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Preface

It has been more than two decades since Raoul Bott and I published Differential Forms
in Algebraic Topology. While this book has enjoyed a certain success, it does assume
some familiarity with manifolds and so is not so readily accessible to the average
first-year graduate student in mathematics. It has been my goal for quite some time
to bridge this gap by writing an elementary introduction to manifolds assuming only
one semester of abstract algebra and a year of real analysis. Moreover, given the
tremendous interaction in the last twenty years between geometry and topology on
the one hand and physics on the other, my intended audience includes not only budding
mathematicians and advanced undergraduates, but also physicists who want a solid
foundation in geometry and topology.

With so many excellent books on manifolds on the market, any author who un-
dertakes to write another owes to the public, if not to himself, a good rationale. First
and foremost is my desire to write a readable but rigorous introduction that gets the
reader quickly up to speed, to the point where for example he or she can compute
de Rham cohomology of simple spaces.

Asecond consideration stems from the self-imposed absence of point-set topology
in the prerequisites. Most books laboring under the same constraint define a manifold
as a subset of a Euclidean space. This has the disadvantage of making quotient
manifolds, of which a projective space is a prime example, difficult to understand.
My solution is to make the first four chapters of the book independent of point-set
topology and to place the necessary point-set topology in an appendix. While reading
the first four chapters, the student should at the same time studyAppendixAto acquire
the point-set topology that will be assumed starting in Chapter 5.

The book is meant to be read and studied by a novice. It is not meant to be
encyclopedic. Therefore, I discuss only the irreducible minimum of manifold theory
which I think every mathematician should know. I hope that the modesty of the scope
allows the central ideas to emerge more clearly. In several years of teaching, I have
generally been able to cover the entire book in one semester.

In order not to interrupt the flow of the exposition, certain proofs of a more routine
or computational nature are left as exercises. Other exercises are scattered throughout
the exposition, in their natural context. In addition to the exercises embedded in the
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text, there are problems at the end of each chapter. Hints and solutions to selected
exercises and problems are gathered at the end of the book. I have starred the problems
for which complete solutions are provided.

This book has been conceived as the first volume of a tetralogy on geometry
and topology. The second volume is Differential Forms in Algebraic Topology cited
above. I hope that Volume 3, Differential Geometry: Connections, Curvature, and
Characteristic Classes, will soon see the light of day. Volume 4, Elements of Equiv-
ariant Cohomology, a long-running joint project with Raoul Bott before his passing
away in 2005, should appear in a year.

This project has been ten years in gestation. During this time I have benefited from
the support and hospitality of many institutions in addition to my own; more specif-
ically, I thank the French Ministère de l’Enseignement Supérieur et de la Recherche
for a senior fellowship (bourse de haut niveau), the Institut Henri Poincaré, the Institut
de Mathématiques de Jussieu, and the Departments of Mathematics at the École Nor-
male Supérieure (rue d’Ulm), the Université Paris VII, and the Université de Lille,
for stays of various length. All of them have contributed in some essential way to the
finished product.

I owe a debt of gratitude to my colleagues Fulton Gonzalez, Zbigniew Nitecki,
and Montserrat Teixidor-i-Bigas, who tested the manuscript and provided many use-
ful comments and corrections, to my students Cristian Gonzalez, Christopher Watson,
and especiallyAaron W. Brown and Jeffrey D. Carlson for their detailed errata and sug-
gestions for improvement, to Ann Kostant of Springer and her team John Spiegelman
and Elizabeth Loew for editing advice, typesetting, and manufacturing, respectively,
and to Steve Schnably and Paul Gérardin for years of unwavering moral support. I
thank Aaron W. Brown also for preparing the List of Symbols and the TEX files for
many of the solutions. Special thanks go to George Leger for his devotion to all of my
book projects and for his careful reading of many versions of the manuscripts. His
encouragement, feedback, and suggestions have been invaluable to me in this book
as well as in several others. Finally, I want to mention Raoul Bott whose courses
on geometry and topology helped to shape my mathematical thinking and whose
exemplary life is an inspiration to us all.

Medford, Massachusetts Loring W. Tu
June 2007
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0

A Brief Introduction

Undergraduate calculus progresses from differentiation and integration of functions
on the real line to functions on the plane and in 3-space. Then one encounters vector-
valued functions and learns about integrals on curves and surfaces. Real analysis
extends differential and integral calculus from R3 to Rn. This book is about the
extension of the calculus of curves and surfaces to higher dimensions.

The higher-dimensional analogues of smooth curves and surfaces are called man-
ifolds. The constructions and theorems of vector calculus become simpler in the more
general setting of manifolds; gradient, curl, and divergence are all special cases of the
exterior derivative, and the fundamental theorem for line integrals, Green’s theorem,
Stokes’ theorem, and the divergence theorem are different manifestations of a single
general Stokes’ theorem for manifolds.

Higher-dimensional manifolds arise even if one is interested only in the three-
dimensional space which we inhabit. For example, if we call a rotation followed by a
translation an affine motion, then the set of all affine motions in R3 is a six-dimensional
manifold. Moreover, this six-dimensional manifold is not R6.

We consider two manifolds to be topologically the same if there is a homeo-
morphism between them, that is, a bijection that is continuous in both directions. A
topological invariant of a manifold is a property such as compactness that remains
unchanged under a homeomorphism. Another example is the number of connected
components of a manifold. Interestingly, we can use differential and integral calculus
on manifolds to study the topology of manifolds. We obtain a more refined invariant
called the de Rham cohomology of the manifold.

Our plan is as follows. First, we recast calculus on Rn in a way suitable for
generalization to manifolds. We do this by giving meaning to the symbols dx, dy,
and dz, so that they assume a life of their own, as differential forms, instead of being
mere notations as in undergraduate calculus.

While it is not logically necessary to develop differential forms on Rn before the
theory of manifolds—after all, the theory of differential forms on a manifold in Part V
subsumes that on Rn, from a pedagogical point of view it is advantageous to treat Rn

separately first, since it is on Rn that the essential simplicity of differential forms and
exterior differentiation becomes most apparent.
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Another reason for not delving into manifolds right away is so that in a course
setting the students without the background in point-set topology can readAppendixA
on their own while studying the calculus of differential forms on Rn.

Armed with the rudiments of point-set topology, we define a manifold and derive
various conditions for a set to be a manifold. A central idea of calculus is the approx-
imation of a nonlinear object by a linear object. With this in mind, we investigate
the relation between a manifold and its tangent spaces. Key examples are Lie groups
and their Lie algebras.

Finally we do calculus on manifolds, exploiting the interplay of analysis and
topology to show on the one hand how the theorems of vector calculus generalize,
and on the other hand, how the results on manifolds define new C∞ invariants of a
manifold, the de Rham cohomology groups.

The de Rham cohomology groups are in fact not merely C∞ invariants, but
also topological invariants, a consequence of the celebrated de Rham theorem that
establishes an isomorphism between de Rham cohomology and singular cohomology
with real coefficients. To prove this theorem would take us too far afield. Interested
readers may find a proof in the sequel [3] to this book.
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Smooth Functions on a Euclidean Space

The calculus ofC∞ functions will be our primary tool for studying higher-dimensional
manifolds. For this reason, we begin with a review of C∞ functions on Rn.

1.1 C∞ Versus Analytic Functions

Write the coordinates on Rn as x1, . . . , xn and let p = (p1, . . . , pn) be a point in
an open set U in Rn. In keeping with the conventions of differential geometry, the
indices on coordinates are superscripts, not subscripts. An explanation of the rules
for superscripