, ¢3(x,y.2) = (x,2),
Us={(x.y, 20 €8 |y <0},  ¢a(x,y.2) = (x,2),
Us={(x.y,20 €5 [2>0},  ¢s5(x,y.2) =(x,Y),
Us={(x.y,2) €5 [2<0},  ¢6(x,y,2) = (x,).

Describe the domain ¢4(U14) of ¢1 o gb4_l and show that ¢; o ¢4_1 is C*® on ¢4 (U14).
Do the same for ¢ o ¢1_1.

5.4. An atlas for a product manifold
Prove Proposition 5.17.
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Smooth Maps on a Manifold

Using coordinate charts we can transfer the notion of differentiability from R™ to a
smooth manifold M.

6.1 Smooth Functions and Maps

Definition 6.1. Let M be a smooth manifold of dimension n. A function f: M — R
is said to be C* or smooth at a point p in M if there is a chart (U, ¢) containing p
in the atlas of M such that f o ¢~!, which is defined on the open subset ¢ (U) of R,
is C™ at ¢ (p) (see Figure 6.1).

M f

¢

Fig. 6.1. Checking that a function f is C® at p by pulling back to R”.

This definition is independent of the chart (U, ¢), for if (V, i) is any other chart
in the atlas containing p, then on ¥ (U N V)

Fov ' =(fop Holpoy™),

which is C* at ¥ (p) (see Figure 6.2). The function f is said to be C* on M if it is
C®° at every point of M.

We emphasize again that by manifolds we always mean C°° manifolds and that
we use the terms “C°”” and “smooth” interchangeably.
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Fig. 6.2. Checking that a function f is C® at p via two charts.

NotATION. We generally denote a manifold by M and its dimension by n. However,
in speaking of two manifolds simultaneously, asinamap f: N — M, the dimension
of N will be n and the dimension of M will be m.

Definition 6.2. Let F: N — M be a map and 4 a function on M. The pullback of h
by F, denoted F*h, is the composite function 4 o F.

In this terminology, a function f on M is C* on a chart (U, ¢) if its pullback by
¢~!is C* on the subset ¢ (U) of a Euclidean space.

Definition 6.3. Let N and M be manifolds of dimension n and m, respectively. A
map F: N — M is C*® at a point p in N if there is a chart (V, ¥) in M containing
F(p) and a chart (U, ¢) in N containing p such that the composition ¥ o F o ¢!,
a map from an open subset of R” to R™, is C* at ¢(p) (see Figure 6.3). By the
continuity of F, one can always choose U small enough so that F(U) C V.

Fig. 6.3. Checking thatamap F: N — M is C* at p.

This definition of amap F: N — M being C* at p in N is in fact independent
of the choice of charts (see Problem 6.1).
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Definition 6.4. The map F: N — M is said to be C*° if it is C*° at every point of
N. Itis a diffeomorphism if it is bijective and both F and its inverse F~! are C*°.

Example 6.5. If (U, F) is a chart in the atlas of a manifold M of dimension 7, then F
is C*°, because with ¥ : R" — R” being the identity map, ¥ o F o F~!is C*. The
inverse map F~!: F(U) — U is also C* because in Definition 6.3 one can take
Y =Fand¢ = 1pw). Then ¢ o F 1o lrwy = lr@) is C™.

Proposition 6.6 (Composite of C®° maps). If F: N - M and G: M — P are
C® maps of manifolds, then the composite G o F: N — P is C*°.

Proof. Problem 6.2. O

Proposition 6.7. Let U be an open subset of a manifold M. If F : U — R" isa
diffeomorphism onto its image, then (U, F) is a chart in the atlas of M.

Proof. For any chart (U, ¢) in the atlas of M, both F o ¢;1 and ¢ o F~1 are C*°.
Hence, (U, F) is compatible with the atlas. By the maximality of the atlas of M, the
chart (U, F) is in the atlas. m]

Now that we know what it means for a map between manifolds to be C*°, we can
define a Lie group.

Definition 6.8. A Lie group is a C* manifold G having a group structure such that
the multiplication map

u:GxG—G
and the inverse map
1:G—> G, (x) =x_1,
are both C*°.
Similarly, a topological group is a topological space having a group structure such

that the multiplication and inverse maps are both continuous. Note that a topological
group is required to be a topological space, not a topological manifold.

Example 6.9.

(1) The Euclidean space R" is a Lie group under addition.
(ii) The set C* of nonzero complex numbers is a Lie group under multiplication.
(iii) The unit circle S! in C* is a Lie group under multiplication.

In Chapter 15 we will study a few less obvious examples of Lie groups.
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6.2 Partial Derivatives

Let (U, ¢) be a chart and f a C* function on a manifold M of dimension n. As a

function into R”, ¢ has n components xl,‘. .., x". This means if r!, ..., r" are the
standard coordinates on R", then x' = r' o ¢. For p € U, we define the partial
derivative 0f /0x' at p to be
d of I(fogp™h)
—| =50 = —(¢( ).
axt|, ax’

This equation may be rewritten in the form

9 1
Lo eom =" D40,
X
Thus, as functions on ¢ (U),
of 3(f o~ 1)
axt ¢ ort

The partial derivative 3f/dx’ is C* on U because its pullback (3f/dx’) o ¢~ ! is
C®on¢U).

In the next proposition we see that partial derivatives on a manifold behave as
they should.

Proposition 6.10. Suppose (U, x', ..., x™)isachartonamanifold. Thendx'/dx/ =
8.
j

Proof. Atapoint p € U, by the definition of 9/3x/],,

0y = 2 og!

—pP) = X o
D agregt =] = o
07 g p) il

6.3 The Inverse Function Theorem

Let U be an open subset of R”. Suppose

=L ., MU —>R

is a diffeomorphism of U onto some open subset of R”. Then the chart (U, f) is
compatible with the standard chart (R", !, ..., 7). Therefore, (U, f) is an element
of the maximal atlas that determines the differentiable structure of R”. In other words,
any diffeomorphism of an open subset U of R” may be thought of as a coordinate
system on U.
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More generally, given n smooth functions f!, ..., f inaneighborhood of a point
p in a manifold of dimension n, one would like to know if they form a coordinate
system, possibly on a smaller neighborhood of p. The inverse function theorem
provides an answer.

Definition 6.11. Let U be an open subset of R”. A smooth map f = (f',..., f"):
U — R" is locally invertible at p € U if f has a smooth inverse in some neighbor-
hood of p. The matrix of partial derivatives [d f /dr/] is called the Jacobian matrix
of f, and its determinant det[d ' /dr/] the Jacobian determinant of f. The Jacobian
determinant is also written as 8(f1, e, f")/&(rl, .

We will use the phrase “near p”’ to mean “in a neighborhood of p.”

Theorem 6.12 (Inverse function theorem for R”?). Let f: W — R”" be a C* map
defined on an open subset W of R". For any point p in W, the map f is locally
invertible at p if and only if the Jacobian determinant det[d f' /dr/ (p)] is not zero.

This theorem is usually proved in a course on real analysis, for example, in [17].
Theorem 6.13 (Inverse function theorem for a manifold). Let M be an n-dimen-
sional manifold, p a pointin M, and f = (f',...., f"): W — R* a C® map
defined on a neighborhood W of p. Suppose that relative to some chart (U, $) =
(U, x', ..., x") containing p, the Jacobian determinant det[d f' /dx/ (p)] # 0. Then

there is a neighborhood V of p on which f is a diffeomorphism onto its image.
Moreover, (V, f) is a chart in the differentiable structure of M. (See Figure 6.4.)

Fig. 6.4. The map f is locally invertible at p.

Proof. By definition,
oft 3 edTh
oxi T arJ

By the inverse function theorem for R”, the map f o ¢! is locally invertible at

é(p). So f = (f o ¢~ 1) o ¢ is a diffeomorphism in some neighborhood V of p. By
Proposition 6.7, (V, f) is a chart in the atlas of M. m]

(@ (p)).
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Problems

6.1. Smoothness of a map at a point

Suppose F: N — M is C* at p € N. Show that if (U’, ¢’) is any chart containing
p in the atlas of N and (V’, ¥') is any chart containing F(p) in the atlas of M, then
V' o Fo(p) lisC®atg/(p).

6.2. Composition of smooth maps
Prove Proposition 6.6.

6.3. Differentiable structures on R

Let R be the real line with the differentiable structure given by the maximal atlas of the
chart (R, ¢ =id: R — R), and let R’ be the real line with the differentiable structure
given by the maximal atlas of the chart (R, ¥ : R — R), where ¥ (x) = x!/ 3,

(a) Show that these two differentiable structures are distinct.
(b) Show that there is a diffeomorphism between R and R’. (Hint: The identity map
is not the desired diffeomorphism; in fact, the identity map is not smooth.)

6.4.* Coordinate maps are C*°
Show that if (U, ¢) is a chart in the atlas of a manifold, then ¢ is C*°.

6.5. Smooth functions
Show that f: M — R is C* if and only if for every chart (U, ¢) in the atlas of M,
the function f o ¢! is C* on ¢ (U).

6.6. Smooth maps
Show thatamap f: M — N of manifolds is C*° if and only if for every chart (U, ¢)
in the atlas of M and (V, ) in the atlas of N, the composite ¥ o f o ¢~ is C*> on

d(f~H(V)NU).

6.7. General linear group
Show that the general linear group GL(n, R) defined in Example 5.14 is a Lie group
under matrix multiplication.

6.8. Group of automorphisms of a vector space
Let V be a finite-dimensional vector space over R, and GL(V) the group of all linear
isomorphisms of V itself. A basis eq, ..., e, for V induces a bijection

GL(n,R) — GL(V),
[aj-] = (ej — Za;e,-),
i
making GL(V) into a C* manifold, which we denote temporarily by GL(V),. If

GL(V), is the manifold structure induced from another basis u, ..., u, for V, show
that GL(V), is diffeomorphic to GL(V),,.



7

Quotients

Gluing the edges of a malleable square is one way to create new surfaces. For example,
gluing together the top and bottom edges of a square gives a cylinder; gluing together
the boundaries of the cylinder with matching orientations gives a torus (Figure 7.1).
This gluing process is called an identification or a quotient construction.

w@w@w@

Fig. 7.1. Gluing the edges of a malleable square.

Even if the original space is a manifold, a quotient space is often not a manifold.
The main results of this chapter give conditions under which the quotient space
remains second countable and Hausdorff. We then study the real projective space as
an example of a quotient manifold.

7.1 The Quotient Topology

Suppose ~ is an equivalence relation on the set S. The equivalence class [x] of x is the
set of all elements in S equivalent to x. An equivalence relation on § partitions S into
disjoint subsets consisting of equivalence classes. We denote the set of equivalence
classes by S/~ and call this set the quotient of S by the equivalence relation ~. There
is a natural projection map w: S — S/~ that sends x € § to its equivalence class
[x].

We call a set U in S/~ open if and only if 7 ! (U) is open in S. Clearly, both the
empty set & and the entire quotient S/~ are open. Since
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x! (U Ua) =Jn' W),
and
7! (ﬂ Ul-) =(=""wn,

the collection of open sets in S/~ is closed under arbitrary union and finite intersec-
tion, and is therefore a topology. It is called the quotient topology on S /~. With this
topology, S/~ is called the quotient space of S by the equivalence relation ~. With
the quotient topology on S/~, the projection map 7 : S — §/~ is automatically
continuous, because the inverse image of an open set in S/~ is by definition open in
S. However, 7 need not be an open map, as Example 7.7 shows.

7.2 Continuity of a Map on a Quotient

Let ~ be an equivalence relation on the topological space S and give S/~ the quotient
topology. Suppose a function f: § — Y from S to another topological space Y is
constant on each equivalence class. Then it induces a map f: S/~ — Y by

fpl) = f(p) forpes.

In other words, there is a commutative diagram

S/~

Proposition 7.1. The induced map f: S/~ — Y is continuous if and only if the map
f: S — Y is continuous.

Proof.
(=) If f is continuous, then as the composite f o 7 of continuous functions, f is
also continuous.

(<) Suppose f is continuous. Let V be open in Y. Then ffwvy ="l (v))
is open in S. By the definition of quotient topology, f ~1(V) is open in S/~. Hence,
f: S/~ — Y is continuous. O

This proposition gives a useful criterion for checking if a function f on a quotient
space S/~ is continuous: simply lift the function f to f := f o  on S and check
the continuity of the lifted map f on S. For an example of this, see Example 7.2 and
Proposition 7.3.
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7.3 Identification of a Subset to a Point

If A is a subspace of a topological space S, we define a relation ~ on § by declaring
x~x forallx €S
(so that the relation would be reflexive) and
x~y forallx,yeA.

This is an equivalence relation on S. We say that the quotient space S/~ is obtained
from S by identifying A to a point.

Example 7.2. Let I be the unit interval [0, 1] and I/~ the quotient space obtained
from 7 by identifying the two points {0, 1} to a point. Denote by S! the unit circle in
the complex plane. The function f: I — § 1 f(x) = exp(2mix) assumes the same
value at 0 and 1 (Figure 7.2), and so induces a function

fil/~— S
R R f
0 1

Fig. 7.2. The unit circle as a quotient space of the unit interval.

Proposition 7.3. The function f: I/~ — S is a homeomorphism.

Proof. Since f is continuous, f is also continuous by Proposition 7.1. Clearly, f is a
bijection. As the continuous image of the compact set /, the quotient I /~ is compact.
Thus, f is a continuous bijection from the compact space I /~ to the Hausdorff space
S!. By Proposition A.39, f is a homeomorphism. O

7.4 A Necessary Condition for a Hausdorff Quotient

The quotient construction does not in general preserve the Hausdorff property or
second countability. Indeed, since every singleton set in a Hausdorff space is closed,
if : § — §/~ is the projection and the quotient S/~ is Hausdorff, then for any
p € S, its image {m(p)} is closed in S/~. By the continuity of m, the inverse image
7' {7 (p)}) = [p]is closed in S. This gives a necessary condition for a quotient
space to be Hausdorff.
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Proposition 7.4. If the quotient space S/~ is Hausdorff, then the equivalence class
[p] of any point p in S is closed in S.

Example 7.5. Define an equivalence relation ~ on R by identifying the open interval
(0, 00) to a point. Then the quotient space R/~ is not Hausdorff because the point
corresponding to the equivalence class (0, co) is not closed.

7.5 Open Equivalence Relations

In this section we follow the treatment of Boothby [2] and derive conditions under
which a quotient space is Hausdorff or second countable. Recall that a map f: X
— Y of topological spaces is open if the image of any open set under f is open.

Definition 7.6. An equivalence relation ~ on a topological space S is said to be open
if the projection map w: S — S/~ is open.

In other words, the equivalence relation ~ on § is open if and only if for every
open set U in S, the set

@) = JIx]

xeU
of all points equivalent to some point of U is open.
Example 7.7. The projection map to a quotient space is in general not open. For

example, let ~ be the equivalence relation on the real line R that identifies the two
points 1 and —1, and 7 : R — R/~ the projection map.

g
¢ ° > ®
-2 -1 0 1

Fig. 7.3. A projection map that is not open.

Let V be the open interval (—2, 0). Then
7 (V) = (=2,0) U {1},

which is not open in R (Figure 7.3). Thus, (V) is not open in the quotient space. In
this example the projection map 7 : R — R/~ is not an open map.

Given an equivalence relation ~ on S, we let R be the subset of § x S that defines
the relation:
R={(x,y)eSxS§|x~y}

We call R the graph of the equivalence relation ~.
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Fig. 7.4. The graph R of an equivalence relation.

Theorem 7.8. Suppose ~ is an open equivalence relation on S. Then the quotient
space S/~ is Hausdorff if and only if the graph R of the equivalence relation is closed
inS xS.

Proof.

(=) Suppose S/~ is Hausdorff. We will show that S x S — R is an open set. Let
(x,y) € SxS—R. Thenx » y. So[x] # [y]in §/~. Since S/~ is Hausdorff, there
are disjoint open sets U,V in S/~ with [x] € U and [y] € V. Since U and V are
disjoint, no element in U := 7~ '(U) is equivalent to an element of V := 7~ (V).
This means U x V is open and disjoint from Rin § x S. So

(x,y)eUxV cCSxS—R,

which proves that § x S — Risopenin § x S.

(<) Suppose R is closed in S x S and [x] # [y] in §/~. Then x ~ y. Thus,
(x,y) € § xS —R. Since S x § — R is open, there is a basic open set U x V
containing (x, y) and contained in S x § — R (Figure 7.4). Thus, no element of U is
equivalent to an element of V, so 7 (U) and 7 (V) are disjoint in S/~. Since 7: S
— §/~ is an open map, 7w (U) and 7 (V) are open in S/~. Moreover, [x] € 7w (U)
and [y] € w (V). This proves that S/~ is Hausdorff. O

Theorem 7.9. Let ~ be an open equivalence relation on a space S with projection
w: 8 — S/~. If B = {By} is a basis for S, then its image {mw(By)} under 7 is a
basis for S /~.

Proof. Since & is an open map, {7 (B,)} is a collection of open sets in S/~. Let W
be an open setin S/~ and [x] € W, x € §. Then x € 7~ Y(W). Since 7~ 1(W) is
open, there is a basic open set B, € B such that

x € By c 77 N(W).

Then
[x] =7(x) € 7 (By) C W,

which proves that {m (By)} is a basis for §/~. O
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Corollary 7.10. If ~ is an open equivalence relation on a second countable space S,
then the quotient space S/~ is second countable.

7.6 The Real Projective Space

Define an equivalence relation on R"*! — {0} by
x ~y iff y = tx for some nonzero real number ¢,

where x, y € R"*! — {0}. The real projective space RP" is the quotient space of
R+ — {0} by this equivalence relation. We denote the equivalence class of a point
(ao, ..., ay) € R"1 — {0} by [ap, ..., a,] and let 7: R"T! — {0} — RP” be the
projection. We call [ao, ..., a,] the homogeneous coordinates on RP".

Geometrically two nonzero points in R"*! are equivalent if and only if they lie
on the same line through the origin. So RP”" can be interpreted as the set of all lines
through the origin in R"+1.

Fig. 7.5. The real projective plane R P2 as the set of lines through 0 in R3.

Each line through the origin in R"*! meets the unit sphere " in a pair of antipodal
points, and conversely, a pair of antipodal points on S” determines a unique line
through the origin (Figure 7.5). This suggests that we define an equivalence relation
~ on S" by identifying the antipodal points:

x~y iff x==4y, =x,yeS".
We then have a bijection RP”" <« §" /~.

Exercise 7.11 (Real projective space as a quotient of a sphere).* Prove that the map
f: R {0} — $" given by
X
fx)=—
x|
induces a homeomorphism f: RP" — §" /~. (Hint: Find an inverse map

g: 5"/~ — RP"

and show that both f and g are continuous.)
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Fig. 7.6. The real projective line RP! as the set of lines through O in R2.

Example 7.12. The real projective line RP.

Each line through the origin in R? meets the unit circle in a pair of antipodal
points. By Exercise 7.11, RP! is homeomorphic to the quotient S!/~, which is in
turn homeomorphic to the closed upper semicircle with the two endpoints identified
(Figure 7.6). Thus, RP! is homeomorphic to S'.

Example 7.13. The real projective plane RP?. By Exercise 7.11, there is a homeo-
morphism
RP? ~ §?/{antipodal points} = $2/.

For points not on the equator, each pair of antipodal points contains a unique point
in the upper hemisphere. Thus, there is a bijection between S?/~ and the quotient
of the closed upper hemisphere in which each pair of antipodal points on the equator
are identified. It is not difficult to show that this bijection is a homeomorphism.

Let H? be the closed upper hemisphere

H>={(x,y.0) eR|x*+y* +> =1, >0}
and let D? be the closed unit disk
D*={(x,y) e R? | x* +y* < 1).
These two spaces are homeomorphic to each other via the continuous map
Q: H?> - D?
p(x,y,2) = (x,)
and its inverse

v: D* — H?
Yx,y) = (x,y,\/l—x2—y2>.

On H?, define an equivalence relation ~ by identifying the antipodal points on the
equator:
(@Y. 0~ (=x, =3, 0, x> +y*=1.
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On D?, define an equivalence relation ~ by identifying the antipodal points on the

boundary circle:

x,y) ~ (=x,—y), x*+y*=1.

Then ¢ and i induce homeomorphisms
@: H*}~ — D*/, ¥: D*~ — H*f
In summary, there is a sequence of homeomorphisms
RP? ~ §?j~ ~ H*/~ =~ D*/~
that identifies the real projective plane as the quotient of the closed disk D? with the

antipodal points on its boundary identified. This may be the best way to picture R P>
(Figure 7.7).

Fig. 7.7. The real projective plane as the quotient of a disk.

The real projective plane RP? cannot be embedded as a submanifold of R3.
However, if we allow self-intersection, then we can map RPZintoR3asa cross-cap
(Figure 7.8). This map is not one-to-one.

D B B=D
) RSN \/ £
= O O-
_—" _—"
Fig. 7.8. The real projective plane immersed as a cross-cap in R3.

Proposition 7.14. The equivalence relation ~ on R"*' — {0} in the definition of R P"
is an open equivalence relation.
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Proof. For an open set U C R"+! — {0}, the image 7 (U) is open in R P" if and only
ifr =~ (n(U))is open in R+ — {0}. But 7~ (7 (U)) consists of all points equivalent
to some points of U; that is,

'y = .

teR*

Since multiplication by # € R* is a homeomorphism of R"*! — {0}, the set tU is
open for any ¢. Therefore, their union 7~ (7x (U)) is also open. O

Corollary 7.15. The real projective space RP" is second countable.
Proof. Apply Corollary 7.10. O
Proposition 7.16. The real projective space RP" is Hausdorff.
Proof. Let S = R"*! — {0} and consider the set
R={(x,y) € SxS|y=txforsomerecR*}.

If we write x and y as column vectors, then [x y]isan (7 4 1) x 2 matrix, and R may
be characterized as the set of matrices [x y]in § x S of rank < 1. By a standard fact
from linear algebra, this is equivalent to the vanishing of all 2 x 2 minors of [x y]
(see Problem B.1). As the zero set of finitely many polynomials, R is a closed subset
of S x §. Since ~ is an open equivalence relation on S, and R is closed in S x S, by
Theorem 7.8 the quotient S/~ ~ RP" is Hausdorff. O

7.7 The Standard C° Atlas on a Real Projective Space

Let [ao, . . ., a,] be the homogeneous coordinates on the projective space RP". Al-
though ag is not a well-defined function on R P", the condition ag # 0 is independent
of the choice of a representative for [ag, . .., a,]. Hence, the condition ap # 0 makes
sense on RP", and we may define

Uy :={lag, ...,a,] € RP" | ay # 0}.
Similarly, foreachi = 1,...,n, let

U; :={lag, ...,ay] € RP" | a; # 0}.

Define
¢o: Up — R"
by
lag, ...,a,] — (a—l,...,a—">.
aop ao

This map has a continuous inverse
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(bl""vbn)'_)[19b17""bn]

and is therefore a homeomorphism. Similarly, there are homeomorphisms for each
i=1,...,n:

¢;i: U; — R”
ao a; an
lag, ....,anl—~> [ —, ..., — ..., — ),
a; a; a;

where the caret sign ~ over a; /a; means that that entry is to be omitted. This proves
that RP" is locally Euclidean with the (U;, ¢;) as charts.

On the intersection Uy N Uy, ap # 0 and a; # 0, and there are two coordinates
systems

[Cl(), al’ 02: MR an]

P

Letus call the coordinate functions on Uy, x1, .. . , X, and the coordinate functions
on Uy, y1, ..., Yn- On Uy,

Xi = —, i= 17 s 1,
ap
and on Uy,
ap ar a,
yi=— =, y Yn = —
aj aj
Thenon Ug N Uy,
1 X2 X3 Xn
Vi=—Y2=—y3=— yYn = —
X1 X1 X1 X1
that is,
1 x x by
—1 2 A3 n
¢10¢0 (x)=<_’_1_9""_ .
X1 X1 X1 X1

This is a C* function because x; # 0 on ¢o(Up N U1). On any other U; N U; an
analogous formula holds. Therefore, the collection {(U;, ¢i)}i=o.....» is a C* atlas for
R P", called the standard atlas. This concludes the proof that R P" is a C°*° manifold.
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Problems

7.1.* Quotient space by a group

Suppose a left action of a topological group G on a topological space S is continuous;
this simply means that the map G x S — S describing the action is continuous.
Define two point x, y of S to be equivalent if there is a g € G such that y = gx. Let
G\ S be the quotient space. Prove that the projection map 7: S — G\S is an open
map.

7.2. The Grassmannian G (k, n)
The Grassmannian G (k, n) is the set of all k-planes through the origin in R”. Such
a k-plane is a linear subspace of dimension k£ of R" and has a basis consisting of k
linearly independent vectors ay, . .., a; in R". Itis therefore completely specified by
ann X k matrix A = [ay - - - a] of rank k, where the rank of a matrix A, denoted by
rk A, is defined to be the number of linearly independent columns of A. This matrix
is called a matrix representative of the k-plane. (For properties of the rank, see the
problems in Appendix B.)

Two bases ay, ..., ax and by, ..., by determine the same k-plane if there is a
change of basis matrix g = [g;;] € GL(k, R) such that

bj= Zaigij, I<i,j<k
i

In matrix notation, B = Ag.
Let F(k, n) be the set of all n x k matrices of rank k, topologized as a subspace
of R"*k and ~ the equivalence relation:

A ~ B iff there is a matrix g € GL(k, R) such that B = Ag.

In the notation of Problem B.3, F(k, n) is the set Dy in R™** and is therefore an
open subset. There is a bijection between G (k, n) and the quotient space F'(k, n)/~.
We give the Grassmannian G (k, n) the quotient topology on F'(k, n)/~.

(a) Show that ~ is an open equivalence relation. (Hint: Mimic the proof of Propo-
sition 7.14.)

(b) Prove that the Grassmannian G (k, n) is second countable. (Hint: Mimic the proof
of Corollary 7.15.)

(c) Let S = F(k, n). Prove that the graph R in S x S of the equivalence relation ~ is
closed. (Hint: Two matrices A = [ay---ax] and B = [by ---bi] in F(k, n) are
equivalent iff every column of B is a linear combination of the columns of A iff
rk[AB] < k iff all (k + 1) x (k + 1) minors of [A B] are zero.)

(d) Prove that the Grassmannian G (k, n) is Hausdorff. (Hint: Mimic the proof of
Proposition 7.16.)

Next we want to find a C* atlas on the Grassmannian G (k, n). For simplicity, we
specialize to G(2, 4). Forany 4 x 2 matrix A, let A;; be the 2 x 2 submatrix consisting
of its ith row and jth row. Define
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Vij ={A € F(2,4) | A;; is nonsingular}.
Because the complement of V;; in F'(2, 4) is defined by the vanishing of det A;;, we
conclude that V;; is an open subset of F(2, 4).
(e) Prove thatif A € V;;, then Ag € V;; for any nonsingular matrix g € GL(2, R).

Define U;; = V;;/~. Since ~ is an open equivalence relation, U;; = V;;/~ is an
open subset of G(2, 4).

For A € Vi,
10
- -1 _ |01} _ 1
k ok

This shows that the matrix representatives of a 2-plane in U2 have a canonical form
B in which By, is the identity matrix.

(¢) Show that the map ¢12: Vip — R2*2,
$12(A) = A34AT),

induces a homeomorphism ¢17: Uy — R2%Z,

(f) Define similarly a homeomorphism ¢;;: U;; — R2%Z, Compute ¢12 o qbzgl, and
show that it is C*°.

(g) Show that {U;; | 1 <i < j < 4} is an open over of G(2, 4) and that G(2,4) is a
smooth manifold.

Similar consideration shows that F'(k, n) has an open cover {V;}, where [ is an
ascending multi-index
1<ii<...ix <n.

For A € F(k,n),let Aj be the k x k submatrix of A consisting of i1th, ..., ixth rows
of A. Define
Vi={A € G(k,n) | det A; # 0}.

Next define ¢ : V; — ROk py
$1(A) = (AATY

where (), denotes the (n — k) x k submatrix obtained from the complement I’
of the multi-index /. Let U; = V;/~. Then ¢~5 induces a homeomorphism ¢: Uj
— RO=Rxk Tt is not difficult to show that {(Uy, ¢7)} is a C™ atlas for G (k, n).
Therefore the Grassmannian G (k, n) is a C* manifold of dimension k(n — k).

7.3.* The real projective space
Show that the real projective space RP" is compact. (Hint: Use Exercise 7.11.)
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The Tangent Space

8.1 The Tangent Space at a Point

In Chapter 2 we saw that for any point p in an open set U in R” there are two
equivalent ways to define a tangent vector at p:

(i) as an arrow (Figure 8.1), represented by a column vector;

1

Fig. 8.1. A tangent vector in R” as an arrow and as a column vector.

(ii) as a point-derivation of C°°, the algebra of germs of C* functions at p.

Both definitions generalize to a manifold. In the arrow approach, one defines a
tangent vector at p in a manifold M by first choosing a chart (U, ¢) at p and then
decreeing a tangent vector at p to be an arrow at ¢ (p) in ¢ (U). This approach, while
more visual, is complicated to work with, since a different chart (V, i) at p would
give rise to a different set of tangent vectors at p and one would have to decide how
to identify the arrows at ¢ (p) in U with the arrows at ¥ (p) in ¢ (V).

The cleanest and most intrinsic definition of a tangent vector at p in M is as a
point-derivation and this is the approach we shall adopt.

Just as for R”, we define a germ of a C* function at p in M to be an equivalence
class of C* functions defined in a neighborhood of p in M, two such functions being
equivalent if they agree on some, possibly smaller, neighborhood of p. The set of
germs of C* real-valued functions at p in M is denoted C ;O (M). The addition and
multiplication of functions make C;°(M) into a ring; with scalar multiplication by
real numbers, C;O(M ) becomes an algebra over R.
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Generalizing a derivation at a point in R”, we define a derivation at a point in a
manifold M., or a point-derivation of C)°(M), to be a linear map D: C;°(M) — R
such that

D(fg) = (Df)g(p) + f(p)Dg.
Definition 8.1. A fangent vector at a point p in a manifold M is a derivation at p.

As for R", the tangent vectors at p form a vector space T, (M), called the tangent
space of M at p. We also write T, M instead of T),(M).

Remark 8.2 (Tangent space to an open subset). 1If U is an open set containing p
in M, then the algebra C;o(U) of germs of C* functions in U at p is the same as
C°(M). Hence, T,)U =T, M.

Given a coordinate neighborhood (U, ¢) = (U, xt x™) abo_ut a point p in a
manifold M, we recall the definition of the partial derivatives d/dx" first introduced
in Chapter 6. Let r!. ..., r" be the standard coordinates on R”". Then

xi=rio¢>: U — R.
If f is a smooth function in a neighborhood of p, we set

d

axi

ad

- ort

fogp ' eR.
o (p)

p

It is easily checked that 3/9x"| p satisfies the derivation property and so is a tangent
vector at p.

To simplify the notation, we will often write d/9x instead 8/9x’ | p ifitis under-
stood at which point the tangent vector is located.

8.2 The Differential of a Map

Let F: N — M be a C* map between two manifolds. At each point p € N, the
map F' induces a linear map of tangent spaces, called its differential at p,

Fe: TyN — Tp(pyM
as follows. If X, € T, N, then Fy(X ) is the tangent vector in Tr ()M defined by
(FeXp) f = Xp(foF)eR for f € Cp,(M). (8.1

Exercise 8.3 (The differential of a map). Check that Fi (X ) is a derivation at F'(p) and that
Fy: TpN — Tp(p)M is a linear map.

To make the dependence on p explicit we sometimes write Fy j, instead of F.
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Example 8.4. Suppose F: R" — R™ issmoothand pisapointin R”. Letx!, ..., x"
be the coordinates on R” and y!, ..., y™ the coordinates on R”. Then the tan-
gent vectors 9/9x! [ps...,0/0x"|, form a basis for the tangent space 7),(R") and

3/3y F(ps -, 8/3y™|F(p) form a basis for the tangent space Tr(p)(R™). The lin-
ear map Fy.: T,(R") — Tr(,)(R™) is described by a matrix [a;] relative to these

two bases:
0 e 0
B (3x.i p) =>4 P

Let F! = y! o F be the ith component of F. We can find a§. by evaluating both sides
of (8.2) on y':

, a? eR. (8.2)
F(p)

. ki ,
Y= E ajd, = aj,
F(p)

a
_ k
RHS = E a; _ayk
i

i_i i F_B_()
» y_ax./‘py" = o P

So the matrix of Fy relative to the bases {3/9x7|,} and {3/3y" | () }is [0 F /3x7 (p)].
This is precisely the Jacobian matrix of the derivative of F at p. Thus, the differential
of a map between manifolds generalizes the derivative of a map between Euclidean
spaces.

0
LHS = F, <—
dx/

8.3 The Chain Rule

Let F: N — M and G: M — P be smooth maps of manifolds, and p € N. The
differentials of F at p and G at F(p) are linear maps:

Fyp G F(p)
TPN — TF(p)M e TG(F(p))P‘

Theorem 8.5 (The chain rule). If F: N - M and G: M — P are smooth maps
of manifolds and p € N, then

(GoF)yp=GyFp o Fsp.
Proof. Let X;, € T, N and f a smooth function at G(F(p)) in P. Then
(G o F)uXp)f = Xp(f oG oF)
and

(Gx o F)Xp) [ = (G (FeXp)) f
= (F*Xp)(f o G)
= X,(foGoF). O
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Example 8.13 shows that when written out in terms of matrices, the chain rule
of Theorem 8.5 assumes a more familiar form as a sum of products of derivatives of
functions.

Remark 8.6. The differential of the identity map 157: M — M at any point p in M
is the identity map
lTPM: T,M — TyM,

because
(Ap)Xp) f = Xp(f o ly) = Xp f,
forany X, e T,M and f € CZO(M).

Corollary 8.7. If F: N — M is a diffeomorphism of manifolds and p € N, then
Fy: Ty,N — TrgpyM is an isomorphism of vector spaces.

Proof. To say that F is a diffeomorphism means that it has a differentiable inverse
G: M — N suchthat G o F = 1y and F o G = 1);. By the chain rule,

(GOF)*ZG*OF*Z(lN)*ZlTPN,
(FoG)y=FioGy= Iy = 1Tp(,,)M‘
Hence, F, and G, are isomorphisms. O

Corollary 8.8 (Invariance of dimension). [fan open set U C R" is diffeomorphic
to an open set V. C R™, then n = m.

Proof. Let F: U — V be a diffeomorphism and let p € U. By Corollary 8.7,
Fyp: TyU — Tp(p)V is an isomorphism of vector spaces. Since 7,U ~ R" and
Tr(py = R™, we must have that n = m. 0O

8.4 Bases for the Tangent Space at a Point

If (U, ¢) = (U, xt o, x") is a coordinate neighborhood about a point p in a man-
ifold M and r!, ..., r" are the standard coordinates on R”, we defined earlier the
partial derivatives
d d
—| f=— fogp ' eR. (8.3)
Xty 0ty

Since ¢: U — R” is a diffeomorphism onto its image, by Corollary 8.7 the differ-
ential
by T,,M — T¢(p)(Rn)

is a vector space isomorphism.

Proposition 8.9. Let (U, ¢) = (U, x!, ..., x") be a chart about a point p in a man-

ifold M. Then
" a 0
*\ axi » Cort

o (p)
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Proof. Forany f € C2°

0
P dxi

o ®D:

d
)f_i)xip

_8
=
_8
T

foo (definition of ¢)

fopogp ! (definition of 3/dx'|,)
é(p)

é(p)

Proposition 8.10. If (U, ¢) = (U, xt ., x™) is a chart containing p, then the
tangent space T, M has basis

Proof. An isomorphism of vector spaces carries a basis to a basis. By Proposi-
tion 8.9 the isomorphism ¢.: T,M — Ty (R") maps 3/dx'(,,...,3/3x"|, to
a/or! lg(p)s - - -» 0/0r"|(p), which is a basis for the tangent space Ty () (R"). There-
fore, 8/8x1|p,...,8/8x"|,,isabasisfoerM. O

Proposition 8.11 (Transition matrix for coordinate vectors). Suppose (U, x!,
x™) and (V, y', ..., y") are two coordinate charts on a manifold M. Then

0 ayl 9
7_21_:8)6]8)1
onUNYV.

Proof. At each point p € U NV, the sets {0/dx/|,} and {3/9y"|,} are both bases
for the tangent space T, M, so there is a matrix [a; (p)] of real numbers such that on

unyv
= Yk

Applying both sides of the equation to y’, we get
0y _ N
axi - 4 ayk

= Z af 5,’; (by Proposition 6.10)
k
=a. ]



82 8 The Tangent Space
8.5 Local Expression for the Differential

Given a smooth map of manifolds, F: N — M, and p € N, we choose charts
(U,x',...,x") about p in N and (V, y!, ..., y"™) about F(p) in M. We can now
find a local expression for the differential Fy ,: T,N — TF(,) M as in Example 8.4.

By Proposition 8.10, {3/dx/ |p};?=1 is a basis for T, N and {0/9y'|Fp)}i., is a
basis for Tr(pyM. Therefore, Fy = F , is completely determined by the numbers
a;. such that

m
F(axj p) kz F(p)’ Tl
Evaluating both sides on y’, we find that
. " 9 . ] D : dF!

a} - <k2=1:a§8_yk F(P)) = (@ p) Y zﬁ pyl he 8_J(p)

We state this result as a proposition.
Proposition 8.12. Given a smoothmap F: N — M of manifolds and a point p € N,
let (U, xt ., x"yand (V, y], ..., Y™ be coordinate charts about p in N and F (p)

in M, respectively. Relative to the bases {8/8xj|p}f0r T,(N) and {(9/0y" |F(p)} for
TF(p)(M), the diﬁ‘erentiql F*,'p: Ty(N) — Tr(p)(M) is represented by the matrix
[0F'/0x7(p)], where F' = y' o F is the ith component of F.

This proposition is in the spirit of the “arrow’ approach to tangent vectors. Here
each tangent vector in T, (V) is represented by a column vector relative to the basis
{0/0x7],} and the differential F , is represented by a matrix.

Example 8.13 (The chain rule in calculus notation). Suppose w = G(x,y,z) is a
C* function: R® — R and (x, y,z) = F(r) is a C*® function: R — R3. Under
composition,

w=(GoF)(t)=GCGx(), (), z(t))
becomes a C* function of r+ € R. The differentials Fy, G, and (G o F), are
represented by the matrices

dx/dt

dw dw 3 d
dy/dt |, [a—wa—wa—w} and d—w,
dz/dt X oy oz !

respectively. In terms of matrices, the chainrule (G o F), = G, o Fy isequivalent to

dw Jw dw Jdw dx/dt
@~ Lox oy o | DU
! r0y 9T qzyde

owdx Jw dy ow dz
+ =+ ——.
ax dt ay dr ' 9z dt

This is the usual form of the chain rule taught in calculus.
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8.6 Curves in a Manifold

A smooth curve in a manifold M is by definition a smooth map c: (a, b)) — M from
some open interval (a, b) into M. Usually we assume 0 € (a, b) and say that c is
a curve starting at p if ¢(0) = p. The velocity vector c'(t) of the curve ¢ at time
t € (a, b) is defined to be

dc fpon o i
E(t) =c' (1) i=c4 <dt

) € Tery(M).
t

We also say that ¢/(¢) is the velocity of ¢ at the point ().
Example 8.14. Define ¢: R — R? by
c(t) = (2, ).

(See Figure 8.2.)

Fig. 8.2. A cuspidal cubic.

Then ¢/(¢) is a linear combination of 9/9x and 8/dy at c(t):

d d
') =a— +b—.
¢ a3x+ ay

To compute a, we evaluate both sides on x:

0 +b8 "(t)
a=(a— — Jx=c({)x
ax ay

O A W N e S
= Cx di X—dt)CoC—dt = .

Similarly,

0 d

b=(a—+b—)y=c

<a8x+ ay)y )y
d

d( ) dﬁ 312
= C. —_— = — oC) = — = .
Nar )? T ar” dt
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Thus,

0 d
(1) = 2t — + 31> —.
(1) o + 3

In terms of the basis {9/0x]c(1), 9/0y|c()} for TC(,)(Rz),

) = [32;] .

More generally, as in this example, to compute the velocity vector of a curve ¢ in
R”, one can simply differentiate the components of ¢. This shows that our definition
of the velocity vector of a curve agrees with the usual definition in vector calculus.

Proposition 8.15 (Velocity of a curve in local coordinates). Letc: (a,b) — M be
a curve, and let (U, xt x") be a coordinate chart about c(t). Write ¢! = x' o ¢
for the ith component of ¢ in the chart. Then c'(t) is given by

d
axt

()= ()

j=1

c(r)

Thus, relative to the basis {9 /dx' |} for Tory(M), the velocity ' (t) is represented by
the column vector

(Y@

(") ()
Proof. Problem 8.4. O

Every curve ¢ at p in a manifold M gives rise to a tangent vector ¢’(0) in T, (M).
Conversely, one can show that every tangent vector X, € T,(M) is the velocity
vector of some curve at p, as follows.

Proposition 8.16 (Existence of a curve with a given initial vector). For any point
p in a manifold M and any tangent vector X, € T,M, there is a smooth curve
c: (—€,€) = M for some € > 0 such that ¢(0) = p and ¢’ (0) = X .

Proof. Let(U, ¢) = (U, x', ..., x")beachartcenteredat p,i.e.,¢(p) = (0,...,0).
Suppose X, = > a'd/ox! [pat p. Let r!, ..., r" be the standard coordinates on R”.
Then x' = r' o ¢. To find a curve ¢ at p with ¢/(0) = X, start with a curve « in R”
with &(0) = 0 and o’ (0) = 3" a’d/dr'|o. We then map o to M via ¢~ (Figure 8.3).
The simplest such « is

at) = (a't,...,d" ), te(—¢e),

where € is sufficiently small so that «(¢) lies in ¢ (U). Define ¢ = ¢_1 oa: (—€,€)
— M. We leave it as an exercise to show that ¢(0) = p and ¢/(0) = X ,. O
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Fig. 8.3. Existence of a curve through a point with a given initial vector.

8.7 Computing the Differential Using Curves

We have introduced two ways of computing the differential of a smooth map, in terms
of derivations at a point (Equation (8.1)) and local coordinates (Proposition 8.12).
The next proposition gives still another way of computing the differential Fy. p, this
time using curves.

Proposition 8.17. Let F: N — M be a smooth map of manifolds, p € N, and
X, € TyN. If c is a curve starting at p in N with velocity X, at p, then

d
Fop(Xp) = E Foc(t);
0

In other words, Fy (X p) is the velocity vector of the image curve F o ¢ at F(p).

Proof. By hypothesis, ¢(0) = p and ¢/(0) = X ,. Then

)

) (by the chain rule, Theorem 8.5)
0

F*)p(Xp) = F*,p(cl(o))
d

= F*,p o Cx,0 <E

d
= (F o 0)x0 <_

dt

Foc(t). O
7 (1)

0

Example 8.18 (Differential of left multiplication). If g is a matrix in the general linear
group GL(n, R), let £;: GL(n, R) — GL(n, R) be left multiplication by g; thus,
Lg(B) = gB for any B € GL(n, R). Since GL(n, R) is an open subset of the vector
space R"*", the tangent space T (GL(n, R)) can be identified with R"*". Show that
with this identification the differential (£¢)« ;: T;(GL(n, R)) — T,(GL(n,R)) is
also left multiplication by g.
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Solution. Let X € T;(GL(n, R)) = R"™". To compute (£z)+ (X), choose a curve
c¢(t) in GL(n, R) with ¢(0) = I and ¢’(0) = X. By Proposition 8.17,

d d .
(L) 1(X) = arl_, Le(c(@)) = arl,_ get) = gc (0) = gX. |

8.8 Rank, Critical and Regular Points

The rank of a linear transformation L: V — W between finite-dimensional vector
spaces is the dimension of the image L (V) as a subspace of W. If L is represented
by a matrix A relative to a basis for V and a basis for W, then the rank of L is the
same as the rank of A, because the image L(V) is simply the column space of A.

Now consider a smooth map f: N — M of manifolds. Its rank at a point
p in N, denoted by 1k f(p), is defined as the rank of the differential fi ,
T,(N) — Tyrp)(M). Relative to the coordinate neighborhoods (U, xb oo x™)
at p and (V,y',...,y™) at f(p), the differential is represented by the Jacobian
matrix [3 f/dx/ (p)] (Proposition 8.12), so

af
tk f(p) =1k | ——(p) |-
axJ
Since the differential of a map is independent of the coordinate chart, so is its rank.
Definition 8.19. A point p in N is a critical point of f if the differential
fep: TpN = TripM

fails to be surjective. It is a regular point of f if the differential f. , is surjective.
A point in M is a critical value if it is the image of a critical point; otherwise it is a
regular value.

e = critical points

X = critical values

M

Fig. 8.4. Critical points and critical values.

Two aspects of this definition merit elaboration:
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(i) We do not define a regular value to be the image of a regular point. In fact,
a regular value need not be in the image of f at all. Any point of M not in
the image of f is automatically a regular value because it is not the image of a
critical point.

(i) A point ¢ in M is a critical value if and only if some point in the preimage
£~ 1({c}) is a critical point. A point ¢ in the image of f is a regular value if and
only if every point in the preimage f~'({c}) is a regular point.

Proposition 8.20. For a real-valued function f: M — R, a point p in M is a critical
point if and only if relative to some chart (U, x', ..., x™) containing p, all the partial
derivatives

af

@(p)zo, j=1,,n

Proof. By Proposition 8.12 the differential fi ,: T,M — Tr,»R >~ R is repre-

sented by the matrix
af af
I:ﬁ(l?) g (P)] .
Since the image of f , is a linear subspace of R, it is either zero-dimensional or
one-dimensional. In other words, fi,p is either the zero map or a surjective map.
Therefore, f. , fails to be surjective if and only if all the partial derivatives df/dx' (p)
are zero. O

Problems

8.1.* Differential of a map
Let F: R? — R3 be the map

(u,v, w) = F(x,y) = (x, y, xy).
Compute F,(d/dx) as a linear combination of d/du, d/dv, and 9/dw.

8.2. Differential of a map
Fix a real number o and define F: R? — R? by

u cosa —sina | [x
[vj| =W v)=Fxy) = |:sina cosa:| |:y] )
Let X = —yd/dx + x 3/dy be a vector field on R?. If Fy,(X) = ad/du + bd/dv,

find @ and b in terms of x, y, and «.

8.3. Transition matrix for coordinate vectors
Let x, y be the standard coordinates on ]R2, and let U be the open set

U=R>—{(x,0) | x>0}

On U the polar coordinates r, 6 are uniquely defined by
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X =rcosé,

y=rsinf, r >0, 0 <6 <2m.
Find 9/0dr and 9/06 in terms of d/90x and 9/dy.

8.4.* Velocity of a curve in local coordinates
Prove Proposition 8.15.

8.5. Velocity vector
Let p = (x, y) be a point in R%. Then

ep() = |:cos 2t —sin 2t:| |:§:| . teR

sin2t  cos2t

is a curve with initial point p in R?. Compute the velocity vector c;, 0).

8.6. Differential of a linear map
LetL: R" — R™ be alinear map. Forany p € R", there is a canonical identification:
T,(R") = R" given by

|
Za’—.l—)&l:(al,...,a").

Show that the differential Ly p: Tp(R") — Ty, (R™) is the map L: R" — R™
itself, with the identification of the tangent spaces as above.

8.7.* Tangent space to a product
If M and N are manifolds, let 7;: M x N — M and p: M x N — N be the two
projections. Prove that for (p,q) € M x N,

Tix X T2 T(p,g)(M X N) — TpM x Ty N
is an isomorphism.

8.8. Differentials of multiplication and inverse
Let G be a Lie group with multiplication map n: G x G — G, inverse map ¢: G
— G, and identity element e.

(a) Show that the differential at the identity of the multiplication map p is addition:

U ee): TG x T.G — TG,
M*,(e,e)(Xea Yo) =X+ Ye.

(Hint: First, compute [y (¢,e)(Xe, 0) and fiy (e,e) (0, Y ) using Proposition 8.17.)
(b) Show that the differential at the identity of ¢ is the negative:

tye: T,G — T,G,
L*,e(Xe) =—X..

(Hint: Take the differential of p(c(t), (t o c)(¥)) = e.)
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8.9.* Transforming vectors to coordinate vectors

Let X1, ..., X, be n vector fields on an open subset U of a manifold of dimension
n. Suppose that at p € U, the vectors (X1)p, ..., (Xy), are linearly independent.
Show that there is a chart (V, x!, ..., x") about p such that Xi)p = (8/8xi)p for
alli=1,...,n.
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Submanifolds

We now have two ways of showing that a given topological space is a manifold:

(a) by checking directly that the space is Hausdorff, second countable, and has a C*°
atlas;

(b) by exhibiting it as an appropriate quotient space. Chapter 7 lists some conditions
under which a quotient space is a manifold.

In this chapter we introduce the concept of a regular submanifold of a manifold,
a subset that is locally defined by the vanishing of some of the coordinate functions.
Using the inverse function theorem, we derive a criterion, called the regular level set
theorem, that can often be used to show that a level set of a C°*° map of manifolds is
a regular submanifold and therefore a manifold.

Although the regular level set theorem is a simple consequence of the constant
rank theorem to be discussed in Chapter 11, deducing it directly from the inverse
function theorem has the advantage of producing explicit coordinate functions on the
submanifold.

9.1 Submanifolds

The xy-plane in R3 is the prototype of a regular submanifold of a manifold. It is
defined by the vanishing of a coordinate function z.

Definition 9.1. A subset S of a manifold N of dimension 7 is a regular submanifold
of dimension k if for every p € § there is a coordinate neighborhood (U, ¢) =
(U, xb o, x™) of p in the atlas of N such that U N S is defined by the vanishing of
n — k of the coordinate functions. By renumbering the coordinates, we may assume

these n — k coordinate functions are x*¥+1, ... x".

We call such a chart (U, ¢) in N an adapted chart relative to S. On U N S,
o= ..., x50,...,0). Let

ps: UNS — R
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be the restriction of the first k components of ¢ to U N S, that is, ¢ps = (xl, el xk).

Definition 9.2. If S is a regular submanifold of dimension k in a manifold N of
dimension n, then n — k is said to be the codimension of S in N.

Remark 9.3. As a topological space, a regular submanifold of N is required to have
the subspace topology.

Example 9.4. In the definition of a regular submanifold, the dimension k of the sub-
manifold may be equal to n, the dimension of the manifold. In this case, U N § is
defined by the vanishing of none of the coordinate functions and so U NS = U. An
open subset of a manifold is a regular submanifold of the same dimension.

Remark 9.5. There are other types of submanifolds, but for now by a “submanifold”
we will always mean a “regular submanifold.”

Example 9.6. The interval § := (—1, 1) on the x-axis is a regular submanifold of
the xy-plane (Figure 9.1). As an adapted chart, we can take the open square U =
(—=1,1) x (—1, 1) with coordinates x, y. Then U N S is precisely the zero set of y
onU.

1 1 1 1
1 1 1 1
1 1 1 1
———9 1 o—tp——0
1—1 11 1 ~1 1 1
1 1 1 1
| 1 | I 1
U is an adapted chart V is not an adapted chart
Fig. 9.1.

Note thatif V = (-2, 0) x (—1, 1), then (V, x, y) would not be an adapted chart
relative to S, since V N S is the open interval (—1, 0) on the x-axis, while the zero
set of y on V is the open interval (—2, 0) on the x-axis.

Example 9.7. Let I be the graph of the function f(x) = sin(l1/x) on the interval
(0, 1), and let S be the union of I" and the open interval

I={0,y)eR*| -1 <y<l}

The subset S of R? is not a regular submanifold for the following reason: if p is
in the interval I, then there is no adapted chart containing p, since any sufficiently
small neighborhood U of p in R? intersects S in infinitely many components. (The
closure of I in R? is called the topologist’s sine curve (Figure 9.2). It differs from S
in including the endpoints (1, sin 1), (0, 1), and (0, —1).)
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N

Fig. 9.2. The topologist’s sine curve.

y

Proposition 9.8. Ler S be a regular submanifold of N and 2 = {(U, ¢)} a collection
of compatible adapted charts of N that covers S. Then {(U N S, ¢s)} is an atlas for
S. Therefore, a regular submanifold is itself a manifold. If N has dimension n and S
is locally defined by the vanishing of n — k coordinates, then dim § = k.

V N

Fig. 9.3. Overlapping adapted charts relative to a regular submanifold S.

Proof. Let (U, ¢) = (U, x', ..., x") and (V,v¥) = (V,y', ..., y") be two adapted
charts in the given collection (Figure 9.3). Assume that they intersect. Then for
pelNvns,

p(p) =" ...,x50,...,00 and v(p)= (', ....¥50,...,0),

SO
ps(p) = (', x5 and ys(p) =0 0.
Therefore,
Ysodg . X =0t 00,

Since yl, e, yk are C* functions of x!, . . ., x*, the transition function Ys o ¢§1 is
C®°. Hence, any two charts in {(U N S, ¢s)} are C*° compatible. Since {U N S}y ey
is an open cover of S, the collection {(U N S, ¢s)} is an atlas for S. ]
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9.2 The Zero Set of a Function
Alevel set of amap f: N — M is the subset

e ={peN| f(p)=c}

for some ¢ € M. The usual notation for a level set is f~!(c), rather than the more
correct f1({c}). If f: N — R™, then Z(f) := f~1(0) is the zero set of f. The
inverse image f~!(c) of a regular value c is called a regular level set.

Example 9.9 (The 2-sphere in R?). Define
fay,=x"+y"+2-1
on R3. Then the level set
O ={.y. 0 eR | fxr.y. 0 =x>+y*+2 - 1=0)

is the unit 2-sphere S?. We will use the inverse function theorem to find adapted
charts of R? that cover S2.
Since ) ) 5
—f=2x, —f=2y, —f=2z,
ax ay 0z
the only critical point of f is (0, 0, 0), which does not lie on the sphere S2. Thus, all
points on the sphere are regular points of f and 0O is a regular value of f.
Let p be a point of SZ at which (3f/8x)(p) = 2x(p) # 0. Then the Jacobian
matrix of the map (f, y, z): R3 — R3is

rof af af [of af 9/
ax dy oz dx dy 93z
dy dy dy
axdy | |01 O
dz 0z 0z
lox 9y 9z Lo o 1

and the Jacobian determinant at p is df/dx(p) # 0. By the inverse function theorem
(Theorem 6.13), there is a neighborhood U, of p in R? so that (Up, f,y,z)isachart
in the atlas of R3. In this chart, the set U p N 52 is defined by the vanishing of the
first coordinate f = 0. Thus, (Up, f, ¥, z) is an adapted chart relative to $2, and
U, n $2 v, z) is a chart for s2,

Similarly, if (9f/9y)(p) # O, then there is an adapted chart (V,, x, f, z) con-
taining p in which the set V), N S? is the zero set of the second coordinate f. If
(9f/9z)(p) # O, then there is an adapted chart (W, x, y, f) containing p. As p
varies over all points of the sphere, we obtain a collection of adapted charts of R3
covering S2. Therefore, S is a regular submanifold of R?. By Proposition 9.8, § is
a manifold of dimension 2.
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This is an important example because one can generalize its proof almost verbatim
to prove that a regular level set of a function f: N — R is a regular submanifold
of N. The idea is that in a coordinate neighborhood (U, xto, x™) if a partial
derivative 3f/dx (p) # 0, then we replace the coordinate x’ by f.

Theorem 9.10. Let f: N — R be a C* function on the manifold N. Then a
nonempty regular level set S = f~'(c) is a regular submanifold of N of codi-
mension 1.

Proof. Replacing f by f — c if necessary, we may assume ¢ = 0. Let p € §S. Since

p is a regular point of f, there is a chart (U, x!', ..., x™) containing p relative to
which (3f/dx")(p) # 0 for some i. By renumbering x', ..., x”*, we may assume
that (3f/9x")(p) # 0.
The Jacobian matrix of the C* map (f, x2,...,x"): U — R" is
fof of  af T L]
ax! ax2 xn ax!
ax2 9x? 9x2 0 1 0
ox! 9x2 axn | = .
ax" 9x"  ax"
Lax! 9x2  9xn L 0 0--- 1
So the Jacobian determinant at p is 3f/9x'(p) # 0. By the inverse function theorem,
there is a neighborhood U, of p on which f, x2,..., x" form a coordinate system.
Relative to the chart (U, f, xZ, ..., x") the level set U, N § is defined by setting
the first coordinate f = 0, so (U,, f, X2, ..., x™) is an adapted chart relative to S.
Therefore, S is a regular submanifold of dimensionn — 1 in N. O

9.3 The Regular Level Set Theorem

The generalization of Theorem 9.10 to alevel set of a function to R is straightforward.

Theorem 9.11. Let f: N — R™ be a C* map on a manifold N of dimension n.
Then a nonempty regular level set S = f~(c) is a regular submanifold of dimension
n—mofN.

Proof. As in the proof of Theorem 9.10, by replacing f by f — ¢, we may assume
that c = 0 € R™. Let p be any point of S and let (U, x! x") be a chart of N
containing p. Since p is a regular point of f, the matrix [8 f / dx/(p)] has rank m,
son > m. By renumbering the f’ and x/’s, we may assume that the first m x m
block [Bf /8x/ (P)]1<i, j<m is nonsingular.

Replace the first m coordinates x!, ..., x™ in the chart (U, x) by fl, oy ™ We
claim that there is a neighborhood U, of p so that (U, fl, R xml oo x™)
is a chart in the atlas of N. It suffices to compute its Jacobian matrix at p:
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aft of of"

axi oxP | _ | ax/

ax* ax* | ’
ax/ axP 0 1

where | <i,j <mandm + 1 < «, § < n. Since this matrix has determinant
P i
det [L.(p)} £0,
ax/ 1<i,j<m

the inverse function theorem implies the claim.

In the chart (U, fl, e M xmtL o x™), the set S is obtained by setting
the first m coordinate functions f!,..., f™ equal to 0. So WUy, fho
xktl oo x™) is an adapted chart for R” relative to S. Therefore, S is a regular
submanifold of N of dimension n — m. m]

The proof of Theorem 9.11 gives the following useful lemma.

Lemma 9.12. Let f: N — R™ be a C* map on a manifold N of dimension n and

let S be the level set f_l(O). If relative to some coordinate'chart (U_, xb o x™
about p € S, the Jacobian determinant B(fl, e fm)/_B(x“, .o, xdm)y £ 0, then
in some neighborhood of p one may replace x7, ... xim by f', ..., f™ to obtain

an adapted chart for N relative to S.

The next step is to extend Theorem 9.11 to a regular level set of a map between
smooth manifolds. This very useful theorem does not seem to have an agreed-upon
name in the literature. It is known variously as the implicit function theorem, the
preimage theorem [9], the regular level set theorem [11], among other nomenclatures.
We will follow [11] and call it the regular level set theorem.

Theorem 9.13 (Regular level set theorem). Let f: N — M be a C* map of
manifolds, with dim N = n and dim M = m. Then a nonempty regular level set
£~ Yc) is a regular submanifold of N of dimension equal to n — m.

Proof. Choose a chart (V, ¥) about ¢ in M with {¥(c) = 0. Consider the map
Vo f: f71(V) = R™. Since (¥ o f)s = ¥y o fx and ¥, is an isomorphism at
every point of V,

K(Y o fag =1K fuyq

forall g € f~!(V). Hence, c is a regular value of f if and only if O is a regular
value of ¥ o f. Moreover, (¥ o £)~10) = f~1(c). By Theorem 9.11, the level set
(¥ o £)~1(0) is aregular submanifold of £~!(V) of dimension n—m. Since f~1(V)
is open in N, the adapted charts of f ~1(V) that cover f —L(¢) are also adapted charts
of N that cover f ~I(c). It follows that f ) isa regular submanifold of N of
dimension n — m. O
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9.4 Examples of Regular Submanifolds

Example 9.14 (Hypersurface). Show that the solution set S of x> 4+ y3 +z3 = I in
RR3 is a manifold of dimension 2.

Solution. Let f(x,y,z) = x>+ y>+2z3. Then § = f~!(1). Since 8f/dx = 3x2,
af/dy = 3y?, and 9f/dz = 3z, the only critical point of f is (0, 0, 0), which is not
in S. Thus, 1 is a regular value of f: R® — R. By the regular level set theorem
(Theorem 9.13), S is a regular submanifold of R? of dimension 2. So S is a manifold
(Proposition 9.8). O

Example 9.15 (Solution set of two polynomial equations). Decide if the subset S of
R? defined by the two equations

x3+y3+z3=1,
x+y+z=0

is a regular submanifold of R3.

Solution. Define F: R? — R? by
U, V) =Fx,y,2) =@ +y’ +22, x+y+2).

Then S is the level set F~'(1, 0). The Jacobian matrix of F is

J(F) = Uy Uy Uz | 3x2 3y? 372
Tluvevy v 111

where uy, = du/dx and so forth. The critical points of F are the points (x, y, )

where the matrix J(F) has rank < 2. That is precisely where all 2 x 2 minors of

J(F) are zero:

3x2 372
1 1

3x2 3y?
1 1

=0. 0.1

)

(The third condition

3y? 372
1 1

is a consequence of these two.) Solving (9.1), we get y = *x, z = £x. Since
x +y+z = 0on S, this implies that (x, y, z) = (0, 0, 0). Since (0, 0, 0) does not
satisfy the first equation x> 4+ y3 + z3 = 1, there are no critical points of F on .
Therefore, S is a regular level set. By the regular level set theorem, S is a regular
submanifold of R3 of dimension 1. m|

Example 9.16 (Special linear group). As a set, the special linear group SL(n, R) is
the subset of GL(n, R) consisting of matrices of determinant 1. Since

1
det(AB) = (det A)(det B) and det(Afl) = —,
det A
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SL(n, R) is a subgroup of GL(n, R). To show that it is a regular submanifold, we let
f: GL(n, R) — R be the determinant map,

f(A) =det A,

and apply the regular level set theorem to £~ (1) = SL(n, R). We need to check
that 1 is a regular value of f.

Let S;; denote the submatrix of A = [a;;] € R"*" obtained by deleting its ith row
and jth column. Then m;; := det S;; is the (i, j)-minor of A. From linear algebra
we have a formula for computing the determinant by expanding along any row or any
column; if we expand along the ith row,

f(A) =det A = (=) azmiy + (=D Papmip + - 4+ (=) M azmiy. (9.2)

Therefore
3 o
o (=D my;.
aaij ’
Hence, a matrix A € GL(n, R) is a critical point of f if and only if all the
(n — 1) x (n — 1) minors m;; of A are 0. By (9.2) such a matrix A has determinant
0. Since every matrix in SL(n, R) has determinant 1, all the matrices in SL(n, R)
are regular points of the determinant function. By the regular level set theorem
(Theorem 9.13), SL(n, R) is a regular submanifold of GL(n, R) of codimension
1, i.e.,
dim SL(n, R) = dimGL(n,R) — 1 = n® — 1.

Problems

9.1. Regular values
Define f: R? — R by
fay) =x"—6xy +)7%

Find all values ¢ € R for which the level set f~!(c) is a regular submanifold of R?.
9.2. Solution set of one equation
Let x, y, z, w be the standard coordinates on R*. Is the solution set of x° + y5 +

2> +w> = 1in R* a manifold? Explain why or why not. (Assume that the subset is
given the subspace topology.)

9.3. Solution set of two equations
Is the solution set of the system of equations

x3—|—y3+z3=1, =Xy,

in R3 a C* manifold? Prove your answer.
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9.4.* Regular submanifolds

A subset S of R? has the property that locally on S one of the coordinates is a C*
function of the other coordinate. Show that S is a regular submanifold of R%. (Note
that the unit circle defined by x> + y2 = 1 has this property. At every point of the
circle, there is a neighborhood in which y is a C* function of x or x is a C* function
of y.)

9.5. Graph of a smooth function
Show that the graph I'(f) of a smooth function f: R* — R,

L) ={y. f(x.y) €RY),
is a regular submanifold of R?.

9.6. Euler’s formula

Apolynomial F(xg, ..., x,) € Rlxo, ..., x,]is homogeneous of degree k if itis a lin-
ear combination of monomials x(l)" .- x;" of degree Z?:o ij =k. Let F(xo,...,Xu)
be a homogeneous polynomial of degree k. Clearly, for any ¢ € R,

F(tx0, ..., 1xn) = tXF(x0, ..., Xn). 9.3)

Show that

9.7. Smooth projective hypersurface

On the projective space RP" a homogeneous polynomial F(xo, ..., x,) of degree k
is not a function since its value at a point [ao, . .., a,] is not unique. However, the
zero set in RP" of a homogeneous polynomial F (xo, ..., x,) is well defined, since
F(ag,...,a,) =0iff

F(tay, ..., tay) = t*F(ag, ...,a,) =0 forallt € R*.

The zero set of finitely many homogeneous polynomials in RP”" is called a (real)
projective variety. A projective variety defined by a single homogeneous poly-
nomial of degree k is called a hypersurface of degree k. Show that the hyper-
surface Z(F) defined by F(xg, x1,x2) = 0 is smooth if dF/dxg, dF/dx;, and
d F /0x, are not simultaneously zero on Z(F). (Hint: In (Uy, x, y), F(xg, X1, X2) =
ng(l,xl/xo,xz/xo) = xéF(l,x, y), where we set x = x1/xg and y = x3/xo.
Define f(x, y) = F(1,x,y). Then f and F have the same zero set in Uy.)

9.8. Product of regular submanifolds
If S; is a regular submanifold of the manifold M; fori = 1, 2, prove that S; x S is
a regular submanifold of M| x M.

9.9. The transversality theorem
AC®map f: N — M is said to be transversal to a manifold S C M if for every

peflo),
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Se(TpN) +TrpS =TrpM. 9.4)

(If A and B are subspaces of a vector space, their sum A + B is the subspace consisting
ofalla + b witha € A and b € B. The sum need not be a direct sum.) The goal
of this exercise is to prove the transversality theorem: if a C*° map f: N — M
is transversal to a regular submanifold S of codimension k in M, then f -1 (S)is a
regular submanifold of codimension k in N.

When S consists of a single point ¢, transversality of f to S simply means that
f~Y(c) is a regular level set. Thus the transversality theorem is a generalization of
the regular level set theorem. It is especially useful in giving conditions under which
the intersection of two submanifolds is a submanifold.

Let p € f‘l(S) and (U, x', ..., x™) be an adapted chart centered at f(p) for

M relative to S such that U NS = Z(x™~*+1 . x™), the zero set of the functions
xmk+HL X" Define g: U — R to be the map
g = (™M),

(a) Show that f~1(U) N F~1(S) = (g o £)~1(0).

(b) Show that f~1(U) N f~1(S) is a regular level set of the function g o f: f~1(U)
— R*,

(c) Prove the transversality theorem.

AN NG
N

f transversal to S in R? f not transversal to S in R?
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Categories and Functors

10.1 Categories

Many of the problems in mathematics share common features. For example, in
topology one is interested in knowing if two topological spaces are homeomorphic
and in group theory one is interested in knowing if two groups are isomorphic. This
has given rise to the theory of categories and functors, which tries to clarify the
structural similarities among different areas of mathematics.

A category consists of a collection of elements, called objects, and for any two
objects A and B, a set Hom(A, B) of morphisms from A to B, such that given
any morphism f € Hom(A, B) and any morphism g € Hom(B, C), the composite
g o f € Hom(A, C) is defined. Furthermore, the composition of morphisms is
required to satisfy two properties:

(i) the identity axiom: for each object A, there is an identity morphism 14 €
Hom(A, A) such that for any f € Hom(A, B) and g € Hom(B, A),
fola=f and lpog=g;

(i1) the associative axiom: for f € Hom(A, B), g € Hom(B,C), and h €
Hom(C, D),
ho(gof)=(hog)of.

If f € Hom(A, B), we often write f: A — B.
Example 10.1. The category of groups and group homomorphisms is the category in

which the objects are groups and for any two groups A and B, Hom(A, B) is the set
of group homomorphisms from A to B.

Example 10.2. The collection of all vector spaces over R together with linear maps
between vector spaces is a category.

Example 10.3. The collection of all topological spaces together with continuous maps
between them is called the continuous category.
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Example 10.4. The collection of smooth manifolds together with smooth maps be-
tween them is called the smooth category.

Example 10.5. We call a pair (M, ¢g), where M is a manifold and g a point in M, a
pointed manifold. Given any two such pairs (N, p) and (M, q), let Hom((N, p),
(M, q)) be the set of all smooth maps F: N — M such that F(p) = ¢q. This gives
rise to the category of pointed manifolds.

Definition 10.6. Two objects A and B in a category are said to be isomorphic if there
are morphisms f: A — Band g: B — A such that

gof:lA and fog:lg.

In this case both f and g are called isomorphisms.

10.2 Functors

Definition 10.7. A (covariant) functor F from one category C to another category
D is a map that associates to each object A in € an object F(A) in D and to each
morphism f: A — B amorphism F(f): F(A) — F(B) such that

(1) F(14) = 1pay;
(i) F(fog)=F(f)o F(g).

Example 10.8. The tangent space construction is a functor from the category of
pointed manifolds to the category of vector spaces. To each pointed manifold
(N, p) we associate the tangent space T),(N) and to each smooth map f: (N, p)
— (M, f(p)), we associate the differential fi,: T,N — Ty M.

The functorial property (i) holds because if 1: N — N is the identity map, then
its differential 1,: T, N — T, N is also the identity map.

The functorial property (ii) holds because in this context it is the chain rule

(gof)*=g*0f*.

Proposition 10.9. Let F: C — D be a functor from a category C to a category D. If
f: A — B is an isomorphism in C, then F(f): F(A) — F(B) is an isomorphism
in D.

Proof. Problem 10.2. O

Note that we can recast Corollary 8.7 in a more functorial form. Suppose f: N
— M is a diffeomorphism. Then (N, p) and (M, f(p)) are isomorphic objects in
the category of pointed manifolds. By Proposition 10.9, the tangent spaces 7, N and
T'r(pyM must be isomorphic as vector spaces.

If in the definition of a covariant functor, we reverse the direction of the arrow
for the morphism F (f), then we obtain a contravariant functor. More precisely, the
definition is as follows.



10.3 Dual Maps 103

Definition 10.10. A contravariant functor F from one category C to another category
D is a map that associates to each object A in € an object F(A) in D and to each
morphism f: A — B amorphism F(f): F(B) — F(A) such that

(i) F(1a) = 1Fa);
(1) F(f o g) = F(g) o F(f). (Note the reversal of order.)

An example of a contravariant functor is the dual of a vector space, which we
review in the next section.

10.3 Dual Maps

Let V be a real vector space. Recall that its dual space V* is the vector space of all
linear functionals on V , i.e., linear functions «: V — R. We also write

V* = Hom(V, R).

If V is a finite-dimensional vector space with basis {ey, ..., e,}, then by Proposi-
tion 3.1 its dual space V* has as a basis the collection of linear functionals {a', . .., &}
defined by

adley=28, 1<i, j<n.

Since a linear function on V is determined by what it does on a basis of V/, this set of
equations defines a' uniquely.

Alinear map L: V — W of vector spaces induces a linear map L*, called the
dual of L, on the dual spaces:

L*: W* — V*,
(L*a)(v) = a(L(v)), fora € W*, wveV.

Thus, L*«¢ = « o L. Note that the dual of L reverses the direction of the arrow.

Proposition 10.11 (Functorial properties of the dual). Suppose V, W, and S are
real vector spaces.

() If 1y : V — V is the identity map on 'V, then 17, : V* — V* is the identity map
on V*.
) If f: V—> Wandg: W — S are linear maps, then (g o f)* = f* o g*.

Proof. Problem 10.3. O
According to this proposition, the dual construction () +— ()* is a contravariant

functor from the category of vector spaces to itself. Consequently, if f: V — W is
an isomorphism, then so is its dual f*: W* — V* (cf. Proposition 10.9).
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Problems

10.1. Differential of the inverse map
If F: N — Misadiffeomorphism of manifoldsand p € N, provethat (F~ 1), p(,) =
(Fep)™".

10.2. Isomorphism under a functor
Prove Proposition 10.9.

10.3. Functorial properties of the dual
Prove Proposition 10.11.

10.4. Matrix of the dual map B _
Suppose a linear transformation L: V — V is represented by the matrix A = [a’l.]

relative to a basis ey, ..., e, for Vand ey, ..., &, for V:
_ i,
L(ej) = Zaje,.
i
Leta!,...,a"and &', ..., @™ be the dual bases for V* and V*, respectively. Prove

that if L*@') = 3 ; b/, then b = a’.

10.5. Injectivity of the dual map

(a) Suppose V and W are vector spaces of possibly infinite dimension over a field K.
Show that if a linear map L: V — W is surjective, then its dual L*: W* — V*
is injective.

(b) Suppose V and W are finite-dimensional vector spaces of a field K. Prove the
converse of the implication in (a).
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The Rank of a Smooth Map

In this chapter we analyze the local structure of a smooth map on the basis of its rank.
Recall that the rank of a smooth map f: N — M at a point p € N is the rank of
its differential at p. Two cases are of special interest: when the map f has maximal
rank at a point or constant rank in a neighborhood. Let n = dim N and m = dim M.
Incase f: N — M has maximal rank at p, there are three not mutually exclusive
possibilities:

(i) If n = m, then by the inverse function theorem, f is a local diffeomorphism at
p-
(i1) If n < m, then the maximal rank is n and f is an immersion at p.

(iii) If n > m, then the maximal rank is m and f is a submersion at p.

Because manifolds are locally Euclidean, theorems on the rank of a smooth map
between Euclidean spaces (Appendix B) translate easily to theorems about manifolds.
This leads to the constant rank theorem for manifolds, which gives a simple normal
form for a smooth map having constant rank on an open set (Theorem 11.1). As an
immediate consequence, we obtain a criterion for a level set to be a regular submani-
fold which, following [11], we call the constant-rank level set theorem. As we explain
in Section 11.2, maximal rank at a point implies constant rank in a neighborhood, so
immersions and submersions are maps of constant rank. The constant rank theorem
specializes to the immersion theorem and the submersion theorem, giving simple nor-
mal forms for an immersion and a submersion. The regular level set theorem, which
we encountered in Section 9.3, is now seen to be a special case of the constant-rank
level set theorem.

By the regular level set theorem the preimage of a regular value of a smooth map
is a manifold. The image of a smooth map, on the other hand, does not generally have
anice structure. Using the immersion theorem we derive conditions under which the
image of a smooth map is a manifold.
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11.1 Constant Rank Theorem

Suppose f : N — M is a C* map of manifolds and we want to show that the level
set f~1(c) is a manifold for some ¢ in M. In order to apply the regular level set
theorem, we need the differential f, to have maximal rank at every point of f -1 (c).
Sometimes this is not true; even if true, it may be difficult to show. In such cases, the
constant-rank level set theorem may be helpful. It has one cardinal virtue: it is not
necessary to know precisely the rank of f; it suffices that the rank be constant.

Because manifolds are locally Euclidean, the constant rank theorem for Euclidean
spaces (Theorem B.6) has an immediate analogue for manifolds.

Theorem 11.1 (Constant rank theorem). Let N and M be manifolds of respective
dimensions n and m. Suppose f: N — M has constant rank k in a neighborhood of
a point p in N. Then there are charts (U, ¢) centered at p in N and (V, ) centered
at f(p) in M such that in a neighborhood of ¢ (p),

Vofod 'Grl,...rm =0 ... r%0,...,0).

Proof. Choose a chart (U, ¢) about p in N and (V, ) about f(p) in M. Then
Vv oo oo ! is a map between open subsets of Euclidean spaces. Because @
and ¥ are diffeomorphisms, V¥ o f o ¢! has the same constant rank k as f in a
neighborhood of ¢(p) in R". By the constant rank theorem for Euclidean spaces
(Theorem B.6) there are a diffeomorphism G of a neighborhood of ¢ (p) in R" and
a diffeomorphism F of a neighborhood of (¥ o f)(p) in R” such that

Fovofod oG, ....rm=0 ..., r%0,...,0).
Let¢g =Gopandy = F o . |
From this the constant-rank level set theorem follows easily.

Theorem 11.2 (Constant-rank level set theorem). Ler f : N — M be a C*° map
of manifolds and c € M. If f has constant rank k in a neighborhood of the level set
=) in N, then £~ (c) is a regular submanifold of N of codimension k.

Proof. Let p be an arbitrary point in f~'(c). By the constant rank theorem there
are a coordinate chart (U, ¢) = (U, xt, x") centered at p € N and a coordinate
chart (V, ) = (V, yl, ..., y"™) centered at f(p) = ¢ € M such that

Vofog (!, ...,/ =" ...,r%0,...,00 e R".

This shows that the level set (¥ o f o $~')~1(0) is defined by the vanishing of the
coordinates r', ..., rk.
The image of the level f~!(c) under ¢ is the level set (Y o f o ¢~ 1)1 (0)

(Figure 11.1), since
PN =o(fT '@ =W o fop™HTHO0).

Thus, the level set f~!(c) in U is defined by the vanishing of the coordinate functions

x!', ..., x*. This proves that f~'(c) is a regular submanifold of N of codimen-

sion k. O
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- —_— —_—
N v
Fig. 11.1. Constant-rank level set.

Example 11.3 (Orthogonal group). The orthogonal group O (n) is defined to be the
subgroup of GL(n, R) consisting of matrices A such that AT A = I, the n x n identity
matrix. Using the constant rank theorem, prove that O(n) is a regular submanifold
of GL(n, R).

Solution. Define f: GL(n,R) — GL(n,R) by f(A) = AT A. Then O(n) is the
level set f_l(l). If A and B are two elements of GL(n, R), then B = AC for some
matrix C in GL(n, R). Denote by £¢ and r¢ : GL(n, R) — GL(n, R) the left and
right multiplication by C, respectively. Since

fAC) = AC)TAC =cTATAc =T FA)C,

we have
forc(A) =Lcr orc o fA).
Hence,
forc=4Lc;orco f.
By the chain rule,

Sfr,ac o (rc)s,a = (ECT)*,ATAC ° (VC)*,ATA o fuA- (11.1)

Since left and right multiplications are diffeomorphisms, their differentials are iso-
morphisms. Composition with an isomorphism does not change the rank of a linear
map. Hence, in (11.1),

tk fi ac =71k fi a.

As AC and A are two arbitrary points of GL(n, R), this proves that the differential
of f has constant rank on GL(n, R). By the constant-rank level set theorem, the
orthogonal group O(n) = f~!(I) is a regular submanifold of GL(n, R). O

11.2 Immersions and Submersions

Definition 11.4. A smooth map f: N — M of manifolds is an immersion if the
differential fi ,: T,N — Tyr(p)M is injective for every p in N. Itis a submersion
if fy p is surjective for every p in N.
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We can also speak of a smooth map f: N — M being an immersion or a
submersion at a single point p in N; this would mean that its differential f; , at p
is injective or surjective, respectively. Note that f: N — M is a submersion at p if
and only if p is a regular point of f.

Example 11.5. The prototype of an immersion is the inclusion of R” in a higher-
dimensional R™:
i) = Xm0, 0).

The prototype of a submersion is the projection of R” onto a lower-dimensional R™:
n(xl, L o xh) = (xl, o x™).

According to Theorem 11.8 below, every immersion is locally an inclusion and every
submersion is locally a projection.

Example 11.6. If U is an open subset of a manifold M, then the inclusioni : U — M
is both an immersion and a submersion. This example shows in particular that a
submersion need not be onto.

ConsideraC®map f: N — M. Let (U, x!,. .., x") beachartabout pin N and
(V,y', ..., y™) achart about f(p)in M. Write f! = y' o f for the ith component
of f in the chart (V, y!,...,¥™). Then the linear map S+, p 1s represented by the
matrix [0 f*/dx/ (p)] (Proposition 8.12). Hence,

f«,pisinjective <& n<m and rk[afi/axj(p)] =n,

. ) (11.2)
f«,p issurjective < n>m and rk[df'/dx!(p)] =m.

The rank of a matrix is the number of linearly independent rows of the matrix;
it is also the number of linearly independent columns. Thus, for an m by n matrix
the maximum possible rank of a matrix is the minimum of m and n. It follows from
(11.2) that being an immersion or a submersion at p is equivalent to the maximality

of tk[d 1 /3x/ (p)].
Having maximal rank at a point is an open condition in the sense that the set

Dunax (f) = {p € U | fs,p has maximal rank at p}
is an open subset of U. This is because if k is the maximal rank, then
tk i, =k iff tk[df/9x7 (p)] =k
iff  rk[df'/dx/ (p)] = k (since k is maximal).
So the complement U — Dpax (f) is defined by
tk[d f1/0x7 (p)] < &,

which is equivalent to the vanishing of all k x k minors of the matrix [d £/ /dx/ (p)].
As the zero set of finitely many continuous functions, U — Dyax (f) is closed and so
Dmax (f) is open. In particular, if f has maximal rank at p, then it has maximal rank
at all points in some neighborhood of p.



11.3 Images of Smooth Maps 109

Proposition 11.7. Let N and M be manifolds of respective dimensions n and m. If a
C*® map f: N — M is an immersion at a point p € N, then it has constant rank n
in a neighborhood of p. Ifa C>* map f: N — M is a submersion at a point p € N,
then it has constant rank m in a neighborhood of p.

The following theorems are therefore simply special cases of the constant rank
theorem.

Theorem 11.8. Let N and M be manifolds of respective dimensions n and m.

(i) (Immersion theorem) Suppose f: N — M is an immersion at p € N. Then
there are charts (U, ¢) centered at p in N and (V, ) centered at f(p) in M
such that in a neighborhood of ¢ (p),

Vofod tGl, ... r =0 ..., 0, ...,0).

(i1) (Submersion theorem) Suppose f: N — M is a submersion at p in N. Then
there are charts (U, ¢) centered at p in N and (V, ) centered at f(p) in M
such that in a neighborhood of ¢ (p):

Vofod ol Ly =™,
Corollary 11.9. A submersion f: N — M of manifolds is an open map.

Proof. Let W be an open subset of N. We need to show that its image f (W) is open
in M. Choose a point f(p) in f(W), with p € W. By the submersion theorem, f
is locally a projection. Since a projection is an open map (Problem A.4), there is an
open neighborhood U of p in W such that f(U) is open in M. Clearly,

f(p) e f(U) C f(W).
Hence, f(W) is openin M. O

There is a close connection between submersions and regular level sets. Indeed,
fora C*® map f: N — M of manifolds, a level set f~!(c) is regular if and only if
f is a submersion at every point of f~!(c). Since the maximality of the rank of f
is an open condition, a regular level set £ ~!(c) has a neighborhood on which f has
constant rank m. This shows that the regular level theorem (Theorem 9.13) is in fact
a special case of the constant-rank level set theorem (Theorem 11.2).

11.3 Images of Smooth Maps

The following are all examples of C* maps f: N — M, with N = R and
M =R
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Example 11.10. f(t) = (t%, 13).

This map f is one-to-one, because ¢ 13 is one-to-one. Since f/(0) = (0,0,
the differential fi o: To)R — T(o,o)Rz is the zero map and hence not injective; so f
is not an immersion at 0. Its image is the cuspidal cubic y? = x> (Figure 11.2).

-1 4+

Fig. 11.2. Cuspidal cubic, not an immersion.

Example 11.11. f(t) = (t* = 1,13 —1).

Since the equation f’(¢) = (2t, 3t2 — 1) = (0, 0) has no solution in 7, this map
f is an immersion. It is not one-to-one, because it maps both # = 1 and r = —1 to
the origin. To find an equation for the image f(N),letx =¢> —land y = > — 1.
Then y = 1(¢> — 1) = tx; s0

y2 =12x? = (x + l)xz.

Thus the image f(N) is the nodal cubic y> = x*(x + 1) (Figure 11.3).

—1 +

Fig. 11.3. Nodal cubic, an immersion but not one-to-one.

Example 11.12. The map f in Figure 11.4 is a one-to-one immersion but its image,
with the subspace topology of R2, is not homeomorphic to the domain R, because
there are points near f(p) in the image that correspond to points in R far away from
p. More precisely, if U is an interval about p as shown, there is no neighborhood V
of f(p)in f(N) such that f‘l(V) C U; hence, f_1 is not continuous.
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Fig. 11.4. A one-to-one immersion that is not an embedding.

Example 11.13. The manifold M in Figure 11.5 is the union of the graph of y =
sin(1/x) on the interval (0, 1), the open line segment from y = 0 to y = 1 on the
y-axis, and a smooth curve joining (0, 0) and (1, sin 1). The map f is a one-to-one
immersion whose image with the subspace topology is not homeomorphic to R.

Fig. 11.5. A one-to-one immersion that is not an embedding.

Notice that in these examples the image f (V) is not a regular submanifold of
M = R2. We would like conditions on the map f so that its image f(N) would be
a regular submanifold of M.

Definition 11.14. A C*®° map f: N — M is called an embedding if

(i) it is a one-to-one immersion and

(ii) the image f(N) with the subspace topology is homeomorphic to N under f.
(The phrase “one-to-one”” in this definition is redundant since a homeomorphism
is necessarily one-to-one.)

Remark 11.15. Unfortunately, there is quite a bit of confusion about terminology in
the literature concerning the use of the word “submanifold.” Many authors give the
image f(N) of a one-to-one immersion f: N — M not the subspace topology, but
the topology inherited from f, i.e., a subset f(U) of f(N) is said to be open if and
only if U is openin N. With this topology, f (N) is by definition homeomorphic to N.
These authors define a submanifold to be the image of any one-to-one immersion with
the topology and differentiable structure inherited from f. Such a set is sometimes
called an immersed submanifold of M. Figures 11.4 and 11.5 show two examples of
immersed submanifolds. If the underlying set of an immersed submanifold is given
the subspace topology, then the resulting space need not be a manifold at all!
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For us, a submanifold without any qualifying adjective is always a regular sub-
manifold. To recapitulate, a regular submanifold of a manifold M is a subset S of M
with the subspace topology such that every point of S has a neighborhood U N S that
is defined by the vanishing of coordinate functions on U, where U is a chart in M.

f
AY ya
7 \
_z T 37 x
2 2 =5
8
_z 3 x
2 7

Fig. 11.6. The figure-eight as two distinct immersed submanifolds of R2.

Example 11.16 (The figure-eight). The figure-eight is the image of a one-to-one im-
mersion
f(@) = (cost,sin2t), —m/2<t<3m/2

(Figure 11.6). As such, it is an immersed submanifold of R?, with a topology and
manifold structure induced from the open interval (—m /2, 37/2) by f. Because of
the presence of a cross at the origin, it cannot be a regular submanifold of R?. In fact,
with the subspace topology of R?, the figure-eight is not even a manifold.

The figure-eight is also the image of the one-to-one immersion

g(t) = (cost,—sin2t), —mw/2 <t <3m/2

(Figure 11.6). The maps f and g induce distinct immersed submanifold structures
on the figure-eight. For example, the open interval from A to B in Figure 11.6 is
an open set in the topology induced from g, but it is not an open set in the topology
induced from f.

Theorem 11.17. If f: N — M is an embedding, then its image f(N) is a regular
submanifold of M.

Proof. Let p € N. By the immersion theorem (Theorem 11.8), there are lo-
cal coordinates (U, x!, ..., x") near p and (V,y], ..., y"™) near f(p) so that
f: U — V has the form
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Vv

N ——— W f(N)

Fig. 11.7. The image of an embedding is a regular submanifold.

') = L X0, 0).

Thus, f(U) is defined in V by the vanishing of the coordinates y"*!, ..., y™.
This alone does not prove that f(N) is a regular submanifold, since V N f(N) may
be larger than f(U). (Think about Examples 11.12 and 11.13.) We need to show
that in some neighborhood of f(p) in V, the set f () is defined by the vanishing of
m — n coordinates.

Since f(N) with the subspace topology is homeomorphic to N, the image f(U)
is open in f(N). By the definition of the subspace topology, there is an open set V'
in M such that V' N f(N) = f(U) (Figure 11.7). In V. N V',

vnvinfiN)=vn f) = fU),

and f(U) is defined by the vanishing of y**!, ... y™. Thus, (VN V’/, y!, ... y™)
is an adapted chart containing f(p) for f(N). Since f(p) is an arbitrary point of
f(N), this proves that f(N) is a regular submanifold of M. |

Theorem 11.18. If N is a regular submanifold of M, then the inclusioni: N — M,
i(p) = p, is an embedding.

Proof. Since a regular submanifold has the subspace topology and i () also has the
subspace topology, i: N — i(N) is a homeomorphism. It remains to show that
i: N — M is an immersion.

Let p € N. Choose an adapted chart (V,y!', ..., y", y*t1 ... y™) for M
about p such that V N N is the zero set of y"T! ... y™. Relative to the charts
(VNN, yl, ..., y") for N and (V, yl, ..., y"™) for M, the inclusion i is given by

G Y e Ol Y0, 0),
which shows that i is an immersion. O

In the literature the image of an embedding is often called an embedded subman-
ifold. Theorems 11.17 and 11.18 show that an embedded submanifold and a regular
submanifold are one and the same thing.

11.4 Smooth Maps into a Submanifold

Suppose f: N — M is a C°° map whose image f(N) lies in a subset S C M. If §
is a manifold, is the induced map f : N — S also C°°? This question is more subtle
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than it looks, because the answer depends on whether S is a regular submanifold or
an immersed submanifold of M.

Example 11.19. Consider the one-to-one immersions f and g: I — R? in Exam-
ple 11.16, where [ is the open interval (—x /2, 37/2) in R. Let S be the figure-eight
in R? with the immersed submanifold structure induced from g. Because the image
of f: I — R? liesin S, the C° map f induces a map f: 1 —S.

The open interval from A to B in Figure 11.6 is an open neighborhood of 0 in S.
Its inverse image under f contains 0 as an isolated point and is therefore not open.
This shows that although f: I — R? is C*, the induced map f:I — Sis not
continuous and therefore not C*°.

Theorem 11.20. Suppose F: N — M is C* and the image of F lies in a subset S
of M. If S is a regular submanifold of M, then the induced map F: N — S is C*.

Proof. Let p € N. Denote the dimensions of N, M, and S by n, m, and s, respectively.
By hypothesis, F(p) € S C M. Since S is a regular submanifold of M, there is
an adapted coordinate chart (V, ¢) = (V, yl, ..., y"™) for M about F(p) such that
SNV isthe zerosetof y**!, ..., y”, with coordinate map ¥s = (y', ..., y*). By the
continuity of F, it is possible to choose a coordinate chart (U, ¢) = (U, x!, ..., x")
about p such that F(U) C V. Then F(U) C V N § so that on ¢ (U),

VoFop l(x!,....x"=0G"...,y,0,...,0)
and ~
wSoFo¢>—1(x1,...,x”)=(yl,--.,ys),
which shows that F is C* on U. O

Example 11.21. The multiplication map

w: GL(n,R) x GL(n, R) — GL(n, R)

(A,B)— AB

is clearly C* because
n
(AB);j = Zaikbkj

k=1
is a polynomial and hence a C* function of the coordinates a;; and by;. However,
one cannot conclude in the same way that the multiplication map

p: SL(n,R) x SL(n, R) — SL(n, R)

is C*°. This is because {a;;}1<;, j<n is not a coordinate system on SL(n, R); there is
one coordinate too many.

Since SL(n, R) x SL(n, R) is a regular submanifold of GL(n, R) x GL(n, R),
the inclusion map
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i: SL(n,R) x SL(n, R) — GL(n, R) x GL(n, R)
is C* by Theorem 11.18; therefore, the composition
woi: SL(n,R) x SL(n, R) — GL(n, R)

is also C®. Because the image of u o i lies in SL(n, R), and SL(n, R) is a regular
submanifold of GL(n, R) (see Example 9.16), by Theorem 11.20 the induced map

i: SL(n,R) x SL(n, R) — SL(n, R)

is C*°.

11.5 The Tangent Plane to a Surface in R3

Suppose f(x!, x2, x3) is a real-valued function on R? with no critical points on its
zero set N. By the regular level set theorem, N is a regular submanifold of R?. By
Theorem 11.18 the inclusion i : N — R3 is an embedding, so at any point p in N,
ixp: TyN — TI,R3 is injective. We may therefore think of the tangent plane T, N
as a plane in TPR3 ~ R3 (Figure 11.8). We would like to find the equation of this
plane.

Fig. 11.8. Tangent plane to a surface N at p.

Supposev = Y _ v’ §/0x! isavectorin T, N. Under the isomorphism TPR3 ~R3,
we identify v with the vector (!, vZ, v3) in R3. Let ¢(¢) be a curve lying in N with
c(0) = pand ¢/ (0) = (v', v2, v3). Since ¢(r) liesin N, f(c(r)) = O for all 7. By the
chain rule,

3

d 8f i/
0=—fle®) = §= 37 CONCE) (@)
Att =0,
N N, =~ of i
0= SO (0) = == (p'.

i=1 i=1
One usually translates the tangent plane from the origin to p by making the substitution
v' = x' — p'. Then the tangent plane to N at p is defined by the equation
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3

8f i i
> T P& —p)=0. (11.3)
X

i=1

Example 11.22 (Tangent plane to a sphere). Let f(x,y,z) = x>+ y>+z>—1. To
get the equation of the tangent plane to the unit sphere S? in R? at (a, b, ¢) € S, we

compute
0 0 a
—f:2x, —f:2y, —f:2z.
ox ay 9z
At p == (a7 b7 C)’
af af af

a(p) = 2a, @(p) = 2b, 8—Z(p) = 2c.

By (11.3) the equation of the tangent plane to the sphere at (a, b, ¢) is
2a(x —a) +2b(y —b) +2c(z —¢c) =0,

or
ax +by+cz=1,
since a? + b2 +c% = 1.

Problems

11.1. Tangent vector to a sphere

The unit sphere S in R**! is defined by the equation Z?;rll (x"? = 1. For p € §",
show that a necessary and sufficient condition for X, = ) a'd/dx'|, to be tangent
toS"atpis) a'p' =0.

11.2.* Critical points of a smooth map on a compact manifold

Show that a smooth map f from a compact manifold N to R™ has a critical point.
(Hint: Use Corollary 11.9 and the connectedness of R".)

11.3. Differential of an inclusion map
On the upper hemisphere of the unit sphere S2, we have the coordinate map ¢ = (u, v),
where

u(a,b,c)y=a and v(a,b,c)=0>b.
So the derivations d/du/|p, 0/9v|, are tangent vectors of S2 atany point p = (a, b, ¢)
on the upper hemisphere. Let i : > — R3 be the inclusion and x, y, z the standard
coordinates on R3. The differential i, : Tp52 — TPR3 maps d/du|p, 9/9v|, into

TPR3.Thus,
0 d 0 0
i*<a— ):ala— +ﬁla— +yla— :
“lp Xlp Yip Zlp
0 d 0 0
u(a— >=a23— Rl HE S el I
Ulp Xlp Yip Zlp

for some constants o/, B, y'. Find (a!, B, y') fori =1, 2.
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11.4. One-to-one immersion of a compact manifold
Let f: N — M be a one-to-one immersion. Prove that if N is compact, then f(N)
is a regular submanifold of M.

11.5. Multiplication map in SL(n, R)

Let f: GL(n,R) — R be the determinant map f(A) = det A = det[a;;]. For
A € SL(n, R), at least one partial derivative df/dax¢(A) # O for some (k, £) (Ex-
ample 9.16). Use Lemma 9.12 and the implicit function theorem to prove that

(a) there is a neighborhood of A in SL(n, R) in which a;;, (i, j) # (k, £), form a
coordinate system, and ax¢ is a C* function of the other entries a;;, (i, j) # (k, £);
(b) the multiplication map

p: SL(n,R) x SL(n, R) — SL(n, R)

is C®°.
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The Tangent Bundle

Let M be a manifold. For each point p € M, the tangent space T, M is the vector
space of all point-derivations of C°(M), the algebra of germs of C* functions at p.
The tangent bundle of M is the disjoint union of all the tangent spaces of M:

™M= ][] 1,M= | {p} x T, M.
peM peM

To form the disjoint union here, we attach a label p to each element of T, M. So
defined, T M is simply a set, with no topology or manifold structure. We will make
it into a smooth manifold and show that it is a C° vector bundle over M. The first
step is to give it a topology.

12.1 The Topology of the Tangent Bundle

Let (U, ¢) = (U, xh L. , x™) be a coordinate chart for M. At a point p € U, a basis
for T, M is (B/Bxl)lp, ..., (9/3x™)]p, so a tangent vector X, € T, M is uniquely a

linear combination
n

. d
_ i
Xp=2.4 57

i

where a' = ai(Xp) € R depends on X,. Since ¢.(X,) = Zai 8/8ri|¢(p) €

3

Ty(p)(R™), we may identify ¢, (X ) with the column vector (@', ...,a") in R". Let
Tu=[]1,Uu=]]1,M.
peU peU

(We saw in Remark 8.2 that 7,U = T, M.) If we define

= (p,0s): TU — ¢p(U) x R" (12.1)
(P, Xp) > (X' (p), .., x"(p),a' (Xp), ..., d" (X)),
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then ¢~> is a bijection, with inverse

axt

1 n i 0
((p),a’,....,a")— | p, a — .
(x5
We can therefore use ¢ to transfer the topology of ¢ (U) x R" to TU: aset A in TU
is open if and only if d(A) is openin ¢ (U) x R".
Let B be the collection of all open subsets of T'(Uy) as Uy, runs over all coordinate
open sets in M.

Lemma 12.1. Let U and V be coordinate open sets in M. If A is open in TU and B
isopenin TV, then AN BisopeninT(UNV).

Proof. Since T(U NV)isasubspaceof TU, ANT(U NV)isopenin T (U NV).
Similarly, BN T(U N V)isopenin T(U N V). But

ANBCTUNTV =TUNV).

Hence,
ANB=ANTUNV)NBNTUNYV))

isopenin T(U NV). O

It follows from this lemma that the collection B satisfies the conditions (i) and
(ii) of Proposition A.14 for a collection of subsets to be a basis for some topology on
T M. We give the tangent bundle T M the topology generated by the basis B.

Lemma 12.2. A manifold M has a countable basis consisting of coordinate open sets.

Proof. Let {(Uy, ¢o)} be the maximal atlas on M and B = {B;} a countable basis
for M. For each coordinate open set Uy and a point p € Uy, choose a basic open set
B, o € B such that
P € By CUy.

The collection {B, «}, without duplicate elements, is a subcollection of B and is
therefore countable.

Given any open set U in M and a point p € U, there is a coordinate open set U,
such that

peU, CU.
Hence,
pEBpsCU,
which shows that {B), 4} is a basis for M. m|

Proposition 12.3. The tangent bundle T M of a manifold M is second countable.

Proof. Let {U;}?2, be a countable basis of M consisting of coordinate open sets.
Since TU; ~ U; x R", it is diffeomorphic to an open subset of R*" and is therefore
second countable. For each i, choose a countable basis {B; j}‘j’.‘;l for TU;. Then
(B, }f.’j.:l is a countable basis for the tangent bundle. O

Proposition 12.4. The tangent bundle T M of a manifold M is Hausdorff.
Proof. Problem 12.1. O
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12.2 The Manifold Structure on the Tangent Bundle

Next we show that if {(Uy, ¢o)} is a C* atlas for M, then {(T Uy, ¢o)} is a C™ atlas
for TM. Itis clear that T M = Uy T U, . It remains to check that on (T'Uy) N (T Up),
$o and qgﬁ are C*° compatible.

Recall that if (U, xb o x™h), (v, yl, ..., y") are two charts on M, then for any
p € UNYV there are two bases singled out for the tangent space T, (M): {9/0x7 Ip 7:1

and {98/9y’| p}i_;- So any tangent vector X, € T),(M) has two descriptions:
9 )
_ J — i

It is easy to compare them. By applying both sides to x¥, we find that

ak = Zaji Xk = Zbii xk:Zbia_xk
I dx/ ay! — 9yt

i i

(12.2)

p p

Similarly, applying both sides of (12.2) to y* gives

Write Uyg = Uy N Ug. Then

Gp o byt Pu(Uap) X R" — ¢p(Uyp) x R”

is given by
_ 0 _
(x.a',....d" — | o7 (%), X/:‘”m > (g o g (x), b1, ..., B,

where .
) . ayl
b = E al —.

7 dxJ

By the definition of an atlas, ¢g o ¢, I(x) is C*°; its components are simply the y'’s.
So the y'’s are C* functions of the x/’s. This implies that all the partial derivatives
dy'/dx/ are C* functions. Therefore, ¢~>,3 o ¢5 ! is C*. This completes the proof
that the tangent bundle 7'M is a C° manifold, with {(T Uy, ¢4)} as a C™ atlas.

o

12.3 Vector Bundles

On the tangent bundle 7 M of a smooth manifold M, there is a natural projection map
7:TM — M, n(p, X,) = p. This makes the tangent bundle into a C* vector
bundle, which we now define.
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Given any map 7w : E — M, we call the inverse image 7' (p) := 7' ({p}) of
apoint p € M the fiber at p. The fiber at p is often written E,. A surjective smooth
map 7 : E — M of manifolds is said to be locally trivial of rank r if

(i) each fiber 7 —1( p) has the structure of a vector space of dimension r;
(ii) for each p € M, there are an open neighborhood U of p and a fiber-preserving
diffeomorphism

¢: 7' (U) > U xR

that maps each fiber 7 ! (¢) to the corresponding fiber {g} x R’ isomorphically
as vector spaces, for all g € U. Such an open set is called a trivializing open set
for E.

The collection {(U, ¢)}, with {U} an open cover of M, is called a local trivialization
for E, and {U} is called a trivializing open cover of M for E.

A C® vector bundle of rank r is a triple (E, M, 7) consisting of manifolds E, M,
and a surjective smoothmap 7 : E — M thatis locally trivial of rank r. The manifold
E is called the total space of the vector bundle and M the base space. By abuse of
language, we say that E is a vector bundle over M.

Example 12.5 (The product bundle). Given a manifold M,let7: M x R" — M be
the projection to the first factor. Then M x R” is a vector bundle of rank r over M,
called the product bundle of rank r. It has a local trivialization given by the identity
map 1y xr: M x R — M x R. The infinite cylinder S! x R is the product bundle
of rank 1 over the circle (Figure 12.1).

|
Fig. 12.1. A circular cylinder is a product bundle over a circle.

Letng: E — M, np: F — N be two vector bungles, possibly of difffirent
ranks. A bundle map from E to F is a pair of maps (f, f), f: M — N and f: E
— F such that



12.4 Smooth Sections 123

(i) the diagram

F

TE TF

M

7 N

is commutative, meaning 77 o f = f o 7g;
(ii) f is linear on each fiber, i.e., foreach p € M, f: E;, — Fy(p) is a linear map
of vector spaces.

The collection of all vector bundles together with bundle maps between them
forms a category. Thus, it makes sense to speak of an isomorphism of vector bundles.
Any bundle isomorphic to a product bundle is called a trivial bundle.

A smooth map f: N — M of manifolds induces a bundle map (f, f), where
f: TN — TM is given by

F(p. Xp) = (f(p), f(Xp) € TrmyM
for all Xp € TpN.

12.4 Smooth Sections

A sectionof avectorbundle7: E — Misamaps: M — E suchthatmw os = 1.
This condition means precisely that for each p in M, s(p) € E,. Pictorially we
visualize a section as a cross-section of the bundle (Figure 12.2). We say that a
section is smooth if it is smooth as a map from M to E.

s(p)

T
171

p

Fig. 12.2. A section of a vector bundle.

Definition 12.6. A vector field X on a manifold M is a function that assigns a tangent
vector X, € T, M to each point p € M. In terms of the tangent bundle, a vector field
on M is simply a section of the tangent bundle 7 : TM — M and the vector field is
smooth if it is smooth as a map from M to T M.
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Example 12.77. The formula
0 0 -y
Xy =—Y3- +X5= x

defines a smooth vector field on R2 (Figure 12.3).

Fig. 12.3. The vector field (—y, x) in R2.

Proposition 12.8. Let s and t be C™ sections of a C* vector bundle w: E — M
and let f be a C*™ function on M. Then

(i) the sum s + t defined by

+)(p)=s(p)+t(p) € Ey, pe M,

is a C* section of E.
(ii) the product fs defined by

(fs)(p) = f(p)s(p), p e M,
is a C* section of E.

Proof.
() It is clear that s + ¢ is a section of E. To show that it is C*, fix a point p € M
and let V be a trivializing open set for E containing p, with C trivialization

¢: 7 (V) > VxR

Suppose

pos(q)=(q.a'(@),....a" @)
and

$ot(g)=(q.b'(q),....b" ()

for ¢ € V. Because s and t are C°*° maps, a' and b’ are C™ functions on V. Since
¢ is linear on each fiber,
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¢o(s+0(q) = (q,a (@ +b(q),....,a" (@) +b(q), g€ V.

This proves that s + ¢ is a C° map on V and hence at p. Since p is an arbitrary point
of M, the section s + ¢ is C*> on M.

(i1) We omit the proof as it is similar to that of (i). ]

Denote the set of all C* sections of E by I'(E). The proposition shows that
['(E) is not only a vector space over R, but also a module over C*°(M). For any
open set U, one can also consider the vector space I'(U, E) of C* sections of E over
U. Then I'(U, E) is both a vector space over R and a C°°(U)-module. Note that
I'(M, E)=T(E).

12.5 Smooth Frames

A frame for a vector bundle 7 : E — M over an open set U is a collection of sections
S1,...,8 of E over U such that at each point p € U, the elements s1(p), ..., s-(p)
form a basis for the fiber E, := 71 (p). Aframe sq, ..., s, is said to be smooth or
C*® if sy, ..., s, are C* as sections of E over U. A frame for the tangent bundle
TM — M over an open set U is called simply a frame on U.

Example 12.9. The collection of vector fields d/dx, d/dy, d/dz is a smooth frame
on R3.

Proposition 12.10 (Characterization of C* sections). Letw: E — M be a C*®
vector bundle and U an open subset of M. Suppose sy, ..., sy is a C* frame for E
over U. Then a sections =) cjsj of E over U is C*™ if and only if the coefficients
¢l are C* functions on U.

Proof. 1f the ¢J’s are C™ functions on U, then s = > cjs.,' is a C* section on U by
Proposition 12.8.
Conversely, fixapoint p € U and choose atrivializing open et V for E containing
p, with C* trivialization ¢: 7~ 1(V) — V x R”. Since ¢ o sitV—>VxRis
C>, if
¢ osi(q) =(q.aj(q).....d5(q)),

then a}, e, a; are C* functions on V. Similarly, if

¢ os(q)=(q,a'(q),....a" ),

thenal, ..., a" are C* functions on V.
Since s = ) ¢’s ; and ¢ is linear on fibers,

Ps(@) =Y _c@pGsi@)=|q.) c/@aj@..... Y c(@ad}q)

J J J
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Thus,

In matrix notation,

By Cramer’s rule, A~ is a matrix of C™ functions on V. Hence, c = A~ 'g is a

column vector of C* functions on V. This proves that cl, ..., ¢" are C™ functions
at p € U. Since p is an arbitrary point of U, the coefficients ¢/ are C* functions
onU. O
Problems

12.1.* Hausdorff condition on the tangent bundle
Prove Proposition 12.4.

12.2. Transition functions for the total space of the tangent bundle

Let (U, ¢) = (U, x', ..., x" and (V, %) = (V, y', ..., y") be overlapping coordi-
nate charts on a manifold M. They induce coordinate charts (T'U, qNS) and (T'V, 1})
on the total space TM of the tangent bundle (see equation (12.1)), with transition
function ¥ o ¢~

' x Al dh) > (yl,...,y",bl,...,b”).

(a) Compute the Jacobian matrix of the transition function 1} o q’;_f at ¢(p).
(b) Show that the Jacobian determinant of the transition function ¥ o o Latg(p)is
(det[dy’ /axI])>.
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Bump Functions and Partitions of Unity

The existence of a C* partition of unity is one of the most important technical tools
in the theory of C* manifolds. It is the single feature that makes the behavior of
C°° manifolds so different from real-analytic or complex manifolds. In this chapter
we construct C* bump functions on any manifold and prove the existence of a C*
partition of unity on a compact manifold. The proof of the existence of a C* partition
of unity on a general manifold is more technical and is postponed to Appendix C.

13.1 C*° Bump Functions

The support of a C* function f on a manifold M is defined to be the closure of the
set on which f # 0:

supp f = closure of {p € M | f(p) # 0}.

Let g be a point in M, and U a neighborhood of ¢g. By a bump function at q
supported in U we mean any continuous function f thatis 1 in a neighborhood of ¢

with supp f C U.

-2 -1 1 2

Fig. 13.1. A bump function at 0.

For example, Figure 13.1 is the graph of a bump function at 0 with support in
(—2,2). The function is nonzero on the open interval (—1, 1) and is zero otherwise.
Its support is the closed interval [—1, 1].
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The only bump functions that interest us are C°° bump functions. While the
continuity of a function can often be seen by inspection, the smoothness of a function
always requires a formula. Our goal in this section is to find a formula for a C*
bump function as in Figure 13.1.

Example 13.1. The graph of y = x°/3 looks perfectly smooth (Figure 13.2), but it

is in fact not smooth at x = 0, since its second derivative y” = (10/9)x~!/3 is not
defined at x = 0.
y
1 4
-1 (I
-1 4+
Fig. 13.2. The graph of y = x3/3.
In Example 1.3 we introduced the C*° function
—1/t f 0
e ort >0,
[ =
0 fort <0
with graph as in Figure 13.3.
Bt ettt
ﬂ
-1 1 !
Fig. 13.3. The graph of f(¢).
Define £
t
gt) = (13.1)

fO+fa-0
We first show that the denominator f(¢)+ f (1 —t) is never zero. Fort > 0, f(¢) > 0
and therefore
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fO+ fA—-0=>f@) >0.

Fort <0,1 — ¢ > 1 and therefore

fO+fA-1>fA—-1) >0.

In either case, f(t) + f(1 —t) # 0. This proves that g(¢) is defined for all 7. As the
quotient of two C* functions with the denominator never zero, g(t) is C* for all ¢.

Moreover, fort < 0, f(t) = 0and f(1 —t) > 0,50 g(t) = 0 fort < 0. For
t>1,1—t<0and f(1 —¢t) =0,s0 g(t) = 1fort > 1. Thus, g is a C* function
with graph as in Figure 13.4.

1 4
8 0 forr <0,
gt) =
, 1 fort>1.

T
1 t
Fig. 13.4. The graph of g(¢).

Given two positive real numbers a < b, we make a linear change of variables to

map [aZ, b2] to [0, 1]:

x—a2

=d —b2—g2'

x—a2

Then h: R — [0, 1] is a C* function such that

Let

2

0 forx <a
hx) = =)
2 {1 for x > b2.

(See Figure 13.5.)

Fig. 13.5. The graph of i (x).

Replace x by x? to make the function symmetricin x: k(x) = h(x?) (Figure 13.6).
Finally, set
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A N S

Fig. 13.6. The graph of k(x).

2 2
p(x>=1—k(x>=1—g(ﬁ>.

This p(x) is a C* bump function at 0 in R (Figure 13.7). For any g € R, p(x — q)
is a C* bump function at g.

p(x)
/_ 1_\
b —a a b X

Fig. 13.7. A bump function at 0 on R.

It is easy to extend the construction of a bump function from R to R". To get
a bump fungtion at 0 in R"” which is 1 on the closed ball B(0, a) and 0 outside the
closed ball B(0, b), set

b2_a2

|X|2 _a2
ox)=p(x)=1-g <—) . (13.2)

As a composition of C* functions, o is C*°. To get a C* bump function at g in R",
take o (x — q).

Exercise 13.2 (Bump function supported in an open set). Let g be a point and U any neigh-
borhood of ¢ in a manifold. Construct a C° bump function at g supported in U.

Proposition 13.3 (C* extension of a function). Suppose f isa C* function defined
on a neighborhood U of q in a manifold M. Then there is a C* function f on M
which agrees with f in some possibly smaller neighborhood of q.

Proof. Choose a C* bump function p which is supported in U and is identically 1
in a neighborhood V of ¢ (Figure 13.8). Define

px)f(x) forxinU,
0 for x notin U.

f(x)={
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L A
\ 7

e

I U I

Fig. 13.8. Extending the domain of a function by multiplying by a bump function.

As the product of two C* functions on U, f isC®onU. Ifx ¢ U, then x ¢ supp p,
and so there is an open set containing x on which f is 0 since supp p is closed.
Therefore, f is also C at every point x ¢ U.

Finally, since p = 1 on V/, the function f agrees with f on V. O

13.2 Partitions of Unity

If {U;}i¢; is a finite open cover of M, a C™ partition of unity subordinate to {U;} is
a collection of nonnegative C* functions {p;};c; satisfying

(@ Y pi=1
(b) supp pi C Ui.

When [ is an infinite set, for Condition (a) to make sense, we will need to impose
a locally finite condition. A collection {A,} of subsets of a topological space S is
locally finite if every point ¢ in S has a neighborhood that intersects only finitely
many of the A,’s. (A neighborhood of a point g is an open set containing ¢.) In
particular, every ¢ in S is contained in finitely many of the A,’s.

Example 13.4 (An open cover that is not locally finite). Let U, , be the open interval
(r — (1/n), r + (1/n)) in the real line R. The open cover {U,., | r € Q,n € Z*} of
R is not locally finite.

Definition 13.5. A C*° partition of unity on a manifold is a collection of C* functions
{0a}aca such that

(1) the collection of supports, {supp oy }xc4, is locally finite;
(i) Y po = 1.

Given an open cover {Uy}yeca of M, we say that a partition of unity {py}yea 1S
subordinate to the open cover {Uy} if supp po C U, for every a € A.
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Since the collection of supports, {supp pq}, is locally finite (Condition (i)), every
point g lies in finitely many of the sets supp p,. Hence py(g) 7# O for only finitely
many «. It follows that the sum in (ii) is a finite sum at every point.

Example 13.6. Let U, V be the open intervals (—o0, 2), (—1, 0o) in R, and let py be
a C function with graph as in Figure 13.9, e.g., the function g(¢) of (13.1). Define
pu = 1 — py. Then supp py C V and supp py C U. Thus, {py, pv} is a partition
of unity subordinate to the open cover {U, V'}.

} R!

-2 -1 | 1 2

U )
€ 1%

Fig. 13.9. A partition of unity {py/, py } subordinate to an open cover {U, V}.

Remark 13.7. Suppose {fy}aca is a collection of C* functions on a manifold M
such that the collection of its supports, {Supp fx}aca, is locally finite. Then every
point ¢ in M has a neighborhood W, that intersects supp f, for only finitely many c.
Thus, on W, the sum ) ., fo is actually a finite sum. This shows that the function
f =" fais well defined and C*° on the manifold M. We call such a sum a locally
finite sum.

13.3 Existence of a Partition of Unity

Because the case of a compact manifold is somewhat easier and already has some of
the features of the general case, for pedagogical reasons we give a separate proof for
the compact case.

Lemma 13.8. If p1, ..., pm are real-valued functions on a manifold M, then

supp (Z Pi) c | Jsupp pi.
Proof. Problem 13.1. O

Proposition 13.9. Let M be a compact manifold and {Uy}qeca an open cover of M.
There exists a C* partition of unity {py}aca subordinate to {Uy}yea-
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Proof. For each ¢ € M, find an open set U, containing g from the given cover
and let ¥, be a C°° bump function at ¢ supported in U, (Exercise 13.2). Because
Y¥4(q) > 0, there is a neighborhood W, of g on which v, > 0. By the compactness

of M, the open cover {W, | ¢ € M} has a finite subcover, say {W,,, ..., W, }. Let
VYgi» - - -» Yy, be the corresponding bump functions. Then v := ) v, is positive at
every point g in M because g € W,, for some i. Define
i 2%, i=1,...,m.
14

Clearly, ) ¢; = 1. Moreover, since ¥/ > 0, ¢;(¢) # 0if and only if ¥, (q) # 0, so

supp ¢; = supp ¥y, C Uy

for some o € A. This shows that {¢;} is a partition of unity for which for every i,
supp ¢; C Uy for some o € A.

The next step is to make the index set of the partition of unity the same as that of
the open cover. Foreachi =1, ..., m, choose t(i) € A to be an index such that

supp @i C Uz).

We group the collection of functions {¢;} into subcollections according to 7 (i) and
define foreach o € A
Pa = Z Qi

T(i)=a

if there is no i for which 7(i) = «, define p, = 0. Then

zpﬁzz@:g@:l.

a€A aeA t(i)=a

Moreover, by Lemma 13.8,

supp oy C | suppei C U.

()=«
So {p} is a partition of unity subordinate to {U,}. O

To generalize the proof of Proposition 13.9 to an arbitrary manifold, it will be
necessary to find an appropriate substitute for compactness. As the proof is rather
technical and is not necessary for the rest of the book, we put it in Appendix C. The
statement is as follows.

Theorem 13.10 (Existence of a C* partition of unity). Let {U,}yca be an open
cover of a manifold M.

(i) Then there is a C* partition of unity {@x )72 | with compact support such that for
each k, supp gx C Uy for some a € A.

(ii) If we do not require compact support, then there is a C* partition of unity {py }
subordinate to {U,}.
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Problems

13.1.* Support of a finite sum
Prove Lemma 13.8.

13.2.* Locally finite family and compact set

Let {Ay} be a locally finite family of subsets of a topological space S. Show that
every compact set K in S has a neighborhood W that intersects only finitely many of
the A.

13.3. Smooth Urysohn lemma

Let A and B be two disjoint closed sets in a manifold. Find a C* function f such
that f isidentically 1 on A and identically O on B. (Hint: Consider a C* partition of
unity {pp—4, pm—p} subordinate to the open cover {M — A, M — B}. This lemma
is needed in Section 28.3.)

13.4.* Support of the pullback of a function
Let f: M — R be a C* function on a manifold M. If N is another manifold and
m: M x N — M is the projection onto the first factor, prove that

supp(m* f) = (supp f) x N.

13.5. Pullback of a partition of unity
Suppose {py} is a partition of unity on a manifold M subordinate to an open cover
{Uy}of M and F: N — M is a C* map. Prove that

(a) the collection of supports {supp F*p,} is locally finite;
(b) the collection of functions {F*p,} is a partition of unity on N subordinate to the
open cover {(F~Y(U,)} of N.

13.6.* Closure of a locally finite union
If {Ay} is a locally finite collection of subsets in a topological space, then

U4 =4 (13.3)

where A denotes the closure of the subset A.

Remark. For any collection of subset A,, one always has

4 c | A
However, the reverse inclusion is in general not true. For example, suppose A, is the
closed interval [0, 1 — (1/n)] in R. Then

U =101 =011,

but

o0

U [0,1—%] = [0, 1).

n=1

00
U -
n=1

If {Ay} is a finite collection, the equality (13.3) is easily shown to be true.
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Vector Fields

In Section 12.4 we defined a vector field X on a manifold M as the assignment of a
tangent vector X, € T, M at each point p € M. More formally a vector field on M
is a section of the tangent bundle T M — M, and a vector field is smooth if and only
if it is smooth as a section of the tangent bundle. In this chapter we give two more
characterizations of smooth vector fields (Section 14.1).

If X is a vector field on a manifold M, then through each point of M there is a
curve, called an integral curve of X, whose velocity vector field is given by X. The
collection of integral curves through the points of M may be thought of as a motion
of the manifold, called a local flow of the vector field.

After discussing local flows, we collect together a few facts about vector fields—
the Lie bracket, related vector fields, and the push-forward.

14.1 Smoothness of a Vector Field

Suppose X is a vector field on a manifold M. At a point p in a coordinate chart
W, ¢)= U, xL x™) for M, the value of the vector field X is alinear combination

: 9
X,=> d(p)—
p a'(p) axl

p

Using the chart (TU, ¢) for T M (see Section 12.1),

d(X,) = (p(p),a'(p),...,d"(p)).

Thus, the vector field X = " a’ 8/dx' is smooth on U if and only if the coefficients
a' are smooth functions on U. This gives a second characterization of a smooth vector
field on M: in any coordinate chart (U, x4 x") in the atlas of the manifold, a
vector field X = Y a’ 3/0x' is smooth if and only if the coefficient functions a’ are
C*®onU.
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Just as in Section 2.5, a vector field X on a manifold M gives rise to a linear map
on the algebra C°° (M) of C* functions on M: for f € C*°(M), define X f to be the
function

Xf)p)=Xpf. peM.

Finally there is still a third characterization of a smooth vector field, in terms of its
action as an operator on C* functions.

Proposition 14.1. A vector field X on M is smooth if and only if for every smooth
function f on M, the function X f is smooth on M.

Proof.
(=) Suppose X is smooth, f € 'COO(M), and p € M. Relative to a chart
(U, xt, x™) about p, X = > a'9/dx', where by the second characterization

of a smooth vector field, the a’ are C*° functions on U. Then Xf = Y a’ 3f/dx" is
C® on U. Since p is arbitrary, X f is C* on M.

(<) On the chart W, x'....x"M, X =Y.d 8/3x_i. Let p € U. By Proposi-
tion 13.3, each x' can be extended to a C* function x' on M that agrees with x’ in a
neighborhood V of p. Therefore, on V,

-0 -0
Xik = <ZGIF) )Ek = <Za’;> Xk = ak.
X X

This proves that a* is C* at p. Since p is an arbitrary point in U, the function a* is
C®° on U. By the second characterization of a smooth vector field, X is smooth. O

k

By Proposition 14.1, we may view a C*® vector field X as a linear operator
X: C®(M) — C°°(M) of the algebra of C*° functions on M. As in Proposition 2.6,
this linear operator X : C*°(M) — C°°(M) is aderivation. In the following we think
of C* vector fields on M alternately as C* sections of the tangent bundle T M or
as derivations on the algebra C°° (M) of C* functions. In fact, it can be shown that
these two descriptions of C* vector fields are equivalent (Problem 19.11).

14.2 Integral Curves

In Example 12.7, it appears that through each point in the plane one can draw a circle
whose velocity at any point is the given vector field at that point. Such a curve is an
example of an integral curve of the vector field, which we now define.

Definition 14.2. Let X be a C* vector field on amanifold M, and p € M. Anintegral
curve of X starting at p is a curve c: (a, b) — M defined on an open interval (a, b)
containing 0 such that ¢(0) = p and ¢/(f) = X¢). To show its dependence on the
initial point p, we also write ¢;(p) instead of c(t).

Definition 14.3. An integral curve is maximal if its domain cannot be extended to a
larger interval.
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Example 14.4. Recall the vector field Xy yy = (—y, x) on R? (Figure 12.3). We will
find an integral curve c(¢) of X starting at the point (1, 0) € R2. The condition for
c(t) = (x(t), y(t)) to be an integral curve is ¢/(t) = X or

[x/(t)} _ [—y(t)}
y'(®) x|’

so we need to solve the system of first-order ordinary differential equations

x'=-y, (14.1)
y =x, (14.2)

with initial condition (x(0), y(0)) = (1, 0). From (14.1), y = —x". So y’ = —x".
Substituting into (14.2) gives

"
X = —X.

It is well known that the solutions are

x = Acost + Bsint,
/ . (14.3)
y=—x = Asint — Bcost.
The initial condition forces A = 1, B = 0, so the integral curve starting at (1, 0) is
c(t) = (cost, sint), which parametrizes the unit circle.
More generally, if the initial point of the integral curve, corresponding to r = 0,
is p = (xo, Yo), then (14.3) gives

A = Xxo, B = —yo,
and the general solution is

X = XgCcost — ypsint,
y =xpsint + ypcost, te€R.

This can be written in matrix notation as

x(1) cost —sint | [ xg cost —sint
ct) = = . = . D,
y(t) sint  cost ||y sint cost
which shows that the integral curve of X starting at p can be obtained by rotating the
point p counterclockwise about the origin through an angle 7. Notice that

cs(ci(p)) = cs44(p),

since a rotation through an angle ¢ followed by a rotation through an angle s is the
same as a rotation through the angle s +¢. Foreacht ¢ R, ¢;: M — M is a
diffeomorphism with inverse c_;.

Let Diff (M) be the group of diffeomorphisms of a manifold M. A homomorph-
ism c¢: R — Diff (M) is called a one-parameter group of diffeomorphisms of M. In
this example the integral curves of the vector field X, y) = (—y, x) on R? give rise
to a one-parameter group of diffeomorphisms of R2.
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0 1

Fig. 14.1. The vector field d/dx on R — {0}.

Example 14.5. Let M be R — {0} and let X be the vector field d/dx on M. Find the
maximal integral curve starting at x = 1.

Solution. In column vector notation, the vector field X is simply 1. If x(¢) is an
integral curve starting at 1, then

X)) =Xy =1, x(0)=1.

Sox(t) =t + 1. Since 0 is not in M, the domain of the maximal integral curve is the
open interval (—1, 00). O

From this example we see that it may not be possible to extend the domain of
definition of an integral curve to the entire real line.

14.3 Local Flows

The two examples in the preceding section illustrate the fact that finding an integral
curve of a vector field amounts to solving a system of first-order ordinary differential
equations with initial conditions. In general, if X is a smooth vector field on a
manifold M, to find an integral c(¢) of X starting at p, we first choose a coordinate
chart (U, ¢) = (U, xt o, x") about p. In terms of the local coordinates,

: 0
X = '(x) —,
Za (x) oy
and by Proposition 8.15,
; a
/(1) = e —,
0= ') 5

where ¢! (1) = x! o c(¢) isthe ith component of ¢(¢) in the chart (U, ¢). The condition
c’(t) = X is thus equivalent to

) (t) =a'(c(t)) fori=1,... n. (14.4)

This is a system of ordinary differential equations (ODE); the initial condition ¢(0) =
p translates to (c'(0), ..., c"(0)) = (p!, ..., p"). By an existence and uniqueness
theorem from the theory of ODE, such a system always has a unique solution in the
following sense.
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Theorem 14.6. Let V be an open subset of R, pg a pointin V, and f: V — R" a
C® function. Then the differential equation

dy/dt = f(y), y(0) = po,

has a unique C* solution y: (a(pgo), b(po)) — V, where (a(po), b(po)) is the
maximal open interval containing 0 on which y is defined.

The uniqueness of the solution means that if z: (§, €) — V satisfies the same
differential equation

dz/dt = f(z), z(0) = po,

then the domain of definition (6, €) of z is a subset of (a(po), b(po)) and z(t) = y(¢)
on the interval (8, €).

For a vector field X on a chart U of a manifold and a point p € U, this theorem
guarantees the existence and uniqueness of a maximal integral curve starting at p.

Next we would like to study the dependence of an integral curve on its initial
condition. Again we study the problem locally on R". The function y will now be
a function of two arguments ¢ and g, and the condition for y to be an integral curve
starting at the point ¢ is

0
a—f(r, Q) =fO0.q). y0.q)=q.

The following theorem from the theory of ODE guarantees the smooth dependence
of the solution on the initial condition.

Theorem 14.7. Let V be an open subset of R" and f: V — R" a C* function on
V. For each point py € V, there is a neighborhood W of po in V, a number € > 0,
and a C* function

y:i(—€,e) xW >V

such that 5
a—f(r, 7 =fO.q). y0.9) =g

forall (t,q) € (—e€,e) x W.

For a proof of these two theorems, see [4, Appendix C, pp. 359-366].
It follows from Theorem 14.7 that if X is any C* vector field on a chart U and
p € U, then there are a neighborhood W of p in U, an € > 0, and a C*° map

F:(—€,e)xW —>U (14.5)

such that for each ¢ € W, the function F (¢, ¢) is an integral curve of X starting at q.
In particular, F (0, g) = q. We usually write F;(q) for F(t, q).

Suppose s, ¢ in the interval (—e, €) are such that both F;(F;(g)) and F;1;(g) are
defined. Then both F;(F(q)) and F;+s(q) as functions of ¢ are integral curves of X
with initial point F(g), which is the point corresponding to = 0. By the uniqueness
of the integral curve,
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Fi (Fs = Frys
Fule) 1(Fs(q)) = Fi45(q)

Fig. 14.2. The flow line through ¢ of a local flow.

Fi(Fs(q) = Fiys(q). (14.6)

The map F in (14.5) is called a local flow generated by the vector field X. For each
q € U, the function F;(q) of ¢ is called a flow line of the local flow. Each flow line
is an integral curve of X. If a local flow F is defined on (—o0, 00) x M, then it is
called a global flow. Every smooth vector field has a local flow about any point, but
not necessarily a global flow. A vector field having a global flow is called a complete
vector field. If F is a global flow, then F;: M — M is a diffeomorphism for every
t € R, sinceithasinverse F_;. Thus, a global flow on M gives rise to a one-parameter
group of diffeomorphisms of M.
This discussion suggests the following definition.

Definition 14.8. A local flow about a point p in an open set U of a manifold is a C*
function
F:(—¢,e) x W —> U,

where € is a positive real number and W is a neighborhood of p in U, such that
writing F;(q) = F(t, q), we have

(1) Fo(q) =g forallg € W,
(i) F;(Fs(q)) = F;4+5(g) whenever both sides are defined.

If F(¢, q) is a local flow of the vector field X on U, then
oF
F(0,9)=q and 5(0, q) = Xr,q) = Xq-

Thus, one can recover the vector field from its flow.

Example 14.9. The function F: (—00, o00) x R* — R?,
F <t, |:x:|> _ |:c9st —s1nt] |:x:| 7

y sint cost||y

is the global flow on R? generated by the vector field
| —sint —cost||x

=0 L cost —sint||y]| _,
_ A D
- }H e

This is Example 12.7 again.

oF
X(x y) = _(t
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14.4 The Lie Bracket

Suppose X and Y are smooth vector fields on an open subset U of a manifold M, which
we view as derivations on C*°(U). For a C* function f on U, by Proposition 14.1
the function Y f is C*° on U, and the function (XY) f := X (Y f) is also C*° on U.
Moreover, because X and Y are both R-linear maps from C*°(U) to C*°(U), the map
XY: C*®(U) — C*®(U) is R-linear. However, XY does not satisfy the derivation
property: if f, g € C°°(U), then

XY(fe9)=X((Yfg+ fYg)
=XYfg+ T Xg) +XfH(Yg) + f(XYg).

Looking more closely at this formula we see that the two extra terms (Y f)(Xg) and
(Xf)(Yg) that make XY not a derivation are symmetric in X and Y. Thus, if we
compute Y X ( fg) as well and subtract it from XY ( fg), the extra terms will disappear,
and XY — Y X will be a derivation of C*°(U).

Given two smooth vector fields X and Y on U and p € U, we define their Lie
bracket [X, Y] at p to be

(X, Y, f=X,Y =Y, X)f

for any germ f of a C* function at p. By the same calculation as above, but now
evaluated at p, it is easy to check that [X, Y], is a derivation of C;O(U ) and is a
tangent vector at p (Definition 8.1). As p varies over U, [X, Y] becomes a vector
field on U.

Proposition 14.10. If X and Y are smooth vector fields on M, then the vector field
[X, Y] is also smooth on M.

Proof. By Proposition 14.1 it suffices to check that if f is a C*° function on M, then
sois [X, Y]f. But
[X,Y]f = (XY -YX)f,

which is clearly C* on M since both X and Y are as well. O

Denoting the vector space of all smooth vector fields on M by X(M), we see that
the Lie bracket provides a product operation on X(M).
Clearly
[Y, X]=—-[X,Y].

Exercise 14.11 (Jacobi identity). Check the Jacobi identity:
> IX.1v. Z1=0.
cyclic

This notation means that one permutes X, Y, Z cyclically and one takes the sum of the resulting
terms. Written out,

Z (X, 1Y, ZIl = X, [Y, ZN + [Y, [Z, X]] + [Z, [ X, Y]]

cyclic
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Definition 14.12. A Lie algebra is a real vector space V together with a product,
called the bracket, [ , 1: V x V — V, satisfying the following properties: for all
a,beRand X,Y,Z eV,

(i) bilinearity:

[aX +bY, Z] = alX, Z] + blY, Z],
[Z,aX +bY] =alZ, X]+D[Z,Y],

(i1) anticommutativity: [Y, X] = —[X, Y],
(iii) Jacobi identity: } . jic [X, [Y, Z]] = 0.

Example 14.13. If M is a manifold, then the vector space X(M) of C* vector fields
on M is a Lie algebra with the Lie bracket [ , ] as the bracket.

Example 14.14. Let K™*" be the vector space of all n x n matrices over a field K.
Define for X, Y € K™*",

[X,Y]=XY -YX,
where XY is the matrix product of X and Y. With this bracket, K"*" becomes a
Lie algebra. The bilinearity and anticommutativity of [ , ] are immediate, while the

Jacobi identity follows from the same computation as Exercise 14.11.
More generally, if A is any associative algebra, then the product

[x,y]=xy —yx, x,y€A,
makes A into a Lie algebra.

Definition 14.15. A derivation of a Lie algebra V is a linear map D: V — V satis-
fying the product rule

DlY, Z] =[DY, Z]+ Y, DZ].
Example 14.16. Let V be a Lie algebra. For each X in V, defineady: V — V by
adx(Y) = [X, Y]
We may rewrite the Jacobi identity in the form
(X, [Y, Z]l = [[X, Y], Z] + [Y, [X, Z]]

or
adx[Y, Z]l =ladx Y, Z] 4+ [Y, adx Z],

which shows that ady: V — V is a derivation of V.
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14.5 Related Vector Fields

Definition 14.17. Let F: N — M be a smooth map of manifolds. A vector field X
on N is F-related to a vector field X on M if forall p € N,

Fu p(Xp) = Xp(p)- (14.7)
We may reformulate this condition as follows.

Proposition 14.18. A vector field X on N and a vector field X on M are F-related if
and only if for all g € C*° (M),

X(goF)=(Xg)oF.

Proof.
(=) Suppose X on N and X on M are F-related. By (14.7), for any g € C*°(M),
Fep(Xplg = Xp(p)g, (definition of F-related)
X,(g o F) = (Xg)(F(p)), (definition of F, and Xg)
(X(g o F)(p) = (Xg)(F(p)).

Since this is true for all p € N,

X(goF)=(Xg)oF.
(<) Reversing the set of equations above proves the converse. O
Proposition 14.19. Let F: N — M be a smooth map of manifolds. If the C* vector
fields X and Y on N are F-related to the C  vector fields X and Y, respectively, on
M, then [X, Y] is F-related to [ X, Y].
Proof. For any g € C*®°(M),

[X,Y1(go F)=XY(go F)—YX(goF) (definition of [X, Y1)
= X((Yg)o F)—Y((Xg) o F) (Proposition 14.18)
=(XYg)o F—(YXg)o F (Proposition 14.18)
= (XY -YX)g)o F
= ([X.Y]g) o F.

By Proposition 14.18 again, this proves that [X, Y] on N and [X, Y] on M are F-
related. O
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14.6 The Push-Forward of a Vector Field

Let F: N — M be a smooth map of manifolds and let Fi.: T,N — Tr)M be its
differential at a point pin N. If X, € T, N, we call F.(X ) the push-forward of the
vector X, at p. This notion does not extend in general to vector fields, since if X is
a vector field on N and z = F(p) = F(q) for two distinct points p, g € N, then X,
and X, are both pushed forward to tangent vectors at z € M, but there is no reason
why F.(X,) and F,(X,) should be equal.

ANN
\\\

b4
Fig. 14.3. The vector field X cannot be pushed forward..

In one important special case, the push-forward F, X of any vector field X on
N always makes sense, namely, when F: N — M is a diffeomorphism. In this
case, since F is injective, there is no ambiguity about the meaning of (FiX)F(p) =
Fy p(X}p), and since F is surjective, F X is defined everywhere on M.

Problems

14.1. Equality of vector fields
Show that two C*° vector fields X and Y on a manifold M are equal if and only if
for every C* function f on M, we have Xf = Y f.

14.2. Vector field on an odd sphere
Let x!, yl, ..., x", y" be the standard coordinates on R2". The unit sphere §2n=1ip
R?" is defined by the equation Y ", (x')? + (y')? = 1. Show that
- 9 9
X
i=

is a nowhere-vanishing smooth vector field on §*~!. Since all spheres of the same
dimension are diffeomorphic, this proves that on every odd-dimensional sphere there
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is a nowhere-vanishing smooth vector field. It is a classic theorem of differential
and algebraic topology that on an even-dimensional sphere every continuous vector
field must vanish somewhere (see [13, Section 5, p. 31] or [8, Theorem 16.5, p. 70]).
(Hint: Use Problem 11.1.)

14.3. Integral curves in the plane
Find the integral curves of the vector field

8 8 X 2
X(x’y) ZXa — ya = |:_yi| on R~.

14.4. Maximal integral curve in the plane
Find the maximal integral curve c(¢) starting at the point (a, b) € R2 of the vector
field X(y,y) = (1, x) on R?.

14.5. Integral curve starting at a zero of a vector field
Suppose the smooth vector field X on M vanishes at a point p € M. Show that the

integral curve of X with initial point p is the constant curve c¢(¢) = p forall r € R.

14.6. Maximal integral curve
Let X be the vector field x d/dx on R. Find the maximal integral curve c(¢) with
c(0) =2.

14.7. Maximal integral curve
Let X be the vector field x> d/dx on the real line R. For each p > 0 in R, find the
maximal integral curve of X with initial point p.
14.8. Reparametrization of an integral curve
Suppose c: (a,b) — M is an integral curve of the smooth vector field X on M.
Show that for any real number s, the map

cs:(@a+s,b+s)y— M, c;(t)=c(—ys)

is also an integral curve of X.

14.9. Lie bracket in local coordinates
Consider the two vector fields X, Y on R”:

.9 .0
X = F— Y = bl —,
a ax! Z daxJ/

where a’ (x), b/ (x) are C* functions on R”. Since [X, Y] is also a C™ vector field

on R",
0
X, Y] = k_—
[ ] ZC 8xk

for some C® functions c¥. Find the formula for ¢* in terms of @’ and b’.
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14.10. Lie bracket of vector fields
If f and g are C* functions and X and Y are C* vector fields on a manifold M,
show that

[fX,gY]= felX. Y]+ f(Xg9Y —g(Y)X.

14.11. Lie bracket of vector fields on R?

Compute the Lie bracket
0 n a 0
—y— X —, —
yax dy dx

14.12. Vector field under a diffeomorphism
Let F: N — M be a C* diffeomorphism of manifolds. Prove that if g is a C*°
function and X a C® vector field on N, then

on R2.

F(gX) = (g0 FHF,X.

14.13. Lie bracket under a diffeomorphism
Let F: N — M be a C* diffeomorphism of manifolds. Prove that if X and Y are
C® vector fields on N, then

FilX, Y] = [F:X, FiY].
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Lie Groups

Certain manifolds such as the circle have in addition to their C* structure also a
group structure; moreover, the group operations are C°°. Manifolds such as these are
called Lie groups. This chapter is a compendium of a few important examples of Lie
groups, the classical groups.

15.1 Examples of Lie Groups

We recall here the definition of a Lie group, which first appeared in Section 6.1.

Definition 15.1. A Lie group is a C°° manifold G which is also a group such that the
two group operations, multiplication

nw:GxG— G, wpla,b)=ab

and inverse
t: G —> G, t(a) =q!

are C®.

NoTtATION. We use capital letters to denote matrices, but generally lower-case letters
to denote their entries. Thus, the (i, j)-entry of the matrix AB is (AB);; = > ajkby;.

Example 15.2. In Example 5.14 we defined the general linear group
GL(n,R) = {A e R | det A # 0}.
As an open subset of R"*" it is a manifold. Matrix multiplication
n
(AB);j = Zaikbkj
k=1

is a polynomial in the coordinates of GL(n, R) and is clearly C*°.
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Recall that the (i, j)-minor of a matrix A is the determinant of the submatrix of
A obtained by deleting the ith row and the jth column of A. By Cramer’s rule, the
(i, j)-entry of A™!is

(A7 = L (=1 ((j, i)-minor of A)
Y detA ’ ’
which is a C* function of the a;;’s provided det A 3 0. Therefore, the inverse map
t: GL(n,R) — GL(n, R) is also C*. This proves that GL(n, R) is a Lie group.

Example 15.3 (Special linear group). The special linear group SL(n, R) is the sub-
group of GL(n, R) consisting of matrices of determinant 1. By Example 9.16,
SL(n, R) is a regular submanifold of dimension n? — 1 of GL(n, R). By Exam-
ple 11.21, the multiplication map

i: SL(n,R) x SL(n, R) — SL(n, R)

is C*°.
To see that the inverse map

i: SL(n,R) — SL(n, R)

is C*®, leti : SL(n,R) — GL(n, R) be the inclusion map and ¢ : GL(n, R) —
GL(n, R) the inverse map of GL(n, R). As the composite of two C°° maps,

Loi: SL(n,R) - GL(1, R) - GL(n, R)

is a C* map. Since its image is contained in the regular submanifold SL(n, R), the
induced map 7 : SL(n, R) — SL(n, R) is C* by Theorem 11.20. Thus, SL(n, R) is
a Lie group.

Example 15.4 (Orthogonal group). Recall that the orthogonal group O (n) is the sub-
group of GL(n, R) consisting of all matrices A satisfying AT A = I. Thus, O(n) is
the inverse image of 7 under the map f(A) = AT A.

In Example 11.3 we showed that f: GL(n, R) — GL(n, R) has constant rank
on GL(n, R). By the constant-rank level set theorem, O (n) is a regular submanifold
of GL(n, R). One drawback of this approach is that it does not tell us what the rank
of f is, and so the dimension of O(n) remains unknown.

In this example we will apply the regular level set theorem to prove that O (n) is a
regular submanifold of GL(n, R). This will at the same time determine the dimension
of O (n). To accomplish this, we must first redefine the target space of f. Since AT A
is a symmetric matrix, the image of f lies in S, the vector space of all n x n real
symmetric matrices. Note that S, is a vector space of dimension (n%+n) /2. Consider
f:GL(n,R) — §,.

The tangent space of S,, at any point is canonically isomorphic to S, itself, because
S, is a vector space. Thus, the image of the differential

Se.a: TA(GL(n, R)) — Tyur4(Sp) = S,



15.1 Examples of Lie Groups 151

is a vector space of dimension at most (n> + n)/2.

While it is true that f also maps GL(n, R) to GL(n, R) or R"*"if we had taken
GL(n, R) or R"™" as the target space of f, the differential f. 4 would never be
surjective for any A € GL(n, R) when n > 2, since f; 4 factors through the proper
subspace S, of R"*". This illustrates a general principle: for the differential fi 4 to
be surjective, the target space of f should be as small as possible.

To show that the differential of

f: GL(m,R) — S,, f(A) =ATA,

is surjective, we compute explicitly the differential fi 4. Since GL(n, R) is an open
subset of R"*" its tangent space at any A € GL(n, R) is

Ta(GL(n, R)) = To(R"*") = R"*".
For any matrix X € R" ", there is a curve c(¢) in GL(n, R) with ¢(0) = A and
¢’(0) = X (Proposition 8.16). By Proposition 8.17,
Jea(X) = df( (1))
#ARR) = e

= Ec(t) c() i
= O ec) + )T 1)))i=o0

=xTa+ATx.

t=0

The surjectivity of fi 4 becomes the following question: if A € O(n) and B is
any symmetric matrix in S, does there exist an n x n matrix X such that

XTA+ATX = B?
Note that since (X7 A)T = AT X, it is enough to solve

Ty _ 1
ATX =B, (15.1)

for then | |
XTA+ATX = EBT +3B =8
Equation (15.1) clearly has a solution: X = %(AT)_IB. So fi«.a: Ta GL(n,R)
— S, is surjective for all A € GL(n, R). By the regular level set theorem, O (n) is
a regular submanifold of GL(n, R) of dimension

dim O(n) = n> —dim S, = n> — ("> +n)/2 = (n* — n) /2. (15.2)

Example 15.5. The complex general linear group GL(n, C) is defined to be the group
of nonsingular n x n complex matrices. Since an n X n matrix A is nonsingular if
and only if det A # 0, GL(n, C) is an open subset of C"*", the vector space of n X n
complex matrices. For the same reason as in the real case, GL(#n, C) is a Lie group
of dimension 2n?.
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15.2 Lie Subgroups

Definition 15.6. A Lie subgroup of a Lie group G is (i) an abstract subgroup H which
is (ii) an immersed submanifold via the inclusion map so that (iii) the group operations
on H are C*.

An abstract subgroup simply means a subgroup in the algebraic sense, in contrast
to a Lie subgroup. For an explanation of why a Lie subgroup is defined to be an
immersed submanifold instead of a regular submanifold, see Remark 16.13.

Because a Lie subgroup is an immersed submanifold, it need not have the relative
topology. In particular, the inclusion map i : H — G need not be continuous.

(3.2)

|78

-

0,0

Fig. 15.1. An embedded Lie subgroup of the torus.

Example 15.7 (Lines with irrational slope in a torus). Let G be the torus R?/Z? and
L aline through the origin in RZ. The torus can also be represented by the unit square
with the opposite edges identified. The image H of L in R?/Z? is a closed curve
if and only if the line L goes through another lattice point, say (m, n) € Z2. This
is the case if and only if the slope of L is n/m, a rational number; then H consists
of finitely many lines segments on the unit square and is a regular submanifold of
R?/7? (Figure 15.1).

If the slope of L is irrational, then its image H on the torus will never close up.
Indeed, it can be shown that H is a dense subset of the torus [2, Example 111.6.15,
p. 86]. Thus, H is an immersed submanifold but not a regular submanifold of the
torus R?/Z2.

Whatever the slope of L, its image H in R?/Z? is an abstract subgroup of the
torus, an immersed submanifold, and a Lie group. Therefore, H is a Lie subgroup of
the torus.

Proposition 15.8. If H is an abstract subgroup and a regular submanifold of a Lie
group G, then it is a Lie subgroup of G.

Proof. Since a regular submanifold is the image of an embedding (Theorem 11.18),
it is also an immersed submanifold.

Let u: G x G — G be the multiplication map on G. Since H is a regular
submanifold of G, the inclusion map H < G is C*°. Hence, the inclusion map
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H x H < G is C*, and the composition u o i: H x H — G is C*. By
Theorem 11.20, the induced map i: H x H — H is C*, again because H is a
regular submanifold.

The smoothness of the inverse map :: H — H can be deduced from the smooth-
ness of t: G — G in the same way. O

A subgroup H as in Proposition 15.8 is called an embedded Lie subgroup, be-
cause the inclusion map i: H — G of a regular submanifold is an embedding
(Theorem 11.18).

Example 15.9. We showed in Examples 15.3 and 15.4 that the subgroups SL(%, R)
and O (n) of GL(n, R) are both regular submanifolds. By Proposition 15.8 they are
embedded Lie subgroups.

We state without proof an important theorem about Lie subgroups. If G is a Lie
group, then an abstract subgroup that is a closed subset in the topology of G is called
a closed subgroup.

Theorem 15.10 (Closed subgroup theorem). A closed subgroup of a Lie group is
an embedded Lie subgroup.

For a proof of the closed subgroup theorem, see [19, Theorem 3.42, p. 110].

Example 15.11.

(i) The lines with irrational slope in the torus R? /Z? are not closed subgroups, since
they are not regular submanifolds.

(i1) The special linear group SL(n, R) and the orthogonal group O (n) are the zero
sets of polynomial equations on GL(n, R). As such, they are closed subsets of
GL(n, R). By the closed subgroup theorem, SL(n, R) and O (n) are embedded
Lie subgroups of GL(n, R).

15.3 The Matrix Exponential

Given an n x n matrix X, we define its exponential ¢X by the same formula as the
exponential of a real number:.
X L S
et =1+X+=-X"+=X"+---, (15.3)
2! 3!
where [ is the n x n identity matrix. For this formula to make sense, we need to show
. . . 2 .

that the series on the right converges in the normed vector space R"*" ~ R, with

the Euclidean norm ]
2
lan=(>a3)"

By a standard theorem of real analysis (cf. [12, Proposition 2.7.4, p. 121]), the
convergence of a series of matrices is equivalent to the convergence of the (i, j)-
entry of the series as a series of real numbers for every (7, j); in this case, it is the
convergence of the series
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| 1 3
3ij +Xij+5(X )ij+§(X Yij+ e (15.4)
Let a = maxi<; j<n |x;j|. Then
n n
inkaj =< Z ikl lxgj| < Za2 = na?,
k=1 k=1

101 = Y| = DI iallgl = Y naPa = n*a’.

By induction, one shows that

I(X?)j] =

n n
X9l = DX x| <D 020 a=n""1a" < ().
k=1 k=1
So the series (15.4) is bounded by
1 1
1+ (na) + 5(na)2 + ;(na)3 +..o= M,

By the comparison test for series, the series (15.3) converges absolutely for any n x n
matrix X.

NoraTioN. Following standard convention we use the letter e for the exponential
map and for the identity element of a general Lie group. The context should prevent
any confusion. We sometimes write exp(X) for eX.

Unlike the exponential of real numbers, when A and B are n X n matrices with
n > 1, it is not necessarily true that

Exercise 15.12 (Exponentials of commuting matrices). Prove that if A and B are commuting
n X n matrices, then

Proposition 15.13. For X € R"*",

ie[X :Xe[X :elXX

dt '
Proof. Because each (i, j)-entry of the series for the exponential function ¢’X is a
power series in ¢, it is possible to differentiate term by term [17, Theorem 8.1, p. 173].
Hence

d tX d 1 2y2 1 3v3
X = S (I +iX 4+ —2X + X 4
i€ dt( 2! 31
1
=X+tX2+5t2X3+--~

1
=X(1+rx+512X2+--~>=Xe’X.
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In the second equality above, one could have factored out X as the second factor:

d tX 2 1 2v3
— =X tX —t°X
dte + +2! +
1
:=044x+5ﬂx%pu>xzemx. o

The definition of the matrix exponential X makes sense even if X is a complex
matrix. All the arguments so far carry over word for word; one merely has to interpret
|a;j| not as absolute value, but as the modulus of a complex number a;;.

15.4 The Trace of a Matrix

Define the frace of an n x n matrix X to be the sum of its diagonal entries:

n
tr(X) = ZX,’,‘.
i=1

Lemma 15.14.
(i) Foranytwo A, B € R"*" tr(AB) = tr(BA).
(ii) For X € R™" and A € GL(n, R), tr(AXA™") = tr(X).

Proof.
(@)
tr(AB) = Z(AB)H = Z Zaikbki,
i i k
tr(BA) =Y (BA =YY buidi.
k k i
(ii) Set B = XA 'in (). o

The eigenvalues of an n x n matrix A are the roots of the polynomial equation
det(AI — A) = 0. Over the field of complex numbers, which is algebraically closed,
such an equation necessarily has n roots, counted with multiplicity. Thus, the advan-
tage of allowing complex numbers is that every n x n matrix, real or complex, has n
complex eigenvalues, counted with multiplicity, whereas a real matrix need not have

any real eigenvalue.
0-1
1 0

has no real eigenvalues. It has two complex eigenvalues +i.

Example 15.15. The real matrix
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By a theorem from algebra, any complex matrix X can be triangularized; more
precisely, there exists a nonsingular complex matrix A so that AXA~! is upper tri-
angular. Since the eigenvalues Af, ..., A, of X are the same as the eigenvalues of
AX A~ the triangular matrix 7 must have the eigenvalues of X along its diagonal:

MM *

0 An
Proposition 15.16. The trace of a matrix, real or complex, is equal to the sum of its
complex eigenvalues.

Proof. Suppose X has complex eigenvalues A1, ..., A,. Then there exists a nonsin-
gular matrix A € GL(n, C) such that

Al *
AXA~! = )
0 A
By Lemma 15.14,
MX)ZUMXA*)=§:M. O

Proposition 15.17. For any X € R"*", det(eX) = e X.

Proof.
Case 1. Assume that X is upper triangular:
MM *
X = )
0 An
Then
| | )Jf * e *
X _ Lok L . —
e = Z k!X - Z k! . - .
0 Ak 0 e

n
Hence, det eX =[] et = eXhi = ot X

Case 2. Given a general matrix X, with eigenvalues Ay, ..., A,, we can find a
nonsingular complex matrix A so that

M *
AXAT! =

an upper triangular matrix. Then
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. 1 1
M= T+ AXAT + S (AXAT 4 S (AxATY 4

1 1
=I+AXA"+A (5)(2) Al A (5)(3) Al

= AeXA~!.
Hence

deteX = det(AeX A™1) = det(eAX4 7

— or(Axa™h (by Case 1, since AXA~! is upper triangular)

=X (by Lemma 15.14). O

It follows from this proposition that the matrix exponential eX is always nonsingu-
lar because det(eX) = ¢ X is never 0. This is one reason why the matrix exponential
is so useful, for it allows us to write down explicitly a curve in GL(n, R) with a given
initial point and a given initial velocity. For example, c(t) = /X : R — GL(n, R)
is a curve in GL(n, R) with initial point I and initial velocity X, since

— XetX
t=0

=X. (15.5)

d
0 0X 0 I d /0 tX
c0)=¢"" =¢e" = an c()_——te —o

15.5 The Differential of det at the Identity

Letdet: GL(n, R) — R bethe determinant map. The tangent space at / of GL(n, R)
is the vector space R"*" and the tangent space to R at 1 is R. So

detyj: R™" — R.
Proposition 15.18. For any X € R**", det, ;(X) =tr X.

Proof. We use curves at I to compute the differential (Proposition 8.17). As a curve

c(t) with ¢(0) = I and ¢’(0) = X, we choose the matrix exponential c(r) = X,

Then

d d
det, ;(X) = — det(e'X) — L uX
, p y
! 1=0 t t=0
= (tr X)e'" ¥ =trX. O
t=0

Problems

15.1. Product rule for matrix-valued functions
Let (a,b) be an open interval in R. Suppose that A: (a,b) — R™*" and
B: (a, b) — R"*7? are differentiable maps. Prove that for ¢t € (a, b),
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%A(I)B(t) = A'(t)B(t) + A(t)B'(1),

where A'(t) = (dA/dt)(t).

15.2. Identity component of a Lie group

The identity component C, of a Lie group G is the connected component of the
identity element e in G. Let u and ¢ be the multiplication map and the inverse map
of G.

(a) For any x € C,, show that u({x} x C,) C C,. (Hint: Apply Proposition A.44.)
(b) Show that ((C,) C C,.

(c) Show that C, is an open subset of G. (Hint: Apply Problem A.11.)

(d) Prove that C, is itself a Lie group.

15.3.* Open subgroup of a connected Lie group
Prove that an open subgroup H of a connected Lie group G is equal to G.

15.4. Differential of the multiplication map
Let G be a Lie group with multiplicationmap  : G x G — G,andlet{,: G — G
and r,: G — G be left and right multiplication by @ and b € G, respectively. Show
that the differential of i at (a,b) € G x G is

M, (a,0) Xa, Yp) = (rp)+(Xa) + (o)« (Yp) for Xy € T,(G), Yp € Tp(G).

15.5. Differential of the inverse map
Let G be a Lie group with multiplication map u: G x G — G, inverse map ¢: G
— G, and identity element e. Show that the differential of the inverse map ata € G,

tya: TaG — T,-1G,
is given by
te,a(Yq) = _(ra—l)*(ga—l)*Yay

where (r,-1)s = (ry-1)s,e and (€,-1)x = (€4-1)s.q.

15.6.* Differential of the determinant map at A
Show that the differential of the determinant map det: GL(n,R) — R at A €
GL(n, R) is given by

dety A(AX) = (det A)(tr X) for X e R™", (15.6)

15.7.* Special linear group

Use Problem 15.6 to show that 1 is a regular value of the determinant map. This
gives a quick proof that the special linear group SL(%, R) is a regular submanifold of
GL(n, R).
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15.8. General linear group
Forr € R* := R — {0}, let M, be the n x n matrix

M, = . =[rejex --- eyl
1
where ey, ..., ey is the standard basis for R"”. Prove that the map

f: GL(n,R) — SL(n, R) x R*,
A (AM]/detA,detA),

is a diffeomorphism.

15.9. Orthogonal group
Show that the orthogonal group O (n) is compact by proving the following two state-
ments.

(a) O(n) is a closed subset of R"*",
(b) O(n) is a bounded subset of R"*",

15.10. Special orthogonal group SO(2)
The special orthogonal group SO(n) is defined to be the subgroup of O (n) consisting
of matrices of determinant 1. Show that every matrix A € SO(2) can be written in

the form
U e cos® —sinf
T |bd| |sinf cos6
for some real number 0. Then prove that SO(2) is diffeomorphic to the circle S'.

15.11. Unitary group
The unitary group U (n) is defined to be

Un) ={A eGL(n,C) | ATA =1},

where A denotes the complex conjugate of A, the matrix obtained from A by conju-
gating every entry of A: (A);; = a;;. Show that U (n) is a regular submanifold of
GL(n, C) and that dim U (n) = n?.

15.12. Special unitary group SU(2)
The special unitary group SU(n) is defined to be the subgroup of U (n) consisting of
matrices of determinant 1.

(a) Show that SU(2) can also be described as the set

SU(2)={[Z _2} e<cM|aa+b15=1}.

(Hint: Write out the condition A~! = AT in terms of the entries of A.)
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(b) Show that SU(2) is diffeomorphic to the three-dimensional sphere

§3 = {(x1, x2,x3,x4) € R* | xlz—l—xg—i—x%—i—xf =1}.

o [¥])

15.14. Complex symplectic group
Let J be the 2n x 2n matrix
_ 0 I,
1= [-1,1 o} ’

where I,, denotes the n x n identity matrix. The complex symplectic group Sp(2n, C)
is defined to be

15.13. A matrix exponential
Compute

Sp(2n,C) = {A € GL(2n,C) | ATJA = J).

Show that Sp(2n, C) is a regular submanifold of GL(2n, C) and compute its dimen-
sion. (Hint: Mimic Example 15.4. It is crucial to choose a correct target space for
the map f(A) = ATJA)

15.15. The compact symplectic group

The compact symplectic group Sp(n) is defined to be U(2n) N Sp(2n, C). Let
f:U@2n) — U(2n) be the map f(A) = AT JA. Show that f has constant rank
on U(n) and prove that Sp(n) is a regular submanifold of U(2n). (Hint: Mimic
Example 11.3.)
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Lie Algebras

16.1 Tangent Space at the Identity of a Lie Group

Because of the existence of a multiplication, a Lie group is a very special kind of
manifold. Let £, : G — G denote left multiplication by g € G:

Le(x) = gx.

Then ¢, is a diffeomorphism with inverse £,-1. The diffeomorphism ¢, takes the
identity e to the element g and induces an isomorphism of tangent spaces

ow = Lgno: To(G) — To(G).

Thus, if we can describe the tangent space 7.(G) at the identity, then £+ 7, (G) will
give a description of the tangent space T, (G) at any point g € G.

The tangent space 7T, G at the identity of a Lie group canonically has the structure
of aLie algebra. This Lie algebra encodes in it much information about the Lie group.
The goal of this chapter is to define the Lie algebra structure on 7,G and to identify
this Lie algebra for a few classical groups.

Example 16.1 (The tangent space to GL(n,R) at I). Since GL(n, R) is an open
subset of R"*", the vector space of all n x n real matrices, the tangent space to
GL(n, R) at the identity I is R"*" itself.

16.2 The Tangent Space to SL(n, R) at

We begin by finding a condition that a tangent vector X in 77 (SL(n, R)) must satisfy.
By Proposition 8.16 there is a curve c¢: (—€,€) — SL(n,R) with ¢(0) = [ and
¢’ (0) = X. Being in SL(n, R), this curve satisfies

detc(t) =1
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for all ¢ in the domain (—e¢, €). We now differentiate both sides with respect to ¢ and
evaluate at t = 0. On the left-hand side,
h)
0

ddt (1)
g7 dete@ dt

= (det o €), <

t=0
= det
*,1 * It

= det, 7(c'(0))

) (by the chain rule)
0

= dety 1 (X)
= tr(X) (by Proposition 15.18)
Thus,
d
tr(X) = —1 =0.
dt Ji—o

So the tangent space 77 (SL(n, R)) is contained in the subspace V of R"*" defined by
V={XeR"” |uX=0}
SincedimV =n? — 1 =dim 7y (SL(n, R)), the two spaces must be equal.

Proposition 16.2. The tangent space T;(SL(n, R)) is the subspace of R"™™" con-
sisting of all n x n matrices of trace 0.

16.3 The Tangent Space to O (n) at I

Let X be a tangent vector to O (n) at the identity /. Choose a curve c¢(¢) in O (n) with
¢(0) = I and ¢’(0) = X. Since c(¢) isin O (n),

cH)le@) =1.
Differentiating both sides with respect to ¢ gives
O e) +c)Td @) =0.

Evaluating at ¢ = 0 gives
x"+x=0.

Thus, X is a skew-symmetric matrix.
Let K, be the space of all n x n real skew-symmetric matrices. For example, for
n = 3, these are matrices of the form

0 a b
—a 0 c¢|, wherea,b,c,eR.
—b —c O
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The diagonal entries of such a matrix are all O and the entries below the diagonal are
determined by those above the diagonal. So

n® — # diagonal entries

dim K, >

%(n2 —n).

‘We have shown that
T;(O(n)) C K. (16.1)

By an earlier computation (15.2),

}’lz—l’l

dim T; (0 (n)) = dim O (n) = —

Since the two vector spaces in (16.1) have the same dimension, equality holds
in (16.1).

16.4 Left-Invariant Vector Fields on a Lie Group

Let X be a vector field on a Lie group G. We do not assume X to be C*°. For
any g € G, because left multiplication £;: G — G is a diffeomorphism, the push-
forward £, X is a well-defined vector field on G. We say that the vector field X is
left-invariant if

Lox X =X

for every g € G; this means for any h € G,
Zg>s<(Xh) = Xgh-

In other words, a vector field X is left-invariant if and only if it is £¢-related to itself
forall g € G.
Clearly, a left-invariant vector field X is completely determined by its value X,
at the identity, since
Xy =Les(Xo). (16.2)

Conversely, given a tangent vector X, € T,(G) we can define a vector field X on
G by (16.2). So defined, the vector field X is left-invariant, since
Zg>i<(Xh) = Eg*gh*xe
= (g o £p)«X. (by the chain rule)
= (ggh)*(Xe)

= Xgn.

Thus, there is a one-to-one correspondence
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T.(G) < L(G) := {left-invariant vector fields on G}, (16.3)
X< X, with X, = £e.(Xo).

If X, = €y (X,) forall g € G, wecall X the left-invariant vector field on G generated
by X,. The set L(G) of left-invariant vector fields on G is obviously a vector space
and the correspondence above is an isomorphism of vector spaces.

Example 16.3 (Left-invariant vector fields on R). On the Lie group R, the group
operation is addition and the identity element is 0. So “left multiplication™ £, is
actually addition:

lo(x) =g +x.

Let us compute £g,(d/dx|o). Since £g.(d/dx]o) is a tangent vector at g, it is a scalar
multiple of d/dx|g:

d d
Lo <— ) =a—| . (16.4)
dx 0 dx g
To evaluate a, apply both sides of (16.4) to x:
d 14 d d 12 + 1
a=a—| x = —| Jx=—| xolyg=— x =1
X g g* dx 0 dx 0 8 dx Og
Thus,
¢ d _d
#\dx |,/ dx ¢

This shows that d /dx is aleft-invariant vector field on R. Therefore, the left-invariant
vector fields on R are constant multiples of d/dx.

Example 16.4 (Left-invariant vector fields on GL(n, R)). Since GL(n, R) is an open
subset of R"*", at any g € GL(n, R) there is a canonical identification of the tangent
space T, (GL(n, R)) with R">":

0
> aij ph

Let B =) b j0/0x;j|;1 € Tj(GL(n, R)) and let B be the left-invariant vector field
on GL(n, R) generated by B. By Example 8.18,

<> [a,-j]. (16-5)
8

By = (£5)«B <> gB

under the identification (16.5). In terms of the standard basis 9/0x;;|g,

0

i,j

~ 0
B, = B):: ——
. ;@ )ij T

Proposition 16.5. Any left-invariant vector field X on a Lie group G is C*°.
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Proof. By Proposition 14.1 it suffices to show that for any C* function f on G,
the function Xf is also C*°. Choose a C*™ curve ¢c: R — G such that ¢(0) = e
and ¢’(0) = X.. If g € G, then gc(t) is a curve at g with initial vector X, for
gc(0) = ge = g and

(gc)’(O) = Eg*c/(o) = Eg*xe = Xg«
By Proposition 8.17,
d
XN =X f = 7 f(ge()).
=0
Now the function f(gc(t)) is a composition of C* functions

GxRZS 6x6 5 ¢ LR

&1 = (g c@) > get) =~ f(ge(®));

as such, it is C*°. Its derivative with respect to ¢,

d
F(g,t) .= — 1)),
(g, 1) 7 S (ge®)
is therefore also C*°. Since (X f)(g) is the composition of C* functions,

G — GxRLR,
g (2.0) > F(g.0)= 4£|,_, f(ge),

itis a C* function on G. This proves that X is a C* vector field on G. O

It follows from this proposition that the vector space L(G) of left-invariant vector
fields on G is a subspace of the vector space X(G) of all C* vector fields on G.

Proposition 16.6. If X and Y are left-invariant vector fields on G, then so is [X, Y].

Proof. For any g in G, X is £g-related to X and Y is £g-related to Y. By Proposi-
tion 14.19, [X, Y] is £4-related to [X, Y]. ]

16.5 The Lie Algebra of a Lie Group

A Lie subalgebra of a Lie algebra g is a vector subspace ) C g that is closed under
the bracket [ , ]. By Proposition 16.6, the space L(G) of left-invariant vector fields
on a Lie group G is closed under the Lie bracket [ , ] and thus is a Lie subalgebra of
the Lie algebra X(G), the Lie algebra of all C* vector fields on G.

Since the tangent space 7, (G) is isomorphic to L(G) as a vector space, it inherits
a Lie bracket from L(G). For A € T,G, denote by A the left-invariant vector field
generated by A:

Ag =4 (A) forany g € G.

If A, B € T,G, then their Lie bracket [A, B] € T,G is defined to be
[A, B] = [A, B..
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Proposition 16.7. If A, B € T,G and A, B are the left-invariant vector fields they
generate, then
[A, B] = [A, BT

Proof. By Proposition 16.6, [A, B]is a left-invariant vector field. Thus both [A, B]
and [A, B] are left-invariant vector fields whose value at e is [A, B]. Since a left-
invariant vector field is determined by its value at e, the two vector fields are equal.

O

With the Lie bracket [ , ], the tangent space T, (G) becomes a Lie algebra, called
the Lie algebra of the Lie group G. As a Lie algebra, T, (G) is usually denoted by g.

16.6 The Lie Bracket on gl(n, R)

For the general linear group GL(n, R), the tangent space at the identity / can be
identified with the vector space R"*" of all n x n real matrices. We identified a
tangent vector in 77 (GL(n, R)) with a matrix A € R"*" via

0
> aij o

The tangent space 77 GL(n, R) with its Lie algebra structure is denoted gl(n, R). Let
A be the left-invariant vector field on GL(n, R) generated by A. Then on the Lie
algebra gl(n, R) we have the Lie bracket [A, B] = [A, E] ; coming from the Lie
bracket of left-invariant vector fields. In the next proposition, we identify the Lie
bracket in terms of matrices.

<~ [ajj]. (16.6)
1

Proposition 16.8. Let

ad
A= .

, B:Zbijai

I Xij

e T;(GL(n, R)).
1

i
3

—_— 16.7
T (16.7)

[A,BI=1[A, Bl; =) ci

a
then
cij = Y aixbj — bixai;.
k
Thus, if derivations are identified with matrices via (16.6), then

[A, B] = AB — BA.

Proof. Applying both sides of (16.7) to x;;,
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cij = [A, Blrxij
= A]Bxij — B[AN)C,‘j
= AI;’xij — BA~x,~j (because AI =A, él = B).
So it is necessary to find a formula for the function Bx;;.

In Example 16.4 we found that the left-invariant vector field B on GL(n, R) is
given by

at g € GL(n, R).

~ 0
B, = Z(gB)“ .
i,j 8

Hence,

Bexij = (gB)ij = Zgikbkj = Zbijik(g)-
k k

This gives the formula for Bx;; as

Bxjj = Z brjXik.
k

It follows that

~ ad
ABx;j = Zapq F‘ (Z bijik> = Z Apgbrjdipdig
P.q pPq I k

p.a.k
= aibij = (AB);;.
k

Interchanging A and B gives

BAxij = Zbikakj = (BA),']'.
k

Therefore,

cij = Zaikbkj — b,'kakj = (AB — BA);;. O
k

16.7 The Push-Forward of a Left-Invariant Vector Field

As we noted in Section 14.6, if F: N — M is a C*° map of manifolds and X is a
C° vector field on N, the push-forward F, X is in general not defined except when F
is a diffeomorphism. However, by the correspondence between left-invariant vector
fields on a Lie group and tangent vectors at the identity of the Lie group, one can
push forward a left-invariant vector field under a C* map of Lie groups. We show
this now.

Recall that if H isaLie groupand s € H,then{;: H — H is left multiplication
by k. From Section 16.4, every left-invariant vector field on a Lie group H is of the
form A for some A € T,H, with A, = (£3).A.
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Definition 16.9. Let F: H — G be a C* map of Lie groups. Define F,: L(H)
— L(G) by
Fi(A) = (FxA)

forall A e T,H.

Definition 16.10. A map F: H — G between two Lie groups H and G is a Lie
group homomorphism if it is a C°° map and a group homomorphism.

The group homomorphism condition means that for all &, x € H,
F(hx) = F(h)F (x). (16.8)
This may be rewritten in functional notation as
Foly="LrgpoF forallheH. (16.9)
Let ey and e be the identity elements of H and G, respectively. Taking # and x in

(16.8) to be the identity eg, it follows that F(ey) = eg. So a group homomorphism
always maps the identity to the identity.

Proposition 16.11. If F: H — G is a Lie group homomorphism and A € T, H is a
tangent vector of H at the identity e of H, then the left-invariant vector field Fy A on
G is F-related to the left-invariant vector field A on H.

Proof. Forh € H,

Fi(Ap) = Fy(lpeA) (definition of A)
= (F olp)sA (chain rule)
= (lr@) o F)xA (F is aLie group homomorphism)

=Llrm«FxA (chain rule again)
= ((FxA))F@y  (definition of ( ))
= (F*A)F(h)o o

16.8 The Differential as a Lie Algebra Homomorphism

Proposition 16.12. If F: H — G is a Lie group homomorphism, then its differential
at the identity,

F.=F.,: T,H - T,G,

is a Lie algebra homomorphism, i.e., a linear map such that forall A, B € T.H,

F.[A, B] = [FA, F.B].
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Proof. By Proposition 16.11, the vector field F,A on G is F-related to the vector
field A on H , and the vector field F*é is F-related to B on H. Hence, the bracket
[F*A, F*é] on G is F-related to the bracket [A~, é] on H (Proposition 14.19). This
means that

F. (14, BL) = (R4, FuBlre = [F.A, F.Bl..
The left-hand side of this equality is Fy[A, B], while the right-hand side is

[F.A, FuBl, = [(FLA), (F,BY], (definition of FyA)
= [FA, F,B] (definition of [ , ] on T, G).

Equating the two sides gives
F«[A, B] = [F«A, F.B]. O

Suppose H is a Lie subgroup of a Lie group G, with inclusion mapi: H — G.
Since i is an immersion, its differential

isx: T,H—>T,G
is injective. By Proposition 16.12, for X, Y € T, H,
(X, Y]lr,g) = i+ X, ixY]r,G. (16.10)

This shows that if T, H is identified with a subspace of T, G via iy, then the bracket
on T, H is the restriction of the bracket on 7,G to T, H. Thus, the Lie algebra of a
Lie subgroup H may be identified with a Lie subalgebra of the Lie algebra of G.

In general, the Lie algebras of the classical groups are denoted by gothic letters.
For example, the Lie algebras of GL(n, R), SL(n, R), O(n), and U (n) are denoted
gl(n, R), sl(n, R), o(n), and u(n), respectively. By (16.10) and Proposition 16.8, the
Lie algebra structures on sl(n, R), o(n), and u(n) are given by

[A,B]=AB — BA, asongl(n,R).

Remark 16.13. A fundamental theorem in Lie group theory asserts the existence of
a one-to-one correspondence between the connected Lie subgroups of a Lie group
G and the Lie subalgebras of its Lie algebra g [19, Theorem 3.19, Corollary (a),
p. 95]. For the torus R?/Z?, the Lie algebra g is R? and the one-dimensional Lie
subalgebras are all the lines through the origin. According to the theorem, the one-
dimensional connected Lie subgroups of the torus are the images of all the lines
through the origin. It is because of this theorem that a Lie subgroup is defined to
be an immersed submanifold. In the example of the torus, the one-dimensional
embedded Lie subgroups correspond to only the lines with rational slope through the
origin in R?, not to all one-dimensional subalgebras of the Lie algebra.
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Problems

16.1. Skew-Hermitian matrices

A complex matrix X € C"*" is said to be skew-Hermitian if its transpose conjugate
XT = —X. Let V be the vector space of n x n skew-Hermitian matrices. Show that
dimV = n?.

16.2. Tangent space at I of a unitary group
Show that the tangent space at the identity / of the unitary group U (n) is the vector
space of n x n skew-Hermitian matrices.

16.3. Lie algebra of a complex symplectic group

(a) Show that the tangent space at the identity I of Sp(2n, C) € GL(2n, C) is the
vector space of all 2n x 2n complex matrices X such that J X is symmetric.
(b) Calculate the dimension of Sp(2n, C).

16.4. Lie algebra of a compact symplectic group
Refer to Problem 15.15 for the definition and notations concerning the compact sym-
plectic group Sp(n).

(a) Show that if X € T;(Sp(n)), then X is skew-Hermitian and J X is symmetric.

(b) Let V be the vector space of n x n complex matrices X such that X is skew-
Hermitian and J X is symmetric. For X € V, prove that the curve c(t) = ¢'* lies
in Sp(n).

(c) Prove that T;(Sp(n)) = V.

(d) Suppose a, b, ¢, d € C"*" and

Show that X € V iff

with a skew-Hermitian and b symmetric.
(e) Compute the dimension of Sp(n) by computing dim V.

16.5. Left-invariant vector fields on R”
Find the left-invariant vector fields on R”.

16.6. Tangent spaces to GL(n, R)
Show that the tangent space to GL(n, R) at a point A is the left translate by A of the
Lie algebra gl(n, R).

16.7. Integral curves of a left-invariant vector field

Let A € gl(n, R) and let A be the left-invariant vector field on GL(n, R) generated
by A. Show that c(r) = ' is the integral curve of A starting at A. Find the integral
curve of A starting at g € GL(n, R).
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16.8. Parallelizable manifolds

A manifold whose tangent bundle is trivial is said to be parallelizable. If M is a
manifold of dimension n, show that parallelizability is equivalent to the existence of
a smooth frame X, ..., X,, on M.

16.9. Parallelizability of a Lie group
Show that every Lie group is parallelizable.

16.10. The adjoint representation
Let G be a Lie group of dimension n with Lie algebra g.

(a) Foreacha € G, the differential at the identity of the conjugation map c(a) := £, o
r,-1: G — G is a linear isomorphism c(a)«: g — g. Hence, c(a). € GL(g).
Show that the map Ad: G — GL(g) defined by Ad(a) = c(a)s, is a group
homomorphism. It is called the adjoint representation of the Lie group G.

(b) Show that Ad: G — GL(g) is C*°.
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Differential 1-Forms

Let M be a smooth manifold and p a point in M. The cotangent space of M at p,
denoted by 7, (M) or T; M, is the dual space of the tangent space 7;, M. An element
of the cotangent space T, M is called a covector at p. Thus, a covector w, at p is a
linear function

wp: TyM — R.

A covector field, a differential 1-form, or more simply a 1-form on M, is a function
that assigns to each point p in M a covector at p. In this sense it is dual to a vector
field on M, which assigns to each point in M a tangent vector at p. The great utility
of differential forms in manifold theory arises from the fact that they can be pulled
back under a map. This is in contrast to vector fields, which in general cannot be
pushed forward under a map.

17.1 The Differential of a Function

Definition 17.1. If f is a C* function on a manifold M, its differential is defined to
be the 1-form df on M such that forany p € M and X, € T, M,

(df)p(Xp) = pr-

In Section 8.2 we encountered another notion of the differential, for a map between
manifolds. Let us compare the two notions of the differential.

Proposition 17.2. If f: M — R is a C* function, then for p € M and X, € T, M,

ad
f*(Xp) = (df)p(Xp) a

f(p)
Proof. Since fi(X)) € Tr(»R, there is a real number a such that

a
fe(Xp) =a—

. (17.1)

f(p)
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To evaluate a, apply both sides of (17.1) to x:
a= fi(Xp)(x)=Xp(xo f)=Xpf =(df)p(Xp). O

This proposition shows that under the canonical identification of the tangent space
Tf(p)]R with R via
0

a— < a,
3 [ ()

[« is the same as df. For this reason, we are justified in calling both of them the
differential of f.

17.2 Local Expression for a Differential 1-Form

Let (U,¢) = (U, x!, ..., x") be a coordinate chart on a manifold M. Then the
differentials dx!, ..., dx" are 1-forms on U.

Proposition 17.3. Az each point p € U, the covectors (dxl)p, ..., (dx™)p form a
basis for the cotangent space T;,“M dual to the basis (8/8x1)p, ..., (8/9x") ), for the

tangent space T, M.

Proof. The proof is just like the Euclidean case (Proposition 4.1):

. 0 0
(dx"), (—J ) =——
0x » 0x »

Thus, every 1-form @ on U can be written as a linear combination

w= E a; dx',

where the coefficients a; are functions on U.
In particular, if f is a C* function on M, then the 1-form df, when restricted to
U, must be a linear combination

i i
x—Sj. 0O

df =) a;dx'.

To find a;, we apply the usual trick of evaluating both sides on 9/ ax/:

3 af

This gives the local expression for df:

df =Z%dxi. (17.2)
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17.3 The Cotangent Bundle

The underlying set of the cotangent bundle T* M of a manifold M is the disjoint union
of the cotangent spaces at all the points of M:

T*M =[] T;M = | Jip} x TyM.
pPEM pPeEM

Mimicking the construction of the tangent bundle, we can give T*M a topology as
follows. If (U, ¢ = (x',...,x"))is acharton M and p € U, then each wp € T;M
can be written uniquely as a linear combination

wp =Y ci(wp)dx'],.
This gives rise to a bijection

¢: T*U — ¢p(U) x R" (17.3)
(p, wp € TyM) = (@(p), c1(@p), - - ., ca(@p)).

Using this bijection, we can transfer the topology of ¢ (U) x R" to T*U.

Now let B be the collection of all open subsets of T*U, as U varies over all
charts in the maximal atlas of M. As in Section 12.1, B satisfies the conditions for a
collection of subsets of 7*M to be a basis. We give T*M the topology generated by
the basis B. Just as for the tangent bundle, with the maps ¢ of (17.3) as coordinate
maps, T*M becomes a C* manifold and in fact, a vector bundle of rank n over
M, justifying its name as the cotangent bundle. It has a natural projection 7w : T*M
— M mapping (p, wp) to p.

In terms of the cotangent bundle, a 1-form on M is simply a section of the cotangent
bundle T*M,i.e.,itisamap w: M — T*M suchthat 7 o @ = 1y, the identity map
on M. We say that a 1-form w is C*® if itis C*° asamap: M — T*M.

17.4 Characterization of C° 1-Forms

By definition a 1-form w on an open set U in a manifold M is C* if it is C*™ as a
section of the cotangent bundle 7*M over U. The following two propositions give
alternate characterizations of a C*° 1-form.

Proposition 17.4. A 1-form w on a manifold M is C* if and only if either of the
following conditions holds:

(i) for every point p € M, there is a chart (U, x", ..., x™) about p such that if
=Y a dx' on U, then the functions a; are C* on U;

(ii) for any chart (U, xb xMonM, ifo=> a dx' on U, then the functions
a; are C*®¥ on U.
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Proof. A chart (U, ¢) on M gives rise to a chart (T*U, ¢) on the cotangent bundle
T*M where

é: T*U — ¢(U) x R,
(g, ) ci (dx)g) = (@), c1, .-, Cn)-
In this chart,

(P 0wy = (P(q), c1(wy), - . ., cul®y)).

fo=> g dx', then g; (9) = ci(wg). Note that the ¢;’s are function on T*U, while
the ;s are functions on U. By the definition of a C° map, the sectionw: U — T*U
is C®° if and only if the functions ay, . .., a, are C* on U. Now (i) follows from the
definition of a C* map (Definition 6.3), and (ii) follows from Problem 6.6. O

As a corollary,_if f is a C* function on M, then df is a C*° 1-form, since the
coefficients df/dx" are all C*°.

Proposition 17.5. A 1-form @ on a manifold M is C* if and only if for every C*
vector field X on M, the function w(X) is C* on M.

Proof.
(=) Suppose w is a C* 1-form and X is a C* vector field on M. Forany p € M,
choose a coordinate neighborhood (U, x! ..., x") about p. Thenw = " a; dx' and

X=> bi9/dx! for C* functions a;, b/ on U. On U

‘ .9 .
w(X) = (Zai dxl> <ijﬁ> = Za,-b’,
which is C* at p. Since p is an arbitrary point of M, the function w(X) is C* on M.

(<) Suppose w is a 1-form on M such that the function w(X) is C* for every C*
vector field X on M. For p € M, choose a coordinate neighborhood (U, xt o, x™)
about p. Thenw = Y a; dx' on U.

Fix an integer j, 1 < j < n. We can extend the C*° vector field 8/8xj onU toa
C™ vector field X on M that agrees with 8/dx/ in a neighborhood of p, as follows.
Leto: M — R be a C* bump function which is identically 1 on a neighborhood V
of p and which has support contained in U. Define

0
— forg € U,
X, = o(q) o |, q

0 forqg ¢ U.

Then X is C* on M and so by hypothesis, w (X) is C*° on M. Restricted to the open

set V,
w(X) = (Zai dxi) <%) =aj.

This proves that a; is C* on the coordinate chart (V, xb, x™). By Proposi-
tion 17.4, the 1-form w is C* on M. O
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17.5 Pullback of 1-forms

Just as the differential of a smooth map F: N — M pushes forward a tangent vector
at a point p € N, so the codifferential (the dual of the differential)

* .ok *
F*: T M — TsN

pulls back a covector at the point F(p).

However, while vector fields on N in general cannot be pushed forward to M,
every covector field on M can be pulled back to N. If w is a 1-form on M, we define
its pullback F*w to be the 1-form on N given by

(F*w)p(Xp) = wF(p)(F*Xp)

forany p € N and X, € T,N.
Note that (F*w), is simply the image of the covector wr () under the codiffer-

1 X . * *
ential F*: TF([,)M — TpN.

Problems

17.1. A 1-form on R? — {(0, 0)}
Denote the standard coordinates on R? by x, y, and let

X 0 + 0 d Y 0 + 0
=x— — an =—y—4+x—
ax yay yax ay

be vector fields on R2. Find a 1-form @ on R — {(0, 0)} such that @(X) = 1 and
w(¥)=0.

17.2. F-linearity of a 1-form
Let w be a C* 1-form on a manifold M. Show that if f is a C* function and X a
C® vector field on M, then

o(fX) = fo(X).
Thus, a 1-form is linear over the C* functions.

17.3. Transition formula for 1-forms
Suppose (U, x',...,x") and (V,y!,..., y") are two charts on M with nonempty
overlap U N V. Then a C* 1-form w on U N V has two different local expressions:

w= Zajdxj = Zbidyi.

Find a formula for a; in terms of b;.
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Differential k-Forms

We now generalize the construction of 1-forms on a manifold to k-forms. Recall that
a k-tensor on a vector space V is a k-linear function

f:Vx..-xV >R,
The k-tensor f is alternating if for any permutation o € S,

fo)s - Vo)) = (sgno) f(vr, ..., vg). (18.1)

When k = 1, the only element of the permutation group S is the identity permutation.
So for 1-tensors the condition (18.1) is vacuous and all 1-tensors are alternating (and
symmetric too). An alternating k-tensor on V is also called a k-covector on V.
Denote by Ax(V) the vector space of alternating k-tensors on V. From Sec-
tion 3.10, if &!, . .., " is a basis for the 1-tensors on V, then a basis for Ax(V) is

d'TA Al T <ip<-oo<ip<n.

We apply this construction to the tangent space T, M of a manifold M at a point p.
The vector space Ay (T, M), usually denoted /\k (T;‘ M), is the space of all alternating
k-tensors on the tangent space T, M. A k-covector field, a differential k-form, or
simply a k-form on M is a function w that assigns to each point p € M a k-covector
wp € /\k(TI;"M). An n-form on a manifold of dimension n is also called a fop form.

Example 18.1. On R”, at each point p there is a standard basis for the tangent space
T, (R"):

0 0
orl p ar’ »
Let (drl),,, ..., (dr')p be the dual basis; this means that

i
>_8j.
P

: d
@rh), (m
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As p varies over points in R”, we get differential forms dr', ..., dr" on R".
By Proposition 3.29 a basis for the alternating k-tensors in /\k (T;R") is

(dri‘),,/\-~-/\(drik),,, 1<ij<---<ip<n.

If w is a k-form on R", then at each point p € R", w), is a linear combination:

(Up = Zail'“ik(p) (dril)p A A (dl"ik)p.
Omitting the point p, we write
W= Zdil...ik drit A oo A drik

In this expression the coefficients g;, ...;, are functions on R” because they vary with
the point p. To simplify the notation, we introduce the multi-index I = (i1, ..., ii)
and write

a):Za[drl, 1<ij<---<iy<n,

where dr! stands for drit A --- A drik,

18.1 Local Expression for a k-Form

Suppose (U, x', ..., x™) is a coordinate chart on a manifold M. We have already de-
fined the 1-formsdx!, ..., dx" onU. Since ateach point p € U, (dxl)p, oo dx)p

is a basis for 7,7 M, by Proposition 3.29 a basis for /\k(T;,k M) is the set
(dxi‘)p/\~'~A(dxik)p, l1<ij<---<ip<n.

Thus, locally a k-form on U will be a linear combination w = ) a; dx!, where the
I are multi-indices and the a; are functions on U.

Exercise 18.2 (Transition formula for a 2-form). We suppose (U ,xl,...,x”) and
v, yl, ..., y") are two coordinate charts on M with U NV # &. Then a C*° 2-form w
on U NV has two local expressions:

w= Za,-j dx' Adx) = Zbke dyk A dyz.
i<j k<t
Find the formula for ;; in terms of bgy and the coordinate functions xl o xn, y1 R
(Hint: If o and 7 are 1-forms and X and Y are vector fields, then by Example 3.20,
oANT(X,Y)=0X)T(Y) —o)r(X).)
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18.2 The Bundle Point of View

If V is a vector space, another common notation for the space A (V) of alternating
k-linear functions on V is /\k(V*). Thus,

A(V¥) = Ag(V) =R,

NV = A1(V) = V7,

/\2(V*) = A,>(V), and so on.

To better understand differential forms, we mimic the construction of the tangent
and cotangent bundles and form the set

NI M) = e NSTEM) = 1 pers AT M) = U pepr (0} x Ar(TpM)

of all alternating k-tensors at all points of M. This set is called the kth exterior power
of the cotangent bundle. If (U, ¢) is a coordinate chart on M, then there is a bijection

NT*U) = U, eplp} x NT3U) ~ p(U) x RG),
(p. wp) = (@(P). {ar(@p)}n),

where w, = Zal(w,,)dxl onUand I = (1 <i; < --- < ix < n). In this way
we can give /\k(T*U ) and hence /\k(T*M ) a topology and even a differentiable
structure. The details are just like the construction of the tangent bundle, so we omit
them. The upshot is that

7 NNT*M) - M
is a C* vector bundle of rank (), where n = dim M, and that a differential k-form

is simply a section of this bundle. Evidently, we define a k-form to be C* if it is C*°
as a section of the bundle /\k (T*M).

NotaTiON. If E — M is a C® vector bundle, then the vector space of C* sections
of E is denoted I'(E) or I'(M, E). The vector space of all C* k-forms on M is
usually denoted Qk(M). Thus,

QM) = (AN (T*M)) = T (M, N*(T*M)).

18.3 C*° k-Forms

There are several equivalent characterizations of C* k-forms.

Proposition 18.3. Let w be a k-form on a manifold M. The following are equivalent:

(i) The k-form w is C*™ on M.
(i1) For any coordinate chart (U, xl, .. Lxon M, ifwo =) ar dx!, then the
coefficients ay are all C* functions on U.
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(iii) For any k smooth vector fields X1, ..., Xy on M, the function w (X1, ..., X¢)
isC®onM.

Since the proofs are similar to those for 1-forms, we omit them.
Example 18.4. We defined the O-tensors and the O-covectors to be the constants, that
is, Lo(V) = Ap(V) = R. Therefore, the bundle /\O(T*M) is simply M x R and
a O-form on M is a function on M. A C* 0-form on M is thus the same as a C*®

function on M. In our new notations,

Q'(M) = T(AUT*M)) = T(M x R) = C*(M).

18.4 Pullback of k-Forms

Just as one can pull back 1-forms under a smooth map F: N — M, so one can pull
back k-forms as well. For O-forms, i.e., functions, the pullback F* is defined to be
the composition:

NEMLR  Ff)=foFeQN).

For a k-form w on M, we define its pullback F*w, a k-form on N, as follows: if
pe€Nandvy,...,v € TN, then

(F*o)p(v1, ..., k) = 0Fp)(Fyvr, . . ., Fevg).
In a sense this is also a composition:
F
TyN x - X TyN =5 TppyM x --- X Tp(nyM = R.

Proposition 18.5 (Linearity of the pullback). Let F: N — M be a C*™ map. If
w, T are k-forms on M and a is a real number, then

Q) F*(w+71) = F*oo + F*1;
(ii) F*(aw) = aF*w.

Proof. Problem 18.1. O

18.5 The Wedge Product
We learned in Chapter 3 that if @ and 7 are alternating tensors of degree k and ¢,
respectively on a vector space V, then their wedge product w A 7 is the alternating

(k + £)-tensor on V defined by

WATWL, ..., Vpge) = Z(Sgn o)W (1)s - -+ Vo (k) TWo (k41)s - - > Vo (k+0))>
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where o runs over all (k, £)-shuffles of 1, ...,k 4+ £ and all v; € V. For example, if
w and t are 1-tensors, then

o AT, 1) = o@)T(v) — ()T (V).

The wedge product extends pointwise to differential forms on a manifold: if w is
a k-form and t an £-form on M, define w A 7 to be the (k + £)-form such that

(WAT)p=wp ATy
atall p e M.
Proposition 18.6. If w and T are C* forms on M, then w A t is also C*.

Proof. Let (U,x', ..., x")beacharton M. On U,

w= aydx! T = bydx’
Saar. =Y b

for C* function ay, by on U. Their wedge product is

OAT = (Zaldxl) A (ijdxj)
= Za]b] dx' Andx’.

In this sum, dx! A dx’ = 0if I and J have an index in common. If / and J are
disjoint, then dx! A dx’ = dxX, where K = I U J but reordered as an increasing

sequence. Thus,
WOAT = Z( Z a,b/)de.

K IUJ=K

Since the coefficient of dxX is C* on U, by Proposition 18.3, w A T is C™. O

Proposition 18.7 (Pullback of a wedge product). If F: N — M is a C* map of
manifolds and w and t are differential forms on M, then

F*(w A7) = (F*w) A (F*7).
Proof. Problem 18.2. O

We define the vector space Q*(M) of C*° differential forms on a manifold M of
dimension n to be the direct sum

QN (M) = ®_, QF(M).

What this means is that each element of *(M) is uniquely a sum »_;_, wy,, where
Wi, € Qki (M). With the wedge product, the vector space 2*(M) becomes a
graded algebra, the grading being the degree of a differential form. By Proposi-
tions 18.5and 18.7,if F: N — M is a C* map of manifolds, then the pullback map
F*: Q*(M) — Q*(N) is a homomorphism of graded algebras.
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18.6 Invariant Forms on a Lie Group

Just as there are left-invariant vector fields on a Lie group G, so there are also left-
invariant differential forms. For g € G, let £;: G — G be left multiplication by g.
A k-form w on G is said to be left-invariant if ZZw = w for all g € G. This means
forall g, x € G,

Ez (wex) = wy.

Thus, a left-invariant k-form is uniquely determined by its value at the identity, since
forany g € G,
wg = (Ly-1) w,. (18.2)

We have the following analogue of Proposition 16.5.
Proposition 18.8. Every left-invariant k-form w on a Lie group G is C*°.

Proof. By Proposition 18.3, it suffices to prove that for any k£ smooth vector fields
X1, ..., X on G, the function w (X1, ..., Xz) is C*® on G. Let (Y1)e, ..., (¥,). be
a basis for the tangent space 7,G and Y1, ..., Y, the left-invariant vector fields they
generate. Then Yy, ..., Y, isa C* frame over G (Proposition 16.5). Each X ; can be
written as a linear combination X; = ) a;. Y;. By Proposition 12.10, the functions

a'. are C*. Hence, to prove that w is C°, it suffices to show that w (Y, ..., Y;,) is
C™ for left-invariant vector fields ¥;,, ..., Y;,. But

(w(Yilv ceey Ylk))(g) = wg((Yil)g’ X (Ylk)g)
= (g1 0 ) ((le)«(Yi))es - -+ (Le)x(Yip)e)
= we((Yil)ea R (Yik)e)v

which is a constant, independent of g. Being the constant function, w (Y, ..., ¥;,)
isC®onG.

Similarly, a k-form w on G is said to be right-invariant if r;a) =wforallg € G.
The analogue of Proposition 18.8, that every right-invariant form on a Lie group is
C®°, is proved in the same way.

Let QK(G)¢ denote the vector space of left-invariant k-forms on G. The linear
map

G S N, o ..

has an inverse defined by (18.2) and is therefore an isomorphism. It follows that
: k(G _

dim Q“(G)? = ().

Problems

18.1. Linearity of the pullback
Prove Proposition 18.5.
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18.2. Pullback of a wedge product
Prove Proposition 18.7.

18.3.* Vertical plane
Let x, y, z be the standard coordinates on R®. A plane in R? is vertical if it is defined
by ax + by = 0 for some a, b € R. Prove that on a vertical plane, dx A dy = 0.

18.4.* Support of a sum or product
Generalizing the support of a function, we define the support of a k-form w € Q*(M)
to be

suppw = closure of {p € M | w, # 0}.

Let w and 7 be differential forms on a manifold M. Prove that

(a) supp(w + 7) C suppw U supp .
(b) supp(w A T) C suppw Nsupp .

18.5.* Locally finite collection of supports

Let {py}aca be a collection of functions on M and w a C* k-form with compact
support on M. If the collection of supports, {supp py }ac4, is locally finite, prove that
pew = 0 for all but finitely many «.

18.6. Locally finite sums

We say that a sum Y w, of differential k-forms on a manifold M is locally finite if
{wy} is a collection of k-forms such that {supp w, } is a locally finite family. Suppose
> wy and Y 14 are locally finite sums and f is a C* function on M.

(a) Show that every point p € M has a neighborhood U on which Y wy is a finite
sum.
(b) Show that Y wy + 14 is a locally finite sum and

Za)a—i—ra :Zwa—i—Zta.

(c) Show that Y fwy is a locally finite sum and

Y fou= O w).

18.7.* Pullback by a surjective submersion
If 7: M — M is a surjective submersion, then the pullback map 7*: Q*(M) —
Q*(M) is an injective algebra homomorphism.

18.8. Bi-invariant top forms on a compact connected Lie group
Suppose G is a compact connected Lie group of dimension n. This exercise proves
that every left-invariant n-form on G is right-invariant.

(a) Let o be a left-invariant n-form on G. For any a € G, show that rfw is also
left-invariant, where r, : G — G is right multiplication by a.

(b) Since dim Q"(G)¢ = dim \"(g*) = 1, r¥w = f(a)w for some nonzero real
constant f(a) depending on @ € G. Show that f: G — R* is a group homo-
morphism.
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(c) Show that f: G — R* is C*°. (Hint: Note that f(a)w, = (riw). = r}(ws) =
r;"ﬁz_, (we). Thus, f(a) is induced by the adjoint representation Ad(a): g — g.
See Problem 16.10.)

(d) As the continuous image of a compact connected set G, the set f(G) C R* is
compact connected. Prove that f(G) = 1. Hence, rjw = w foralla € G.
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The Exterior Derivative

In contrast to undergraduate calculus, where the basic objects of study are functions,
the basic objects in calculus on manifolds are differential forms. Our program now
is to learn how to integrate and differentiate differential forms.

Recall that an antiderivation on a graded algebra A = ea,fozoAk is an R-linear
map D: A — A such that

D(w-1) = (Dw) -1 + (-D)*w - D.

for o € A% and © € A®. In the graded algebra A, an element of A is called a
homogeneous element of degree k. The antiderivation is of degree m if

deg Dw = degw +m

for all homogeneous elements w € A.

Let M be a manifold and 2* (M) the graded algebra of C* differential forms on
M. The extraordinary usefulness of differential forms comes from the fact that on
the graded algebra *(M) there is a uniquely and intrinsically defined antiderivation
called the exterior derivative.

Definition 19.1. An exterior differentiation or exterior derivative on a manifold M
is an R-linear map
D: Q"(M) — Q" (M)
such that
(i) D is an antiderivation of degree 1;
(i) D o D = 0;
(iii) if f is a C* function and X a C*° vector field on M, then (Df)(X) = Xf.
Condition (iii) says that on O-forms an exterior derivative agrees with the differ-
ential df of a function f. Hence, by (17.2), in a coordinate chart (U, xt o, x"),

Df = Z%dxi.

In this chapter we prove the existence and uniqueness of exterior differentiation
on a manifold.
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19.1 Exterior Derivative on a Coordinate Chart

We showed in Section 4.4 the existence and uniqueness of exterior differentiation
on an open subset of R”. The same proof carries over to any coordinate chart on a
manifold.

More precisely, suppose (U, xl x™) is a coordinate chart on a manifold M.
Then any k-form w on U is uniquely a linear combination

w= Zm dxl, a; € C®WU).
If d is an exterior differentiation on U, then

do="Y (daj) ndx" +) ajddx" (by (i)

=Y (das) ndx' (by (ii), d2 = 0)
=52 g paxt (by (iii)). (19.1)
5 dx/

Hence, if an exterior differentiation d exists on U, then itis uniquely defined by (19.1).
To show existence, we define d by the formula (19.1). The proof that d satisfies
(i), (1), and (iii) is the same as in Proposition 4.13.
Like the derivative of a function on R”, an antiderivation D on Q*(M) has the
property that for a k-form w, the value of Dw at a point p depends only on the values
of w in a neighborhood of p. To explain this, we make a digression on local operators.

19.2 Local Operators

An endomorphism of a vector space W is often called an operator on W. For example,
if W = C*°(R) is the vector space of C*° functions on R, then the derivative d/dx
is an operator on W:

Z—xf(X) = f(x).

The derivative has the property that the value of f’(x) at a point p depends only on
the values of f in a small neighborhood of p. More precisely, if f = g on an open set
U in R, then f’ = g’ on U. We say that the derivative is a local operator on C*°(R).

Definition 19.2. An operator D: Q*(M) — Q*(M) is said to be local if for all
k > 0, whenever a k-form w € QF (M) restricts to 0 on an open set U, then Do =0
onU.

Here by restricting to 0 on U, we mean that w, = 0 at every point p in U, and
the symbol “= 0" means “identically zero”: (Dw), = 0 at every point p in U. An
equivalent definition of a local operator is that for all k > 0, whenever two k-forms
w,T € Qk(M) agree on an open set U, then Dw = Dt on U.
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Example 19.3. Define the integral operator

I: C*®([a,b]) = C®(a, b))

b
1(f) 2/ AQICS

Here I (f) is a number, which we view as a constant function on [a, b]. The integral
is not a local operator since the value of 7(f) at any point p depends on the values
of f over the entire interval [a, b].

Proposition 19.4. Any antiderivation D on Q*(M) is a local operator.

Proof. Suppose w € QX(M) and w = 0 on an open subset U. Let p be an arbitrary
point in U. It suffices to prove that (Dw), = 0.

Choose a C* bump function f at p supported in U. In particular, f = 1 ina
neighborhood of p in U. Then fw = 0 on M, since if a point g isin U, then w, = 0,
and if g is not in U, then f(g) = 0. Applying the antiderivation property of D to
fw, we get

0= D(0) = D(fo) = (Df) Ao+ (=1 f A (Dw).

We now evaluate the right-hand side at p, noting that w, = 0 and f(p) = 1. This
gives 0 = (Dw) . Since p is an arbitrary point of U, Do =0on U. O

Remark 19.5. The same proof shows that a derivation on 2*(M) is also a local oper-
ator.

19.3 Extension of a Local Form to a Global Form

Sometimes we are given a differential form 7 that is defined only on an open subset
U of a manifold M. We can use a bump function to extend t to a global form T on M
that agrees with T near some point. (By a global form, we mean a differential form
defined at every point of M.)

Proposition 19.6. Suppose t is a C™ differential form on an open subset U of M. For
any p € U, there is a C* global form T on M that agrees with t on a neighborhood
of pinU.

The proof is almost identical to that of Proposition 13.3. We leave it as an exercise.
Of course, the extension 7 is not unique. In the proof it depends on p and on the
choice of a bump function at p.
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19.4 Existence of an Exterior Differentiation

To define an exterior derivative d: Q*(M) — Q*(M), let w be a k-form on M and
p € M. Choose a chart (U,xl, ...,x™) about p. Suppose w = ) aj dx! on U.
Define

@), = (Y day nax") . (19.2)

p

We now show that this definition is independent of the chart. If (V, y!, ..., y")
is another chart about p and w = ) bydy’ on V,thenon U NV,

Zal dx' = ijdyj.
As shown in Section 19.1, on U N V there is a unique exterior differentiation
dyny: Q*(UNV) = Q*WUNYV).

By the properties of the exterior derivative,

dyny (Z ar dxl) =dyny (Z by dyj>

= Y daj ndx" =) "db; Ady’

at all points of U N V. In particular,

(Z daj A dx’)p - (Z db; A dy])p .

Thus, (dw), is well defined, independent of the chart.
As p varies over all points of M, this defines an operator

d: Q*(M) — Q*(M).

To check properties (i), (ii), and (iii), it suffices to check them at each point p € M.
Using the definition (19.2), the verification is the same as for the exterior derivative
on R" (Proposition 4.14).

19.5 Uniqueness of Exterior Differentiation

Suppose D: Q*(M) — Q*(M) is an exterior differentiation. We will show that D
coincides with the exterior differentiation d defined in Section 19.4.

To this end, let w € Qk(M) and p € M. Choose a chart (U, xt , x"") about p
and suppose w = > ay dx! on U. Extend the functions a7, xt ..., x"onU to C®
functions d;, X!, ..., " on M that agree with a;, x!, ..., x” on a neighborhood of
V of p (by Proposition 19.6). Define

=Y ardi' e Q"(m).
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Then

w=w onV.

Since D is a local operator,
Dw=Dd onV.
Thus,
(D), = (D&), = (DY drdi"), = () da nds')

= (ZdaI A dxl) (since d; = a; and ¥ = x' on V)
P

p
= (dw)p.

19.6 The Restriction of a k-Form to a Submanifold

If S is a regular submanifold of a manifold M and w is a k-form on M, then the
restriction of w to § is the k-form w|s on S defined by

(w|s)p(X1, ..., Xi) = wp(X1, ..., Xi)

for Xq,..., Xy € T,S C TyM. Thus, (wl|s), is obtained from w, by restricting the
domain of wp, t0 TS x --- x TpS (k times).

A nonzero form on M may restrict to the zero form on a submanifold S. For
example, if S is a smooth curve in R? defined by the nonconstant function f (x, y),
then df = (3f/dx)dx + (3f/dy)dy is a nonzero 1-form on R, but since f is
identically zero (f = 0) on S, the differential df is also identically zero on S. Thus,
dfls =0.

To avoid too cumbersome a notation, we sometimes write df to mean (df)|s,
relying on the context to make clear that it is the restriction of df to S.

One should distinguish between a nonzero form and a nowhere-zero or nowhere-
vanishing form. For example, x dy is a nonzero form on R?, meaning that it is not
the identically zero form. However, it is not nowhere-zero, because it vanishes on
the y-axis. On the other hand, dx and dy are nowhere-zero 1-forms on R2.

19.7 A Nowhere-Vanishing 1-Form on the Circle

As an application of the exterior derivative, we will construct a nowhere-vanishing
1-form on the circle.

Example 19.7. Let S! be the unit circle defined by x> 4+ y> = 1 in R, The 1-form
dx restricts from R? to a 1-form on S!. When restricted to S!, at each point p € § 1
the domain of (dx)|: , is T, (S") instead of 7, (R?):
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dx)|g1 ,: Tp(SH — R.

At p = (1, 0), a basis for the tangent space Tp(Sl) is /0y (Figure 19.1). Since

ad
o ()

we see that although dx is a nowhere-vanishing 1-form on R2, it vanishes at (1,0)
when restricted to S'.

1

=

Fig. 19.1. The tangent space to statp=(1,0).

To find a nowhere-vanishing 1-form on S', we take the exterior derivative of both

sides of the equation
X2+ y2 =1.
Using the antiderivation property of d, we get
2xdx +2ydy = 0. (19.3)
Let
Ur={(x,y) €S |x#0} and Uy, ={(x,y)eS"|y#0hL

By (19.3),on U, N Uy,

dy  dx
X o y ’
Define a 1-form w on S! by
d
ey onU,,
=1 "4y
—— onU,
y

Since these two 1-forms agree on U, NUy, wis a well-defined 1-form on st = U,UUy.
To show that w is C* and nowhere-vanishing, we need charts. Let

Ul ={(x,y) e S| x>0}

We define similarly U, U;‘ s Uy_ . On U;‘ , y is a local coordinate and so dy is a
basis for the cotangent space T[j‘(Sl) ateach point p € U". Since w = dy/x on U},

w is C* and nowhere-zero on U;". A similar argument applies to dy/x on U and
—dx/y on U;‘ and U}". Hence, w is C* and nowhere-vanishing on S'.
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y

U

Fig. 19.2. Two charts on the unit circle.

19.8 Exterior Differentiation Under a Pullback

The pullback of differential forms commutes with the exterior derivative.

Theorem 19.8. Let F: N — M be a smooth map of manifolds. If o € Q¥(M), then
dF*w = F*dw.

Proof. We first check the case k = 0 when w is a C* function & on M. For p € N
and X, € T,N,

(dF*h),(Xp) = X, (F*h) (property (iii) of d)
=XphoF) (definition of the pullback of a function)

and

(F*dh),(Xp) = (dh)F(p)(FxX ) (definition of the pullback of a 1-form)
= (FyXp)h (definition of the differential dh)
=XphoF) (definition of F,).

Now consider the general case of a C*® k-form w on M. It suffices to verify
dF*w = F*dw at an arbitrary point p € N. This reduces the proof to a local
computation. If (V, y], ..., y™) is achart of M at F(p), thenon V,

=Y ardy" Ao ndyE, T = (1.0,
for some C* functions a; on V and
F*o = Z(F*a,)F*dyi‘ A .-+ A F*dy*  (Proposition 18.7)

= (aj o F)dF" A--- NdF"™ (F*dy' = de‘y" =d(y' o F)
=dF").

So
dFfo = Zd(al o FYANdF" A -+ AdF*,

On the other hand,
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F*do = F*(Y_da; ndy" A -+ Ady™)
= ZF*daI A F*dy'V Ao A F¥dy'k
=Y d(F*a)) NdF"" A--- AdF'  (by the case k = 0)
=Y d(aj o F)y NdF" A+ NdF™.

Therefore,
dF*ew = F'dw. O

Example 19.9. Let U be the open set (0, 0o) x (0, 2) in the (r, 6)-plane R2. Define
F:U C R?> - R? by

(x,y) = F(r,0) = (rcos @, rsin).
Compute the pullback F*(dx A dy).

Solution. We first compute F*dx:

F*dx =dF*x (Theorem 19.8)
=dxoF) (definition of the pullback of a function)
=d(rcos0)

= (cosB)dr — rsinf do.
Similarly,
F*dy =dF*y = d(rsinf) = (sin0) dr + r cos 0 df.
Since the pullback commutes with the wedge product (Proposition 18.7),
F*(dx Ady) = (F*dx) A (F*dy)
= ((cos@)dr —rsinfdb) A ((sinf) dr + r cos6 dO)

= (rC0520 +rsin29) dr ANdO
=rdr ANd6. m]

Problems

19.1.* Extension of a C* form
Prove Proposition 19.6.

19.2. Transition formula for an n-form
Let (U, xt x") be a chart on a manifold and fl, ..., f" smooth functions on U.
Prove that ;

af!

df' A AdF" =det|i—i| dx' A A dx".
axJ/
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19.3. Pullback of a differential form
Let U be the open set (0, co) x (0, ) x (0, 2) in the (p, ¢, 6)-space R3. Define
F:U — R?by

(x,y,2) =F(p,¢,0) = (psingcosb, psingsinb, pcos ).
Show that F*(dx Ady Adz) = p>singdp Adp A db.

19.4. Pullback of a differential form
Let F: R — R? be given by

F(x,y) = (,v) = (x* + y*, xy).
Compute F*(u du + v dv).

19.5. Pullback of a differential form by a curve
Let w be the I-form w = (—ydx + xdy)/(x> + y?) on R?> — {0}. Define
c: R — R? — {0} by ¢(r) = (cost, sint). Compute c*w.

19.6. Coordinate functions and differential forms

Let f1,..., f" be C* functions on a neighborhood U of a point p in a manifold of
dimension n. Show that there is a neighborhood W of p on which f!, ..., f” form
a coordinate system if and only if (df' A --- A df*y, #0.

19.7. Local operators

An operator L: Q*(M) — Q*(M) is support-decreasing if supp L(w) C supp w for
every k-form w € Q*(M) for all k > 0. Show that an operator on Q*(M) is local if
and only if it is support-decreasing.

19.8. Derivations of C* functions are local operators

Let M be a smooth manifold. The definition of a local operator D on C*°(M) is
similar to that of a local operator on Q*(M): D is local if whenever a function
f € C°°(M) vanishes identically on an open subset U, then Df = 0 on U. Prove
that a derivation of C*°(M) is a local operator on C*°(M).

19.9. Global formula for the exterior derivative of a 1-form
Prove that if @ is a C* 1-form and X and Y are C*° vector fields on a manifold
M, then

do(X,Y)=Xw(¥) —Yw(X)—w(X,Y]).

19.10. A nowhere-vanishing form on a smooth hypersurface

(a) Let f(x, y) be a C* function on R? and assume that 0 is a regular value of f.
By the regular level set theorem, the zero set M of f(x, y) is a one-dimensional
submanifold of R?. Construct a nowhere-vanishing 1-form on M.

(b) Let f(x, y, z) be a C™ function on R? and assume that 0 is a regular value of f.
By the regular level set theorem, the zero set M of f(x, y, z) is a two-dimensional
submanifold of R3. Let f, fy, f- be the partial derivatives of f with respect to
X, y, z, respectively. Show that the equalities
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dxndy dyndz dzAdx
I fx Iy
hold on M whenever they make sense, and therefore piece together to give a

nowhere-vanishing 2-form on M.
(c) Generalize this problem to a regular level set of f(x!,..., x"*1) in R+,

19.11. Vector fields as derivations of C* functions
In Section 14.4 we showed that a C* vector field X on a manifold M gives rise
to a derivation of C*°(M). To distinguish the vector field from the derivation, we
will temporarily denote the derivation arising from X by ¢(X). Thus, for any f €
C>®(M),

(p(X)f)(p) =X, f forallpe M.
(a) Let F = C*°(M). Prove that ¢ : X(M) — Der(C*°(M)) is an F-linear map.
(b) Show that ¢ is injective.
(c) If D is a derivation of C*°(M) and p € M, define D, : C;O(M) — C;O(M) by

D,[f1=[Dfle CYM),

where [f] is the germ of f at p and fisa global extension of f given by
Proposition 19.6. Show that D[ f]is well defined. (Hint: Apply Problem 19.8.)
(d) Show that D, is a derivation of C;" (M).
(e) Prove that ¢ : X(M) — Der(C®°(M)) is an isomorphism of F-modules.

19.12. Twentieth-century formulation of Maxwell’s equations

In Maxwell’s theory of electricity and magnetism, developed in the late nineteenth
century, the electric field E = (E;, E», E3) and the magnetic field B = (B, B», B3)
in a vacuum R3 with no charge or current, satisfy the following equations:

B oE
VXE=——, VxB=—,

ot ot
divE =0, divB = 0.

By the correspondence in Section 4.6, the 1-form E on R? corresponding to the
vector field E is
E=E; dx+ Eydy+ Ezdz

and the 2-form B on R3 corresponding to the vector field B is
B =BidyAdz+ Bydz Adx + B3dx Ndy.

Let R* be space-time with coordinates (x, y, z,#). Then both E and B can be
viewed as differential forms on R*. Define F to be the 2-form on space-time

F=FEAdt+B.
Decide which two of Maxwell’s equations are equivalent to the equation
dF =0.

Prove your answer. (The other two are equivalent to d * F = 0 for a star-operator *
defined in differential geometry. See [1, Section 19.1, p. 689].)
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Orientations

20.1 Orientations on a Vector Space

On R! an orientation is one of two directions (Figure 20.1).

_— @ —

Fig. 20.1. Orientations on a line.

On R? an orientation is either counterclockwise or clockwise (Figure 20.2).

N

Fig. 20.2. Orientations on a plane.

On R3 an orientation is either right-handed (Figure 20.3) or left-handed (Fig-
ure 20.4). The right-handed orientation on R is the choice of a Cartesian coordinate
system so that if you hold out your right hand with the index finger curling from the
x-axis to the y-axis, then your thumb points in the direction of the z-axis.

How should one define an orientation on R*? If we analyze the three examples
above, we see that an orientation can be specified by an ordered basis for R”. Let
el, ..., e, bethe standard basis for R". For R! an orientation could be given by either
e or —ej. For R? the counterclockwise orientation is (e, e2), while the clockwise
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e3 = thumb

e] = index finger

Fig. 20.3. Right-handed orientation (eq, e, €3) on R3.

e3 = thumb
) ( e / / ey = index finger
& €l

Fig. 20.4. Left-handed orientation (eq, €2, €3) on R3.

orientation is (e, e;). For R3 the right-handed orientation is (eq, ez, €3), and the
left-handed orientation is (e, e1, €3).

For any two ordered bases (1, uz)and (vy, v) for R2, there is a unique nonsin-
gular 2 by 2 matrix A = [a;;] such that

2
Uj sziaij» =12,

i=1

called the change of basis matrix from (vy, vp) to (41, u2). In matrix notation, if we
write ordered basis as row vectors, for example, [©1 u;] for the basis (u1, us), then

[ug uz] = [vy v2]A.

We say that two ordered bases are equivalent if the change of basis matrix A has
positive determinant. It is easy to check that this is indeed an equivalence relation
on the set of all ordered bases for R2. It therefore partitions the ordered bases into
two equivalence classes. Each equivalence class is called an orientation on R2.
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The equivalence class containing the ordered basis (e, e2) is the counterclockwise
orientation and the equivalence class of (e, e1) is the clockwise orientation.

The general case is similar. Two ordered basesu = [u; ---uy]andv = [vy - - - vy, ]
of a vector space V are said to be equivalent if u = vA for an n by n matrix A with
positive determinant. An orientation on V is an equivalence class of ordered bases.

The zero-dimensional vector space {0} is a special case because it does not have
a basis. We define an orientation on {0} to be one of the two numbers +1.

20.2 Orientations and n-Covectors

Instead of using an ordered basis, we can also use an n-covector to specify an orien-
tation on an n-dimensional vector space V. This is based on the fact that the space
A" (V*) of n-covectors on V is one dimensional.

Lemma 20.1. Letuy, ..., u, and vy, ..., v, be vectors in a vector space V. Suppose
n
uj:Zaijvi, j=1,...,n,
i=1
for amatrix A = [a;j] of real numbers. If w is an n-covector on 'V, then
oy, ..., uy) = ({detA)w(vy, ..., v,).

Proof. By hypothesis,
u; = Z aijv;.

Since w is n-linear,

oy, ..., uy) =a)<2ai11vil,..., E a,-n,,vin)

= Zaill"‘ainn @iy, ..., Vi)

Forw(vj,, ..., v;,)tobenonzero,iy, ..., i, mustall bedistinct. Thismeansiy, ..., i,
is a permutation of 1, ..., n. Since w is an alternating n-tensor,

@iy, ..., 0,) = (sgni)w(vy, ..., vy).
Thus,

oMy, ..., Up) = Z(Sgni)aill “ Qi @V, .., Vy)

ieS,

= (detA) w(vy, ..., vy). O
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As a corollary,

sgnwy,...,uy) =sgnw vy, ..., vy,
iff det A > 0

iffuy,...,u, and vy, ..., v, are equivalent ordered bases.

We say that the n-covector w represents the orientation (v, ..., v,) if (v,
..., Uy) > 0. By the preceding corollary, this is a well-defined notion, independent
of the choice of ordered basis for the orientation. Moreover, two n-covectors @ and
' on V represent the same orientation if and only if @ = aw’ for some positive real
number a.

An isomorphism /\"(V*) ~ R identifies the set of nonzero n-covectors on V
with R — {0}, which has two connected components. Two nonzero n-covectors w
and ' on V are in the same component if and only if @ = aw’ for some real number
a > 0. Thus, each connected component of /\" (V*) — {0} represents an orientation
onV.

Example 20.2. Let e1, e be the standard basis for R2 and !, o/ its dual basis. Then
the 2-covector o' A o represents the counterclockwise orientation on R? since

(ozl /\052) (e1,e2) =1> 0.

Example 20.3. Letd/dx|p, 9/0dy|p be the standard basis for the tangent space 7), (R?),
and (dx) p, (dy) p its dual basis. Then (dx) , A (dy) , represents the counterclockwise
orientation on T, (R?).

We define an equivalence relation on the nonzero n-covectors on the n-dimensional
vector space V as follows:

w~ao iff w=aw forsomea > 0.
Then an orientation on V is also given by an equivalence class of nonzero n-covectors
onV.

20.3 Orientations on a Manifold

Every vector space of dimension n has two orientations, corresponding to the two
equivalence classes of ordered bases or the two equivalence classes of nonzero n-
covectors. To orient a manifold M, we orient the tangent space at each point p € M.
This can be done by simply assigning a nonzero n-covector to each point of M, in
other words, by giving a nowhere-vanishing n-form on M. The assignment of an
orientation at each point must be done in a “coherent” way, so that the orientation
does not change abruptly in a neighborhood of a point. The simplest way to guarantee
this is to require that the n-form on M specifying the orientation at each point be C*°.
(It is enough to require that the n-form be continuous, but we prefer working with
C®® forms in order to apply the methods of differential calculus.)
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Definition 20.4. A manifold M of dimension n is orientable if it has a C° nowhere-
vanishing n-form.

If w is a C* nowhere-vanishing n-form on M, then at each point p € M the
n-covector w, picks out an equivalence class of ordered bases for the tangent space
.M

oM.

Example 20.5. The Euclidean space R” is orientable as a manifold, because it has the
nowhere-vanishing n-form dx! A --- A dx".

If w and o' are two C*° nowhere-vanishing n-forms on a manifold M of dimen-
sion n, then w = f o' for a C*° nowhere-vanishing function f on M. On a connected
manifold M, such a function f is either everywhere positive or everywhere nega-
tive. Thus, the C* nowhere-vanishing n-forms on a connected manifold M can be
partitioned into two equivalence classes:

ow~ao iff o= fo with f >0.

We call either equivalence class an orientation on the connected manifold M. By
definition a connected manifold has exactly two orientations.

If a manifold is not connected, each connected component can have one of two
possible orientations. We call a C* nowhere-vanishing n-form on M that specifies the
orientation of M an orientation form. An oriented manifold is a pair (M, [w]), where
M is a manifold of dimension n and [w] is an orientation on M, i.e., the equivalence
class of a nowhere-vanishing n-form @ on M. We sometimes write M, instead of
(M, [w]), for an oriented manifold, if it is clear from the context what the orientation
is. For example, unless otherwise specified, R” is oriented by dx! A --- A dx™.

Remark 20.6 (Orientations on a zero-dimensional manifold). A zero-dimensional
manifold is a point. According to the definition above, a zero-dimensional manifold
is always orientable. Its two orientations are represented by the two numbers +1.

A diffeomorphism F: (N, [wny]) — (M, [wpy]) of oriented manifolds is said to
be orientation-preserving if [F*wyr] = [wn]; itis orientation-reversing if [ F*wy ] =
[—on]

Proposition 20.7. Let U and V be open subsets of R". A C* map F': Uu—-1vV
is orientation-preserving if and only if the Jacobian determinant det[d F' /dx/] is
everywhere positive on U.

Proof. Let x', ..., x" and yl, ..., y" be the standard coordinates on U C R”" and
V < R". Then

F*(dy' A---Ady") = d(F*y") A--- Ad(F*y")
=dy' o F)A---Ad(" o F)
=dF'A--- AdF"

AF ]
= det T dx' A---dx" (by Problem 19.2).
x
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Thus, F is orientation-preserving if and only if det[d F’ /dx/] is everywhere positive
onU. O

20.4 Orientations and Atlases

Definition 20.8. An atlas on M is said to be oriented if for any two overlapping
charts _(U, ng, ..., x™ and (V, yl, ..., ¥") of the atlas, the Jacobian determinant
det[dy'/dx/] is everywhere positiveon U N V.

Proposition 20.9. A manifold M of dimension n has a C° nowhere-vanishing n-form
w if and only if it has an oriented atlas.

Proof.
(<) Given an oriented atlas {(U,, xoll, ooy XD e, let {py} be a C™ partition of
unity subordinate to {U,}. Define

a):Zpadx;/\---/\dxg. (20.1)

For any p € M, there is an open neighborhood U, of p that intersects only finitely
many of the sets supp p,. Thus (20.1) is a finite sum on U,. This shows that w is
defined and C*° at every point of M.

Let (U, xt x™) be one of the charts about p in the oriented atlas. On U, N U,
by Problem 19.2,

8i
dx;/\---/\dxg=det[%} dx' A Adx",

xJ

where the determinant is positive because the atlas is oriented. Then

ax:
— 1 _ 1
a)_E ,oadxaA..-Adxg_(E padet[ﬁ}>dx A Adx™

In the last sum p, > 0 and det[dx’,/dx/] > 0 at p for all «. Moreover, py(p) > 0
for at least one «. Hence,

wp = (positive number) x (dx' Ao A dx"), # 0.

As p is an arbitrary point of M, the n-form w is nowhere-vanishing on M.

(=) Suppose w is a C* nowhere-vanishing n-form on M. Given an atlas for M, we
will use w to modify the atlas so that it becomes oriented. Without loss of generality,
we may assume that all the open sets of the atlas are connected.

On a chart (U, xt ., x"),

o= fdx' A Adx"

for a C*° function f. Since w is nowhere-vanishing and f is continuous, f is either
everywhere positive or everywhere negative on U. If f > 0, we leave the chart
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alone; if f < 0, we replace the chart by (U, —x', x%, ..., x"). After all the charts
have been checked and replaced if necessary, we may assume that on every chart

(V7y1""’yn)7
o=nhdy' A Ady"

with 4 > 0. This is an oriented atlas, since if (U, x!, ..., x") and (V, yl, |
are two charts, thenon U NV

w=fdx' A Adx" =hdy' A Ady"

with f, h > 0. By Problem 19.2, f/h = det[dy' /dx/]. It follows that det[dy’ /dx/]
>Q0onUNYV. O

Definition 20.10. Two oriented atlases {(Uy, ¢o)} and {(Vg, ¥5)} on a manifold M
are said to be equivalent if the transition functions

bu o V5" Yp(Ua N Vp) = du(Us N Vp)
have positive Jacobian determinant for all «, 8.

It is not difficult to show that this is an equivalence relation on the set of oriented
atlases on M (Problem 20.1).

Suppose M is a connected orientable manifold. To each oriented atlas {(Uy, ¢ )}
and partition of unity {p,} subordinate to {U,}, we associate the nowhere-vanishing
n-form

w:Zpadx;/vu/\dxg

on M as in (20.1). In this way, equivalent oriented atlases give rise to equiva-
lent nowhere-vanishing n-forms (Problem 20.2). Since there are two equivalence
classes of oriented atlases and two equivalence classes of nowhere-vanishing n-
forms on M this construction is a map from {£1} to {£1}. If the oriented atlas
{(Uy, x x ,...,Xxh)} gives rise to the n-form w, then by switching the sign of
just one coordlnate, we get an oriented atlas, for example, {(Uy, —x(}[, xg, XD
that gives rise to the n-form —w. Hence, the map: {1} — {%1} is surjective
and therefore a bijection. This shows that an orientation on a connected M may
also be specified by an equivalence class of oriented atlases. By considering each
connected component in turn, we can extend to an arbitrary orientable n-manifold
the correspondence between eqivalence classes of oriented atlases and equivalence
classes of nowhere-vanishing n-forms. More formally, we say that an oriented atlas
{(Uy, ¢0)} = {(Uy, xoll, ..., xy)} gives or specifies the orientation of an oriented n-
manifold (M, [o]) if for every «, there is an everywhere positive function f, on U,
such that
o= faqb;(drl A Adr") = fadxolt Ao Adxy.

Here r!, ..., r" are the standard coordinates on the Euclidean space R".

If w is a nowhere-vanishing n-form that orients a manifold M, then on any con-
nected chart (U, x', ..., x"), there is by continuity an everywhere positive or every-
where negative function f such that
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w=fdx"' A ANdx".

Thus, on an oriented manifold the orientation at one point of a connected chart deter-
mines the orientation at every point of the chart.

Example 20.11 (The open Mobius band). Let R be the rectangle
R={x,y)eR?|0<x<1, -1<y<l}

(see Figure 20.5). The open Mdbius band M (Figure 20.5 and 20.6) is the quotient
of the rectangle R by the equivalence relation

0, y) ~ (1, =y). (20.2)
The interior of R is the open rectangle

U:{(x,y)eR2|O<x<1, —1<y<l1}.

Fig. 20.5. Nonorientability of the Mdbius band.

An orientation on M restricts to an orientation on U. To avoid confusion with
an ordered pair of numbers, in this example we write an ordered basis without the
parentheses. Without loss of generality we may assume the orientation on U to be
e1, ex. By continuity the orientation at the points (0, 0) and (1, 0) are also ey, e>.
But under the identification (20.2), the ordered basis e1, e at (1, 0) maps to ej, —e2
at (0,0). Thus, at (0, 0) the orientation has to be both ¢, e> and e, —e;. This
contradiction proves that the Mobius band is not orientable.

Example 20.12. By the regular level set theorem, if 0 is a regular value of a C*
function f(x,y, z) on R3, then the set M = f_1 (0) = Zero(f) is a C*° manifold.
In Problem 19.10 we constructed a nowhere-vanishing 2-form on M. Thus, M is
orientable. Combined with Example 20.11 it follows that an open Mobius band
cannot be realized as a regular level set of a C* function on R3.

Problems

20.1. Equivalence of oriented atlases
Show that the relation in Definition 20.10 is an equivalence relation.
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Fig. 20.6. Mobius band.

20.2.* Equivalent nowhere-vanishing n-forms
Show that equivalent oriented atlases give rise to equivalent nowhere-vanishing n-
forms.

20.3. Orientation-preserving diffeomorphisms

Let F: (N,wy) — (M, wy) be an orientation-preserving diffeomorphism. If
{(vV,¥)} = {(V, yl, ..., y™M} is an oriented atlas on M that specifies the orienta-
tion of M, show that {(F~'V, F*y))} = {(F~'V, F', ..., F")} is an oriented atlas
on N that specifies the orientation of N, where F! = y' o F.

20.4. Orientability of a regular level set in R”*!
Suppose f(x!, ..., x"T1) is a C* function on R"*! with 0 as a regular value. Show
that the zero set of f is an orientable surface in R" 1.

20..5. Orientability of a Lie group
Show that every Lie group G is orientable by constructing a nowhere-vanishing top
form on G.

20.6. Orientability of a parallelizable manifold Show that a parallelizable manifold
is orientable. (In particular, this shows again that every Lie group is orientable.)

20.7. Orientability of the total space of the tangent bundle

Let M be a smooth manifold and w: TM — M its tangent bundle. Show that if
{(U, ¢)}isany atlas on M, then the atlas {(T'U, (5)} on T'M, with ¢ defined in equation
(12.1), is oriented. This proves that the total space T M of the tangent bundle is always
orientable, regardless of whether or not M is orientable.
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Manifolds with Boundary

The prototype of a manifold with boundary is the closed upper half-space
H* = {(x',...,x") e R" | x" > 0},

with the subspace topology of R”. The points (x!, ..., x") € H" with x" > 0 are
called the interior points of H", and the points with x” = 0 are called the boundary
points of H". These two sets are denoted int(H") and 9 (H"), respectively (Fig-
ure 21.1).

int(H")

~ A"

Fig. 21.1. Upper half-space.

In the literature the upper half-space often means the open set
(! .. xM eR" [ x" > 0).

We require that H” include the boundary in order for it to serve as a model for
manifolds with boundary.
21.1 Invariance of Domain

To discuss C* functions on a manifold with boundary, we need to extend the domain
of definition of a C*° function to nonopen subsets.
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Definition 21.1. Let S C R” be an arbitrary subset. A function f: § — R™ is
smooth at a point p in § if there exist a neighborhood U of p in R* and a C*°
function f: U — R™ such that f = f on U N S. The function is smooth on § if it
is smooth at each point of S.

With this definition it now makes sense to speak of an arbitrary subset S C R”
being diffeomorphic to an arbitrary subset 7 C R"™; this will be the case if and only
if there are smooth maps f: S — T and g: T — S that are inverse to each other.

Exercise 21.2 (Smooth functions on a nonopen set). Using a partition of unity, show that a
function f: § — R”f is C® on § if and only if there exists an open set U in R”" containing S
and a C* function f: U — R™ such that f = f]|s.

Theorem 21.3 (C* invariance of domain). Let U C R" be an open subset, S C R”"
an arbitrary subset, and f: U — S a diffeomorphism. Then S is open in R".

A diffeomorphism f: U — S takes an open set in U to an open set in S. Thus,
a priori we know only that f(U) is open in S, not that f(U) is open in R". Because
fisonto f(U) = S.

Proof. Let p € U. Since f: U — S is a diffeomorphism, there is an open set V
containing S and a C*® map g: V — R” such that g|s = f~!. Thus,
uvlvir
satisfies
gof=1y: U — UCR",
the identity map on U. By the chain rule,
gxf(p) © fup = lr,u : TyU — TpU =~ T,(R"),

the identity map on the tangent space 7, U. Hence, f p is invertible. By the inverse
function theorem, f is locally invertible at p. This means there are open neigh-
borhoods U, of p in U and Vy(p) of f(p) in V such that f: U, — Vy(p) is a
diffeomorphism. It follows that

Vi) C f)=S.
Hence, S is open in R”. O

Proposition 21.4. Let U and V be open subsets of H" and f: U — V a diffeo-
morphism. Then f maps interior points to interior points and boundary points to
boundary points.

Proof. Let p € U be an interior point. Then p is contained in an open ball B, which
is actually open in R” (not just in H"). By the invariance of domain, f(B) is open in
R” (again not just in H"). Since
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f(p)e f(B)CV CH",

f(p) is an interior point of H".

If p is a boundary point in U N dH", then f~'(f(p)) = p is a boundary point.
Since f~': V — U is a diffeomorphism, by what has just been proved, f(p) cannot
be an interior point. Thus, f(p) is a boundary point. O

21.2 Manifolds with Boundary

In the upper half-space H” one may distinguish two kinds of open subsets, depending
on whether the set is disjoint from the boundary or intersects the boundary (Fig-

ure 21.2).
/
Y/

/ 7

Fig. 21.2. Two types of open subsets of H".

A manifold is locally homeomorphic to only the first kind of open sets. A manifold
with boundary generalizes the definition of a manifold by allowing both kinds of open
sets.

We say that a topological space M is locally H" if every point p € M has a
neighborhood U homeomorphic to an open subset of H".

Definition 21.5. A topological n-manifold with boundary is a second countable Haus-
dorff topological space which is locally H".

For n > 2, a chart on a topological n-manifold with boundary is defined to be a
pair (U, ¢) consisting of an open set U in M and a homeomorphism

¢: U —¢U) CH

of U with an open subset ¢ (U) of H". As Example 21.8 will show, a slight modifi-
cation is necessary when n = 1: we need to allow ¢ to be a homeomorphism of U
with an open subset ¢ (U) of H' or of the left half-line

L':'={xeR|x <0}.

2

With this convention, if (U, xb X2, x™) is a chart of an n-dimensional manifold
1 .2

with boundary, then so is (U, —x', x~, ..., x") forany n > 1.
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A collection {(U, ¢)} of charts is a C* atlas if for any two charts (U, ¢) and
V. ¥),
Vedp lipUNV)—> y(UNV)CH

is C*°. A C* manifold with boundary is a topological manifold M with boundary
together with a maximal C* atlas.

Apoint p of M is an interior point if in some chart (U, ¢), ¢ (p) is an interior point
of H". Similarly, p is a boundary point of M if ¢ (p) is aboundary point of H". These
concepts are well defined, independent of the charts, because if (V, 1) is another chart,
then the diffeomorphism ¥ o ¢! maps ¢(p) to ¥ (p). By Proposition 21.4, ¢(p)
and ¥ (p) are either both interior points or both boundary points (Figure 21.3). The
set of boundary points of M is denoted 0 M.

7
/

Fig. 21.3. Boundary charts.

Most of the concepts that we introduced for a manifold extend to a manifold
with boundary in an obvious way. For example, a function f: M — Ris C* ata
boundary point p € M if there is a chart (U, ¢) about p such that f o ¢! is C™ at
¢(p) € H". This in turn means that f o ¢! has a C® extension to a neighborhood
of ¢(p) in R".

Remark 21.6. In point-set topology there is another notion of boundary, defined for
a subset of a topological space S. If A C S, a point p in S is said to be a boundary
point of A if every neighborhood of p contains a point in A and a point not in A.
The set of all boundary points of A in § is denoted bd(A). We call this set the
topological boundary of A, to distinguish it from the manifold boundary 9 A in case
A is a manifold with boundary.

Example 21.7. Let A be the open unit disk in R?:

A={xeR*||x]l <1}
Then its topological boundary bd(A) in R? is the unit circle, while its manifold
boundary 90 A is the empty set.

If B is the closed unit disk in R?, then its topological boundary bd(B), the unit
circle, coincides with its manifold boundary d B.
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21.3 The Boundary of a Manifold with Boundary

Let M be a manifold of dimension n with boundary oM. If (U, ¢) is a chart for M,
we denote by ¢’ = ¢|ynau the restriction of the coordinate map ¢ to the boundary.
Since ¢ maps boundary points to boundary points,

¢ UNIM — JH" =R" .
Moreover, if (U, ¢) and (V, y) are two charts for M, then
Vo @) i UNVNIM) — v (UNVNIM)

is C°. Thus, an atlas {(Uy, ¢o)} for M induces an atlas {(Uy N OM, ¢o|v,nom)} for
oM, making d M into a manifold of dimension n — 1 without boundary.

21.4 Tangent Vectors, Differential Forms, and Orientations

If M is a manifold with boundary and p € M, we define the algebra C° = C (M)
of germs of C*™ functions at p as in Section 2.2. Two C* functions f: U — R and
g: V — R defined on neighborhoods U and V of p in M are said to be equivalent
if they agree on some neighborhood W of p contained in U N'V. A germ of C*
functions at p is an equivalence class of such functions. The tangent space T, M at
p is then defined to be the vector space of all derivations on C}°.

For example, for p in the boundary of the upper half-plane H?, (3/dx) p and
(3/0y)p are both derivations on Cgo (H?). The tangent space T, (H?) is represented
by a two-dimensional vector space with the origin at p. Since (9/dy), is a tangent
vector to H? at p, its negative —(3/9y) p s also a tangent vector at p (Figure 21.4),
although there is no curve through p in H? with initial velocity —(3/9y) p-

_9
ay

Fig. 21.4. A tangent vector at the boundary.

The cotangent space T;‘M is defined to be the dual of the tangent space:

T;‘M = Hom(T, M, R).

Differential k-forms on M are defined as before, as sections of the bundle /\k (T*M).
For example, dx A dy is a 2-form on HZ. An orientation on an n-manifold M with
boundary is given by a C* nowhere-vanishing n-form.
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According to Proposition 20.9, for a manifold without boundary the existence
of a nowhere-vanishing top form is equivalent to the existence of an oriented atlas.
The same proof goes through word for word for a manifold with boundary. At
some point in the proof it is necessary to replace the chart (U, x', x2, ..., x") by
(U, —xb X%, x™). This would not have been possible for n = 1 if we had not
allowed I.! as a local model in the definition of a chart for a one-dimensional manifold
with boundary.

Example 21.8. The closed interval [0, 1] is a C°° manifold with boundary. It has
an atlas with two charts (Uy, ¢1) and (Ua, ¢2), where Uy = [0, 1), ¢1(x) = x,
and U, = (0,1], ¢o(x) = 1 — x. With dx as the orientation form, [0, 1] is an
oriented manifold with boundary. However, {(Uj, ¢1), (Ua, ¢2)} is not an oriented
atlas, because the transition function ¢, o ¢, (x) = 1 — x has negative Jacobian
determinant. If we change the sign of ¢, then {(U1, ¢1), (U2, —¢2)} is an oriented
atlas. Note that —¢»(x) = x — 1 maps (0, 1] into the left half line L! c R. If we had
allowed only H! as a local model for a one-dimensional manifold with boundary, the
closed interval [0, 1] would not have an oriented atlas.

21.5 Boundary Orientation for Manifolds of Dimension Greater
than One

In this section we show that an orientation on a manifold M with boundary induces
in a natural way an orientation on the boundary d M. We first consider the case where
dim M > 2.

Lemma 21.9. Assume n > 2. Let (U, ¢) and (V, ) be two charts in an oriented
atlas of an orientable manifold M with boundary. Assume that U, V, and oM have

nonempty intersection. Then the restriction of the transition function to the boundary
B:=¢UNV)NoH",

Voodp Hp:p(UNV)NIH" - w(UNV)NIH",
has positive Jacobian determinant.

Proof. Let¢p = (x',...,x")onU and ¥ = (y!,..., y") on V. Since the transition
function
Vedp ligpUNV)—> y(UNV)CH

takes boundary points to boundary points and interior points to interior points,

G y*(x!,....x""1,0) =0, and
(i) y"(x', ..., 2" x") > 0forx" > 0,

where (x', x2, ..., x") e p(UN V).
Differentiating (i) gives

n

dy

_x!, . x"0)=0 fori=1,....,n—1.
dx!
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From (i) and (ii),

ay" nxeh o xm =y, L x T 0
L(xl, ., x"10) = lim yilx x )~y a )
ax" r—0+ t
ne,l n—1
— lim Y, .. x ,I)ZO’
t—>0t t
since both ¢ and y”(xl, cox™ ) are positive.
The Jacobian matrix of ¢ o ¢_1 at a boundary point (xl, o xh 0) therefore
has the form
8yl 8y1 By1
dx1 axn—1  gxn
B : L JWoo~lls)
J(Wod™ |B) =] 9y*! oy~ gyl | =
dx! axn=1  gxn gy
y
ayn 0
0 - 0 n
Py 0x
It follows that
-1 -1 ay"
detJ(1//0¢ ):detJ(l/foqﬁ IB)W
Since det J (¥ o ¢~1) is positive everywhere by hypothesis, at (x!, ..., x"~!, 0) we
have 9y"/dx" > 0 and therefore det J (¥ o ¢~ '|5) > 0. O

The following proposition is a direct consequence of the lemma.

Proposition 21.10. If{(Uy, ¢«)} is an oriented atlas for a manifold M with boundary,
then the induced atlas {(Uy N OM, ¢olu,nom)} for OM is oriented.

If {(Uy, ¢o)} is an oriented atlas for a manifold M with boundary, by Proposi-
tion 21.10, it would seem most natural to define the boundary orientation on d M by
the oriented atlas {(Uy N OM, ¢o|u,nam)}. This convention, unfortunately, would
lead to a sign in Stokes’ theorem. In order to have a sign-free Stokes’ theorem, we
adopt the following convention.

Definition 21.11. Suppose the oriented atlas {(Uy, ¢o)} gives the orientation on a
manifold M. If M is even dimensional, then the boundary orientation on dM is
given by the oriented atlas {(Uy, N OM, ¢y |vu,nom)}. If M is odd dimensional, then
the boundary orientation on 9 M is given by the opposite of the oriented atlas {(U, N
M, dolu,nam)}-

It is clear from Lemma 21.9 that the definition of the boundary orientation is
independent of the oriented atlas for M. In Problems 21.4 and 21.5, we describe
two other ways of specifying the boundary orientation, in terms of a basis of tangent
vectors and in terms of an orientation form.
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Example 21.12 (The boundary orientation on 9H"). The standard orientation on the

upper half-space H" is given by the oriented atlas with a single chart (H", x!, ..., x")
corresponding to the n-form dx!' A --- A dx". The boundary dH" ~ R"~! has an
oriented atlas with a single chart (0H", xb x"‘l), corresponding to the (n — 1)-

form dx!' A --- A dx"~'. By Definition 21.11, the boundary orientation on dH" is
given by the (n — 1)-form (—1)" dx! A --- A dx™~! (Figures 21.5 and 21.6).

Fig. 21.5. Induced orientation on oH2 = R.

X

Fig. 21.6. Induced orientation on I3 = R2,

21.6 Boundary Orientation for One-Dimensional Manifolds

An orientation on a point is one of two numbers 1. In accordance with Exam-
ple 21.12, we define the boundary orientation at the boundary point 0 of H! = [0, 00)
to be —1.

Suppose C is a one-dimensional oriented manifold with boundary, and p is a
boundary point of C. If ¢: U — H! is an orientation-preserving chart about p
(Figure 21.7), then the boundary orientation at p is defined to be —1;if ¢p: U — H!
is an orientation-reversing chart about p, then the boundary orientation at p is defined
to be 1.
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>— >
U ¢ 0 Hl

Fig. 21.7. Orientation-preserving chart.

p

Example 21.13. The closed interval [a, b] in the real line with coordinate x has a
standard orientation given by the 1-form dx. A chart centered at a is ([a, b), ¢),
where ¢: [a, b) — H is given by ¢(x) = x — a. Since ¢ is orientation-preserving,
the boundary orientation at a is —1. Similarly, a chart centered at b is ((a, b], ¥),
where ¥ : (a, b] — His given by ¥ (x) = b — x. Since y is orientation-reversing,
the boundary orientation at b is —(—1) = +1.

Example 21.14. Suppose ¢ : [a,b] — M is a C* map whose image is a one-
dimensional manifold C. An orientation on [a, b] induces an orientation on C via
the differential c,: Tp([a, b]) — T,C at each point p € [a, b]. In a situation like
this, we give C the orientation induced from the standard orientation on [a, b]. The
boundary orientation on the boundary of C is +1 at the endpoint c(b) and —1 at the
initial point c(a).

Problems

21.1. Topological boundary versus manifold boundary
Let M be the subset [0, 1) U {2} of the real line. Find its topological boundary bd (M)
and its manifold boundary d M.

21.2.* Boundary orientation of the left half-space
Let M be the left half-space

(O ....y") eR" | y! <0},

with orientation form dy!' A- - - Ady™. Show that an orientation form for the boundary
orientation on M = {(0, y,--- ,y") € R"}isdy?> A --- Ady".

This exercise shows that if we had used the left half-space as the model of a
manifold with boundary, then there would not be a sign in the induced boundary
orientation. In fact, certain authors adopt this convention, e.g., [4].

21.3.* Inward-pointing vectors at the boundary

Let M be a manifold with boundary and p € dM. We say that a tangent vector
X, € Tp(M) is inward-pointing if X, ¢ T,(0M) and there are a positive real
number € and a curve c: [0, €) — M such that c(0) = p, ¢((0, €)) C int(M), and
c’(0) = Xp. Avector X, € T,(M) is outward-pointing if —X , is inward-pointing.
For example, on the upper half-plane H?, (3/dy) p is inward-pointing and —(9/9dy)
is outward-pointing at a point p in the x-axis. Show that X, € T),(M) is inward-
pointing iff in any coordinate chart (U, xt ., x™) centered at p, the coefficient of
(0/9x™)p in X, is positive.
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21.4.* Boundary orientation in terms of tangent vectors
Let M be a manifold with boundary and p € dM. Show that an ordered ba-

sis (v1,...,v,—1) for the tangent space T,(0M) gives the boundary orientation
on dM at p iff for any outward-pointing vector X, € T,(M), the ordered basis
(Xp,v1,...,v,-1) for T, (M) gives the orientation on M at p.

21.5.* Orientation form of the boundary orientation

Suppose M is an oriented manifold with boundary with orientation form w. A vector
field along d M assigns to each point p € dM a vector in the tangent space T), M (as
opposed to T,,(dM)). Let X be an outward-pointing vector field along dM. Show
that the contraction ¢ x w is a boundary orientation for d M. (The contraction is defined
in Problem 4.7.)

21.6. Boundary orientation for a cylinder

Let M be the cylinder S 1«10, 1] with the counterclockwise orientation when viewed
from the exterior (Figure 21.8). Describe the boundary orientation on Cy = st x {0}
and C; = S x {1}.

Fig. 21.8. Oriented cylinder.
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Integration on a Manifold

On a manifold, one integrates not functions as in calculus on R” but differential
forms. There are actually two theories of integration on a manifold: one where the
integration is over a submanifold and the other where the integration is over what is
called a singular chain. Singular chains allow one to integrate over an object such as
a closed rectangle in R?:

la,b] x [e,d] :=={(x,y) eR* la<x<b, c<y<d),

which is not a submanifold of R? because of its corners.

For simplicity we will discuss only integration over a submanifold. For the
more general theory of integration over singular chains, the reader may consult the
many excellent references in the bibliography, for example, [4, Section 8.2] or [11,
Chapter 14].

22.1 The Riemann Integral of a Function on R”

We assume that the reader is familiar with the theory of Riemann integration in R”, as
in [12] or [17]. What follows is a brief synopsis of the Riemann integral of a bounded
function over a bounded set in R”.

A closed rectangle in R" is a Cartesian product R = [a',b'] x --- x [a", b"]
of closed intervals in R, where a’, b' € R. Let f: R — R be a bounded function
defined on a closed rectangle R. A partition of the closed interval [a, b] is a set of
real numbers {po, ..., pn} such that

a=po<pr<---<pp=hb.

A partition of the rectangle R is a collection P = { Py, ..., P,} where P; is a partition
of [a’, b']. The partition P divides the rectangle R into closed subrectangles, which
we denote by R; (Figure 22.1).

We define the lower sum and the upper sum of f with respect to the partition P
to be
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b2

al !

Fig. 22.1. A partition of a closed rectangle.

LU/, Py =30 ) vol(R)), UCSP) = Z(s;jp ) vol(R)),

where each sum runs over all subrectangles of the partition P. For any partition P,
clearly L(f, P) < U(f, P). In fact, more is true: for any two partitions P and P’ of
the rectangle R,

L(f, P) < U(f, P,

which we show next.

A partition P’ = {P/, ..., P} is a refinement of the partition P = {Py, ..., Py}
if P, C Pl./ foralli =1,...,n. If P'is arefinement of P, then each subrectangle R |
of P is subdivided into subrectangles R;.  of P’, and it is easily seen that

L(f,P) < L(f, P, (22.1)

because if R}k C Rj, then inf R; f < inf R, f. Similarly, if P’ is a refinement of
X J
P, then
U(f, Py <U(f, P). (22.2)
Any two partitions P and P’ of the rectangle R have a common refinement

0 ={Q1,..., Qu} with Q; = P; U P/. By (22.1) and (22.2),
L(f.P) = L(f, Q) =U(f. Q) U(f, P).

It follows that the supremum of the lower sum L( f, P) over all partitions P of R is
less than or equal to the infimum of the upper sum U (f, P) over all partitions P of
R. We define these two numbers to be the lower integral [ ® f and the upper integral

7 rJ respectively:

/fZSUPL(f,P), /f:infL(f,P).
J R P R P

Definition 22.1. Let R be a closed rectangle in R". A bounded function f: R — R
is said to be Riemann integrable if [ = [ & [ in this case, the Riemann integral

of f is this common value, denoted fR f(x) |dx] ---dx"|, where x!, ..., x" are the
coordinates on R”.
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Remark. When we speak of a rectangle [a!, b'] x --- x [a”, b"] in R", we have
already tacitly chosen n coordinates axes, with coordinates xt, ..., x". Thus, the
definition of the Riemann integrable depends on the coordinates x!, ..., x”. The two

vertical bars in the integral serve to emphasize that it is merely a notation for the
Riemann integral, not a differential form.

If f: A CR" — R, then the extension of f by zero is the function f: R” — R
such that
f(x) forxeA,

foo = {0 forx ¢ A.

Now suppose f: A — R is a bounded function on a bounded set A in R". Enclose
A in a closed rectangle and define the Riemann integral of f over A to be

/ﬂfo)Idx"-'dX”|='/1fo)Idxl"-dx”
A R

if the right-hand side exists. In this way we can deal with the integral of a bounded
function whose domain is an arbitrary bounded set in R”.

The volume v(A) of a subset A C R” is defined to be the integral f 4 1 if the
integral exists. For a closed rectangle R = [ay, b1] X - - - X [ay, by], the volume is

v(R) = [ [bi —a.
i=1

22.2 Integrability Conditions

In this section we describe some conditions under which a function defined on an
open subset of R” is Riemann integrable.

Definition 22.2. A set A C R” is said to have measure zero if for every € > 0, there
is a countable cover {R;}{°, of A by closed rectangles R; such that Zil v(R;) < €.

The most useful integrability criterion is the following theorem of Lebesgue [12,
Theorem 8.3.1, p. 455].

Theorem 22.3 (Lebesgue’s theorem). A bounded function f: A — R on a bounded
subset A C R" is Riemann integrable iff the set Dist(f) of discontinuities of the
extended function f has measure zero.

Proposition 22.4. If a continuous function f: U — R defined on an open subset U
of R" has compact support, then f is Riemann integrable on U.

Proof. Being continuous on a compact set, the function f is bounded. Being com-
pact, the set supp f is closed and bounded in R”. We claim that the extension f is
continuous.
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Since f agrees with f on U, the extended function f is continuous on U. If

p ¢ U, then p ¢ supp f. As supp f is a closed subset of R”, there is an open ball

B containing p and disjoint from supp f. Hence, f = 0on B, which proves that f
is continuous at p ¢ U. Thus, f is continuous on R”. By Lebesgue’s theorem, f is
Riemann integable on U. O

Proposition 22.5. A bounded continuous function f: U — R defined on an open set
U of finite volume is Riemann integrable.

Proof. Since U has finite volume, the integral f U 1 exists, where 1: U — R is the

constant function 1 on U. The set of discontinuities of the extended function 1 is the
boundary bd(U) of U. By Lebesgue’s theorem, bd(U) is a set of measure zero.
Clearly, the set Dist( f ) of discontinuities of f isasubset of bd(U); hence, Dist( f )
is also a set of measure zero. By Lebesgue’s theorem again, f is Riemann integrable
over U. O

22.3 The Integral of an n-Form on R"

Once a set of coordinates x1, ..., x" has been fixed on R", n-forms on R”" can
be identified with functions on R", since every n-form on R” can be written as
w=fx)dx' A---Adx" fora unique function f(x) on R". In this way the theory
of Riemann integration of functions on R” carries over to n-forms on R”.

Definition 22.6. Let o = f(x)dx' A -+ A dx" be a C* n-form on an open subset

U c R", with standard coordinates x!, x". Tts integral over U is defined to be

the Riemann integral of f(x):

/w=f f(x)dxl/\---/\dx”:/f(x)|dx1...dx”|’
% U U

if the Riemann integral exists.

In this definition the n-form must be written in the order dx' A --- A dx". To
integrate for example 7 = f(x) dx? A dx! over U C R?, one would write

/fzf —f(x)dxl/\dxzz—/ @) |dxt dx?).
U U U

Let us see how the integral of an n-form on R” transforms under a change of
variables. A change of variables on U is a diffeomorphism 7: V C R* — U C R",

x=GhL. N =TOL ...y =TG) =T '), .... T"O)).
Denote by J(T') the Jacobian matrix [d7?/dy/]. By Problem 19.2,

dT' A+ AdT" = det(J(T))dy' A--- Ady".
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Hence,
fT*a):f T*(f(x) T*dx' A+ A T*dx"
% \%
:f FT)dT ' A--- AdT"
\4
= fv F(T(»)det(J(T))dy' A -+ Ady"
=/Vf(T(y))det(J(T)) ldy" - dy"|. (22.3)

On the other hand, the change of variables formula from advanced calculus gives

/U‘”:/uf(x) |dx1~--dx"|=/Vf(T(y>)|det(J<T)>||dy1--~dy"|, (22.4)

with an absolute-value sign around the Jacobian determinant. Equations (22.3) and
(22.4) differ by the sign of det(J(T")). Hence,

/ T*w = :l:/ , (22.5)
\4 U

depending on whether the Jacobian determinant det(J (7)) is positive or negative.

By Proposition 20.7 a diffeomorphism 7: V C R" — U C R” is orientation-
preserving if and only if its Jacobian determinant det(J (7)) is everywhere positive
on V. Equation (22.5) shows that the integral of a differential form is not invariant
under all diffeomorphisms of V with U, but only under the orientation-preserving
diffeomorphisms.

22.4 The Integral of a Differential Form on a Manifold

The integral of an n-form on R” is not so different from the integral of a function. Our
approach to integration over a general manifold has several distinguishing features:

(i) The manifold must be oriented (in fact, R” has a standard orientation).
(i) On a manifold of dimension n, one can integrate only n-forms, not functions.
(iii)) The n-forms must have compact support.

Let M be an oriented manifold of dimension n, with an oriented atlas {(Uy, ¢«)}
giving the orientation of M. Suppose {(U, ¢)} is a chart of this atlas. If w € QI (U)
is an n-form with compact support on U, then because ¢ : U — ¢ (U) is a dif-
feomorphism, (¢ ~!)*w is also an n-form with compact support on the open subset
¢ (U) C R". We define the integral of w on U as

/a)::/ ¢ Ho.
U o)
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If (U, v) is another chart with the same U, then ¢ o ¥~ ': ¢ (U) — ¢(U) is an
orientation-preserving diffeomorphism, and so

/i w—UMn=/ @owfhﬁ¢*fw=i/ W Ho.
¢ (U) Y (U) ¥ (U)

Thus, the integral f y@ona chart U of the atlas is well defined, independent of
the choice of coordinates on U. By the linearity of the integral on R”, if w, 7 €

Q1(U), then
/w+t:[w+/t.
U U U

Now let w € Q'(M). Choose a partition of unity {p,} subordinate to the open
cover {Uy}. Because w has compact support and a partition of unity has locally
finite supports, all except finitely many p,w are identically zero by Problem 18.5. In

particular,
0= o
o

is a finite sum. Since by Problem 18.4(b),

supp(pq@) C supp pq N supp w,

supp(pqw) is a closed subset of the compact set supp w. Hence, supp(p,w) is compact.
As pgw is an n-form with compact support in the chart Uy, its integral |, v, Pa® is
defined. Therefore, we can define the integral of w over M to be the finite sum

= . 22.6
A” ?ffw (22.6)

For this integral to be well defined, we must show that it is independent of the
choice of the oriented atlas and of the partition of unity. Let {Vg} be another oriented
atlas of M specifying the orientation of M and {xg} a partition of unity subordinate to
{Vg}. Then {(UyNVp, ¢o)} and {(Uy N Vg, ¥p)} are two new atlases of M specifying
the orientation of M, and

Z/ Pa® = Z/ Lo Zxﬂw (because leg =1
o« VU a Ve B
= Z Z/ Pa XBW (these are finite sums)
o B Ua

= z; [

«NVp

where the last line follows from the fact that the support of py xg is contained in
Uy N Vg. By symmetry, ) B f vs XBO is equal to the same sum. Hence,
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2 [, o= [,
o YUa B Vg

proving that the integral (22.6) is well defined.

For an oriented manifold M, we indicate by —M the same manifold but with
the opposite orientation. If {U, ¢)} = {(U, xb, x2, ..., x™)} is an oriented atlas
specifying the orientation of M, then an oriented atlas specifying the orientation of
—M is {U, )} = {(U, —x"',x2, ..., x™)}. Clearly, on n-forms the pullback ¢* =
—¢* and therefore (¢—1)* = —(¢~')*. This shows that for » € Q(M) and any
chart (U, ¢), [_,, o = — [, @ and therefore | ,, = — [,, w. Thus, reversing the
orientation of M reverses the sign of an integral over M.

The discussion of integration presented above can be extended almost word for
word to manifolds with boundary. It has the virtue of simplicity and is of great
utility in proving theorems. However, it is not practical for actual computation of
integrals; an n-form multiplied by a partition of unity can rarely be integrated as a
closed expression. To calculate explicitly integrals over a manifold M, it is best to
consider integrals over a parametrized set, i.e., a C° map from an open subset of R”
to the manifold M of dimension n. If «: U C R" — M is a parametrized set and
 is an n-form on M, not necessarily with compact support, then |, aU) @ is defined
to be |, y @*w, provided this last integral exists. The integral of a C*° n-form over
U exists, for example, if U has compact closure and the topological boundary of U
is a set of measure zero. We will not delve into this theory of integration (see [16,
Theorem 25.4, p. 213] or [11, Proposition 14.7, p. 356]), but will content ourselves
with an example.

Example 22.7. In spherical coordinates, p is the distance \/x2 + y2 + z2 of the point
(x,y,2) € R3 to the origin, ¢ is the angle that the vector (x, y, z) makes with the
positive z-axis, and 6 is the angle that the vector (x, y) in the (x, y)-plane makes with
the positive x-axis. Let

U={(x,y,2)€8|0<¢p<m 0<06 <2m}.
Then (U, ¢, 0) is a chart on the unit sphere $2. Calculate fU singpdp Adb.

Solution. Leta = (¢, 0) be the coordinate map on U. Note that ¢ and 6 are functions
onU C S2%. Let

u=@ HYp=¢oa"l, v=@H0=0o0a"!
be the corresponding functions on the open set
a(U):{(u,v)eR2|O<u<n, 0<v<2m}

By the definition of an integral over U,
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/ singdp Ado = / (@~ H*(sing de A dO)
U a(U)

=/ sin(¢p o N d@ D) ¢ Ad@™1)*0
a(U)

(because d commutes with (oc_l)*)

= / sinudu A dv
)

2
/ / sinu du dv

—271 cosu T = 4. O

0

Integration over a zero-dimensional manifold

The discussion of integration so far assumes implicitly that the manifold M has
dimension n > 1. We now treat integration over a zero-dimensional manifold. A
compact oriented manifold M of dimension O is a finite collection of points, each
point oriented by +1 or —1. We write thisas M = ) p; — > ¢;. An integral of a
O-form f: M — R is defined to be the sum

/M F=>"Fd =Y fg).

22.5 Stokes’ Theorem

Let M be an oriented manifold of dimension n with boundary d M. We give d M the
boundary orientation.

Theorem 22.8 (Stokes’ theorem). For any (n — 1)-form w with compact support on
the oriented n-dimensional manifold M,

/dw:/ w
M oM

Proof. Choose an atlas {(Uy, ¢y)} for M in which each U,, is diffeomorphic to either
R" or H" via an orientation-preserving diffeomorphism. This is possible since any
open disk is diffeomorphic to R” (see Problem 1.4). Let {p,} be a C* partition of
unity subordinate to {Uy}. As we showed in the preceding section, the (n — 1)-form
P has compact support in Uy,.

Suppose Stokes’ theorem holds for R” and for H”. Then it holds for all the charts
U, in our atlas, which are diffeomorphic to R” or H". Also, note that

(OM)NUy = 0U,.

Therefore,
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[ Tre (Ene)

= Z/ Po@ (Z Pa is a finite sum by Problem 18.5)

o

= Z / Pa® (supp pw is contained in Uy)
= Z / d(pgw) (Stokes’ theorem for Uy )

U,
= Z/ d(pgw) (suppd(pgw) C Uy)

M

= / d(z Pa®)  (pgw = 0 for all but finitely many o)
M

Thus, it suffices to prove Stokes’ theorem for R” and for H". We will give a proof
only for HZ, as the general case is similar.

Proof of Stokes’ theorem for the upper half-plane H?. Let x, y be the coordinates on
H2. Then the standard orientation on H? is given by dx A dy, and the boundary
orientation on 9H? is given by dx.

The form w is a linear combination

w=f(x,y)dx+glx,y)dy (22.7)

for C* functions f, g with compact support in H?. Since the supports of f and g
are compact, we may choose a real number a > 0 large enough so that the supports
of f and g are contained in the interior of the square [—a, a] x [—a, a]. We will
use the notation fy, fy to denote the partial derivatives of f with respect to x and y,
respectively. Then

9g 9
do = (—g - —f>dx/\dy = (gx — fr)dx Ady,
ox  dy ’

and

/ da):/ gx |dxdy|—[ Sy ldx dy|
H? H2 H2
o0 o o o0
:/ / gx|dXdy|_/ / fy|dydx|
0 —00 —o0 J0O
a a a a
= f / gy |dx dy| —/ / Sy ldy dx|. (22.8)
0 —a —a JO

In this expression,
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/ g(x,y)dx =g(x. »]i__ =0

—a

because supp g lies in the interior of [—a, a] x [—a, a]. Similarly,

/(\) fy(x7y)dy:f(x7y)](;:0:_f(xvo)

because f(x,a) = 0. Thus, (22.8) becomes

/da): af(x,O)dx.
H2

—a

On the other hand, dH?2 is the x-axis and d y=0o0n 9H2. Tt follows from (22.7)
that w = f(x, 0) dx when restricted to 9H? and

/ w= af(x,O)dx.
9H?

—a

This proves Stokes’ theorem for the upper half-plane. O

22.6 Line Integrals and Green’s Theorem

We will now show how Stokes’ theorem for a manifold unifies some of the theorems
of vector calculus on R? and R3.

Theorem 22.9 (Fundamental theorem for line integrals). Ler C be a curve in R3,
parametrized by r(t) = (x(¢), y(t), z(t)), a <t < b, and let F be a vector field on
R3. IfF = grad f for some scalar function f, then

/CF -dr = f(r(b)) — f(r(a)).

Theorem 22.10 (Green’s theorem in the plane). If D is a plane region with boundary
oD, and P and Q are C* functions on D, then

30 9P
/ de+Qdy=/ (—Q——)dA
aD p \ 0x ady

In this statement, d A is the usual calculus notation for |dx dy]|.
Suppose in Stokes’ theorem we take M to be a curve C with parametrization r(z),
a <t < b, and w to be the function f on C. Then

[do=[ar= [ Lars Loy 2o

=/gradf-dr
c
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and

/ o= flyc = f@x®) — fx@).

aC

In this case Stokes’ theorem specializes to the fundamental theorem for line integrals.
To obtain Green’s theorem, let M be a plane region D with boundary 9 D and let
w be the 1-form P dx 4+ Q dy on D. Then

/a):/ Pdx+ Qdy
oD aD

/dw:/ Pydy/\dx+Qxdx/\dy=/(Qx—Py)dx/\dy
D D D

and

:/(Qx_Py)|dXdy|:/(Qx_Py)dA~
D D

In this case Stokes’ theorem is Green’s theorem in the plane.

Problems

22.1. Orientation-preserving or orientation-reversing diffeomorphisms
Let U be the open set (0,00) x (0,27) in the (r,6)-plane R2. We define
F:U CR?> — R?by

F(r,0) = (rcosf,rsinf).

Decide if F is orientation-preserving or orientation-reversing as a diffeomorphism
onto its image.

22.2.* Integral under a diffeomorphism
Suppose N and M are connected oriented n-manifolds and F: N — M is a diffeo-
morphism. Prove that for any w € QIC‘ (M),

/F*a)::l:/ w,
N M

where the sign depends on whether F is orientation-preserving or orientation-
reversing.

22.3.* Stokes’ theorem
Prove Stokes’ theorem for R" and for H".
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De Rham Cohomology

In vector calculus one often needs to know if a vector field on an open set D in R is
the gradient of a function or is the curl of another vector field. By the correspondence
of Section 4.6 between vector fields and differential forms, this translates into the
question of whether a differential form w on D is exact. Of course, a necessary
condition is that the form w should be closed. It turns out that whether every closed
form on a manifold is exact depends on the topology of the manifold. For example,
on R?2 every closed k-form is exact for k > 0, but on RZ — {(0, 0)} there are closed
1-forms that are not exact. The extent to which a closed form is not exact is measured
by de Rham cohomology, possibly the most important diffeomorphism invariant of
a manifold.

In this chapter we define de Rham cohomology, prove some of its basic properties,
and compute two elementary examples, the de Rham cohomology of the real line and
the unit circle.

23.1 De Rham Cohomology

Suppose F(x, y) = (P(x, y), O(x, y)) is a smooth vector field representing a force
on an open subset U of R2, and C is a parametrized curve c(¢) = (x(¢), y(¢t)) in U
from a point A to a point B, with a < ¢ < b. Then the work done by the force in
moving a particle from A to B along C is given by the line integral [ P dx + Qdy.

Such a line integral is easy to compute if the vector field F is the gradient of a
scalar function f(x, y):

F = gradf = <fX’ fy>’
where f, = df/dx and f, = df/dy. By Stokes’ theorem, the line integral is simply

/fxdx+fydy=/df=f(3)—f(A)-
C C

A necessary condition for the vector field F = (P, Q) to be a gradient is that



236 23 De Rham Cohomology

Py=fxy=fyx = Q.

The question is now the following: if Py — Q = 0, is the vector field F = (P, Q)
on U the gradient of some scalar function f(x, y) on U?

In Section 4.6 we established a one-to-one correspondence between vector fields
and differential 1-forms on an open subset of R3. There is a similar correspondence
on an open subset of any R”. For R?, it assumes the following form:

X(U) < QLU),
F=(P,Q)< w=Pdx+ Qdy,

grad f = (fx, f)) < df = fxdx—i-fydy,
Qx—Py=0<—>dw=(Qx—Py)dx/\dy:0,

In terms of differential forms the question above becomes: if the 1-form w = P dx +
Qdy is closed on U, is it exact? The answer to this question is sometimes yes and
sometimes no, depending on the topology of U.

Just as for an open subset of R”, a differential form @ on a manifold M is said to
be closed if dw = 0, and exact if w = dt for some form 7 of degree one less. Since
d? = 0, every exact form is closed. In general, not every closed form is exact.

Let Z¥(M) be the vector space of all closed k-forms and B*(M) the vector space
of all exact k-forms on the manifold M. Because every exact form is closed, B* (M)
is a subspace of Z¥(M). The quotient vector space H*(M) := Z*X(M)/B*(M)
measures the extent to which closed k-forms fail to be exact, and is called the de Rham
cohomology of M in degree k. As explained in Appendix D, the quotient vector space
construction introduces an equivalence relation on Z k(m):

o ~w inZk(M) iff a)/—a)eBk(M).

The equivalence class of a closed form w is called its cohomology class and denoted
by [w]. Two closed forms w and @’ determine the same cohomology class if and only
if they differ by an exact form:

o =w+drt.
In this case we say that the two closed forms @ and o’ are cohomologous.

Proposition 23.1. If the manifold M has r connected components, then its de Rham
cohomology in degree 0 is HO (M) = R’.

Proof. Since there are no exact O-forms other than 0,
HO(M) = Z°(M) = {closed 0-forms}.

Supposed f is a closed O-form on M, i.e., f is a C* function on M such that
df = 0. On any chart (U, xL .. ,x™),

df = Zidxi.

axt
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Thus, df = 0on U if and only if all the partial derivatives 3f/dx" vanish identically
on U. This in turn is equivalent to f being locally constant on U. Hence, the closed
0-forms on M are precisely the locally constant functions on M. Such a function must
be constant on each connected component of M. If M has r connected components,
then a locally constant function on M is simply an ordered set of r real numbers.
Thus, Z°(M) = R’. o

Proposition 23.2. On a manifold M of dimension n, the de Rham cohomology
H*(M) = 0 for k > n.

Proof. At any point p € M, the tangent space T), M is a vector space of dimension
n. If o is a k-form on M, then w, € Ay(T, M), the space of alternating k-linear
functions on 7, M. By Corollary 3.31, if k > n, then Ax(T,M) = 0. Hence, for
k > n, the only k-form on M is the zero form. |

23.2 Examples of de Rham Cohomology

Example 23.3 (The de Rham cohomology of the real line). Since R is connected, by
Proposition 23.1,
H'R) =R.

For dimension reasons, on R there are no nonzero 2-forms. This implies that
every 1-form on R is closed. A 1-form f(x) dx on R is exact if and only if there is a
C®° function g(x) on R such that

f(x)dx =dg = g'(x)dx.

Such a function g(x) is simply an antiderivative of f (x), for example,

X
gx) = / f(0)dz.
0
This proves that every 1-form on R is exact. In summary,

R fork =0;

HYR) =
0 fork>1.

Example 23.4 (The de Rham cohomology of a circle). Let S! be the unit circle in the
xy-plane. As in the example of R, because S ! is connected,

HO(SH) =R,
and because S! is one dimensional,

HYSH =0

for all k£ > 2. It remains to compute HL(SYH.
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In Section 19.7 we found a nowhere-vanishing 1-form on S!:
dy

—  if(x,y) e Stand x # 0,

@y =1 Ydx (23.1)
—— if(x,y) e Stand y #0.
y

Since w is nowhere-vanishing, it cannot be exact, for an exact 1-form df must vanish
at the maximum and minimum of f, and we know that a continuous function on
a compact set such as S' necessarily has a maximum and a minimum. Thus, the
existence of the nowhere-vanishing 1-form w implies immediately that H'(S') # 0.

AN

Fig. 23.1. The angle 6 on the circle.

On the circle the angle 6 relative to the x-axis is defined only up to an integral
multiple of 27; in other words, 6 is not a real-valued function on § I but a function
from S! to R/(27Z) (Figure 23.1).

However, one can make sense of a well-defined 1-form d@ on S! in the following
way. The projection p: R — R/27Z is a covering space. A branch of 6: S!
— R/2nZ over an open interval I of the circle is a lift of 6|; to R, i.e., a function
f: 1 — Rsuchthat p o f = 60];. Any two C*® lifts fi: I} — Rand fo: L > R
differ by a locally constant function on /1 N I, since f] — f> is a continuous function
from ;1 N I, into the discrete set 27 Z. Hence, df; = df; on I} N I. By covering
the circle with overlapping intervals, we obtain a well-defined 1-form on the circle,
which we denote by d6. In short, on any open interval of the circle, d0 is the exterior
derivative of any C* branch of 6.

Exercise 23.5 (A nowhere-vanishing 1-form on the circle). Show that dé is precisely the
nowhere-vanishing 1-form w in (23.1).

Remark 23.6. It spite of the notation, it should be noted that d6 is not an exact form
on the circle, because 6 is not a C™ function on S'.

A function on the circle may be identified with a periodic function on the real
line of period 27. Since df is nowhere-vanishing, every 1-form « on the circle is a
multiple of d6:

o= f(0)do,

where f(0) is a periodic function on R of period 2.
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Since the circle has dimension 1, all 1-forms on S! are closed, so Q!(S!) =
Z1(S"). The integration of 1-forms on S! defines a linear map

e: Z'(sH =S - R, ga(a):/SI a.

To compute the integral |, g1 d0, note that removing a finite set of points from the
domain of integration does not change the value of the integral. If we remove the
point 1 from the unit circle, then 6: S I {1} — (0, 27) is a well-defined coordinate
function, and & = 6*¢, where ¢ is the coordinate on the real line. Hence,

2
/d@:/ d0=/ G*dtzf dt =2m.
N S1—{1} S1—{1} 0

This shows that the linear map ¢: '(S!) — R is onto.
By Stokes’ theorem, the exact 1-forms are in ker ¢. Conversely, suppose f(6) d6

is in ker ¢. Then
2w

f©)do =0.
Define o
gO) = /O f@)dr.
Since f(t) is periodic of period 27:

2 2 +6

g(0 +27) = @) dt +/ @) dt

0 2

2w +6 %
=/2 f(t)dt=/0 f)ydr =g@®).

T

Hence, g(0) is also periodic of period 277 on R and is therefore a function on S!.
Moreover,
dg =g'(0)do = f(6)ab,

which proves that the kernel of ¢ consists of exact forms. Therefore, integration
induces an isomorphism
H'(S") ~R.

In the next chapter we will develop a tool, the Mayer—Vietoris sequence, using
which the computation of the cohomology of the circle becomes more or less routine.

23.3 Diffeomorphism Invariance
For any smooth map F: N — M of manifolds, there is a pullback map F*: Q*(M)

— Q*(N) of differential forms. Moreover, the pullback F* commutes with the
exterior derivative d (Theorem 19.8).
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Lemma 23.7. The pullback map F* sends closed forms to closed forms, and sends
exact forms to exact forms.
Proof. Suppose w is closed. By the commutativity of F* with d,
dFfo = F*dw = 0.

Hence, F*w is also closed.
Next suppose w = dt is exact. Then

F*o=F*dt =dF*r.
Hence, F*w is exact. O
It follows that F* induces a linear map of quotient spaces, denoted F*:

v, 25 ZEN)
" BX(M) BK(N)Y’

This is a map in cohomology

F*([0]) = [F*(»)].

F*: H*(M) — HX(N),
called the pullback map in cohomology.
Remark 23.8. The functorial properties of the pullback map F* on differential forms
easily yield the same functorial properties for the induced map in cohomology:
() If 1y: M — M is the identity map, then 1%,: H*(M) — HX(M) is also the
identity map.
@) IfF: N —> Mand G: M — P are smooth maps, then
(G o F) = F*, G*.

It follows from (i) and (ii) that (H*( ), F*) is a contravariant functor from the
category of C*° manifolds and C® maps to the category of vector spaces and linear
maps. By Proposition 10.9, if F': N — M is a diffeomorphism of manifolds, then
F*. H*(M) — H*(N) is an isomorphism of vector spaces.

In fact, the usual notation for the induced map in cohomology is F*, the same as
the pullback map on differential forms. Henceforth, we will follow this convention.
It is usually clear from the context whether F* is a map in cohomology or on forms.

23.4 The Ring Structure on de Rham Cohomology

The wedge product of differential forms on a manifold M gives the vector space
Q*(M) of differential forms a product structure. This product structure induces a
product structure in cohomology: if [w] € H k(M) and [t] € HY (M), define

[w] A [T] = [0 A T] € H (M), (23.2)

For the product to be well defined, we need to check three things about closed forms
w and t:
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(i) The wedge product w A 7 is a closed form.

(i1) The class [w A 7] is independent of the choice of representative for [t]. In
other words, if 7 is replaced by a cohomologous form t’ = t + do, then in the
equation

oANT =wAT+owAdo,

we need to show that w A do is exact.
(iii) The class [w A ] is independent of the choice of representative for [w].

These all follow from the antiderivation property of d. For example, in (i), since
w and 7 are closed,

dw A1) = ([dw) AT+ (—D*ow Adt =0.
In (ii),
dwA o) =(dw) Ao+ (—D o A do
= (—1)kw Ado (since dw = 0),

which shows that w A do is exact. Item (iii) is analogous to Item (ii), with the roles
of w and 7 reversed.
If M is a manifold of dimension 7, we set

H*(M) = ®_,H"(M).

What this means is that an element « of H*(M) is a finite sum of cohomology classes
in H*(M) for various k’s:

a=ao)+- -+, OlkGHk(M).

Elements of H*(M) can be added and multiplied in the same way that one would add
or multiply polynomials, except here multiplication is the wedge product. It is easy
to check that under addition and multiplication, H* (M) satisfies all the properties of
aring, called the cohomology ring of M. This ring is not commutative, because the
wedge product of differential forms is not commutative. However, the ring H*(M)
has a natural grading by the degree of a closed form. In general, a ring A is graded
if it can be written as a direct sum A = EB,inAk so that ring multiplication sends
AR x A to AF*C. A graded ring A = @,inAk is said to be anticommutative if for
alla € A¥and b € A,
a-b= (Db a.

In this terminology, H*(M) is an anticommutative graded ring.

Suppose F: N — M is a C* map of manifolds. Because F*(w A 1) =
F*w A F*t for differential forms w and t on M (Proposition 18.7), the pullback
map F*: H*(M) — H*(N) is a ring homomorphism. By Remark 23.8, if F: N
— M is a diffeomorphism, then F*: H*(M) — H*(N) is a ring isomorphism.

To sum up, de Rham cohomology gives a contravariant functor from the cate-
gory of C* manifolds to the category of anticommutative graded rings. If M and N
are diffeomorphic manifolds, then H*(M) and H*(N) are isomorphic as anticom-
mutative graded rings. In this way the de Rham cohomology becomes a powerful
diffeomorphism invariant of C° manifolds.
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Problems

23.1.* Locally constant map on a connected space

Amap f : § — Y between two topological spaces is locally constant if for every
p € Sthereis aneighborhood U of p such that f is constant on U. Show that a locally
constant map f : S — Y onanonempty connected space S is constant. (Hint: Show
that for every y € Y, the inverse image f~!(y) is open. Then S = Uer FA6))
exhibits § as a disjoint union of open subsets.)
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The Long Exact Sequence in Cohomology

A cochain complex C is a collection of vector spaces {C ez together with a sequence
of linear maps dy : C*¥ — Ck+!

NG B e I o NG Ce N
such that
di odp_1 =0 (24.1)

for all k. We will call the collection of linear maps {dy} the differential of the cochain
complex C.

The vector space Q2*(M) of differential forms on a manifold M together with the
exterior d is a cochain complex, the de Rham complex of M:

0— QM) Sy S oS ..., ded=0.

It turns out that many of the results on the de Rham cohomology of a manifold depend
not on the topological properties of the manifold, but on the algebraic properties of
the de Rham complex. To better understand de Rham cohomology, it is useful to
isolate these algebraic properties. In this chapter we investigate the properties of a
cochain complex that constitute the beginning of a subject known as homological
algebra.

24.1 Exact Sequences

Definition 24.1. A sequence of homomorphisms of vector spaces

AL BSC

is said to be exact at B if im f = ker g. A sequence of homomorphisms

AQ&A1AA212>~~fH—;I Ap
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that is exact at every term except the first and the last is said simply to be an exact
sequence. A five-term exact sequence of the form

0—-A—-B—-C—=0

is said to be short exact.

The same definition applies to homomorphisms of groups or modules, but we are
mainly concerned with vector spaces.

Remark 24.2.
(i) When A = 0, the sequence
NEAY S

is exact if and only if
kerg =im f =0,

i.e., g is injective.
(i1) Similarly, when C = 0, the sequence

AL B%o

is exact if and only if
imf =kerg =B,
i.e., f is surjective.

The following two propositions are very useful when dealing with exact se-
quences.

Proposition 24.3 (A three-term exact sequence). Suppose

AL B&c

is an exact sequence. Then
(i) the map f is surjective if and only if g is the zero map;
(i) the map g is injective if and only if f is the zero map.
Proof. Problem 24.1. m|

Proposition 24.4 (A four-term exact sequence).
(i) The four-term sequence of vector spaces 0 — A —f> B — 0 is exact if and only
if f: A— Bisanisomorphism.
(i) If
A —f> B—>C—0
is an exact sequence of vector spaces, then
B
im £
Proof. Problem 24.2. O

C ~coker f =
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24.2 Cohomology of Cochain Complexes

If € is a cochain complex, then by (24.1),
imdi_1 C ker dy.

We can therefore form the quotient space

HE(©) =
imdg_1

which is called the kth cohomology vector space of the cochain complex C. It is
a measure of the extent to which the cochain complex € fails to be exact at CF.
An element of ker dy, is called a k-cocycle and an element of im dj_1 is called a k-
coboundary. The equivalence class [c] € H k(G) of a k-cocycle ¢ € ker dy is called
its cohomology class.

Example 24.5. In the de Rham complex, a cocycle is a closed form and a coboundary
is an exact form.

To simplify the notation we will usually omit the subscript from dj, and write
dod=0instead of dy o dr_; = 0.

If A and ‘B are two cochain complexes with differentials d and d’, respectively, a
cochain map ¢: A — B is a collection of linear maps ¢ : A¥ — B, one for each
k, that commute with d and d’:

d o g =@ry10d.

In other words, the following diagram is commutative:

s — Akl dxAk d~Ak+1—>._,
o e | o1
L — Bk—l d/ - Bk d/ > Bk-‘rl — ..

We will usually omit the subscript & in g.
A cochain map ¢ : A — B naturally induces a linear map in cohomology

o*: HY(A) — H*(B)
by
¢*lal = [p(a)].

To show that this is well defined, we need to check that a cochain takes cocycles to
cocycles, and coboundaries to coboundaries:

(i) fora € Z¥(A), d'(¢(a)) = ¢(da) = 0.
(i) fora’ € A*1 p(d(a")) = d'(p(a")).
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24.3 The Connecting Homomorphism
A sequence of cochain complexes
0>ALBLe—o0
is short exact if i and j are cochain maps and for each k
0 Ak K gk 2 ck g

is a short exact sequence of vector spaces. To simplify the notation, we usually omit
the subscript k from i and j.

Given a short exact sequence as above, we can construct a linear map d*: H k@)
— Hf (A), called the connecting homomorphism, as follows. Consider the short
exact sequences in dimensions k and k + 1:

O — Ak+1 4l> Bk-‘rl 4‘]> Ck+1 4>0

d d d
0— AX ; BX 7 ck—o.

To keep the notation simple, we use the same symbol d to denote the a priori distinct
differentials dy4, dp, dc of the three cochain complexes. Start with [c] € H*(@).
Since j: B¥ — C* is onto, there is an element b € B* such that j(b) = c. Then
db € B*t!is in ker j because
jdb =djb (by the commutativity of the diagram)
=dc
=0 (because c is a cocycle).
By the exactness of the sequence in dimension k + 1, ker j = imi. This implies

that db = i(a) for some a in A**!. Once b is chosen, this a is unique because i is
injective. The injectivity of i also implies that da = 0, since

i(da) =d(ia) =ddb =0.
Therefore, a is a cocycle and defines a cohomology class [a]. We set
d*[c] = [a] € H*T'(A).

In defining d*[c] we made two choices: a cocycle ¢ to represent the cohomology
class [c] € H*(C) and then an element b € B* that maps to ¢ under j. For d* to
be well defined, one must show that the cohomology class [a] € H¥*!(A) does not
depend on these choices.

Exercise 24.6 (Connecting homomorphism). Show that the connecting homomorphism
a*: Hk @) — H*1(A)

is a well-defined linear map.
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24.4 The Long Exact Sequence in Cohomology

Theorem 24.7. A short exact sequence of cochain complexes

0-ASBheso

gives rise to a long exact sequence in cohomology:

(N LW RNy 20 SN L) S L ) S Y

where i* and j* are the maps in cohomology induced from the cochain maps i and
J, and d* is the connecting homomorphism.

To prove the theorem one needs to check exactness at H k(A), H*(B), and H*(C)
for each k. The proof is a sequence of trivialities involving what is commonly called
diagram-chasing. As an example, we prove exactness at H*(C).

Claim. im j* C ker d*.
Proof. Let [b] € H*(B). Then
d* j*[b] = d*[j (b)].

In the recipe above for d*, we can choose the element in BX that maps to j (b) to be
b and take db € B**!.

0—db=0
b——j(b).
Because b is a cocycle, db = 0. Following the zig-zag diagram, we see that
d*1j (b)] = [01. So j*[b] € ker d*. .

Claim. kerd* C im j*.

Proof. Suppose d*[c] = [a] = 0, where [c] € Hk(G). This means a = d(a’) for
some a’ € A¥. The calculation of d*[c] can be represented by the following zig-zag
diagram:

a —-db
AT
a b4]>c,

where b is any element in BX with j(b) = c¢. Then b — i(a’) is a cocycle in B that
maps to ¢ under j:

d(b—id)) =db—di(a) =db—id(d)=db—ia=0,
Jjb—i@h)) =jb) —jita)=jb) =c.
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Therefore,
J¥[b —i@@)] = [cl.

So [c] € im j*. O

These two claims together imply the exactness of (24.2) at H k(@). As for the
exactness of the cohomology sequence (24.2) at H k(A) and at H*(B), we will leave
it to an exercise (Problem 24.3).

Problems

24.1. A three-term exact sequence
Prove Proposition 24.1.

24.2. A four-term exact sequence
Prove Proposition 24.2.

24.3. Long exact cohomology sequence
Prove the exactness of the cohomology sequence (24.2) at H k(A) and H*(B).
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The Mayer-Vietoris Sequence

As the example of H!(R) illustrates, calculating the de Rham cohomology of a
manifold amounts to solving a canonically given system of differential equations on
the manifold and in case it is not solvable, to finding the obstructions to its solvability.
This is usually quite difficult to do directly. We introduce in this chapter one of the
most useful tools in the calculation of de Rham cohomology, the Mayer—Vietoris
sequence. Another tool, the homotopy axiom, will come in the next chapter.

25.1 The Mayer-Vietoris Sequence

Let {U, V} be an open cover of a manifold M, and letiy: U — M, iy(p) = p, be
the inclusion map. Then the pullback

i QK (M) — QkW)

is the restriction map that restricts the domain of a k-form on M to U. In fact, there
are four inclusion maps that form a commutative diagram:

.U
JU/, \fU
unyv M
. A
Jv ly

Vv

By restricting to U and to V, we get a homomorphism of vector spaces

i: QK(M) — QU) @ QX (V),
o (if0,iy0).
To keep the notation simple, we will often write o to mean its restriction to an open

subset.
Define the difference map
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ik e Qfv) - QW nv)

by

j(a),‘[):‘r—a),

where the right-hand side really means jjt — jjo. If U NV is empty, we define
QX(U N'V) = 0. In this case, j is simply the zero map.

Proposition 25.1. For each integer k > 0, the sequence

0— QM) S ke vy L fwunv)—o0 (25.1)
is exact.

Proof. Exactness at the first two terms QK (M) and QK (D)Y@ Q* (V) is straightforward.
We leave it as an exercise. We will prove exactness at QKW nv).
To prove the surjectivity of the difference map

ik e (v) - @Xwnv),

it is best to consider first the case of functions on M = R!. Let f be a C* function
on U NV as in Figure 25.1. We have to write f as the difference of a C* function
on V and a C* function on U.

pu f f

7
pyﬁ

)
v PV
¢
—
\4

Fig. 25.1. Writing f as the difference of a C® function on V and a C function on U.

Let {py, py} be a partition of unity subordinate to the open cover {U, V}. Define
fv:V — Rby

puvx)f(x) forxeUNV,

v = 0 forxe V-(UNYV).
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Exercise 25.2 (Smooth extension of a function). Prove that fy is a C® function on V.

The function fy is the extension by zero of py f from U NV to V. Similarly, we
define fy to be the extension by zero of py f from U NV to U. Since

j—fu. vy =jvfv+igfu=pvf+pvf=f onUNYV,

J is surjective.

For differential k-forms on a general manifold M, the formula is similar. For
w € Qk(U N V), define wy to be the extension by zero of pyw from U NV to U,
and wy to be the extension by zero of pyw fromUNVtoV.OnUNV, (—wy, wy)
restricts to (—pyw, pyw). Hence, j maps (—oy, wy) € Q"(U) ® Qk(V) to

pvw — (—pyw) = w € QYU N V).
This shows that j is surjective and the sequence (25.1) is exact at QKU N V). O

It follows from Proposition 25.1 that the sequence of cochain complexes

0— QM) 5> Q") @ Q" (V) L @ WUNV) -0

is short exact. By Theorem 24.7, this short exact sequence of cochain complexes gives
rise to a long exact sequence in cohomology, called the Mayer—Vietoris sequence:

s HY' N S B oD S BR Oy e HYv) L HYW N V)
L HH M) >
In this sequence i * and j* are induced from i and j:

i*lo] = [i(0)] = (i§o), liyo]) € H*(U) @ HY(V),
J*(w], [t]) = [ (@, 0] = [jit — jiol € HXUNV).

The connecting homomorphism d*: H*(UNV) — H*T!(M) is obtained as follows.

(1) Starting with a closed k-form ¢ € QK(U N V) and using a partition of unity
{pu, pv} subordinate to {U, V}, one can extend py¢ from U NV to a k-form
¢y on V and extend py¢ from U NV to a k-form ¢y on U (see the proof of
Proposition 25.1). Then

J(=Cu.¢v) =¢v +Cu = (pu +pv);=2¢.

(2) By the commutativity dj = jd, the pair (—d{y, d¢y) maps to 0 under j. This
means the (k + 1)-forms —d¢y on U and d{y on V agreeon U N V.

(3) Therefore, —d¢y on U and d¢y patch together to give a global (k + 1)-form «
on M. Diagram-chasing shows that « is closed. By Section 24.3, d*[¢] = [«] €
H*1(M). See the two diagrams below:
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Qk+l(M) _l__> Qk+1(U) fay Qk+1(V)
d
F etV — Qwnv)

o —l> (=d¢y,dty) —— 0

(3)
o1

(=¢u,¢v) # ¢

Because QF (M) = 0 for k < —1, the Mayer—Vietoris sequence starts with
0—> H' M) —> H' W) H' V) > HOWnV) > ....

Proposition 25.3. In the Mayer-Vietoris sequence if U, V, and U NV are con-
nected, then

(i) M is connected and

0—> H'M)—> H' W) H' (V) > H'UNV) >0

is exact;
(i1) we may start the Mayer—Vietoris sequence with

0= H M S HWen V)L HWAY) > -

Proof.

(i) The connectedness of M follows from a lemma in point-set topology (Prob-
lem A.45). It is also a consequence of the Mayer—Vietoris sequence. On a connected
open set the de Rham cohomology in dimension O is simply the vector space of
constant functions (Proposition 23.1). So the map

¥ HOW)y e HY(V) — HOWU N V)

is given by
(b,c)—>c—b, b,ceR.

This map is clearly surjective. The surjectivity of j* implies that
im j* = HO(U N V) = kerd*,

from which we conclude that d*: H O(U NV) — HYM) is the zero map. Thus the
Mayer—Vietoris sequence starts with

0 H'M SRoRL RS 0. (25.2)

This short exact sequence shows that
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HO(M) ~ imi* = ker j*.

Since

(R@®R)/ker j* ~im j* =R,
ker j* must be one dimensional. So H O(M ) = R, which proves that M is connected.
(i) From (i) we know that d*: HO(U N'V) — H'(M) is the zero map. Thus, in the

Mayer—Vietoris sequence, the sequence of two maps
0 a7 s 1
H'UNV)y—> H M)— HU)®H (V)
may be replaced by
0— H' M) S H\ W)yo H\(V)

without affecting the exactness of the sequence. O

25.2 The Cohomology of the Circle

In Example 23.4 we showed that the integration of 1-forms induces an isomorphism
from H'(S!) to R. In this section we apply the Mayer—Vietoris sequence to give an
alternative computation of the cohomology of the circle.

Fig. 25.2. An open cover of the circle.

Cover the circle with two open arcs U and V as in Figure 25.2. The intersection
U NV is the disjoint union of two open arcs, which we call A and B. Since an open
arc is diffeomorphic to an open interval and hence to the real line R, the cohomology
rings of U and V are isomorphic to that of R, and the cohomology ring of U NV to
that of the disjoint union R LI R. They fit into the Mayer—Vietoris sequence, which
we arrange in tabular form:
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st vuv uUnv

H - 0—> 0 — 0

H1£>—>0—>0

H0> R 5ReR L ROR

From the exact sequence

0-RLRORL ROR L HIGSH =0

and Problem 25.2, we conclude that dim H'! (S 1) = 1. Hence, the cohomology of the
circle is given by
R fork=0,1;

H (s = .
0 otherwise.
By analyzing the maps in the Mayer—Vietoris sequence, it is possible to write
down an explicit generator for H'(S!). In the Mayer—Vietoris sequence, the map
j*: HOU) @ H'(V) — H%(U N V) is given by

j¥(b,c) = (c —b,c—b),
where b and ¢ are real numbers. Thus, the image of j* is the diagonal A in R:
A:{(x,y)e]R2|y:x}.

Since H'(S') ~ R, a generator of H'(S') is simply a nonzero element. As
d*: HHU nNVv) - HYSY is surjective, such a nonzero element is the image
of an element (x, y) € HO(U N V) =~ R? for which y # x.

So we may start with (1,0) € H 0(UNV). This corresponds to a function f with
value 1 on A and O on B. Let {py, py} be a partition of unity subordinate to the open
cover {U, V}, and let fy, fy be the extensions by zero of py f, py f fromUNV to U
and to V, respectively. By the proof of Proposition 25.1, j(— fy, fv) = fonUNYV.
From Section 24.3, d*(1, 0) is represented by a 1-form on ' whose restriction to
U is —dfy and whose restriction to V is dfy. Now fy is the function on V which
is py on Aand O on V — A, so dfy is a 1-form on V whose support is contained
entirely in A. A similar analysis shows that —d fy; restricts to the same 1-form on A,
because py + py = 1. The extension of either dfy or —d fy by zero to a 1-form on
S represents a generator of H'(S'). It is a bump 1-form on S! supported in A.

25.3 The Euler Characteristic

If the cohomology vector space H¥(M) of an n-manifold is finite-dimensional for
every k, we define its Euler characterisitc to be the alternating sum
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x (M) = Z(—l)k dim H*(M).
k=0

As a corollary of the Mayer—Vietoris sequence, the Euler characteristic of M with an
open cover {U, V}is always computable from those of U, V,and U NV, as follows.

Exercise 25.4 (Euler characteristics in terms of an open cover). Suppose all the spaces M,
U, V,and U NV in the Mayer—Vietoris sequence have finite-dimensional cohomology. By
applying Problem 25.2 to the Mayer—Vietoris sequence, prove thatif M = U U V, then

x(M) = (x (W) + x (V) +xUNV)=0.

Problems

25.1. Short exact Mayer—Vietoris sequence
Prove the exactness of (25.1) at Q¥(M) and at Q¥(U) @ QK (V).

25.2. Alternating sum of dimensions
Let

d d d
043 A5 425 ... 54" 50
be an exact sequence of finite-dimensional vector spaces. Show that

m
Z(—l)k dim A* = 0.
k=0
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Homotopy Invariance

The homotopy axiom is a powerful tool for computing de Rham cohomology. Homo-
topy is normally defined in the continuous category. However, since we are primarily
interested in manifolds and smooth maps, our notion of homotopy will be smooth
homotopy, which differs from the usual homotopy in topology only in that all our
maps are assumed to be smooth. In this chapter we define smooth homotopy, state
the homotopy axiom for de Rham cohomology, and compute a few examples. We
postpone the proof of the homotopy axiom to Chapter 28.

26.1 Smooth Homotopy

Let M and N be manifolds. Two C* maps f, g: M — N are (smoothly) homotopic
if there is a C°° map
F:MxR—N

such that
F(x,0) = f(x), F(x,1) = g(x)

for all x € M; the map F is called a homotopy from f to g. Ahomotopy F from f to
g can also be viewed as a smoothly varying family of maps {f;: M — N |t € R},
where

fix)=F(x,t), xeM,

suchthat fy = f and f; = g. We can think of the parameter  as time and a homotopy
as an evolution through time of the map fy: M — N. If f and g are homotopic, we
write

f~s
Since any open interval is diffeomorphic to R (Problem 1.3), in the definition of
homotopy we could have used any open interval containing 0 and 1, instead of R. The

advantage of an open interval over the closed interval [0, 1] is that an open interval
is a manifold with no boundary.
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Example 26.1 (The straight-line homotopy). Let f and g be C*° maps from a man-
ifold M to R". Define F: M x R — R" by

Fx,1) = f(x)+1(gx) — f(x))
=0 =0fx)+18().
Then F is a homotopy from f to g, called the straight-line homotopy from f to g
(Figure 26.1).

g(x)

f(x)

Fig. 26.1. The straight-line homotopy.

In fact, the straight-line homotopy can be defined for any two maps
fig: M — SCR",

into a subspace S of R” as long as for every x € M, the line segment joining f(x)
and g(x) lies entirely in S. This is true if, for example, S is a convex subset of R”.

Exercise 26.2 (Homotopy). Let M and N be manifolds. Prove that being homotopic is an
equivalence relation on the set of all C* maps from M to N.

26.2 Homotopy Type

In the following, we write 1,7 to denote the identity map on a manifold M.

Definition 26.3. Amap f: M — N is a homotopy equivalence if it has a homotopy
inverse, i.e.,amap g: N — M such that g o f is homotopic to the identity 1,7 on
M and f o g is homotopic to the identity 1 on N:

go f~ 1y, fog~1ln.

In this case we say that M is homotopy equivalent to N, or that M and N have the
same homotopy type.

Example 26.4. A diffeomorphism is a homotopy equivalence.
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NP
%
2N

SN

|

Fig. 26.2. The punctured plane retracts to the unit circle..

Example 26.5 (The homotopy type of the punctured plane R*> — {0}). Leti: S!
— R2— {0} be the inclusion map and let r : R? — {0} — S!be given by
X
r(x)=—.

x|

Then r o i is the identity map on S'.
We claim that
ior:R>—{0) > R>— {0}

is homotopic to the identity map. Indeed, the straight-line homotopy
F: (R?>—{0) x R — R>— {0},

F,)=(1 - )x +1—
N

provides a homotopy between the identity map on R? — {0} and i o r (Figure 26.2).
Therefore, r and i are homotopy inverse to each other, and R2 — {0} and S ! have the
same homotopy type.

Definition 26.6. A manifold is contractible if it has the homotopy type of a point.

In this definition, by “the homotopy type of a point” we mean the homotopy type
of a set { p} whose single element is a point. Such a set is called a singleton set.

Example 26.7 (The Euclidean space R" is contractible). Let pbeapointinR",i: {p}
— R” the inclusion map, and r: R" — {p} the constant map. Then r o i = 1(,),
the identity map on {p}. The straight-line homotopy provides a homotopy between
the constant map i o r: R” — R” and the identity map on R":

F,t)=(—tx+trx)=(l—)x +1p.

Hence, the Euclidean space R” and the set {p} have the same homotopy type.
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26.3 Deformation Retractions

Let S be a submanifold of a manifold M, withi: S — M the inclusion map.

Definition 26.8. A retraction from M to S is amap r: M — S that restricts to the
identity map on S; in other words, r o i = 1g. If there is a retraction from M to S,
we say that S is a retract of M.

Definition 26.9. A deformation retraction from M to Sisamap F: M xR — M
such that for all x € M,

1) F(x,0) =x;
(ii) there is a retraction r: M — S such that F(x, 1) = r(x);
(iii) foralls € Sandt € R, F(s,t) =s.

If there is a deformation retraction from M to S, we say that S is a deformation retract
of M.

Setting f;(x) = F(x,t), we can think of a deformation retraction F: M x R
— M as a family of maps f;: M — M such that

(1) fo is the identity map on M
(i1) f1(x) = r(x) for some retractionr: M — S;
(iii) for every f the map f;: M — M leaves S pointwise fixed.

We may rephrase Condition (ii) in the definition as follows: there is a retractionr: M
— S such that fi = i o r. Thus, a deformation retraction is a homotopy between
the identity map 137 and i o r for a retraction 7: M — S and this homotopy leaves
S fixed for all time ¢.

Example 26.10. Any point p in amanifold M is aretract of M; simply take aretraction
to be the constant map r: M — {p}.

Example 26.11. The map F in Example 26.5 is a deformation retraction from the
punctured plane R? — {0} to the unit circle S'.

Generalizing Example 26.5, we prove the following theorem.

Proposition 26.12. If S C M is a deformation retract of M, then S and M have the
same homotopy type.

Proof. Let F: M x R — M be a deformation retraction and let r(x) = fi(x) =
F(x, 1) be the retraction. Because r is a retraction, the composite

SLMLS, rei=ls,
is the identity map on S. By the definition of a deformation retraction, the composite
MLsh oy
is f1 and the deformation retraction provides a homotopy
Jfi=ior~ fo=1uy.

Therefore, r: M — S is a homotopy equivalence, with homotopy inverse
i:§S—> M. O
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26.4 The Homotopy Axiom for de Rham Cohomology
We state here the homotopy axiom and derive a few consequences. The proof will be
given in Chapter 28.

Theorem 26.13 (Homotopy axiom for de Rham cohomology). Homotopic maps
fo, fi: M — N induce the same map fi = f*: H*(N) — H*(M) in cohomology.

Corollary 26.14. If f : M — N is a homotopy equivalence, then the induced map in
cohomology

¥ H*(N) - H*(M)
is an isomorphism.

Proof (of Corollary). Let g: N — M be a homotopy inverse to f. Then
gof~1py, fog~1n.

By the homotopy axiom,

(go =1y, (f o 9)* = 1.
By functoriality,
f* o g* = lH*(M)» g* o f* = IH*(N)'
Therefore, f* is an isomorphism in cohomology. O
Corollary 26.15. Suppose S is a submanifold of a manifold M and F is a deformation
retraction from M to S. Letr: M — S be the retraction r(x) = F(x,1). Thenr
induces an isomorphism in cohomology
o H*(S) = H*(M).

Corollary 26.16 (Poincaré lemma). Since R” has the homotopy type of a point, the
cohomology of R" is

Hk(Rn) _ R fork = O,
0 fork>D0.

More generally, any contractible manifold will have the same cohomology as a
point.

Example 26.17 (Cohomology of a punctured plane). For any p € R?, the map x >
x — p is a diffeomorphism of R? — {p} with R? — {0}. Because the punctured plane
R? — {0} and the circle S' have the same homotopy type (Example 26.5), they have
isomorphic cohomology. Hence, H*(R? — {p}) ~ H*(S") for all k > 0.

Example 26.18. The central circle of an open M&bius band M is a deformation retract
of M (Figure 26.3). Thus, the open M&bius band has the homotopy type of a circle.
By the homotopy axiom,

R fork=0,1,

H*(M) = H*(S") =
(M) R 0 fork > 1.
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Fig. 26.3. The Mobius band deformation retracts to its central circle..

Problems

26.1. Contractibility and path-connectedness
Show that a contractible manifold is path-connected.

26.2. Contractibility and deformation retraction
Prove that M is contractible if and only if for any p € M, there is a deformation
retraction from M to p.

26.3. Deformation retraction from R” to a point
Write down a deformation retraction from R” to {0}.

26.4. Deformation retraction from a cylinder to a circle
Show that the circle S' x {0} is a deformation retract of the cylinder ST x R.
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Computation of de Rham Cohomology

With the tools developed so far, we can compute the cohomology of many manifolds.
This chapter is a compendium of some examples.

27.1 Cohomology Vector Space of a Torus

Cover a torus M with two open subsets U and V as shown in Figure 27.1.

> &2 86

unv

M vnav ~sls!

Fig. 27.1. An open cover {U, V} of a torus.

Both U and V are diffeomorphic to a cylinder and therefore have the homotopy
type of a circle (Problem 26.4). Similarly, the intersection U NV is the disjoint union
of two cylinders A and B and has the homotopy type of a disjoint union of two circles.
Our knowledge of the cohomology of a circle allows us to fill in many terms in the
Mayer—Vietoris sequence:
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M vnav unv

HY S HXM)— O
d*
H| Bt RrReorR LSRR

HY'0—> R — ROR SRR

27.1)

Let jy: UNV — U and jy: UNV — V be the inclusion maps. If a is the
constant function with value a on U, then jl’}a is the constant function with the value
a on each component of U N V, that is,

jua = (a,a).
Therefore, for (a, b) € HO(U) & H(V),
a(a,b) = jyb— jha
= (b,b) — (a,a)
=0b-—a,b—a).
Similarly, let us now describe the map
g: HWye H' (V) > H'\(UNV)=H"(A) ® H (B).

Since A is a deformation retract of U, the restriction H*(U) — H™*(A) is an iso-
morphism. If wy generates H'(U), then J{ywu is a generator of H "'on A and on B.
Identifying HY U NV) with R ® R, we write j;}(x)U = (1, 1). Let wy be a generator
of H'(V). The pair of real numbers

(a,b) e HHU)® H' (V) ~R®R
stands for (awy, bwy). Then,

B(a,b) = jy (bov) — ji(awy)
= (b,b) — (a,a)
=W-—a,b—a).

By the exactness of the Mayer—Vietoris sequence,
H*(M) = imdj (because H>(U) @& H*(V) = 0)
~H\UNV) /kerd] (by the first isomorphism theorem)

~ R®R)/im B
~ R®R)/R ~R.

Applying Problem 25.2 to the Mayer—Vietoris sequence (27.1), we get

1-242—dimH'(M)+2—2+dim H>*(M) = 0.
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Since dim H2(M) = 1, this gives dim H' (M) = 2.
As a check, we can also compute H ! (M) from the Mayer—Vietoris sequence using
our knowledge of the maps « and S:

H'(M) ~ ker y @imy (by the first isomorphism theorem)
~imd; @ ker 8 (exactness of the M-V sequence)

~ (H'(UNV)/ker dy) @ ker B (first isomorphism theorem for d;)
>~ (ReR)/ima) @R
~R&éR.

27.2 The Cohomology Ring of a Torus

A torus is diffeomorphic to the quotient of R? by the integer lattice A = Z>. The
quotient map
7:R? > R? /A

induces a pullback map on differential forms,
7 QF(R?2/A) — QF(RY).

Since : R — R?/A is a local diffeomorphism, it is a submersion at each point.
By Problem 18.7, 7*: Q*(R?/A) — ©*(R?) is an inclusion.
For A € A, define ¢, : R> — R? to be translation by A,

G(p)=p+Ar, peR

A differential form @ on R? is said to be invariant under translation by % € A if
Lo = o.
A

Proposition 27.1. The image of the inclusion map w*: Q*(R%/A) — Q*(R?) is the
subspace of differential forms on R? invariant under translations by elements of A.

Proof. Forall p € R?,
(o b)(p) =nm(p+2)=nr(p).
Hence, 7 o £, = m. By the functoriality of the pullback,
7t =45 om™.
Thus, for any @ € QF(R?/A), 7*w = €{n*w. This proves that 7*w is invariant
under translations ¢, for all A € A.

Conversely, suppose @ € QX(R?) is invariant under translations £, for all » € A.
For p e R2/Aand vy, ..., v € T,,(R2/A), define

wp(1, ..., ) =051, ..., V) (27.2)
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forany p € 7~ '({p}) and 0y, ..., U € TI;R2 such that m,v; = v;. Any other point
in 7 ~!({p}) may be written as j + A for some A € A. By invariance,

w5 = (L50) 5 = L5 (Df11)-

So
w5 (U1, ..., 0p) = L5 (D512) (01, - - ., Up)
= Wppn(UasV1, . .., s Vi),
which shows that w, is well defined, independent of the choice of p. Thus, w €
QF(R?/A). Moreover, by (27.2), for any p € R and 9y, .. ., iy € T5(R?),
@p(V1, ..., V) = Wr(p) (41, . .., T4 UE)
= (m*w) (01, ..., 0p).
Hence, ® = n*w. O

Let (x, y) be the coordinates on R?. Since for any A € A,
G(dx) =d(lix) =d(x + 1) =dx,

by Proposition 27.1 the 1-form dx on R? is 7* of a I1-form on the torus R?/A.
Similarly, dy is also 7* of a 1-form on the torus. We denote these 1-forms on the
torus by the same symbols dx and dy.

Proposition 27.2. Let M be the torus R*/72. A basis for the cohomology vector
space H*(M) is 1,dx,dy,dx N dy.

Proof. Since |, v dx A dy = 1, the closed 2-form dx A dy defines a nonzero coho-
mology class. By the computation of Section 27.1, H*(M) = R. So dx A dy is a
basis for H2(M).

It remains to show that the set of closed 1-forms dx,dy on M is a basis for
H'(M). Define two closed curves Cy, C, in M = R?/Z? as the images of the maps

¢:[0,1] > M,
c1() = [, 0)], c2(1) = [(0, D)1,

(see Figure 27.2). Denote by p the point [(0, 0)] in M. Since removing a point does
not change the value of an integral and c; is a diffeomorphism of the open interval
(0, 1) onto Cy — {p},

1
/dx:/ dx:/ c’fdx:/dt:l.
Ci Ci—{p} 0,1) 0

In the same way, because cjdy = 0,

1
/ dy:/ dy:/ cidy =0.
Ci Ci—{p} 0
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G

Cq G

Fig. 27.2. Two closed curves on a torus.

Similarly,

/ dx =0, / dy = 1.
Cy Cy

As x is not a function on the torus M, dx is not necessarily exact on M. In fact,
if dx = df for some C* function f on M, then

by Stokes’ theorem and the fact that 9C; = @. This contradicts the fact that |, c, dx =
1. Thus, dx is not exact on M. By the same reasoning, dy is also not exact on M.
Furthermore, the cohomology classes [dx] and [dy] are linearly independent, since if
[dx] were a multiple of [dy], then fC] dx would have to be a multiple of fC] dy =0.
By Section 27.1, H'(M) is two dimensional. Hence, dx, dy is a basis for H'\(M).
O

The ring structure of H*(M) is transparent from this proposition. Abstractly it is
the algebra

A(a, b) :=R[a, b]/(a*, b*, ab + ba), dega =1,degh =1,

called the exterior algebra on two generators a and b of degree 1.

27.3 The Cohomology of a Surface of Genus g

Using the Mayer—Vietoris sequence to compute the cohomology of a manifold often
leads to ambiguities, because there may be several unknown terms in the sequence.
We can resolve these ambiguities if we can describe explicitly the maps occurring in
the Mayer—Vietoris sequence. Here is an example of how this might be done.

Lemma 27.3. Suppose p is a point in a compact oriented surface M without bound-
ary, and i: C — M — {p} is the inclusion of a small circle around the puncture
(Figure 277.3). Then the restriction map

i*: H'(M — {p}) — H'(C)

is the zero map.
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M <><:>

Fig. 27.3. Punctured surface.

Proof. An element [w] € H'(M — {p}) is represented by a closed 1-form w on
M — {p}. Because the linear isomorphism H'(C) ~ H'(S') ~ R is given by
integration over C, to identify i*[w] in H'(C), it suffices to compute the integral
* 5k
Jci*o.
If D is the open disk in M bounded by the curve C, then M — D is a compact
oriented surface with boundary C. By Stokes’ theorem,

/i*w:/ i*w:/ do =0
c 3(M—D) M-D

because dw = 0. Hence, i*: H'(M — {p}) — H'(C) is the zero map. ]

Proposition 27.4. Let M be a torus, p a point in M, and A the punctured torus
M — {p}. The cohomology of A is

R fork =0,
HYA) = {R? fork=1,
0 fork>1.

Proof. Cover M with two open sets, A and a disk U containing p. Since A, U,
and A N U are all connected, we may start the Mayer—Vietoris sequence with the
HY(M) term (Proposition 25.3(ii)). With H*(M) known from Section 27.1, the
Mayer—Vietoris sequence becomes

M ULA UNA~S!

2o 4 2
H —- R — H*(A) — 0

H|0>ReoR D HI(A) S HI(SY

Because H'(U) = 0, the map a: H'(A) — H'(S!) is simply the restriction
map i*. By Lemma 27.3, « = i* = 0. Hence,

H'(A) =kera =imB~H'(M)~R®R
and there is an exact sequence of linear maps
1oy 4 2
0—H(S)—>R— H*(A) — 0.

Since H!(S!) ~ R, it follows that HZ(A) = 0. m]
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Proposition 27.5. The cohomology of a compact orientable surface X of genus 2 is

R fork=0,2,
HYZ) = {R* fork =1,
0 fork > 2.
unyv
p3) vnav
~ sl

Fig. 27.4. An open cover {U, V} of a surface of genus 2.

Proof. Cover X, with two open sets U and V as in Figure 27.4. The Mayer—Vietoris
sequence gives

M vuv unv ~ st

H? — H*(=Z) — 0
H'0— HY(Z) > R2oR2 S R

The map o: H'(U) ® H'(V) — H'(S') is the difference map
a(wy, wy) = jyov — jiou,

where jy and jy are inclusions of an S' in U N V into U and V, respectively. By
Lemma 27.3, jj; = j; = 0, so @ = 0. It then follows from the exactness of the
Mayer—Vietoris sequence that

H' (%) ~H W)y H' (V) ~R*

and
H*(Z)) ~ H'(SY) ~ R. O

A genus 2 surface ¥, can be obtained as the quotient space of an octagon with its
edges identified following the scheme of Figure 27.5.

To see this, first cut X, along the circle e as in Figure 27.6. Then the two halves
A and B are each a torus minus an open disk (Figure 27.7), so that each half can be
represented as a pentagon (Figure 27.8).

When A and B are glued together along e, we obtain the octagon in Figure 27.5.

By Lemma 27.3,if p € 3y and i: C — X, — {p} is a small circle around p in
Y, then the restriction map
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Fig. 27.5. A surface of genus 2 as a quotient space of an octagon.

e

Fig. 27.6. A surface of genus 2 cut along a curve e.

d b

c c a a
e e
d b

Fig. 27.7. Two halves of a surface of genus 2.

Fig. 27.8. Two halves of a surface of genus 2.
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i*: H'(Z2 = {p) — H'(O)

is the zero map. This allows us to compute inductively the cohomology of a compact
orientable surface X, of genus g.

Exercise 27.6 (Cohomology of a surface). Compute the cohomology vector space of a
compact orientable surface X, of genus g.

Problems

27.1. Real projective plane
Compute the cohomology of the real projective plane (Figure 27.9).

a

Fig. 27.9. The real projective plane.

27.2. The n-sphere
Compute the cohomology of the sphere S”.

27.3. Cohomology of a multiply punctured plane

(a) Let p, ¢ be distinct points in R?>. Compute the de Rham cohomology of R? —
{p.q}.

(b) Let p1, ..., p, be distinct points in R?. Compute the de Rham cohomology of
R2 — {p1,..., pn}
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Proof of Homotopy Invariance

In this chapter we prove the homotopy invariance of de Rham cohomology.

If f: M — N is a C* map, the pullback maps on differential forms and on
cohomology classes are normally both denoted f*. Since this might cause confu-
sion in the proof of homotopy invariance, in this chapter we denote the pullback of
forms by

£ QK N) = QM.
and the induced map in cohomology by
* HY(N) = HY(M).
The relation between these two maps is
ol =[f*]

for [w] € H*(N).

Theorem 28.1 (Homotopy axiom for de Rham cohomology). Tiwvo smoothly homo-
topic maps f, g: M — N of manifolds induce the same map in cohomology:

f=g¢" H V) — HNY (M),

We first reduce the problem to two special maps ip and i1: M — M x R, which
are the 0-section and the 1-section, respectively, of the product line bundle M x R
— M:

io(x) = (x,0), i1(x) = (x, I).
Then we introduce the all important technique of cochain homotopy. By finding a

cochain homotopy between i; and i}, we prove that they induce the same map in
cohomology.
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28.1 Reduction to Two Sections

Suppose f and g: M — N are smoothly homotopic maps. Let F: M x R — N be
a homotopy from f to g. This means

F(x,0) = f(x), F(x,1) =gXx), (28.1)

forallx € M. Foreacht € R, definei;: M — M xRtobethesectioni;(x) = (x, t).
We can restate (28.1) as

Foig=f, Foij=g.
By the functoriality of the pullback (Remark 23.8),
=it F*, gt =it F"
This reduces the proof of homotopy invariance to the special case
it =it
The two maps ig, i1: M — M x R are obviously homotopic via the identity map

lyxr: M xR — M x R.

28.2 Cochain Homotopies

The usual method for showing that two cochain maps
5 g% Q5 (N) — QY (M)
induce the same map in cohomology is to find a map
K: Q*(N) — (M)
of degree —1 such that
g — ff=dK £ Kd.

Such a map K is called a cochain homotopy from f to g. If w is any closed form on
N, then
fo— ffo=dKo+ Kdow =dKo,

SO
ol = g*lwl.

Thus, the existence of a cochain homotopy between f* and g* implies f* = g*.

Remark 28.2. If one could find a map K : Q*(N) — Q*~!(M) such that g* — f* =
dK on Q*(N), then f# = g on H*(N). However, such a map almost never exists;
it is necessary to have the term Kd as well. The cylinder construction in homology
theory [15, p. 65] shows why it is natural to consider dK + Kd.
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28.3 Differential Forms on M x R

Recall thatasum ), w, of C* differential forms on a manifold M is called a locally
finite sum if the collection of supports, {supp wy}, is locally finite. This means every
point p in M has a neighborhood V), such that V), intersects only finitely many of the
sets supp wy. If supp wy is disjoint from V), then w, = 0 on V,,. Thus, on V), the
locally finite sum ), @, is actually a finite sum. By definition, a partition of unity
> pq is a locally finite sum.

Letm: M x R — M be the projection to the first factor. In this section we will
show that every C*° differential form on M x R is a locally finite sum of the following
two types of forms:

D fx, 07",
1) f(x,t)dt Am*o,

where f(x,t)isa C* function on M x R and ¢ is a C* form on M.

In general, a decomposition of a differential form on M x R into a locally finite
sum of Type I and Type II forms is far from unique. However, we will show that there
is an unambiguous procedure to produce uniquely such a locally finite sum, once we
fix an atlas {(Ug, x(l, ..., x})} on M, a partition of unity {p,} subordinate to {Uy},
and a collection of C* functions g, on M such that

8« =1 onsuppp, and suppgy C Uy.

The existence of such functions g, follows from the smooth Urysohn lemma (Prob-
lem 13.3).

Fix Uy, po, and g4 as above. Then {7 ~'U,} is an open cover of M x R, and
{7* pg} is a partition of unity subordinate to {7 ~!U,} (Problem 13.5). On 7~ 'U, we
have coordinates 7*x}, ... w*x, t. For the sake of simplicity, we sometimes write
x!, instead of w*x .

Let w be any C* k-form on M x R. Since Y 7*p, = 1,

0= Z(rr*pa)w. (28.2)
Write wy, for (7*py)w. Then
supp wy C supp ¥ py C ' U,.
On 7' U, the k-form w, may be written uniquely as a linear combination
wy =Y _afdx)+ Y bSdt ndx], (28.3)

where af and b% are C* functions on 7~ 'U, with support in supp 7*p,. The sum
in (28.3) shows that w, is a sum of Type I and Type II forms on 7 ~'U,. In this
sum af and b can be extended by zero to C* functions on M x R, since they have

support in 7 ! U,. Unfortunately, dx! and dx;] make sense only on U, and cannot
be extended to M, at least not directly.
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To extend the decomposition (28.3) to M x R, note that since suppw, C
supp 7 *py and w*g, = 1 on supp 7 * oy,

Wy = (T*ga)we = ) af (1 ga) dxg + Y b§di A (*ge) dx],
= af (" gudxl) + Y b§di A (T*gadx]). (28.4)

Since supp g C Uy, 8o dx! can be extended by zero to M. Equations (28.2) and
(28.4) prove that w is a locally finite sum of Type I and Type II forms on M x R.
Moreover, we see that given Uy, oy, and gy, the decomposition in (28.4) is unique.

28.4 A Cochain Homotopy Between i and i}

Using the decomposition (28.4), define
K: Q*(M x R) — Q* (M)

by the following rules:

(i) on Type I forms,
K(fn*w) =0,

(i) on Type II forms,

1
K(fdt Anm*w) = (f f(x,t)dt)w,
0

and extend by linearity.

28.5 Verification of Cochain Homotopy

We now check that
dK + Kd =i —ij.

It suffices to check this equality on any coordinate open set. So fix a coordinate open
set (U xR, w*x!, ..., 7*x", 1) on M x R. On Type I forms,

a ) .
Kd(fr*w) =K (a—j: dt NT¥w + IZ a—)];n*dxl Ao+ fﬂ*du)) .

In the sum on the right-hand side, the second and third terms are Type I forms; they
map to O under K. Thus,
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1
Kd(frn*w) =K <%dt /\n*a)) = </ %dt) w
at o Ot

= (f(x. 1) = f(x.0)o
= (i — i) (f (. D" ).

Since dK (fn*w) = d(0) = 0, on Type I forms
dK + Kd = if —if.

On Type II forms, because d is an antiderivation,

1
dK(fthn*w):d((/ f(x,t)dt)w)
0
9 1 ) 1
= — , 0 dt ) dx! +[ ,)dt | do,
Z(ax’/o fx, 1) t) x'Aw (0 fx,t) t) w

Kd(fdt Anm*w) = K@(fdt) A0 — (f dt) A di*o)

and

0 ,
=K (Z a—j;.n*dx’ A dt /\n*w) — K(fdt A *dw)
1

=—Xi:</ol%dt>dxiAw—(/Olf(x,t)dt>dw.

Since f(x,t) is C*°, we can differentiate under the integral sign fol . Thus, on
Type 11 forms,
dK + Kd =0.

On the other hand,
i(f(x,)dt Am¥w) =0

because i} dt = dift = d(1) = 0. Similarly, ij also vanishes on Type II forms.
Therefore,
dK + Kd =0=i{ —ij

on Type II forms.

This completes the proof that K is a cochain homotopy between i and i}. The
existence of the cochain homotopy K proves that the induced maps in cohomology
ig and if are equal. Therefore,

=it o F" = it o F* =¢"
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Appendices



A

Point-Set Topology

A.1 Topological Spaces

The prototype of a topological space is the Euclidean space R". However, the Eu-
clidean space comes with many additional structures, such as a metric, coordinates,
an inner product, and an orientation, that are extraneous to its topology. The idea be-
hind the definition of a topological space is to discard all those properties of R” that
have nothing to do with continuous maps, thereby distilling the notion of continuity
to its very essence.

In advanced calculus one learns several characterizations of a continuous map,
among which is the following: amap f from an open subset of R” to R™ is continuous
if and only if the inverse image f~!'(V) of any open set V in R™ is open in R”. This
shows that continuity can be defined solely in terms of open sets.

To define open sets axiomatically, we look at the properties of open sets in R”".
Recall that in R” the distance between two points p and g is given by

n 1/2
d(p.q) = [Z(p’ - q’)z} :
i=1
and the open ball B(p, r) with center p € R” and radius r > 0 is the set

B(p,r) ={x e R" | d(x, p) <r}.

Aset U in R” is said to be open if for every p in U, there is an open ball B(p, r) with
center p and radius r such that B(p, r) C U. Itis clear that the union of an arbitrary
collection {U,} of open sets is open, but the same is not true of the intersection of
infinitely many open sets.

Example A.1. The intervals (—1/n,1/n), n = 1,2,3, ..., are all open in R but
their intersection ﬂ,fozl (—1/n, 1/n) is the singleton set {0}, which is not open.

What is true is that the intersection of a finite collection of open sets in R” is open.
This leads to the definition of a topology on a set.
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Definition A.2. A ropology on a set S is a collection T of subsets containing both
the empty set & and the set S such that T is closed under arbitrary union and finite
intersection, i.e., if U, € T for all @ in an index set A, then UQGA Uy, € T and if
{Uy,...,U,} € T, then ﬂ?:l Ui 7.

The elements of T are called open sets and the pair (S, T)is called a ropological
space. To simplify the notation, by a “topological space S”’ we mean a set S together
withatopology T on S. Aneighborhood of apoint p in §'is an open set U containing p.

Example A.3. The open subsets of R” as we understand them in advanced calculus
form a topology on R”, the standard topology of R". In this topology a set U is open
in R” if and only if for every p € U, there is an open ball B(p, €) with center p and
radius € which is contained in U. Unless stated otherwise, R” will always have its
standard topology.

Example A 4. For any set S, the collection T = {&, S} consisting of the empty set &
and the entire set S is a topology on S.

Example A.5. For any set S, let T be the collection of all subsets of S. Then T is
a topology on S, called the discrete topology. The discrete topology can also be
characterized as the topology in which every point is open.

The complement of an open set is called a closed set. By de Morgan’s laws
from set theory, arbitrary intersections and finite unions of closed sets are closed
(Problem A.3). One may also specify a topology by describing all the closed sets.

Remark A.6. When we say that a topology is closed under arbitrary union and finite
intersection, the word “closed’ has a different meaning from that of a “closed subset.”

Example A.7 (Finite-complement topology on R). Let T be the collection of subsets
of R! consisting of the empty set @, the line R! itself, and the complements of finite
sets. Then T is closed under arbitrary union and finite intersection and so defines a
topology on R! called the finite-complement topology.

Example A.8. A famous topology in mathematics is the Zariski topology in algebraic
geometry. Let K be a field and let S be the vector space K". Define a subset of K" to
be closed if it is the zero set Z(f1, ..., f;) of finitely many polynomials fi, ..., f;
on K”. To show that these are indeed the closed subsets of a topology, we need to
check that they are closed under arbitrary intersection and finite union.

Let I be the ideal generated by f1, ..., f; in the polynomial ring K [x1, ..., x,].
Then Z(fi,..., fy) = Z(I), the zero set of all the polynomials in the ideal /.
Conversely, by the Hilbert basis theorem, any ideal in K[xy, ..., x,] has a finite set
of generators. Hence, the zero set of finitely many polynomials is the same as the
zero set of an ideal in K[xq, ..., x,].

Exercise A.9 (Intersection and union of zero sets). Show that

(i) (2Ue) =2 (Z Ia)
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and
(i) ZA itV ZUgjt) = ZU figjhi,j),
where )", Iy is the smallest ideal in K[x7, ..., x,] containing all the ideals I, and i and j

run over some finite index sets.

It follows that the complements of the Z(7)’s form a topology on K", called the
Zariski topology on K". Since the zero set of a polynomial on R is a finite set, the
Zariski topology on R is precisely the finite-complement topology of Example A.7.

A.2 Subspace Topology

Let (S, 7) be a topological space and A a subset of S. Define T4 to be the collection
of subsets
Ta={UNA|U €T}

By the distributive property of union and intersection,

U(Ua NA) = (UUO,> NnA

and

(Wwina)= (ﬂ Ui> NA,

which shows that T 4 is closed under arbitrary union and finite intersection. Moreover,
I, A € T4. So T4 is a topology on A, called the subspace topology or the relative
topology of Ain §S.

Example A.10. Consider the subset A = [0, 1] of R. In the subspace topology, the
half-open interval [0, 1/2) is an open subset of A, because

[0, =3 HnA.

(See Figure A.1.)

Bf—

Fig. A.1. An open subset of [0, 1).
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A.3 Bases

Itis generally difficult to describe directly all the open sets in a topology J. What one
can usually do is to describe a subcollection B of T so that any open set is expressible
as a union of open sets in B. For example, we define open sets in R” in terms of open
balls.

Definition A.11. A subcollection B of a topology T is a basis for T if given any open
set U and a point p in U, there is an open set B € B suchthat p € B C U. An
element of the basis B is called a basic open set.

Example A.12. The collection of all open balls B(p, r) inR"*, with p € R" andr € R,
is a basis for the standard topology of R”".

Proposition A.13. A collection B of open sets of S is a basis if and only if every open
set in S is a union of sets in B.

Proof.
(=) Suppose B is a basis and U is an open set in S. For every p € U, there is a basic
open set B, € B such that p € B, C U. Therefore, U = UpEU Bp.

(<) Suppose every open set in S is a union of open sets in B. Given an open set U
and a point p in U, since U = UBae‘B By, thereisa B, € Bsuchthat p € B, C U.
Hence, B is a basis. O

The following proposition gives a useful criterion for deciding if a collection B
of subsets is a basis for some topology.

Proposition A.14. A collection B of subsets of a set S is a basis for some topology T
on S if and only if

(i) S is the union of all the sets in B, and
(ii) given any two sets By and By € B and p € B; N By, there is a set B € B such
that p € B C By N By.

Proof.
(=) (i) follows from Proposition A.13.

(ii) If B is a basis, then Bj and B, are open sets and hence so is B; N B. By the
definition of a basis, there isa B € B such that p € B C By N By.

(<) Define T to be the collection consisting of all sets that are unions of sets in B.
Then the empty set @ and the set S are in T and 7 is clearly closed under arbitrary
union. To show that T is closed under finite intersection, let U = | u B, and
V =, By bein T, where B, B, € B. Then

unv = (L}LJBH> N (LUJB,,)
= U(BM N B,).

J7RY
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Thus, any p in U NV isin B, N B, for some p, v. By (ii) there is a set B, in B
such that p € B, C B, N B,. Then

unv= |J ByeT o
peUnvV

The topology T defined in the proof of Proposition A.14 is called the topology
generated by the collection B.

Proposition A.15. Let B = {By} be a basis for a topological space S, and A a
subspace of S. Then {By, N A} is a basis for A.

Proof. Let U’ be any open set in A and p € U’. By the definition of subspace
topology, U’ = U N A for some open set U in S. Since p € UN A C U, there is a
basic open set B, such that p € B, C U. Then

pEB,NACUNA=U,

which proves that the collection {B, N A | B, € B} is a basis for A. O

A.4 Second Countability

We say that a point in R” is rational if all of its coordinates are rational numbers. Let
Q be the set of rational numbers and Q the set of positive rational numbers.

Proposition A.16. The collection By of all open balls in R" with rational centers
and rational radii is a basis for R".

Fig. A.2. A ball with rational center ¢ and rational radius r/2.

Proof. Given any open set U and p in U, there is an open ball B(p, r) withr € Q
such that p € B(p,r) C U. Now choose a rational point g in the smaller ball
B(p, r/2). We claim that

PEB (q, %) C B(p,r). (A1)
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(See Figure A.2.) Since d(p,q) < r/2, we have p € B(q,r/2). Nextif x €
B(q,r/2), then
’

2

=r.

-
d(x,p) <d(x,q)+d(q, p) < 5 +

So x € B(p,r). This proves the claim (A.1) and shows that the collection By, of
open balls with rational centers and rational radii is a basis for R”. O

Both of the sets Q and Q7 are countable. Since the centers of the balls in By
are indexed by Q", a countable set, and the radii are indexed by QT, also a countable
set, the collection By, is countable.

Definition A.17. A topological space is said to be second countable if it has a count-
able basis. (See Definition A.58 for first countability.)

Example A.18. Proposition A.16 shows that R” is second countable.
Proposition A.19. A subspace A of a second countable space S is second countable.

Proof. By Proposition A.15, if B = {B;} is a countable basis for S, then By :=
{B; N A} is a countable basis for A. O

A.5 Separation Axioms

There are various separation axioms for a topological space. The only ones we will
need are the Hausdorff condition and normality.

Definition A.20. A topological space S is Hausdorff if given any two distinct points
x, yin S, there exist disjoint open sets U, V such thatx € U and y € V. A Hausdorff
space is normal if given any two disjoint closed sets F, G in S, there exist disjoint
open sets U, V such that F C U and G C V (Figure A.3).

(Ho e

Fig. A.3. The Hausdorff condition and normality.

Proposition A.21. Every singleton set (a one-point set) in a Hausdorff space S is
closed.
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Proof. Let x € S. By the Hausdorff condition, for any y # x, there exists an open
set U > x and an open set V > y such that U and V are disjoint. In particular,

yevVcS-UcCS—({x}
This proves that § — {x} is open. Therefore, {x} is closed. O

Example A.22. The Euclidean space R” is Hausdorff, for given distinct points x, y
in R?, if ¢ = %d(x, y), then the open balls B(x, €) and B(y, €) will be disjoint
(Figure A.4).

4 \\
- 4
,/ SO \
V4 A | 1
] y 1
1 [AN V4
\ X (A 4
A Y 4
~ -,

Fig. A.4. Two disjoint neighborhoods in R".

Proposition A.23. Any subspace A of a Hausdorff space S is Hausdorff.

Proof. Let x and y be distinct points in A. Since S is Hausdorff, there exist disjoint
neighborhoods U and V of x and y, respectively, in S. Then U N A and V N A are
disjoint neighborhoods of x and y in A. O

A.6 The Product Topology

The Cartesian product of two sets A and B is the set A x B of all ordered pairs
(a,b) witha € A and b € B. Given two topological spaces X and Y, consider the
collection B of subsets of X x Y of the form U x V, with U open in X and V open
inY. If Uy x Vy and Up x V; are in ‘B, then

(U1 x V)N (Uz x V) = (U1 NUR) x (V1N V),

which is also in B (Figure A.5). From this, it follows easily that B satisfies the
conditions of Proposition A.14 for a basis and generates a topology on X x Y, called
the product topology. Unless noted otherwise, this will always be the topology on
the product of two topological spaces.

Proposition A.24. Let {U;} and {V;} be bases for the topological spaces X and Y,
respectively. Then {U; x V;} is a basis for X x Y.
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Y

B
1 I
v 3 :
2T : 1 : 1
fw| v Lk

| L __ 1

X

— U —

— U, —

Fig. A.S. Intersection of two basic open subsets in X x Y.

Proof. Given any open set W in X x Y and a point (x, y) € W, we can find a basic
openset U x V in X x Y such that (x, y) € U x V C W. Since U is open in X and
{U;} is a basis for X,

xelU;, cU

for some Uj;. similarly,

yev;cv
for some V;. Therefore,
(x,y) €U xV; CUXxV.
By the definition of a basis, {U; x V;} is a basis for X x Y. ]
Corollary A.25. The product of two second countable spaces is second countable.

Proposition A.26. The product of two Hausdorff spaces X and Y is Hausdorff.

Proof. Given two distinct points (x1, y1), (x2, ¥2) in X x Y, without loss of generality
we may assume that x; # x». Since X is Hausdorff, there exist disjoint open sets
Uy, Uz in X such that x; € Uy and xp € U,. Then Uy x Y and U x Y are disjoint
neighborhoods of (x1, y1) and (x2, y2) (Figure A.6). So X x Y is Hausdorff. m]

The product topology can be generalized to the product of an arbitrary collection
{X«}aea of topological spaces. By definition, the product topology on the Cartesian
product [ [, 4 X« is the topology with basis consisting of sets of the form [ [, . 4 U,
where U, is open in X, and U, = X, for all but finitely many @ € A.
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Y
)
(x2, ¥2)
[ ]
(1, Y1)
X1 X2 X
|~ U —| f— U, —]

Fig. A.6. Two disjoint neighborhoods in X x Y.

A.7 Continuity

Let f: X — Y be a function of topological spaces. Mimicking the definition from
advanced calculus, we say that f is continuous at a point p in X if for every neigh-
borhood V of f(p) in Y, there is a neighborhood U of p in X such that f(U) C V.
We say that f is continuous on X if it is continuous at every point of X.

Proposition A.27. A function f: X — Y is continuous if and only if the inverse
image of any open set is open.

Proof.

(=) Suppose V is open in Y. To show that f~!(V) is open in X, let p € f~1(V).
Then f(p) € V. so there is a neighborhood U of p such that f(U) C V. Therefore,
pelUC f‘l(V), which proves that f_l(V) is open in X.

(<) Let p € X, and V a neighborhood of f(p) in Y. By hypothesis, f~1(V) is
open in X. Since f(p) € V, p € f~1(V). So there is an open set U in X such that
peU c f~Y(V). This means f(U) C V. (In fact, one may take U = ~Hwv))

O
Example A.28. If A is a subspace of X, then the inclusion map

i: A— X,

i(a) =a,
is continuous.

Proof. If U is open in X, then i~'(U) = U N A, which is open in the subspace
topology of A. O

Example A.29. The projection: X x Y — X, w(x, y) = x, is continuous.

Proof. Let U be open in X. Then 7' (U) = U x Y, which is open in the product
topology of X x Y. O
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If A is a subspace of X and f: X — Y is a function, the restriction of f to A,
fla:A—Y,

is defined by
(fla)(a) = f(a).

Proposition A.30. The restriction f|a of a continuous function f: X — Y to a
subspace A is continuous.

Proof. Let V be open in Y. Then
(flo'Vy=laecA| flaeV)i=f ' (V)NA.

Since f is continuous, f~1(V) is open in X. Hence, f~1(V) N A is open in A. By
Proposition A.27, f|4: A — Y is continuous. 0O

Continuity may also be phrased in terms of closed sets.

Proposition A.31 (Continuity in terms of closed sets). A function f: X — Y is
continuous if and only if the inverse image of any closed set is closed.

Proof. Problem A.6. O

A.8 Compactness

Definition A.32. Let A be a subset of a topological space S. An open cover of A in S
is a collection {Uy,} of open sets in S such that A C | J, Us. A subcover of an open
cover is a subcollection whose union still contains A. The subset A is compact in S
if every open cover of A in S has a finite subcover.

Fig. A.7. An open cover of A.

The subset A C § with its subspace topology is a topological space. An open
cover of A in A is a collection of sets of the form U, N A, with U, open in S, such that

Ac|JWanA.

Thus, we can speak of A being compact in S or in A. The next proposition shows
that the two notions of compactness are equivalent.
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Proposition A.33. A subspace A of a topological space S is compact in S if and only
if it is compact in A, i.e., in the relative topology on A.

Proof.
(=) Let {Vy} be an open cover of A by open subsets of A. For each «, since V, is
open in A, there exists an open subset U, of S such that V,, = U, N A. Because

Ac|Vecl ..
o o

{Uq} is an open cover of A in S. By hypothesis, there is a finite subcollection {Uy, }
such that A C | J; Uy,;. Then

AcC (UU%) NA =Wy N4 =] Ve

So {Vy,} is a finite subcover of {V,} that covers A. This proves that A is compact
in A.

(<) Let {Uy} be an open cover of A in S. Then {U, N A} is an open cover of A in
A. By the compactness of A in A, there is a finite subcover {Uy; N A}. Then

Ac| Wy na) =] U,

1

Hence, {Uy,} is a finite subcover of A in S. This proves that A is compactin §. O
Proposition A.34. A closed subset F of a compact topological space S is compact.

Proof. Let {U,} be an open cover of F in S. The collection {U,, S — F} is then an
open cover of S. By the compactness of S, there is a finite subcover {Uy,, S — F}
that covers S. So F C |J; Uy;. This proves that F is compact. O

Proposition A.35. In a Hausdorff space S, it is possible to separate a compact subset
K and a point p not in K by disjoint open sets, i.e., there exist an open set U D K
and an open set V > p suchthatU NV = &.

Proof. By the Hausdorff property, for every x € K, there are disjoint open sets
Uy > x and V, > p. The collection {U, },ck is a cover of K by open subsets of S.
Since K is compact, it has a finite subcover {Uy, }.

Let U = |J; Uy, and V = (1); Vy,. Then U is an open set of S containing K.
Being the intersection of finitely many open sets containing p, V is an open set
containing p. Moreover, the set

UﬂV:U(UxiﬂV)

1

is empty since each Uy, NV C Uy, N V,,, which is empty. O
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Proposition A.36. Every compact subset K of a Hausdorff space S is closed.

Proof. By the preceding proposition, for every point p in § — K, there is an open set
V suchthat p € V C §— K. This proves that S — K is open. Hence, K isclosed. O

Exercise A.37 (Compact Hausdorff space). Prove that a compact Hausdorff space is normal.
(Normality was defined in Definition A.20.)

Proposition A.38. The image of a compact set under a continuous map is compact.

Proof. Let f: X — Y be a continuous map and K a compact subset of X. Suppose
{Uy} is a cover of f(K) by open subsets of Y. Since f is continuous, the inverse
images f~!'(U,) are all open. Moreover,

Kc 'y (U Ua) =Jr ' ww.

So {f~1(Uy)} is an open cover of K in X. By the compactness of K, there is a finite
subcollection { f -1 (Ug;)} such that

KclJr'Wa)=r" (U U) :

Then f(K) C |J; Uy,;. Thus, f(K) is compact. O

Recall that amap f: X — Y is said to be open if the image of every open set
in X is open in Y; similarly, f: X — Y is said to be closed if the image of every
closed set in X is closed in Y.

Proposition A.39. A continuous bijection f: X — Y from a compact space X to a
Hausdorff space Y is a homeomorphism.

Proof. Ttsuffices to show that f~!: ¥ — X is continuous. By Proposition A.31, this
is equivalentto f = (f~')~!: X — Y being a closed map. Let F be a closed subset
of X. Since X is compact, F is compact (Proposition A.34). By Proposition A.38,
f(F)iscompactin Y. Since Y is Hausdorff, f (F) is closed (Proposition A.36). This
proves that f~! is continuous. O

Exercise A.40 (Finite union of compact sets). Prove that a finite union of compact subsets of
a topological space is compact.

We mention without proof an important result. For a proof, see [14, Theorem 26.7,
p. 167, and Theorem 37.3, p. 234].

Theorem A.41 (The Tychonoff theorem). The product of any collection of compact
spaces is compact in the product topology.
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A.9 Connectedness

Definition A.42. A topological space S is disconnected if it is the union of two dis-
joint nonempty open subsets S = U U V (Figure A.8). It is connected if it is not
disconnected. A subset A of § is disconnected, if it is disconnected in its subspace
topology.

’ N ! RS

/ \ \ S
(/2 B A AN
\ / o \
\\_’/ \~~-”

Fig. A.8. A disconnected space.

Proposition A.43. A subset A of a topological space S is disconnected if and only if
there are two open subsets U and V in S such that

HDUNA£2, VNA#D,
(Y UNVNA=g,
(i) ACUUV.

A pair of open sets in S with these properties is called a separation of A (Figure A.9).

Fig. A.9. A separation of A.

Proof. Problem A.10. O

Proposition A.44. The image of a connected space X under a continuous map f: X
— Y is connected.

Proof. Since f: X — Y is continuous if and only if f: X — f(X) is continuous,
we may assume that f: X — Y is surjective. Now suppose ¥ = f(X) is not
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connected. Then f(X) = U U V for disjoint nonempty open subsets U and V. It
follows that
X=fwuv)y=rurtm.

By the continuity of f, f~!'(U)and f~!(V) are open. They are clearly nonempty and
disjoint, contradicting the connectedness of X. Hence, f(X) must be connected. O

Proposition A.45. In a topological space S the union of a collection of connected
subsets Ay having a point p in common is connected.

Proof. Suppose | J, Ao = U U V, where U and V are disjoint nonempty subsets
of | J, A«. The point p belongs to either U or V. Assume without loss of generality
that p € U.

For each «,

Ay =A, NUUV)=(Aa NU)U (A, NV).

The two open sets A, NU and A, NV of A, are clearly disjoint. Since p € A, NU,
Ay N U is nonempty. By the connectedness of A,, A, N V must be empty for all «.

Hence,
V= <UAa) nNv = U(AaﬂV)

is empty, a contradiction. So (J, A, must be connected. O

A.10 Connected Components

Definition A.46. In a topological space S, the connected component C, of a point x
is the largest connected subset of S containing x.

By Proposition A.45, the connected component of x is the union of all the con-
nected subsets of S containing x.

Remark A.47. For any two points x, y € §, the connected components Cy and C are
either disjoint or they coincide, for if C, and C, have a point p in common, then by
Proposition A.45, their union Cy; U Cy would be a connected set containing both x
and y. Hence, Cx U Cy C Cy, from which it follows that C;y = C, U C,. Similarly,
Cy=C; UCy.

A connected component of S is the connected component of a point in S. By the
remark above, the connected components of § partition S into a disjoint subsets.

Proposition A.48. Suppose C is a connected component of a topological space S.
Then a connected subset A of S is either disjoint from C or is contained entirely in C.

Proof. If A and C have a point p in common, then C is the connected component
Cpof pand A C Cp. O
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A.11 Closure

Let S be a topological space and A a subset of S.

Definition A.49. The closure of A in S, denoted A or cl(A), is defined to be the
intersection of all the closed sets containing A.

As an intersection of closed sets, A is a closed set. It is the smallest closed set
containing A in the sense that any closed set containing A contains A.

Definition A.50. A point p in S is an accumulation point of A if every neighborhood
of p in S contains a point of A other than p. The set of all accumulation points of A
is denoted ac(A).

If U is a neighborhood of p in S, we call U — {p} a deleted neighborhood of p.
An equivalent condition for p to be an accumulation point of A is to require that every
deleted neighborhood of p in S contain a point of A. In some books an accumulation
point is called a limit point.

Example A51. If A = [0, 1) U {2} in R, then the set of accumulation points of A is
the closed interval [0, 1].

Proposition A.52. Let A be a subset of a topological space S. Then
cl(A) = AUac(A).

Proof.

(D) Suppose p ¢ cl(A). Then p ¢ some closed set F containing A. So S — F is a
neighborhood of p that contains no points of A. Hence, p ¢ ac(A). This proves that
ac(A) C cl(A). By definition, A C cl(A). Therefore, A U ac(A) C cl(A).

(C) Suppose p ¢ AUac(A). Then p ¢ A and p ¢ ac(A). Since p ¢ ac(A), it has
a neighborhood U that contains no points of A other than p. Since p ¢ A, in fact U
contains no points of A. Therefore, F := S — U is a closed set containing A. Since

p ¢ F, p ¢cl(A). This proves that c1(A) C A Uac(A). O
Proposition A.53. A set A is closed if and only if A = A.
Proof.

(<) If A = A, then A is closed because A is closed.

(=) Suppose A is closed. Then A is a closed set containing A so that A C A.
Because A C A, equality holds. O

Proposition A.54. If A C B in a topological space S, then A C B.

Proof. Since B contains B, it also contains A. As a closed subset of S containing A,
it contains A by definition. O

Exercise A.55 (Closure of a finite union or finite intersection). Let A and B be subsets of
a topological space S. Prove the following:

(a)AUB:EUE.
(b) ANB C ANB.

The example A = (—o00, 0) and B = (0, c0) in the real line shows that AN B # AN B.
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A.12 Convergence

Let S be a topological space. A sequence in S is a map from the set ZT of positive
integers to S. We write a sequence as

(xj) or Xx1,x2,X3,....

Definition A.56. The sequence (x;) converges to p if for every neighborhood U of
p, there is a positive integer N such that for all i > N, x; € U. In this case we say
that p is a limit of the sequence (x;) and write x; — p or lim; — », x; = p.

Proposition A.57 (Uniqueness of the limit). In a Hausdorff space S, if a sequence
(x;) converges to p and to q, then p = q.

Proof. Problem A.14. m|
Thus, in a Hausdorff space we may speak of the limit of a convergent sequence.

Definition A.58. Let S be a topological space and p a point in S. A basis of neigh-
borhoods at p is a collection B = {By} of neighborhoods of p such that for any
neighborhood U of p, there is a B, € B such that p € B, C U. Atopological space
S is first countable if it has a countable basis of neighborhoods at every point p € S.

Example A.59. For p € R", let B(p, 1/n) be the open ball of center p and radius
1/nin R". Then {B(p, 1/n)}>2 is a basis at p. Thus, R" is first countable.

Example A.60. An uncountable discrete space is first countable but not second count-
able.

Proposition A.61 (The sequence lemma). Ler S be a topological space and A a
subset of S. If there is a sequence (a;) in A that converges to p, then p € A. The
converse is true if S is first countable.

Proof.

(=) Suppose a; — p. If p € A, then p € A and there is nothing to prove. So
suppose p ¢ A. By the definition of convergence, every neighborhood U of p
contains all but finitely many of the points @;. In particular, U contains one point of
A and this point is not p, since p ¢ A. Therefore, p is an accumulation point of A.
By Proposition A.52, p € ac(A) C A.

(<) Suppose p € A. If p € A, then the constant sequence p, p, p, ... is a sequence
in A that converges to p. So we may assume that p ¢ A. By Proposition A.52, p is
an accumulation point of A. Since S is first countable, we can find a countable basis
of neighborhoods {U,} at p such that

UyDU;D....

In each U;, choose a point @; € A. We claim that the sequence (a;) converges to
p. If U is any neighborhood of p, then by the definition of a basis of neighborhoods
at p, thereis a Uy such that Uy C U. For alli > N, we then have
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U cUycCU,
Therefore, foralli > N,
aieU; CU.
This proves that (a;) converges to p. O

Problems

A.1. Set theory
If Uy and U, are subsets of a set X, and V| and V; are subsets of a set Y, prove that

(U1 x V)N (Uz x Vp) = (U1 NUR) x (Vi N V).

A.2. Union and intersection

Suppose U; and V; are disjoint for i = 1, 2. Show that the intersection U; N Uy is
disjoint from the union VU V,. (Hint: Use the distributive property of an intersection
over a union.)

A.3. Closed sets
Let S be a topological space. Prove:

(a) If {F;}7_, is a finite collection of closed sets in S, then Ui_, F; is closed.
(b) if {Fy}aeca 1s an arbitrary collection of closed sets in S, then ﬂa F, is closed.

A.4. Projection

Amap f: § — T of topological spaces is said to be open if for every open set V in
S, the subset f(V) is open in T. Prove that if X and Y are topological spaces, then
the projection : X x Y — X,

w(x,y) =x,
is an open map.

A.5. Closed map

Amap f: S — T of topological spaces is said to be closed if for every closed set
A in S, the subset f(A) is open in T. Prove that a continuous map from a compact
space to a Hausdorff space is closed.

A.6. Continuity in terms of closed sets
Prove Proposition A.31.

A.7. Homeomorphism
Prove that if a continuous bijection f: § — T is a closed map, then it is a homeo-
morphism.

A.8.* The Lindelof condition
Show that if a topological space is second countable, then it is Lindeldf, i.e., every
open cover has a countable subcover.
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A.9. Compactness
Prove that a finite union of compact sets in a topological space S is compact.

A.10.* Disconnected subset in terms of a separation
Prove Proposition A.43.

A.11. Local connectedness

Atopological space S is said to be locally connected at p € S if for every neighborhood
U of p, there is a connected neighborhood V of p such that V C U. The space S is
locally connected if it is locally connected at every point. Prove that if S is locally
connected, then the connected components of S are open.

A.12. Closure
Let U be an open subset and A an arbitrary subset of a topological space S. Prove
that UNA £ iff U N A # 2.

A.13. Countability
Prove that every second countable space is first countable.

A.14.* Uniqueness of the limit
Prove Proposition A.57.

A.15.*% Closure in a product
Let S, Y be topological spaces and A C S. Prove that

cl(AxY)=cl(A) xY

in the product space S x Y.
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The Inverse Function Theorem on R" and Related
Results

This appendix reviews three logically equivalent theorems from real analysis, the in-
verse function theorem, the implicit function theorem, and the constant rank theorem,
which describe the local behavior of a C* map from R” to R”. We will assume the
inverse function theorem and deduce the other two, in the simplest cases, from the
inverse function theorem. In Chapter 11 these theorems are applied to manifolds in
order to clarify the local behavior of a C° map when the rank of the map is maximal
at a point or constant in a neighborhood.

B.1 The Inverse Function Theorem

A C®map f: U — R”" defined on an open subset U of R” is locally invertible or a
local diffeomorphism at a point p in U if f has a C* inverse in some neighborhood
of p. The inverse function theorem gives a criterion for a map to be locally invertible.
We call the matrix Jf = [3 f'/dx/] of partial derivatives of f the Jacobian matrix
of f and its determinant det[d f*/dx/] the Jacobian determinant of f.

Theorem B.1 (Inverse function theorem). Let f: U — R" be a C*™ map de-
fined on an open subset U of R". At any point p in U, the map f is invertible in
some neighborhood of p if and only if the Jacobian determinant det[d f* /dx’ (p)] is
not zero.

This theorem is usually proved in an undergraduate course in real analysis (see,
for example, [12, Chapter 7, p. 422]). Although it apparently reduces the invertibility
of f on an open set to a single number at p, because the Jacobian determinant is a
continuous function, the nonvanishing of the Jacobian determinant at p is equivalent
to its nonvanishing in a neighborhood of p.

Since the linear map represented by the Jacobian matrix J f (p) is the best linear
approximation to f at p, it is plausible that f is invertible in a neighborhood of p if
and only if J f(p) is also, i.e., if an only if det(J £ (p)) # O.
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B.2 The Implicit Function Theorem

In an equation such as f(x,y) = 0, it is often impossible to solve explicitly for
one of the variables in terms of the other. The implicit function theorem provides
a sufficient condition on a system of equations fi(x!,...,x") =0,i =1,...,m,
under which locally a set of variables can be solved implicitly as C*° functions of
the other variables.

Example B.2. Consider the equation
fay)=x>+y"—1=0.

The solution set is the unit circle in the xy-plane.

N
(U

—1 T 5

Fig. B.1. The unit circle.

From the picture we see that in a neighborhood of any point other than (£1, 0),
y is a function of x. Indeed,

y =41 -—x2,

and either function is C* as long as x # £1. At (%1, 0), there is no neighborhood
on which y is a function of x.

We will deduce the implicit function theorem from the inverse function theorem
for the special case of a C* function f on an open subset of R?.

Theorem B.3 (Implicit function theorem for R?). Ler f: U C R?> — R be a C®
function on an open subset U of R%. At a point (a, b) € U where f(a,b) = 0 and
af/dy (a, b) # O, there are a neighborhood A x B of (a,b) in U and a unique
function h: A — B such thatin A X B,

fx,y)=0 iff y=h(x).

Moreover, h is C*°.
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Up

— [, y») =0
(a,0) u

\ x

Fig. B.2. F -1 maps the u-axis to the zero set of f.

v
Vi
F:(xs.f) /_\

Proof. Define F: U — R2 by (u,v) = F(x,y) = (x, f(x,y)). The Jacobian
matrix of F is

1 0
JF = |:8f/8x af/ay]‘

af
det JF(a, b) = 5(a, b) # 0.

At (a, b),

By the inverse function theorem, there are neighborhoods U; of (a, b) and V; of
F(a,b) = (a,0)inR? suchthat F: U; — Viisa diffeomorphism, with C* inverse
F~!. Since F: U; — V; is defined by

u=x,

v=f(x,y),
the inverse map F —1. v, — Uj must be of the form

X =u,

y=gu,v)

for some C* function g: V| — R.
The two compositions F~! o F and F o F~! give

y=2g(, f(x,y)) forall (x,y) € Up; (B.1)
v= f(u, glu,v)) forall (u,v) e V. (B.2)

For (u, 0) € Vi N u-axis, define
h(u) = g(u, 0).
Claim. For (x,y) € Uy and (x, 0) € Vq,

fx,y)=0 iff y=h(x).
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Proof (of claim).
(=) From (B.1), if f(x, y) =0, then

y =g, f(x,y) =g(x,0) = h(x). (B.3)
(<) If y = h(x) and in (B.2) we set (u, v) = (x, 0), then
0=f(x, g, 0) = fx,h(x)) = f(x, ). O
Since (a, b) € U and f(a, b) = 0, we have
F(a,b) = (a, f(a, b)) = (a,0) € V.

By the claim, in some neighborhood of (a,b) € Ui, the zero set of f(x,y) is
precisely the graph of /. To find a product neighborhood of (a, b) as in the statement
of the theorem, let A; x B be a neighborhood of (a, ) contained in U;. Since
h is continuous, there is a neighborhood A of a such that A ¢ A~1(B) N Ay and
A x {0} C V1. Then h(A) C B,

AxBCA xBCU;, ad Ax{0}CV.
By the claim, in A x B,
fl,y)=0 iff y=nh(x).
Equation (B.3) proves the uniqueness of 4. Because g is C°°, so is A. O

Replacing a partial derivative such as 3f/dy with a Jacobian matrix [3 f/dy/],
we can prove the general case of the implicit function theorem in exactly the same way.

Theorem B.4 (Implicit function theorem). Let U be an open set in R" x R™ and
f: U = R™ a C* function. Write (x,y) = (x',...,x", y',...,y™) for a point
in U. Suppose [d f'/dy/ (a, b)] is nonsingular at a point (a, b) in the zero set of f
in U. Then a neighborhood A x B of (a, b) in U and a unique function h: A — B
exist such thatin A x B C U C R" x R™,

&, y) =0 if y=hx).
Moreover, h is C*.

Of course, yl, ..., y™ need not be the last m coordinates in R"*"; they can be
any set of m coordinates in R,

Theorem B.5. The implicit function theorem is equivalent to the inverse function
theorem.

Proof (for m = 2 and n = 2). We have already shown, for one typical case, that the
inverse function theorem implies the implicit function theorem. We now prove the
reverse implication, again for one typical case.
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So assume the implicit function theorem, and suppose that f: U — R?isa C®
function defined on an open subset U of R2, a = (al, a2) € U, and the Jacobian
determinant det[d f* /dx/] is nonzero at a. Let

=LA =(1ah ), et o)) = f).
Consider the C*® function F: U x R? — R2
F(x,2) = f(x) —z.

Note that [d F? /dx/ (a, f(a))] = [3 f'/dx/ (a)]is nonsingular. By the implicit func-
tion theorem, there is a neighborhood V x W of (a, f(a))in U x R" sothatin V x W,
F(x, z) = Oimplies that x is a C* function of z. This says precisely that the function
z = f(x) isinvertible forx € Vandz € W. O

B.3 Constant Rank Theorem

Every C® map f: U — R™ on an open set U of R" has a rank at each point p in
U, namely the rank of its Jacobian matrix [d f'/dx/ (p)].

Theorem B.6 (Constant rank theorem). If f: U C R" — R™ has constant rank
k in a neighborhood of a point p € U, then after a change of coordinates near p in
U and f(p) in R™, the map f assumes the form

o e ol xR0, .., 0).

More precisely, there are diffeomorphisms G of a neighborhood of p in U and F of
a neighborhood of f(p) in R™ such that

FofoGl'Gx!,....x") = ..., x50,...,0.

Proof (forn = m = 2, k = 1). Suppose f = (f!, f5): U c R*? — R? has
constant rank 1 in a neighborhood of p € U. By reordering the functions f!, fZ or
the variables x, y, we may assume that 3 f!/9x(p) # 0. (Here we are using the fact
that f has rank > 1 at p.) Define G: U — R? by

W, v) =G(x,y) = (f'(x, ). ).
The Jacobian matrix of G is

_[oaftjax aftyay
6= [y 0]

Since det JG(p) = df'/dx(p) # 0, by the inverse function theorem there are
neighborhoods Uj of p € R? and V; of G(p) € R2 such that G: U; — Vj is a
diffeomorphism. By making U; a sufficiently small neighborhood of p, we may
assume that f has constant rank 1 on Uj.
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On Vy,
) =GoG  w,v) = (f1 oGy o G, v).
Comparing the first components gives u = f! o G~ (u, v). Hence,

foG Yu,v)=(f'oG7Y 20 G Hu, v)
=, %o G Y(u,v))
= (u, h(u, v)),

where we set h = f2 o G~!. Because G~! is a diffeomorphism and f has constant
rank on V7, the composite f o G~ ! has constant rank 1 on V;. Its Jacobian matrix is

a1 o
IfeG )= [ah/au ah/au]

For this matrix to have constant rank 1, 94 /dv must be identically zero on V;. (Here
we are using the fact that f has rank < 1 in a neighborhood of p). Thus, & is a
function of u alone and we may write

foG  (u,v) = (u, h(w)).

Finally, let F: R? — RR? be the change of coordinates F'(x, y) = (x, y — h(x)).
Then

(Fofo G_l)(u, v) = Fu,h(u) =, h(u) —h@m)) = (u, 0). O

Problems

B.1.* The rank of a matrix

The rank of a matrix A, denoted rk A, is defined to be the number of linearly indepen-
dent columns of A. By a theorem in linear algebra, it is also the number of linearly
independent rows of A. Prove the following lemma.

Let A be an m x n matrix (not necessarily square), and k a positive integer.
Then tk A > k if and only if A has a nonsingular k x k submatrix. Equivalently,
tk A < k — 1 ifand only if all k x k minors of A vanish. (A k x k minor of a matrix
A is the determinant of a k x k submatrix of A.)

B.2.* Matrices of rank at most r

For an integer r > 0, define D, to be the subset of R”*" consisting of all m x n real
matrices of rank at most ». Show that D, is a closed subset of R"*". (Hint: Use
Problem B.1.)

B.3.* Maximal rank

We say that the rank of an m x n matrix A is maximal if rk A = min(m, n). Define
Dnax to be the subset of R™*" consisting of all m x n matrices of maximal rank
r := min(m, n). Show that Dp,,y is an open subset of R™*". (Hint: Suppose n < m.
Then Dyx = R™*" — D, _;. Apply Problem B.2.)
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B.4.* Degeneracy loci and maximal rank locus of a map
Let F: § — R™*" be a continuous map from a topological space S to the space
R™*" The degeneracy locus of rank r of F is defined to be

D,(F)={xe S|tk Fkx)<r}.

(a) Show that the degeneracy locus D, (F) is a closed subset of S. (Hint: D,(F) =
F~1(D,), where D, was defined in Problem B.2.)
(b) Show that the maximal rank locus of F,

Dmax (F) := {x € S | rk F(x) is maximal},
is an open subset of S.

B.5. Rank of a composition of linear maps
Suppose V, W, V/, W’ are finite-dimensional vector spaces.

(a) Prove that if the linear map L: V — W is surjective, then for any linear map
f:W— W, ik(foL) =1k f.

(b) Prove that if the linear map L: V — W is injective, then for any linear map
g:V = V,ik(Log) =1kg.

B.6. Constant rank theorem
Prove that the constant rank theorem (Theorem B.6) implies the inverse function
theorem (Theorem B.1). Hence, the two theorems are equivalent.
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Existence of a Partition of Unity in General

This appendix contains a proof of Theorem 13.10 on the existence of a C* partition
of unity on a general manifold.

Lemma C.1. Every manifold M has a countable basis all of whose elements have
compact closure.

Remark. Recall that a collection of open sets B = {B,} in a topological space X is a
basis if, given any open set U in X and any x € U, there is an open set B, € B with
xe B, CU.

NoTtaTioN. If A is a subset of a topological space X, the notation A denotes the
closure of A in X.

Proof (of Lemma C.I). Start with a countable basis ‘B for M and consider the sub-
collection S of open sets of B that have compact closure. We claim that § is again a
basis. Given any open set U in M and any point p € U, choose a neighborhood V
of p such that V . C U and V has compact closure. This is always possible since M
is locally Euclidean.

Since B is a basis, there is an open set B € B such that

peBcCcVcU.
Then B C V. Because V is compact, so is the closed subset B. Hence, B € . Given
any open set U and any p € U, we have found aset B € Ssuch that p € B C U.
This proves that S is a basis. O
Proposition C.2. Every manifold M has a countable sequence of subsets

vicVicVhcV,C...,

with each V; open and V; compact, such that M is the union of the V;’s (Figure C.1).
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Proof. By Lemma C.1, M has a countable basis {B; };’i | with each B; compact. Set
V1 = Bj, and define i1 to be the smallest integer > 2 such that

VlCBlUBzU~-~UB,'1.

Suppose Vi, ..., V,, have been defined. If i, is the smallest integer > m + 1 and
> I,,—1 such that
Vm CBUBU---UB

imo
then we set
Vmpr=B1UBU---UB; .

Since a finite union of compact sets is compact and

Vst CBIUByU---UB;,

im

is a closed subset of a compact set, V,,, 11 is compact. Since i, > m + 1, By4+1 C
Vm+1. Thus,
M=UB;, CUV; C M.

This proves that M = U2, V;. O
AY AY AY AY AY AY AY
7 7 7 7 7 7 7
Vi V2 i ... Viet Vi Vipir Vip
—
compact
ya hY
\ J
open

Fig. C.1. A nested open cover.

Define Vj to be the empty set. For each i > 1, because V; | — V; is a closed
subset of the compact V; 1, it is compact. Moreover, it is contained in the open set
Vieo = Vi1

Theorem 13.10 (Existence of a C* partition of unity). Let {Uy}yca be an open
cover of a manifold M.

(i) Then there is a C* partition of unity {@i}72. | with compact support such that for
each k, supp ¢x C Uy, for some a € A.

(ii) If we do not require compact support, then there is a C* partition of unity {py }
subordinate to {Uy}.
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Proof.

(i) Let {V;}72,) be an open cover of M as in Proposition C.2, with Vj being the empty
set. Fix an integer i > 1. For each p € V;41 — V;, choose an open set U, containing
p from the open cover {U,}. Then p is in the open set

Uy N (Vig2 — Vio1).

Let v/, be a C* bump function on M that is positive on a neighborhood W, of
p and has support in Uy N (V42 — V;_1). Since supp ¥ p 1s a closed set contained in
the compact set V4, it is compact.

The collection {W, | p € Viy1 — V;} is an open cover of the compact set
T—H — Vi and so there is a finite subcover {W,,, ..., W, }, with associated bump
functions ¥, ..., ¥p,,. Since m, W,,j, and w,,j all depend on i, we relabel them as
m(i), Wi, ..., Wo o and o 90

In summary, foreachi > 1, we have found finitely many open sets Wli e erﬁ( 0

and finitely many C°° bump functions w{ ey W,; @) such that

6)) ¢;1>00nwjliforj=1,...,m(i);
2 Wi,....W!

(3) supp ¥ C Uy;; N (Viga — Vi—1) for some a;j € A;
(4) supp w; is compact.

(i) cover Vier = Vi

As i runs from 1 to oo, we obtain countably many bump functions {w;}. The

collection of their supports, {supp w;} is locally finite, since only finitely many of
these sets intersect any V;. Indeed, since

supp¥§ C Viya — Vi1
forall £,as soonas £ > i + 1,
(supp ) N'V; = @, the empty set.

Any point p € M is contained in V; 1 — V; for some i and therefore, p € W]i. for

some j. For this (i, j), 1//5. (p) > 0. Hence, the sum ¢ := Zi’j 1//} is locally finite
and everywhere positive. To simplify the notation, we now relabel the countable set

{}as (Y1, ¥2, ¥3, ... ). Define

Then > ¢ = 1 and
supp ¢ = supp ¥x C Uy

for some o € A. So {gx} is a partition of unity with compact support such that for
each k, supp ¢ C U, for some o € A.
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(i1) Foreachk = 1,2, ..., let T(k) be an index in A such that

supp @k C Ur(xy
as in the preceding paragraph. Group the collection {¢y} according to t (k) and define
pa= Y Gk
T (k)=a

if there is a k with 7 (k) = «; otherwise, set p, = 0. Then

Zpa=z Z <pk=g¢k=1.

aeA aeA t(k)=a

By Problem 13.6,

supp pu € ) suppex C Ua.
k)=«

Hence, {py} is a partition of unity subordinate to {Uy}. O
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Linear Algebra

This appendix collects a few facts from linear algebra that are used throughout the
book, especially in Chapters 23 and 24.

D.1 Linear Transformations

Let V and W be vector spaces over R. Amap f: V — W is called a linear
transformation, a vector space homomorphism, a linear operator, or a linear map
over Rifforallu,v e Vandr € R,

Ju+v)=fw)+ f(v),
fru) =rfu).

The kernel of f is
ker f ={ve V]| f(v) =0}

and the image of f is
imf={fv)eW]|veV}

The kernel of f is a subspace of V and the image of f is a subspace of W. Hence,
one can form the quotient spaces V/ker f and W/im f. This latter space W/im f,
denoted coker f, is called the cokernel of the linear map f: V — W.

For now, denote by K the kernel of f. The linear map f: V — W induces a
linear map f: V/K — im f, by

fw+K) = f(v).

It is easy to check that f is bijective. This gives the following fundamental result of
linear algebra.

Theorem D.1 (The first isomorphism theorem). Let f: V — W be a homomor-
phism of vector spaces. Then f induces an isomorphism

f:

— im f.

ker f
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It follows from the first isomorphism theorem that
dim V — dimker f = dimim f.

Since the dimension is the only isomorphism invariant of a real vector space, we
therefore have the following corollary.

Corollary D.2. Under the hypotheses of the first isomorphism theorem,
V ~ker f @im f.

(The right-hand side is an external direct sum because ker f and im f are not sub-
spaces of the same vector space.)

D.2 Quotient Vector Spaces

If V is a vector space and W is a subspace of V, a coset of W in V is a subset of
the form
v+W={v4+w|weW}

forsome v € V.

Two cosets v + W and v/ + W are equal if and only if v = v 4+ w for some
w € W, or equivalently, if and only if v/ — v € W. This introduces an equivalence
relation on V:

v~V iff V—veW iff v+W=0v+W.

Acoset of W in V is simply an equivalence class under this equivalence relation. Any
element of v + W is called a representative of the coset v + W.

The set V/W of all cosets of W in V is again a vector space, with addition and
scalar multiplication defined by

u4+EW)+@W+W)y=wu+v)+Ww,
Av+W)=rw+W

foru,v € Vand A € R. We call V/W the quotient vector space or the quotient
space of V. by W.

Example D.3. For V.= R? and W a line through the origin in R?, a coset of W in
RR? is a line in R? parallel to W. (For the purpose of this discussion, two lines are
parallel if and only if the nonzero vectors they contain are scalar multiples of one
another. Accordingly, a line is parallel to itself.) The quotient space R?/ W is this
collection of parallel lines (Figure D.1).

If L is aline through the origin not parallel to W, then L will intersect each parallel
line € R?/W in one and only one point. This one-to-one correspondence



D.2 Quotient Vector Spaces 313

w

v+ W

Fig. D.1. Quotient vector space of R2 by W.

L —R>WwW
v v+ W

preserves addition and scalar multiplication, and so is an isomorphism of vector
spaces. Thus in this example the quotient space R?/ W can be identified with the
line L.

The sum of two subspaces A and B of a vector space V is the subspace
A+B={a+beV]|aecA, be B}.

This sum is called an internal direct sum and written A @ B if AN B = {0}. In an
internal direct sum A @ B, every element has a representation as a + b for a unique
a € A and a unique b € B. Indeed, ifa +b =da’ + b € A @ B, then

a—a =b—be AN B ={0}.

Hence,a =a’ and b = b'.

If V= A ® B, then A is called complementary subspace to B in V. In the
example above, the line L is a complementary subspace to W, and we may identify
the quotient vector space R?/ W with any complementary subspace to W.

In general, if W is a subspace of a vector space V and W' is a complementary
subspace to W, then there is a linear map

p: W = V/W
w = w + W.
Exercise D.4. Show that ¢: W/ — V/W is an isomorphism of vector spaces.

Thus, the quotient space V /W may be identified with any complementary sub-
space to W in V. This identification is not canonical, for there are many comple-
mentary subspaces to a given subspace W and there is no reason to single out any
one of them. However, when V has an inner product, one can single out a canonical
complementary subspace, the orthogonal complement of W:

Wt={weV|(v,w)=0forallwe W}.
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Exercise D.5. Check that W is a complementary subspace to W.
In this case, there is a canonical identification W+ = V /W.

Remark D.6. If A and B are two vector spaces, not necessarily subspaces of the same
vector space, then their direct product A x B is the set of all ordered pairs (a, b):

Ax B={(a,b)|acA, be B},

with the obvious addition and scalar multiplication: for (a, b), (a’,b’) € A x B and
L eR,

(a,b)+ (@, bY=(a+d,b+1),
Ma, b) = (Aa, AD).

The direct product A x B is also called the external direct sum and written A @ B.

This means that when A and B are subspaces of the same vector space, the notation
A @ B is ambiguous; it could be either the internal direct sum or the external direct
sum. Fortunately, in this case, there is an isomorphism between the internal direct
sum A @ B and the direct product A x B, so that the confusion of notations is not
serious.

Exercise D.7 (Direct sums). Assume A and B are subspaces of a vector space V. For now,
let A @ B denote the internal direct sum. Show that the map

9:AXB—>A®DB
(a,b)—>a+>b

is a linear isomorphism of vector spaces.
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3.14 The symmetrizing operator
A k-linear function h: V — R is symmetric iff th = h for all T € S;. Now

(Sf=t Y of =) (to)f.

O'ESk UGSk

As o runs over all elements of the permutation groups Sk, so does to. Hence,

Y (@o)f= Y (to)f=Sf.

o €Sk ToES)

This proves that T(Sf) = Sf. <

3.16 The alternating operator
fr,v2,v3) — f(vi,v3,02) + f(v2,v3,01) — f(v2,v1,03) + f(v3,v1,02) —
f(v3, vz, v1). <&

3.21 Wedge product of two 2-covectors

(f AN g)(vr, v2,v3, v4)
= f(v1, v2)g(v3, v4) — f(v1,v3)g(v2, v4) + f(v1, v4)g(v2, V3)
+ f(v2, v3)g(v1, va) — f(v2, va)g (v, v3) + f(v3, v4)g(V1, 12). <

3.23 The sign of a permutation

We can achieve the permutation 7 from the initial configuration 1,2, ...,k 4+ £ in

k steps.

(1) First, move the element k to the very end across the £ elements k + 1, ..., k + £.
This requires £ transpositions.

(2) Next, move the element k — 1 across the £ elements k + 1, ...,k + £.

(3) Then move the element k — 2 across the same £ elements, and so on.
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Each of the k steps requires £ transpositions. In the end we achieve t from the identity
using £k transpositions.

Alternatively, one can count the number of inversions in the permutation t. There
are k inversions starting with k + 1, namely, (k + 1, 1), ..., (k + 1, k). Indeed, for
eachi =1, ..., ¢, there are k inversions starting with k 4+ i. Hence, the total number
of inversions in 7 is k£. By Proposition 3.6, sgn(t) = (—1)k¢. <

4.6 A basis for 3-covectors

By Proposition 3.29, a basis for A3(T,(R%)) is dx! A dx? A dx3, dx! Adx? A dx?,
dx' Adx3 Adx?, dx? Adx3 Adx?® O
4.7 Wedge product of a 2-form with a 1-form

The (2, 1)-shuffles are (1 < 2, 3), (1 < 3,2), (2 < 3, 1), with respective signs +, —,
+. By Equation (3.3),

wADX,Y,Z2) =X, Y)T(Z2) —oX, Z)T(Y)+ oY, Z)T(X). <&
7.11 Projective space as a quotient of a sphere

Define f: RP" — §"/~ by f([x]) = [77] € §"/~. This map is well defined
because f([tx]) = [Z5] = [+5] = [l’;—l]. Note that if 7; : R"*! — {0} — RP"

lex] x|
and p: " — §" /~ are the projection maps, then there is a commutative diagram

R — (0} L 57

T 2

RP" — S/,
f

By Proposition 7.1, f is continuous because 75 o f is continuous.

Next define g: §" — R"*! — {0} by g(x) = x. This map induces amap g: S" /4
— RP", g([x]) = [x]. By the same argument as above, g is well defined and
continuous. Moreover,

go f(Ix]) = [1] = [x],
i x|

fo8(x]) =[x,

so f and g are inverses to each other. &

13.2 Let (V, ¢) be a chart centered at g so that V is diffeomorphic to an open ball
B(0, r). Choose real numbers a and b so that

B(0,a) C B(0,b) C B(0,b) C B0, r).

With the o given in (13.2), the function o o ¢, extended by zero to U, is a desired
bump function.
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18.2 Transition functions for a 2-form

aij = w(3/0x",0/0x7) =Y bredy* Ady"(d/9x",8/0x7)

k,l
= > (dy*(@/0x")dy" (3 /0x7) — dy* (3 /0xT)dy" (3 /0x'
k.l
ayk oyt ayk oyt
= Sohe (- ). o
7 ox! dxJ 0xJ ox!

21.2 Smooth functions on a nonopen set 5

By definition, for each p in § there is an ope set U, in R” and a C*° function f,: U,
— R" such that f = fp onU,NS. LetU = UpeS Up. Choose a partition of unity
{op}pes on U subordinate to the open cover {U,}pes of U and form the function
f:U — R™by

f= Zapfp‘ (%)

peS

Since this is a locally finite sum, f is well defined and C*° for the usual reason.
(Every point ¢ € U has a neighborhood W, that intersects finitely many of supp o,.
Hence, the sum (%) is a finite sum on W)

Ifg € SNU,, then f,(q) = f(q). Thus, forq € S,

F@ =Y op@Fp@) =) 0p@)fr(@) = f(@). ©

pesS pesS

23.5 A nowhere-vanishing 1-form on the circle

Although 6 is a multi-valued function on the circle, cos 6 and sin 6 are well-defined
single-valued functions, since any two branches of 6 differ by a multiple of 25r. The
notation cos & means the function obtained by taking cos of any branch of 6 on any
open interval of the circle. Thus, on the circle, x = cos8 and y = sin 6. On the open
set Uy = {x # 0},

d d(sinf
dy _ dGin0) _

X cos 6
Similarly, on the open set Uy, = {y # 0},

d d 0

_dx_ _deosh) g,

y sin O

Hence, w = d6 everywhere on the circle. &

24.6 Connecting homomorphism
Suppose b, b’ € B¥ both map to ¢ under j. Then j(b —b') = jb— jb' = c—c =0.
By the exactness at BX, b — b’ = i(a”) for some a” € A*.

With the choice of b, the element d*[c] is represented by a cocycle a € A¥*! such
that i (a) = db. Similarly, with the choice of b’ the element d*[c] is represented by a
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cocycle a’ € A**! such thati(a’) = d(b). Theni(a —a') = d(b —b') = di(d") =
id(a"). Since i is injective, a — a’ = d(a”), and thus [a] = [a’]. This proves that
d*[c] is independent of the choice of b. We summarize the proof by the commutative
diagram

dd)=a—d —— db—d®)

a] Ja
a”’ — b=V —— 0.
1
Next suppose [c] = [¢/] € H*(C). Then ¢ — ¢’ = d(c”) for some ¢’ € Ck~1,

By the surjectivity of j: B¥"! — C*=1, there is a b” € B¥~! such that j(b") = ¢”.
Choose b € B* such that j(b) = c and choose b’ € B¥ such that b — b’ = d(b").
Then j (') = j(b) — jd(b") =c —dj(b") = c — d(c") = ¢’. With the choice of b,
the element d*[c] is represented by a cocycle a € A**! such that i(a) = db. With
the choice of &, the element d*[c] is represented by a cocycle a’ € A¥*! such that
i(a) =d(b"). Then

ila—a)=db—b)=dd®") =0.

By the injectivity of i, @ = @’ and [a] = [a’]. This shows that d*[c] is independent
of the choice of ¢ in the cohomology class [c]. See the commutative diagram below:

a—a —— db—-d) =0

a] T
b’ — ¢ —— 0. <&
J

A.37 Compact Hausdorff space
Let S be a compact Hausdorff space, and A, B two closed subsets of S. By Proposi-
tion A.34, A and B are compact. By Proposition A.35, forany a € A there are disjoint
open sets U, > a and V, D B. Since A is compact, the open cover {U,},ca for A
has a finite subcover {U,, }!_,. Let U = |J/_, Uy, and V = ();_; V,;. Then A C U
and B C V. The open sets U and V are disjoint because if x € U NV, thenx € Uy,
for some i and x € V,;, for the same i, contradicting the fact that U,, NV, = @. <



Hints and Solutions to Selected End-of-Chapter
Problems

Problems with complete solutions are starred (*). Equations are numbered consecu-
tively within each problem.

1.1 Let h(x) = fox g(t)dt, where g: R — R is the function in Example 1.2.

1.2* A C* function very flat at 0
(a) Assume x > 0. Fork = 1, f/(x) = (1/x%) e~ 1/*. With p»(y) = y?, this verifies
the claim. Now suppose f®(x) = pa(1/x)e~/*. By the product rule and the

chain rule,
1 1 1 1 1 1
FE @) = o (—> ' (‘7) e ¥ + pu <—> 2t
X X X X
1 1 _
=\ qu+1| =)+ qu+2| =) )€
X X
()
=pu+2| - )e =,
X

where g, (v) and p,(y) are polynomials of degree n in y. By induction, the claim is
true for all k£ > 1. It is trivially true for k = 0 also.

= |—_

(b) For x > 0, the formula in (a) shows that f(x) is C*®°. Forx < 0, f(x) = 0,
which is trivially C*°. It remains to show that f® (x) is defined and continuous at
x =0 forall k.

Suppose f®)(0) = 0. By the definition of the derivative,

F&ED ) = Tim FOx) — £O0) i F® (x)
T x50 X T 550 x

The limit from the left is clearly 0. So it suffices to compute the limit from the right:
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1 _1
®) 1nk(—)e x |
im Y~ him N e (-)ei (1.2.1)
x—0t X x—0t X x—0t X
DP2u+1(Y)

= lim

.1
Jim = <repla01ng p by y> .
Applying I'Hopital’s rule 2k + 1 times, we reduce this limit to 0. Hence, f**1D(0) =
0. By induction, f® (0) = 0 for all k > 0.
A similar computation as (1.2.1) for limy,—¢ f ®x)=0 proves that f ® (x) is

continuous at x = 0. O
13 O h(t) = (/b —a)(t —a) — (n/2).
14

(a) Let f(x) be the function of Example 1.3. Then h(x) = f(x)g(x). Since
both f(x) and g(x) = secx are strictly increasing on [0, 7/2) and C* on
(—m/2,m/2), so is their product. We have already established that the deriva-
tives £*)(0) = 0 for all kK > 0. By the product rule,

k

SOEDS (';)f<“(0)g<""'><0> =0.

i=0
(b) The inverse map to F is G: R" — B(0, 7/2),
1 y
h (Iyl)] fory #0,

Gy = |
0 for y = 0.

1.5* Taylor’s theorem with remainder to order 2
To simplify the notation, we write O for (0, 0). By Taylor’s theorem with remainder,
there exist C* functions g, g» such that

f,y) = f0) +xg1(x,y) + yga(x, y). (1.5.1)

Applying the theorem again, but to g; and g», we obtain

g1(x,y) = g1(0) + xg11(x, y) + ygiz(x, y), (1.5.2)
82(x,y) = g2(0) + xg21(x, ¥) + ygaa(x, y). (1.5.3)

Since g1(0) = df/9dx(0) and g»(0) = af/dy(0), substituting (1.5.2) and (1.5.3) into
(1.5.1) gives the result. <&

1.6* A function with a removable singularity
In Problem 1.5, set x = ¢ and y = fru. We obtain
f af

ax (0) + tu——(0) + (- - -),

[, tu)— f(0) + ta— 3y

where
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(o) = fut, tw) +ufiot, tu) +u’ f(t, tu)
is a C® function of ¢ and u. Since f(0) =0,

ACLLONS %(O) PP T

t N ay
which is clearly C*°. <
31 f=) g0 @al.
3.2
(a) Use the formula dimker f 4+ dimim f =dim V.
(b) Choose a basis ey, ..., e,—1 for ker f, and extend it to a basis ey, ..., e,—1, €y
for V. Leta', ..., " be the dual basis for V*. Write both f and g in terms of

this dual basis.
3.3 We write temporarily o/ fora'! ® - - - ® a'* and e for (ej,, ..., ej,).

(a) Prove that f =) f (epal! by showing that both sides agree on all (e;). This
proves that the set {a!} spans.

(b) Suppose 3" c;a! = 0. Applying both sides to e; gives c; = Y c;al(es) = 0.
This proves that the set {o!} is linearly independent.

3.9* Linear independence of covectors
(=) Ifa!, ..., o are linearly dependent, then one of them is a linear combination
of the others. Without loss of generality, we may assume that

k—1
of = Z ciat.
i=1

In the wedge product a' A --- A o* =1 A (X2 ¢;a), every term has a repeated o
Hence,a! A+ - Ak = 0.

(<) Suppose a', ..., a* are linearly independent. Then they can be extended to

a basis a!, ..., ok, ... a" for V*. Let v, ..., U, be the dual basis for V. By
Proposition 3.28,

1

@ A nd) L. ) = det[af (v))] = det[8}] = 1.

Hence,ogl/\-u/\ak;éO. &

3.10* Exterior multiplication
(<) Clear because o A o = 0.

(=) Suppose a A w = 0. Extend « to a basis al, ... o for V*, witha! = o. Write
w=>Ycja’. Inthesuma Aw =Y cja Aa’,all the terms a A o’ with j; =1
vanish since @ = «!. Hence,

O=aAw= Zc]a/\aj.
J1#1
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Since {o A Oll}jl7é] is a subset of a basis for Ax41(V), it is linearly independent and
soall c; = 0if j; # 1. Thus,

C():ZCJ(){JZO[/\ ZCJajz/\~-~/\ajk . <&
Ji=1 Ji=1
311 Letey,...,e, be a basis for V and !, ..., " the dual basis for V*. Then a

basis for A, (V) isa! A+ - A" and L*(a@' A Ana™) = cal A+ A" for some
constant ¢. Suppose L(e]) =) ;d\ Lei Compute ¢ in terms of a;.

41 o(X) = yz,dow = —dx ANdz.

42 w, = pAdx A dx?.

4.3 dx =cosOdr —rsin6do,dy =sinf,dr +rcos0db,dx Ndy =rdr Nd6.
4.4 dx ANdy Adz = p*singdp Adg A db.

4.5 o A B = (a1by — asby + azb3) dx' A dx? A dx3.

4.7* Interior multiplication

(tp (et /\-~-/\otk))(v2,... )
PAcviAa (v V2, ..., V)
al() al() -+ ol ()
2(v) a2(vz> o (vg) .
. (Proposition 3.28)
k(v) Olk(vz) o ()

(—1)i+]ozi (v) det[ae(vj)]éséfi,g#i (expansion along first column)
1 =J=

Il
.M”

1

(=)@ ) A Adl A Adk s 0. o

Il
.M’“

1

4.8* Interior multiplication
(a) By the definition of interior multiplication,

(ty o ty@)(V3, ..., V&) = (L) (V, V3, ..., V)
:a)(vs U,US,...,U]()ZO,

because of the repeated variable v.
(b) Since both sides of the equation are linear in w and linear in 7, we may assume that

w=aod'Andk, =oAL A GK T

where the o’ are all 1-covectors. By Problem 4.7,
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W@AT) =@ A AdkTh

k
= (Z:(—l)"Jr1<)z"(z))(;z1 A AdA - /\ak>
i—1
AU A AT (DR A A lR
k
AZ(_I)i+lak+i(v)ak+l A-quﬁ;i A Akt
i—1

= (L) AT+ (—=Dfw A T o

5.3 The image ¢4(U14) = {(x,2) | -1 <z <1, 0 <x <+/1—Zz2}.
The transition function ¢; o ¢4_1(x, D=¢1(x,y,2) =(y,.2) = (V1 —x2=22,2)

is a C* function of x, z.

6.4* Coordinate maps are C™
For any p € U, choose the charts (U, ¢) about p and (R", 1rs) about ¢(p). Since
Ign o p 0o @71 p(U) — R"is C® at p(p), ¢ is C* at p. o

6.7 See Example 15.2.

7.1% Quotient space by a group
Let U be an open subset of S. For each g € G, since left multiplication by g is a
homeomorphism: S — S, the set gU is open. But

7 @ () = Uge gU.
which is a union of open sets, hence is open. By the definition of the quotient topology,
7w (U) is open. <&

7.3* The real projective space

By Exercise 7.11 there is a continuous surjective map 7 : S* — RP”. Since the
sphere S” is compact, and the continuous image of a compact set is compact (Propo-
sition A.38), RP" is compact. &

8.1* Differential of a map
To determine the coefficient a in F,(d/dx) =a d/du + b d/dv + c 3/dw, we apply
both sides to u to get

F( 2 u=(al 462 42 Yuz
Nox )" T \Gou "% T w ) T

Hence,

Similarly,
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and
F. i i (wo F) ! (xy)
c= — Jw=—(Wwo = —(xy) =y.
*\ox 0x 0x Y Y
So Fy(d/dx) =9d/du + yd/ow. <&

8.4* Velocity of a curve in local coordinates .
We know that ¢’(r) = ) a’d/9x/. To compute a’, evaluate both sides on x':

. 9\ . . d\ . d . d . .
a = <Za1m> X' =) =cy (E) x' = E(XI ocC) = ECI = (c’)/(t).<>

8.7* Tangent space to a product

If (U,x!,...,x™) and (V, yl, ..., y") are charts centered at p in M and ¢ in N,
respectively, then by Proposition 5.17, (U x V, xb o xm, yl, ..., y") is a chart
centered at (p, g) in M x N. In local coordinates the projection maps are

m(xl,...,xm,yl,...,y"):(xl,...,xm)

nz(xl,...,xm,yl,...,y”): (yl,...,y").

If 71, (39/0x7) = Y- a} 9/x", then

ai-=7t i (_xi):i(_xion)zixiz(si.
J AETY axJ ! oxJ J

Hence,

This really means that

(i. ) _ 2 87.1)
x| (p.q) axt,
Similarly,

a ad ad ad

T4 <W> =0, m, <m> =0, m, (W) = W (8.7.2)

Abasis for T(p (M x N) is

9 9 K 9
W g X gy W g Y g

Abasis for T, M x T, N is

0 d
(F ,O),...,(W
Xl X

(%q))

a a
50)5<09_1 )5"'7<05_n
(P.q) W (p.g) dy
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It follows from (8.7.1) and (8.7.2) that the linear map w1, X 72, maps a basis of
T(p,q)(M x N) to abasis of T, M x T, N and is therefore an isomorphism. &

8.8 (a) Let c(r) be a curve starting at e in G with ¢’(0) = X,. Then a(r) = (c(¢), e) is
acurve starting at (e, ) in G x G with o’ (0) = (X,, 0). Compute [t (e¢) Using c(t).

8.9* Transforming vectors to coordinate vectors . 4
Let (V,y!',...,y") be a chart about p. Suppose Xjpp =, a;. d/0y'|,. Since

(X1)p, ..., (Xy)p are linearly independent, the matrix A = [aj.] is nonsingular.
Define a new coordinate system x!, ..., x" by
n
Yo=Y dxl fori=1,....n. (8.9.1)
j=1

By the chain rule,

At the point p,
0
ax/ »

In matrix notation, [y'---y"] = [x!---x"]A, so [x' x™ =[y'---y"]A~!. This
means that (8.9.1) is equivalent to x/ = Y/ (A~1)/ . o

i=1
9.1 ¢c e R— {0, —108}.
9.2 Yes, because it is a regular level set of the function f(x, y, z, w) = x>+ y5 +
5 5
7+ w’.
9.3 Yes, see Example 9.15.

9.4*% Regular submanifolds

Let p € S. By hypothesis there is an open set U in R? so that on U N S one of the
coordinates is a C* function of the other. Without loss of generality, we assume that
y = f(x) for some C* function f: A C R — B C R, where A and B are open sets
imRandV:=AxBCU.LetF:V — szegivenby Fx,y)=(x,y— f(x)).
Since F is a diffeomorphism onto its image, it can be used as a coordinate map. In the
chart (V, x, y — f(x)), VNS is defined by the vanishing of the coordinate y — f(x).
This proves that § is a regular submanifold of R?. <

9.5 (R* x,y,z— f(x,y))isan adapted chart for RR3 relative to I'(f).
9.6 Differentiate (9.3) with respect to ¢.

9.9* The transversality theorem

@ NS = wns) = g H0) = (g0 £)710).
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®) Let p e fF7HW) N f71(S) = fF~H(U N S). Then f(p) € UNS. Because
S is a fiber of g, the pushforward g.(Tf(p)S) = 0. Because g: U — R¥ is a
projection, g«(Tr(,nM) = To(R¥). Applying g to the transversality equation
(9.4), we get
8« fx(TyN) = g« (Tr(py M) = To(RY).

Hence, g o f: f~'(U) — R¥is asubmersion at p. Since p is an arbitrary point
of f~1 W) N f~1(S) = (g o f)~'(0), this set is a regular level set of g o f.

(c) By the regular level set theorem, f~1(U) N f~1(S) is a regular submanifold of
f~Y(U) c N. Thus every point p € f~!(S) has an adapted chart relative to
£ XS)in N. &

11.1 Letc(r) = (x {(t), .., x"t1(#)) beacurvein §” with ¢(0) = pand ¢'(0) = X .
Differentiate ) ; (x* )z(t) = 1 with respect to ¢.

11.2* Critical points of a smooth map on a compact manifold

If f: N — R™ has no critical points, then the differential f. , would be surjective
for every p € N. In other words, f would be a submersion. Since a submersion
is an open map (Corollary 11.9), the image f(N) would be open in R™. But the
continuous image of a compact set is compact and a compact subset of R” is closed
and bounded. Hence, f(N) is a nonempty proper closed subset of R™. This is a
contradiction, because being connected, R” cannot have a nonempty proper subset
that is both open and closed. &

113 At p = (a, b, ¢), ix(3/dul,) = 0/dx — (a/c)d/dz, and ix(d/dv|,) = d/dy —
(b/c)d/dz.

11.4 Use Problem A.5 to show that f is a closed map. Then apply Problem A.7 and
Theorem 11.17.

12.1* The Hausdorff condition on the tangent bundle
Let (p, X) and (g, Y) be distinct points of the tangent bundle 7M.

Case 1: p # q. Because M is Hausdorff, p and g can be separated by disjoint neigh-
borhoods U and V. Then TU and TV are disjoint open subsets of 7 M containing
(p, X) and (g, Y), respectively.

Case 2: p = q. Let U be a coordinate neighborhood of p. Then (p, X) and (p, Y)
are distinct points in the open set TU =~ U x R", which is Hausdorff. So (p, X) and
(p, Y) can be separated with open sets in TU. <&

13.1* Support of a finite sum
Let A be the set where Y p; is not zero and A; the set where p; is not zero:

A={reM Y pw £0), Ai=lweM|pw o)

If Y p; (x) # 0, then at least one p; () must be nonzero. This implies that A C UA;.
Taking closure of both sides gives A C UA;. For a finite union, UA; = UA;
(Exercise A.55). Hence,



Hints and Solutions to Selected End-of-Chapter Problems 327

supp (Zpi) = A C UA; = UA; = Usupp p;. <

13.2* Locally finite family and compact set

For each p € K, let W), be a neighborhood of p that intersects only finitely many of
the sets A,. The collection {W,} ek is an open cover of K. By compactness, K has
a finite subcover {W,};_,. Since each W, intersects only finitely many of the A,
the finite union W := U/_, W), intersects only finitely many of the A,. <

i=l1
13.3 Take f = PM—-B-

13.4* Support of the pullback of a function
Let A={pe M| f(p) # 0}. Then supp f = cl(A). Remark that

@ f)p.q) #0 iff f(p) #0 iff p € A.

Hence,
{(p.g) e M x N | (x*f)(p,q) #0} = A x N.
So
supp(r* f) = cl(A x N) =cl(A) x N = (supp f) x N
by Problem A.15. <

13.6* Closure of a locally finite union
(D) Since A, C UA,, taking the closure of both sides gives

Ay C UA,.

Hence, UA_a C UA,.

(C) Let p € UA,. By local finiteness, p has a neighborhood W _that intersects
only finitely many of the Ay’s, say Aq,, ..., Aq,. Suppose p ¢ UAq. A fortiori,

p & U Ay, . Since UYL | Ay, is closed, there is a neighborhood V of p in W such
that V.Cc W — UL 1A_a[ (see the figure below).

Since W is disjoint from A, for all @ # «;, V is (szoint from A, for all «. This
proves that p ¢ UA,, a contradiction. Hence, p € UA,. &
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14.1* Equality of vector fields

The implication in the direction (=) is obvious. For the converse, let p € M. To
show that X, = Y,,, it suffices to show that X ,[h] = Y,[A] for any germ [h] of C*°
functions in C}°(M). Suppose h: U — Ris a C™ function that represents the germ
[h). We can extend it to a C* function i: M — R by multiplying it by a C* bump
function supported in U that is identically 1 in a neighborhood of p. By hypothesis,
Xh =Yh. Hence,

Xph = (Xh), = (Yh), = Y,h. (14.1.1)

Because i = hin a neighborhood of p, we have X ,h = X,,ﬁ and Y,h = Y,,ﬁ. It
follows from (14.1.1) that X ,h = Y, h. Thus, X, = Y. Since p is an arbitrary point

of M, the two vector fields X and Y are equal. &
14.7 ¢(1) = 1/((1/p) — 1) on (—o0, 1/p).
bk dak
k _
149 ¢* = Zi (dlﬁ —blw>

14.10 Show that both sides applied to a C* function & on M are equal. Then use
Problem 14.1.

15.2

(a) Apply Proposition A.44.

(b) Apply Proposition A.44.

(c) Apply Problem A.11.

(d) By (a)and (b), the subset C, is a subgroup of G. By (c), itis an open submanifold.

15.3* Open subgroup of a connected Lie group

For any g € G, left multiplication £, : G — G by g maps the subgroup H to the left
coset g H. Since H is open and £, is a homeomorphism, the coset g H is open. Thus,
the set of cosets gH, g € G, partitions G into a disjoint union of open subsets. Since
G is connected, there can be only one coset. Therefore, H = G. &

15.4 Let c(t) be a curve in G with ¢(0) = a, ¢/(0) = X,. Then (c(¢), b) is a curve
through (a, b) with initial velocity (X,, 0). Compute i« (4,5)(Xq, 0) using this curve
(Proposition 8.17). Compute similarly jiy (4,5)(0, Yp).

15.6* Differential of the determinant map
Let c(t) = Ae’X. Then ¢(0) = A and ¢’(0) = AX. Using the curve c(¢) to calculate
the differential,

(det A) det 'X
t=0

detg (AX)

d
| dettew) = —

t=0

X = (det A) tr X. o
=0

(det A) d
e JE—
dt

15.7* Special linear group
If det A = 1, then Exercise 15.6 gives
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det, 4 (AX) =tr X.

Since tr X can assume any real value, det, 4 : TaoGL(n, R) — R is surjective for all
A e det™! (1). Hence, 1 is a regular value of det. &

15.9
(a) O(n) is defined by polynomial equations.
(b) If A € O(n), then each column of A has length 1.

15.10 Write out the conditions ATA = I, det A = 1. If a®> + b2 = 1, then (a,b)is
a point on the unit circle, and so a = cos6, b = sin 6 for some 6 € [0, 27].

15.13

cosh 1 sinh 1
sinh1 cosh1 |’

where cosht = (e’ + e ")/2 and cosht = (e’ — e~)/2 are hyperbolic cosine and
sine, respectively.

15.14 The correct target space for f is the vector space K,(C) of 2n x 2n skew-
symmetric complex matrices.

16.3 Let c(r) be a curve in Sp(n) with ¢(0) = I and ¢’(0) = X. Differentiate
c®)T Je(r) = J with respect to ¢.

16.4

(a) Use Problems 16.2 and 16.3.

(b) Show that the derivative of ¢(t) = ¢’ X7 Je'X is identically zero and hence ¢ (¢)
is a constant function.

(e) Let u(n) be the vector space of n x n skew-Hermitian matrices and S, (C) the
vector space of n xn complex symmetric matrices. Thendim Sp(n) = dim u(n)+
dim S, (C) = n? + (n® +n) = 2n% +n.

16.5 Mimic Example 16.3. The left-invariant vector fields on R" are the constant
vector fields Y /_, a' 9/0x', where a’' € R.

16.9 Abasis X, ..., Xn . for the tangent space 7,(G) at the identity gives rise to
a frame consisting of left-invariant vector fields X1, ..., X,,.

16.10 (b) Let (U, x!, ..., x™) be a chart about e in G. Relative to this chart, the
differential c(a), at e is represented by the Jacobian matrix [0(x o c(a)) / dx/ le]-
Since c¢(a)(x) = axa~! is a C* function of x and a, all the partial derivatives
d(x! o c(a))/dx'|, are C™ and therefore Ad(a) is a C* function of a.

171 o = (xdx + ydy)/(x% + y2).
17.3 a; =Y, b; 9y Jox/.

18.3* Vertical plane
Since ax + by is the zero function on the vertical plane, its differential is identi-
cally zero:

adx 4+ bdy = 0.
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Thus, at each point of the plane, dx is a multiple of dy or vice versa. In either case,
dx ndy = 0. <

18.4* Support of a sum or product
(@) If (w+ 1)(p) # 0, then w(p) # 0 and t(p) # 0. Hence,

(Pl @+1), #0) C{plo, #0)U{p |1, # 0}
Taking the closure of both sides gives
supp(w + t) C suppw U supp .
(b) Suppose (w A 1), # 0. Then w, # 0 and 7, # 0. Hence,
Pl @AT), #0) Clplwp #0}N{p |7, #0).

Taking the closure of both sides and remembering that AN B C A N B, we get

supp(w AT) C{p|wp #0}N{p |1y # 0} Csuppw Nsuppr. &

18.5* Locally finite supports
Let p € suppw. Since {supp p.} is locally finite, there is a neighborhood W,
of p in M that intersects only finitely many of the sets supp p,. The collection
{W, | p € suppw} covers supp w. By the compactness of supp w, there is a finite
subcover {W,,, ..., W, }. Since each W), intersects only finitely many supp o,
supp w intersects only finitely many supp pq .

By Problem 18.4,

supp(paw) C Supp pg N supp .
Thus, for all but finitely many o, supp(p,®) is empty, i.e., pg® = 0. <

18.7* Pullback by a surjective submersion
The fact that 7*: Q*(M) — Q*(M) is an algebra homomorphism follows from
Propositions 18.5 and 18.7.

Suppose w € QK(M) is a k-form on M for which 7*» = 0 in QK(M). To
show that @ = 0, pick an arbitrary point p = w(p) € M, and arbitrary vectors
v, ..., v € Ty M. Since 7 is a submersion, there exist vy, ..., U € TI;M such that
Ty, Ui = v;. Then

0= (T"w);(@1, ..., %) (because 7 *w = 0)
= Wy () (W1, ..., T4Dx)  (definition of 7*w)
= wp(V1, ..., V).
Since p € M and vy, ..., vx € T, M are arbitrary, this proves that = 0. Therefore,
T QY (M) — Q*(M) is injective. &

18.8 (c) Because f(a) is induced by Ad(a), we have f(a) = det(Ad(a)) by Prob-
lem 3.11. According to Problem 16.10, Ad(a) is a C* function of a.
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19.1* Extension of a C* form
Choose a C* bump function p at p supported in U. For any ¢ € M, define

- p(q)t(q) forq e U;
T(q) =
0 forg ¢ U.

On U, the form 7 is clearly C°°, since it is the product of two C* forms p and 7.
Suppose g ¢ U. Since 7 is supported in U, g ¢ supp t. Because supp 7 is a closed
set, there is an open neighborhood U, of g such that U, N suppt = ¢. Thus, T =0
on Uy and is trivially C* at q. &

19.3 F*(dx Ady ANdz) =d(x o F) ANd(y o F) Ad(z o F). Apply Problem 19.2.
19.4 F*(udu +vdv) = 2x> 4+ 3xy?)dx + 3x%y + 2y3)dy.
19.5 c*w = dt.

19.6* Coordinates and differential forms
Let (V, xl, ..., x™) be a chart about p. By Problem 19.2,
9 i

dfl/\-~-/\df"=det|:—.i|dx1/\-~-/\dx".
ax/

So df' A A df")p, # 0if and only if det[d f1/dx7 (p)] # 0. By the inverse
function theorem, this condition is equivalent to the existence of a neighborhood W

on which the map F := (f!,..., f"): W — R" is a C™ diffeomorphism unto its
image. In other words, (W, fl, ..., f")is a chart. &

19.8 Mimic the proof of Proposition 19.4.

19.9 Itis enoqgh to check the formula in a chart (U, xt x™), so we may assume
® =Y a;dx'. Since both sides of the equation are R-linear in w, we may further
assume that w = f dh, where f, h € C*(U).

19.10
(a) Mimic Example 19.7.
(b) On M, df = frdx+ fydy+ f;dz=0.

19.12 V x E = —9B/dt and divB = 0.

20.2* Equivalent nowhere-vanishing n-forms

Suppose il = {(Uy, xoll, oo xp)and U = {(Vg, yé, R yg)} are equivalent oriented
atlases. Let {4} be a partition of unity subordinate to {Uy}, and {og} a partition of
unity subordinate to {V}. Define

wa=2padx(i/\~-~/\dxg and t:Zaﬁdyé/\---/\dyg.

Being both nowhere-vanishing n-forms, t = hw for a nowhere-vanishing function
h. It suffices to show that 4 is everywhere positive.
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Let p € M. In the proof of Proposition 20.9, it is shown that for any chart
U, xt, ..., x™ containing p in i,

o= fydx" A---Adx" for some function fy > 0.
Similarly, for any chart (V, y!, ..., y") containing p in 0,
T =gy dy1 A---Ady" for some function gy > 0.

OnUNYV,

i

ad
t:gvdet[i.] dx' Ao Adx"
dx/

8i
:g—vdet[i} fudx' Ao Adx"

fU axj
i

= g—vdet al w.
Ju axJ

Since 4 and U are equivalent oriented atlases, det[d yi / 3x/]1 > 0. Hence,
7, = (positive number) - w.

As pis an arbitrary point of M, the function / is positive everywhere on M. Therefore,
 and 1 are equivalent nowhere-vanishing n-forms on M. <

20.4 Use Problem 19.10(c).
20.7 See Problem 12.2.
21.1 bd(M) = {0, 1,2}. oM = {0}.

21.2* Boundary orientation of the left half-space
We map M to the upper half-space H" by the coordinate map:

xl — y2’ .“’xn—l — yn’xn — _yl.
Then the orientation form on M is
dy' A Ady" = —dx" Adx' Ao Adx"T!

= (—1)"dx' A ---dytax".
Hence, the orientation form on oM is
(=D"(=D"dx"' A Adx" TV =dx' A A dx"T!
=dy* A Ady". &

21.3* Inward-pointing vectors at the boundary
(<=)_Suppc_)se (U, ¢ = (x',...,x™) is a chart for M centered at p such that X, =
> a'd/dx'|, with a” > 0. Then the curve ¢(t) = ¢ Ya't, ..., a"t) in M satisfies
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c(0) = p, c((0,¢€)) C /(M), and ¢'(0) = Xp. (21.3.1)

So X, is inward-pointing.

(=) Suppose X, is inward-pointing. Then X, ¢ T,(0M) and there is a curve
c: [0,€) — M such that (21.3.1) holds. Let (U,¢ = (x!,...,x™)) be a chart
centered at p such that U N M is defined by x" > 0. If ¢ o c(t) = (c' (1), ..., " (1)),
then ¢"(0) = 0 and ¢"(¢) > 0 for t > 0. Therefore,

LD O

(Y () =limt — 0 p

Since X, = >_i_,(c')(0)d/dx"|, the coefficient of 3/dx'|, in X, is (¢")'(0). In
fact, (c")'(0) > 0 because if (c")'(0) = 0, then X, € T,(dM). &
21.4* Boundary orientation in terms of tangent vectors

Let (U,¢ = (x!,...,x™)) be a chart centered at p such that U N M is defined by

x™ > 0. Then an orientation form on U N M is dx! A --- A dx" and an orientation
formon U NAM is (—1)*dx" A --- A dx"~!. Note that

dx" A ... ANdx"(Xp, V1, ..., Up—1)
= (=D)" M dx" Adx" A AdX"TN (X, vt Unl1)
= (=D)" N dx"(X ) (dx' - dx""V (1, ..., vem1)

dx"(v;) =0foralli =1,...,n—1,
because vy, ..., v,—1 are contained in the
subspace of T,(M) generated by

a/axt, ..., a/0x"h

= (=1)"(positive number) x dx' A -+ Adx" " (v1,..., va_1),

where in the last equality, dx" (X ,) < 0 because X, is outward-pointing.

Thus, the ordered basis (X, v1, ..., v,—1) gives the orientation on T}, (M) if and
only if the ordered basis (v1, ..., v,—1) for T,,(d M) gives the boundary orientation
onT,(0M). <&

21.5* Orientation form of the boundary orientation
Letp € 9M andletvy, ..., v,_1 be abasis for T,,(d M) that gives the boundary orien-
tation on 0 M. By Problem 21.4, the basis X, vy, ..., v,—1 specifies the orientation
of T, M. Thus,

w(Xp,v1,...,Vp-1) > 0.

But
pra)(vl, cosUp—1) = 0(Xp,v1, ..., Up—1) > 0.

Hence, 1 x ,® is an orientation form for oM. &
21.6 Viewed from the top, C| is clockwise and C» is counterclockwise.

22.1 The map F is orientation-preserving.
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22.2* Integral under a diffeomorphism
Let {(Uy, ¢o)} be an oriented atlas for M that specifies the orientation of M, and
{ps} a partition of unity on M subordinate to the open cover {U,}. Assume that
F: N — M is orientation-preserving. By Problem 20.3, {(F71(Uy), ¢po o F)}is an
oriented atlas for N that specifies the orientation of N. By Problem 13.5, { F*py} is
a partition of unity on N subordinate to the open cover {F~!(Uy,)}.

By the definition of the integral,

F* — F* o F*
[ o ;Lwﬁ po) (7o)
=Z/ F*(pa)

« “F

LUy

=Zﬂ (Go o F)~ 1 F*(po)

w0 F)(F~1(Uy))

D3] IERC-UNTRY
o o (Ua)

e o

If F: N — M is orientation-reversing, then {(F~'(Uy), ¢4 o F)} is an oriented
atlas for N that gives the opposite orientation of N. Using this atlas to calculate the
integral as above gives — [, F*w. Hence in this case [}, o = — [, F*o. <&

22.3* Stokes’ theorem for R" and for H"
An (n — 1)-form w with compact support on R” or H” is a linear combination

n
o= fids' Ao Adxi A A dx" (22.3.1)
i=l

Since both sides of Stokes’ theorem are R-linear in w, it suffices to check the theorem
for just one term of the sum (22.3.1). So we may assume

o= fdx' A Adxi A AdXT,

where f is a C* function with compact support in R” or H". Then

0 : . —
da):8—fidx'/\dxl/\---/\dxl_l/\dx’/\--~/\dx"
X
9 .
=(—1)’*1—f.dx1 Ao Adxt Ao Adx.
oxt

Since f has compact support in R” or H", we may choose a > 0 large enough so
that supp f lies in the interior of the cube [—a, a]".
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Stokes’ theorem for R"

By Fubini’s theorem, one can first integrate with respect to x':

.0
/ dw:/ (—1)’*‘—fi|dx‘-.-dx"|

= (=1)i- 1/ / _zld 1||dx1...2;...dx”|
Rr—1 8.x

— (—1)i™ 1/ |dx||dx cedx - dx".
Rnl

aaf i i—1 i+1 i—1 i+1
W|dx|=f(...,x ,a,x T )= X T —axTT, )
—a

=0—-0=0,

because the support of f lies in the interior of [—a, a]*. Hence, fRn do =0
The right-hand side of Stokes’ theorem is [, @ = [, @ = 0, because R" has
empty boundary. This checks Stokes’ theorem for R”.

Stokes’ theorem for H"
Case 1: 1 # n.

/ do = (—1)""! f coodx"|
HVL n 3 l

— (—1)i™ 1/ / L jdx!| jdx" -t - dx"|
Hnl

— (—1)i™ 1/ / —|dl||dx1--.J;F-.-dx"|
Hnl

=0 for the same reason as the case of R".

As for f o @» NOte that 9H" is defined by the equation x” = 0. Hence, on dH", the

1-form dx™ = 0. Sincei #n,w = fabc1 /\---AZ)FAnJ\dx" = 0 on 0H", so
f g @ = 0. Thus Stokes’ theorem holds in this case.

Case2: i =n.

/ do = (=1)""! o7 ldx" - - - dx"|

Hr ax"

=(-D)"" 1/ / —— |dx"| |dx" - -dx"""].
Rn—1
In this integral

> 3 d
/ / |dx"|=/ g
o Jx" 0

:f(x s xT ,a)—f(xl,...,x"_l,O)
=—f@&' ..., 2" 0).
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Hence,

/da):(—l)”/ f(xl,...,x”—1,0)|dx1.-.dx"—1|:/ w
Hn Rnfl oHn

because (—1)"R"~! is precisely dH" with its boundary orientation. So Stokes’ the-
orem also holds in this case. <

23.1* Locally constant map on a connected space

We first show that for every y € Y, the inverse f~!(y) is an open set. Suppose

p € f~1(y). Then f(p) = y. Since f is locally constant, there is a neighborhood

U of p such that f(U) = {y}. Thus, U C f~!(y). This proves that Yy is open.
The equality S = yey f ~1(y) exhibits S as a disjoint union of open sets. Since

S is connected, this is possible only if there is just one such open set S = £~ (yp).
Hence, f assumes the constant value yp on S. <

25.2 The given exact sequence is equivalent to a collection of short exact sequences

0— imdi_1 — Ak ﬂ) imd; — 0
forallk =0,...,m — 1. (Define d_; = 0.) By the first isomorphism theorem,
dim A* = dimim di_; + dim im dj.
When we compute the alternating sum of the left-hand side, the right-hand side will

cancel to 0. &

27.1 Let U be the punctured projective plane R P2 —{p} and V a small disk containing
p. Because U can be deformation retracted to the boundary circle, it has the homotopy
type of S!. Apply the Mayer—Vietoris sequence. The answer is H(RP?) = R,
HK(@RP2) =0fork > 0.

27.2 H*(S") =R for k = 0, n, and H*(5") = 0 otherwise.

27.3 One way is to apply the Mayer—Vietoris sequence to U = R> — {p}, V =
R* — {g}.

A.8* The Lindelof condition
Let {B;};er be a countable basis and {U, }4c4 an open cover of the topological space
S. For every p € Uy, there exists a B; such that

peB CU,.
Since this B; depends on p and o, we write i = i(p, «). Thus,
pE Bi(p,a) Cc Uy.

Now let J be the set of all indices j € J such that j = i(p, «) for some p and some

a. Then J;c; Bj = M because every p in M is contained in some Bj(p,a) = B;.
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For each j € J, choose an a(j) such that B; C Uq(j). Then M = J; B; C
Uq(jy- So {Uy(j)}jes is a countable subcover of {Ugy}uea- &

A.10* Disconnected subset in terms of a separation
(=) By (iib),
A=UNV)NA=UNAUVNA).

By (i) and (ii), U N A and V N A are disjoint nonempty open subsets of A. Hence, A
is disconnected.

(<) Suppose A is disconnected in the subspace topology. Then A = U’ U V’, where
U’ and V' are two disjoint nonempty open subsets of A. By the definition of the
subspace topology, U' = U N A and V' = V N A for some open sets U, V in S.

(1) holds because U’ and V' are nonempty.
(ii) holds because U’ and V' are disjoint.
(iii) holds because A =U'UV' Cc UUYV. <&

A.14* Uniqueness of the limit

Suppose p # q. Since S is Hausdorff, there exist disjoint open sets U, and U, such
that p € U, and g € U,. By the definition of convergence, there are integers N
and N, such that for alli > Np, x; € Up, and foralli > N, x; € U,;. Thisisa
contradiction since U, N U, is the empty set. <

A.15* Closure in a product
(C) Because cl(A) x Y is a closed set containing A x Y, by the definition of closure,
cl(AxY)Ccl(A) xY.

(D) Conversely, suppose (p,y) € cl(A) x Y. If p € A, then (p,y) € A X N C
cl(A x Y). Suppose p ¢ A. By Proposition A.52, p is an accumulation of A. Let
U x V be any basis open setin S x Y containing (p, y). Because p € ac(A), the open
set U contains a pointa € A witha # p. So U x V contains the point (a, y) € AXY
with (a, y) # (p,y). This proves that (p, y) is an accumulation point of A x Y.
By Proposition A.52 again, (p,y) € ac(A x Y) C cl(A x Y). This proves that
cl(A) x Y Ccl(Ax7Y). O

B.1* The rank of a matrix

(=) Suppose tk A > k. Then one can find k linearly independent columns, which
we call aq, ..., ar. Since the m x k matrix [aj - - - ax] has rank k, it has k linearly
independent rows bl, ..., b*. The matrix B whose rows are b1, ..., b*isak x k
submatrix of A, and rtk B = k. In other words, B is nonsingular k x k submatrix
of A.

(<) Suppose A has a nonsingular £ x k submatrix B. Letay, ..., a; be the columns
of A such that the submatrix [a; - - - ax] contains B. Since [a] - - - ax] has k linearly
independent rows, it also has k linearly independent columns. Thus,tk A > k. <

B.2* Matrices of rank at most r
Let A be an m x n matrix. By Problem B.1,rtk A < riffall (r + 1) x ( 4+ 1) minors
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mi(A), ..., mg(A) of A vanish. As the common zero set of a finite collection of
continuous functions, D, is closed in R™*", &

B.3* Maximal rank
For definiteness, suppose n < m. Then the maximal rank is n and every matrix
A € R™*" has rank < n. Thus,

Dupax = {A e R |[tkA=n} =R"™" — D, _.

Since D, is a closed subset of R”*" (Problem B.2), Dy, is open in R™**, &
B.4* Degeneracy loci and maximal rank locus of a map

(a) Let D, be the subset of R™*" consisting of matrices of rank at most r. The
degeneracy locus of rank r of the map F: S — R”*" may be described as

D,(F)={x €S| F(x) € D;} = F (D).

Since D, is a closed subset of R”*" (Problem B.2) and F is continuous, F~!(D,)
is a closed subset of S.

(b) Let Dpax be the subset of R™*” consisting of all matrices of maximal rank. Then
Dmax (F) = F~1(Dpax). Since Dpax is open in R”*" (Problem B.3) and F is
continuous, F~1(Dpmay) is openin S. &
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{er,...,en}
Dy f

X~y

e
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Der(A)
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directional derivative of f in the direction of v at p (p. 12)
equivalence relation (p. 13)

algebra of germs of C* functions at p in R” (p. 13)
vector space of derivations at p in R” (p. 14)
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RP" real projective space of dimension n (p. 68)
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m;j or m;j(A)
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™
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germs of C* functions at p in M (p. 77)
tangent space to M at p (p. 78)
coordinate tangent vector at p (p. 78)
differential of F at p (p. 78)

curve in a manifold (p. 83)
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special linear group over a field K (p. 97)
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tangent bundle (p. 119)

disjoint union (p. 119)

coordinate map on the tangent bundle (p. 119)
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e
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A

List of Symbols 343

fiber at p of a vector bundle (p. 122)
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tangent vector at p (p. 123)
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support of a function f (p. 127)

closed ball in R"” with center p and radius r (p. 130)
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integral curve through p (p. 136)
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local flow (p. 140)

Lie bracket of vector fields, bracket in a Lie algebra
(pp. 141, 142)

vector space of n x n real symmetric matrices (p. 150)
torus (p. 152)

exponential of a matrix X (p. 154)

trace (p. 155)

special orthogonal group (p. 159)

unitary group (p. 159)

special unitary group (p. 159)

n x n identity matrix (p. 160)

the matrix [_2 16’:| (p. 160)

complex symplectic group (p. 160)

compact symplectic group (p. 160)

identity element of a Lie group (p. 161)

Lie algebra of left-invariant vector fields on G (p. 163)
Lie algebra (p. 165)

Lie subalgebra (p. 165)

left-invariant vector field generated by A € T, G (p. 165)
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o(n)
u(n)
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T*M
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F*w

ANV = ap(v)

@p
AT M)
k(M)
Q*(M)
Qk(G)C
supp
dw

wls

(V1s .2y V)
[vi,..., V]
(M, [w])

"

int(H")
o(H™)

L!

oM

bd(A)
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P={P,...

M—)T;‘N

s P}

Lie algebra of GL(n, R) (p. 166)

Lie algebra of SL(n, R) (p. 169)

Lie algebra of O(n, R) (p. 169)

Lie algebra of U (n, R) (p. 169)

cotangent space at p (p. 175)

cotangent bundle (p. 177)

codifferential (p. 179)

pullback of a differential form w by F (pp. 179, 184)
k-covectors on a vector space V (p. 181)

value of a differential form w at p (p. 181)

kth exterior power of the cotangent bundle (p. 183)
vector space of C*° k-forms on M (p. 183)

the direct sum @} _, QK (M) (p. 185)

left-invariant k-forms on a Lie group G (p. 186)
support of a k-form (p. 187)

exterior derivative of a differential form o (p. 192)

restriction of a differential from w to a submanifold S

(p- 193)

ordered basis (p. 202)

ordered basis as a matrix (p. 202)
oriented manifold with orientation [w] (p. 205)
closed upper half-space (p. 211)
interior of H" (p. 211)

boundary of H" (p. 211)

left half-line (p. 213)

boundary of a manifold (p. 214)
topological boundary of a set A (p. 214)
half-open interval in R (p. 218)
partition of a closed interval (p. 221)

partition of a closed rectangle (p. 221)
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-M

zZK(M)

BX(M)

H*(M)

[w]
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H*(M)
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(Q*(M), d)
H*(©)
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ju:unv =-U
x (M)

f~g

Eg
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Riemann integral of a differential form w over U (p. 224)
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set of discontinuities of a function f (p. 223)
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vector space of closed k-forms on M (p. 236)
vector space of exact k-forms on M (p. 236)
de Rham cohomology of M in degree k (p. 236)
cohomology class of w (p. 236)

induced map in cohomology (p. 240)

the cohomology ring EBZZOH" (M) (p. 241)
cochain complex (p. 243)

de Rham complex (p. 243)

kth cohomology of C (p. 245)

connecting homomorphism (p. 246)

inclusion map of U in M (p. 249)

inclusion map of U NV in U (p. 249)

Euler characteristic of M (p. 254)

f is homotopic to g (p. 257)

compact orientable surface of genus g (p. 271)
distance between p and g (p. 281)

open interval (p. 281)

a set S with a topology T (p. 282)



346 List of Symbols

Z(f1, . s fr) zero set of f1,..., fr (p. 282)

Z(I) zero set of all the polynomials in an ideal I (p. 282)

Q the set of rational numbers (p. 285)

Qt the set of positive rational numbers (p. 285)
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a nowhere-vanishing 1-form on the circle,
193

linearity over C* functions, 179
smoothness characterizations, 177
transition formula, 179

2-form
transition formula, 182

accumulation point, 295
action, 23

of the permutation group on k-linear

functions, 23

adapted chart, 91
adjoint representation, 171
Af,24
algebra, 13

graded, 37
alternating k-linear function, 22
alternating k-tensor, 22
alternating operator, 24
analytic, 6
anticommutative, 241
antiderivation, 37, 189

degree of, 37, 189

is a local operator, 191
associative axiom

in a category, 101
associativity

of the tensor product, 25

of the wedge product, 28
atlas, 49

equivalent oriented atlases, 207

for a regular submanifold, 93

maximal, 50
oriented, 206

base space
of a vector bundle, 122
basic open set, 284
basis, 284
for Ax(V), 30
for k-tensors, 31
for the cotangent space, 33, 176
for the dual space, 20
for the product topology, 287
for the tangent space, 80
of neighborhoods at a point, 296
bi-invariant top form
on a compact connected Lie group, 187
bilinear, 22
boundary
manifold boundary, 214
of an n-manifold with boundary is an
n — 1-manifold without boundary, 215
topological boundary, 214
boundary orientation, 217
for one-dimensional manifolds, 218
in terms of tangent vectors, 220
on 0H", 218
orientation form of, 220
boundary point, 214
of H", 211
bracket
of a Lie algebra, 142
bump function, 127
bundle map, 122
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C™ extension
of a function, 130
C®° function
need not be analytic, 6
onRR",5
on a manifold, 57
C® invariance of domain, 212
C° manifold, 50
C*° manifold with boundary, 214
C® map
between manifolds, 58
C®-compatible charts, 48
C* function
onRR"”,5
Cartesian product, 287
category, 101
chain rule
for maps of manifolds, 79
in calculus notation, 82
change of basis matrix, 202
change of variable formula, 225
characterization
of smooth sections, 125
chart, 47
adapted, 91
C®°-compatible, 48
centered at a point, 47
compatible with an atlas, 49
on a manifold with boundary, 213
circle
a nowhere-vanishing 1-form, 193
cohomology of, 253
is a manifold, 52
same homotopy type as the punctured
plane, 259
closed form, 39, 236
closed map, 292
closed set, 282
closed subgroup, 153
closed subgroup theorem, 153
closure, 295
of a finite union or finite intersection, 295
of a locally finite union, 134
coboundary, 245
cochain complex, 39, 243
cochain homotopy, 274
cochain map, 245
cocycle, 245
codimension, 92

cohomologous closed forms, 236
cohomology, see de Rham cohomology
cohomology class, 236, 245
cohomology ring, 241
of a torus, 265
cohomology vector space, 245
of a torus, 263
cokernel, 311
commutator
of superderivations, 44
compact, 290
closed subset of a compact space is
compact, 291
compact subset of a Hausdorff space is
close, 292
continous bijection from a compact
space to a Hausdorff space is a
homeomorphism, 292
continuous image of a compact set is
compact, 292
finite union of compact sets is compact,
292
product of compact spaces is compact, 292
compact symplectic group, 160
Lie algebra of, 170
compatible charts, 48
complementary subspace, 313
complete vector field, 140
complex general linear group, 151
complex symplectic group, 160
Lie algebra of, 170
component, 294
composite
in a category, 101
of smooth maps is smooth, 59
connected, 293
continuous image of a connected set is
connected, 293
connected component, 294
of a point, 294
connected space
a locally constant map on a connected
space is constant, 242
connectedness
union of connected sets having a point in
common is connected, 294
connecting homomorphism, 246
constant rank theorem, 106, 303
constant-rank level set theorem, 106



continuity
of a map on a quotient space, 64
continuous
at a point, 289
continuous bijection from a compact
space to a Hausdorff space is a
homeomorphism, 292
continuous image of a compact set is
compact, 292
continuous image of a connected set is
connected, 293
iff the inverse image of any closed set is
closed, 290
iff the inverse image of any open set is
open, 289
on a set, 289
the projection is continuous, 289
continuous category, 101
contractible, 259
Euclidean space is, 259
contraction, 43
contravariant functor, 103
convention
on subscripts and superscripts, 42
convergence, 296
coordinate map, 47
coordinate neighborhood, 47
coordinate system, 47
coordinates on a projective space
homogeneous, 68
coset, 312
coset representative, 312
cotangent bundle, 177
topology on, 177
cotangent space, 33, 175
basis for, 33, 176
of a manifold with boundary, 215
covariant functor, 102
covector, 19, 22
at a point of a manifold, 175
covector field, 33, 175
covectors
on a vector space, 22
critical point
of a map of manifolds, 86
of a smooth map from a compact manifold
to R"?, 116
critical value
of a map of manifolds, 86
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Cross
is not locally Euclidean, 48
cross product
relation to wedge product, 43
curl, 39
curve
existence with a given initial vector, 84
in a manifold, 83
starting at a point, 83
cuspidal cupic, 110
cycle
of length r, 20
cyclic permutation, 20

deformation retract, 260

implies the same homotopy type, 260
deformation retraction, 260
degeneracy locus, 305
degree

of a differential form, 35

of a tensor, 22

of an antiderivation, 37, 189
deleted neighborhood, 295
derivation

at a point, 14, 78

of a constant function is zero, 14

of a Lie algebra, 142

of an algebra, 17
derivation of C*® functions

is a local operator, 197
derivative

of a matrix exponential, 154
determinant

differential of, 158
de Rham cohomology, 42, 236

homotopy invariance, 273

in degree 0, 236

in degree greater than the dimension of the

manifold, 237

of a circle, 237, 253

of a Mobius band, 261

of a multiply punctured plane, 271

of a punctured plane, 261

of a punctured torus, 268

of a sphere, 271

of a surface of genus g, 271

of a surface of genus 2, 269

of the real line, 237

of the real projective plane, 271
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ring structure, 240
de Rham complex, 39, 243
diagram-chasing, 247
diffeomorphism, 59
of an open ball with R”, 10
of an open interval with R, 9
of open subsets of R”, 9
orientation-preserving, 205
orientation-reversing, 205
differentiable structure, 50
differential, 243
agrees with exterior derivative on O-forms,
189
compute using curves, 85
matrix of, 79
of a map, 78
of det, 157
of left multiplication, 85
of the determinant, 157, 158
of the inverse map, 104
of the inverse map in a Lie group, 88, 158
of the multiplication map in a Lie group,
88, 158
differential 1-form, 175
local expression, 176
differential complex, 39
differential form, 35, 181
as a multilinear function on vector fields,
36
closed, 236
degree of, 35
exact, 236
local expression, 182
on M x R, 275
on a manifold with boundary, 215
pullback, 184
smoothness characterizations, 183
support of, 187
transition formula, 196
Type I, 275
Type 11, 275
wedge product of differential forms, 184
with compact support, 187
differential of a function, 33, 175
in terms of coordinates, 34
relation with differential of a map, 175
differential of a map
local expression, 82
dimension

invariance of, 80
of Ar(V), 30
of the orthogonal group, 151
direct product, 314
direct sum
external, 314
internal, 313
directional derivative, 12
disconnected, 293
discrete topology, 282
distance
in R", 281
div, 39
divergence, 39
dual
functorial properties, 103
of a linear map, 103
dual basis, 20
dual map
matrix of, 104
dual space, 19, 103
basis, 20
has the same dimension as the vector
space, 20

embedded submanifold, 113
embedding, 111

image is a regular submanifold, 112
equivalence class, 63
equivalence of functions, 13
equivalence relation, 13

open, 66
equivalent ordered bases, 202
equivalent oriented atlas, 207
Euclidean inner product

as a tensor product of covectors, 25
Euclidean space

is contractible, 259

is Hausdorff, 287

is second countable, 286
Euler characteristic, 254
Euler’s formula, 99
even permutation, 21
even superderivation, 44
exact form, 39, 236
exact sequence, 243

long, 247

short, 244, 246
exponential



of a matrix, 153
extension

of a functon by zero, 223

to a global form, 191
exterior algebra, 267
exterior derivative, 36, 189

characterization, 38

on a coordinate chart, 190
exterior differentiation, 189

existence, 192

uniqueness, 192
exterior power

of the cotangent bundle, 183
external direct sum, 314

fiber
of a map, 122
of a vector bundle, 122
finite-complement topology, 282
first countable, 296
first isomorphism theorem, 311
flow
global, 140
local, 140
flow line, 140
form, see differential form
1-form on an open set, 33
a basis for the space of k-covectors, 30
closed, 39
dimension of the space of k-forms, 30
exact, 39
frame, 125
functor
contravariant, 103
covariant, 102
functorial properties
of the pullback map in cohomology, 240
fundamental theorem
for line integrals, 230

general linear group, 51
bracket on the Lie algebra of, 166
is a Lie group, 150
tangent space at I, 161
germ, 13
of a function on a manifold, 77
global flow, 140
global form, 191
grad, 39
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graded algebra, 37
graded ring, 241
gradient, 39
graph
of a smooth function, 99
of a smooth function is a manifold, 51
of an equivalence relation, 66
Grassmannian, 73
Green’s theorem in the plane, 230

half-space, 211
Hausdorff, 286
compact subset of a Hausdorff space is
close, 292
continuous bijection from a compact
space to a Hausdorff space is a
homeomorphism, 292
product of two two Hausdorff spaces is
Hausdorff, 288
singleton subset of a Hausdorff space is
closed, 286
subspace of a Hausdorff space is
Hausdorft, 287
Hausdorft quotient
necessary and sufficient condition, 67
necessary condition, 66
Hom, 19
homogeneous coordinates, 68
homogeneous element, 189
homological algebra, 243
homomorphism
of Lie groups, 168
homotopic maps, 257
induce the same map in cohomology, 261,
273
homotopy
from one map to another, 257
straight-line homotopy, 258
homotopy axiom
for de Rham cohomology, 261
homotopy equivalence, 258
homotopy invariance
of de Rham cohomology, 273
homotopy inverse, 258
homotopy type, 258
hypersurface, 97, 99
nowhere-vanishing form on a smooth
hypersurface, 197
orientability, 209
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identification, 63
of a subspace to a point, 65
identity axiom
in a category, 101
identity component
of a Lie group is a Lie group, 158
image
of a linear map, 311
of a smooth map, 109
immersed submanifold, 111
immersion, 105, 107
immersion theorem, 109
implicit function theorem, 300, 302
integrable, 222
integral
of a form on a manifold, 225
invariant under orientation-preserving
diffeomorphisms, 225
of an n form on R”, 224
over a parametrized set, 227
over a zero-dimensional manifold, 228
under a diffeomorphism, 231
under reversal of orientation, 227
integral curve, 136
maximal, 136
of a left-invariant vector field, 170
interior multiplication, 43
interior point, 214
of H", 211
internal direct sum, 313
invariance
of dimension, 80
invariance of domain, 212
invariant under translation, 265
inverse function theorem, 302
for a manifold, 61
for R", 61, 299
inversion, 21
invertible
locally, 61
inward-pointing vector, 219
isomorphism
of objects in a category, 102

Jacobi identity, 141
Jacobian determinant, 61, 299

Jacobian matrix, 61, 299

k-covector field, 181

k-form

on an open set, 35

k-linear function, 22

alternating, 22
symmetric, 22

k-tensors

a basis for, 31

kernel

of a linear map, 311

Lebesgue’s theorem, 223
left action, 23

left half-line, 213

left multiplication

differential of, 85

left-invariant form

on a compact connected Lie group is
right-invariant, 187
on a Lie group, 186
is C*°, 186

left-invariant vector field, 163

bracket of left-invariant vector fields is
left-invariant, 165

generated by a vector at e, 164

integral curves, 170

is C®, 164

on R, 164

on GL(n, R), 164

onR", 170

Leibniz rule

for a vector field, 17

length

of a cycle, 20

level set, 94

regular, 94

Lie algebra, 142

of a compact symplectic group, 170
of a complex symplectic group, 170
of a Lie group, 166

of a unitary group, 170

Lie bracket, 141

Jacobi identity, 141
on gl(n, R), 166

Lie group, 59, 149

adjoint representation, 171

differential of the inverse map, 158
differential of the multiplication map, 158
is orientable, 209

parallelizability, 171
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Lie group homomorphism, 168 open subset is a manifold, 51
differential is a Lie algebra homomor- open subset is a regular submanifold, 92
phism, 168 orientable, 205
Lie subalgebra, 165 orientation, 205
Lie subgroup, 152 pointed, 102
limit smooth, 50
of a sequence, 296 manifold boundary, 214
unique in a Hausdorff space, 296 manifold with boundary
Lindeldf condition, 297 C™>®,214
line integrals cotangent space of, 215
fundamental theorem, 230 differential forms, 215
linear algebra, 311 orientation, 215
linear functinal, 103 tangent space, 215
linear map, 14, 311 topological, 213
linear operator, 14, 311 map
linear transformation, 311 closed, 292
lines open, 292
with irrational slope in a torus, 152 matrix exponential, 153
local diffeomorphism, 299 derivative of, 154
local expression matrix of a differential, 79
for a 1-form, 176 Maxell’s equations, 198
for a k-form, 182 maximal atlas, 50
for a differential, 82 maximal integral curve, 136, 145
local flow, 140 maximal rank
generated by a vector field, 140 open condition, 108
local operator, 190, 197 maximal rank locus, 305
is support-decreasing, 197 Mayer—Vietoris sequence, 249
on C*® (M), 197 measure zero, 223
local trivialization, 122 minor
locally connected, 298 (i, j)-minor of a matrix, 98, 150
at a point, 298 k x k minor of a matrix, 304
locally constant map Mobius band, 208
on a connected space, 242 has the homotopy type of a circle, 261
locally Euclidean, 47 not orientable, 208
locally finite, 131 module, 16
collection of supports, 187 morphism
sum, 132, 187 in a category, 101
union multi-index, 182
closure of, 134 multicovector, 22
locally H", 213 multilinear function, 22
locally invertible, 61, 299 alternating, 22
locally trivial, 122 symmetric, 22
long exact sequence in cohomology, 247
lower integral, 222 near a point, 61
lower sum, 221 neighborhood, 47, 131, 282
normal, 286
manifold
has a countable basis consisting of object

coordinate open sets, 120 in a category, 101
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odd permutation, 21
odd superderivation, 44
one-parameter group
of diffeomorphisms, 137
open ball, 281
open condition, 108
open cover, 47, 290
open equivalence relation, 66
open map, 66, 292
open set, 282
in quotient topology, 63
in R, 281
open subgroup
of a connected Lie group is the Lie group,
158
open subset
of a manifold is a regular submanifold, 92
of a manifolds is a manifold, 51
operator, 190
is local iff support-decreasing, 197
linear, 14
local, 190
ordered bases
equivalent, 202
orientable manifold, 205
orientation
boundary orientation, 217
on a manifold, 205
specified by an oriented atlas, 207
on a manifold with boundary, 215
on a vector space, 203
representation by an top form, 204
orientation form, 205
of the boundary orientation, 220
orientation-preserving diffeomorphism, 205
iff Jacobian determinant always positive,
205
orientation-reversing diffeomorphism, 205
oriented atlas, 206
and nowhere-vanishing top form, 206
equivalent oriented atlases, 207
specifying an orientation, 207
oriented manifold, 205
orthogonal complement, 313
orthogonal group, 107, 150
dimension, 151
tangent space at /, 162
outward-pointing vector, 219

parallelizable manifold, 171
is orientable, 209
parametrized set, 227
partial derivative
on a manifold, 60
partition, 221
partition of unity, 127, 131, 226, 250
existence in general, 133-310
existence on a compact manifold, 132
pullback of, 134
subordinate to an open cover, 131
under a pullback, 134
permutation, 20
cyclic, 20
even, 21
is even iff it has an even number of
inversions, 21
odd, 21
product of permutations, 20
sign of, 21
permutation action
on k-linear functions, 23
Poincaré lemma, 42, 261
point-derivation
of Cgo, 14
of C;O (M), 78
pointed manifold, 102
product
of compact spaces is compact, 292
of permutations, 20
of two Hausdorff spaces is Hausdorff, 288
of two second countable spaces is second
countable, 288
product bundle, 122
product manifold, 52
atlas, 52
product rule
for matrix-valued functions, 157
product topology, 287
basis, 287
projection map, 63
is continuous, 289
projective line
real, 69
projective plane
real, 69
projective space
as a quotient of a sphere, 68
real, 68



projective variety, 99
pullback

by a surjective submersion, 187

commutes with the exterior derivative,

195

in cohomology, 240

linearity, 184

of k-covectors, 32

of a 1-form, 179

of a differential form, 184, 239

of a function, 58

support of, 134

of a partition of unity, 134

of a wedge product, 185
punctured plane

same homotopy type as the circle, 259
punctured torus

cohomology of, 268
push-forward

of a left-invariant vector field, 167

of a vector, 144

quotient construction, 63
quotient space, 64
basis, 67
necessary and sufficient condition to be
Hausdorff, 67
second countable, 68
quotient topology, 64
open set, 63
quotient vector space, 312

rank
of a composition of linear maps, 305
of a linear transformation, 86
of a matrix, 73, 304
of a smooth map, 86, 105, 303
rational point, 285
real line
with two origins is locally Euclidean,
second countable, but not Hausdroff,
53
real projective line, 69
real projective plane, 69
cohomology of, 271
real projective space, 68
as a quotient of a sphere, 68
Hausdorff, 71
is compact, 74

Index 357

locally Euclidean, 72
second countable, 71
standard atlas, 72
real-analytic, 6
rectangle, 221
refinement, 222
reflexive relation, 13
regular level set, 94
regular level set theorem
for a map between manifolds, 96
for a map to R", 95
regular point
of a map of manifolds, 86
regular submanifold, 91, 112
atlas, 93
is itself a manifold, 93
regular value
of a map of manifolds, 86
related vector fields, 143
relation, 13
equivalence, 13
relative topology, 283
restriction
of a form to a submanifold, 193
retract, 260
retraction, 260
Riemann integrable, 222
right action, 23
right-invariant form
on a Lie group, 186

second countability, 47, 286
a subspace of a second countable space is
second countable, 286
of a quotient space, 68
product of two second countable spaces is
second countable, 288
section
of a vector bundle, 123
smooth, 123
separation, 293
separation axioms, 286
sequence, 296
sequence lemma, 296
Sf,24
short exact sequence
of cochain complexes, 246
of vector spaces, 244
shuffle, 26
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sign of a permutation, 21
singleton set, 259
in a Hausdorff space is closed, 286
singular chain, 221
smooth, 5
smooth category, 102
smooth differential form, 183
smooth function
on a manifold, 57
on an arbitrary subset of R", 212
onR",5
smooth homotopy, 257
smooth manifold, 50
smooth map
between manifolds, 58
from a compact manifold to R" has a
critical point, 116
into a submanifold, 113
rank of, 86
smooth section, 123
characterization of, 125
smooth vector field, 123
on an open set in R", 15
smoothness of a vector field
as a smooth section of the tangent bundle,
135
in terms of smooth functions, 136
smooth coefficients relative a coordinate
vector fields, 135
solution set
of two equations, 98
special linear group, 97, 150
is a Lie group, 150
is a manifold, 97
tangent space at /, 161
special orthogonal group, 159
special unitary group, 159
sphere
charts on, 54
cohomology of, 271
tangent plane, 116
standard topology of R", 282
star-shaped, 7
Stokes’ theorem, 228
specializes to Green’s theorem in the
plane, 231
specializes to the fundamental theorem for
line integrals, 231
straight-line homotopy, 258

subalgebra, 165
subcover, 290
submanifold

embedded, 113

immersed, 111

regular, 91, 112
submersion, 105, 107, 187

is an open map, 109
submersion theorem, 109
subordinate to an open cover, 131
subscripts

convention, 42
subspace

of a Hausdorff space is Hausdorff, 287

of a second countable space is second

countable, 286

subspace topology, 283
sum of two subspaces, 313
superderivation, 44

even, 44

odd, 44
superscripts

convention, 42
support

of a differential form, 187

of a function, 127

of a product, 187

of a sum, 187

of the pullback of a function, 134
support-decreasing, 197
surface of genus g

cohomology of, 271
surface of genus 2

as the quotient of an octagon, 269

cohomology of, 269
symmetric k-linear function, 22
symmetric relation, 13
symmetrizing operator, 24
symplectic group

compact, 160

complex, 160

tangent bundle, 119

manifold structure, 121

topology of, 119

total space is orientable, 209
tangent plane to a sphere, 116
tangent space, 215

at a point of a manifold, 78



basis, 80

of a manifold with boundary, 215

toR", 12

to an open subset, 78

to the general linear group, 161

to the orthogonal group, 162

to the special linear group, 161
tangent space at /

of a unitary group, 170
tangent vector

at a boundary point, 215, 219

inR"?, 12

on a manifold, 78

on a manifold with boundary, 215
tangent vectors

onR”, 11
Taylor’s theorem

with remainder, 7

with remainder to order 2, 10
tensor, 22

degree of, 22

on a vector space, 181
tensor product

is associative, 25

of multilinear functions, 25
top form, 181
topological boundary, 214
topological group, 59
topological manifold, 47

with boundary, 213
topological space, 282
topologist’s sine curve, 92
topology, 282

discrete, 282

finite-complement, 282

generated by a collection, 285

relative, 283

standard topology of R, 282

subspace, 283

Zariski, 282
torus

cohomology ring, 265

cohomology vector space, 263

lines with irrational slope, 152
total space

of a vector bundle, 122
trace

of a matrix, 155
transition formula
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for a 2-form, 182

for an n-form, 196
transition function, 48
transition matrix

for coordinate vectors, 81
transitive relation, 13
transposition, 20
transversal map

to a submanifold, 99
transversality theorem, 100
trilinear, 22
trivial bundle, 123
trivializing open cover, 122
trivializing open set

for a vector bundle, 122
Tychonoff theorem, 292
Type I forms, 275
Type II forms, 275

uniqueness of the limit in a Hausdorff space,
296
unitary group, 159
tangent space at the identity, 170
upper half-space, 211
upper integral, 222
upper sum, 221
Urysohn lemma, 134

vector bundle, 121, 122
locally trivial, 122
product bundle, 122
trivial bundle, 123
vector field, 15
F-related vector fields, 143
along a submanifold, 220
as a derivation of the algebra of C*°
functions, 17, 198
complete, 140
integral curve, 136
left-invariant, 163
Leibniz rule, 17
on a manifold, 123
smoothness condition in R”, 15
smoothness condition on a manifold, 123
vector space
orientation, 203
vector space homomorphism, 311
velocity of a curve
in local coordinates, 84
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velocity vector, 83
vertical, 187
volume

of a subset of R”, 223

wedge product
is anticommutative, 27
is associative, 28
of differential forms, 184

of forms on a vector space, 25
relation to cross product, 43
under a pullback, 185

Zariski topology, 282

zero set, 94
intersection and union of zero sets, 282
of two equations, 97

zig-zag diagram, 247
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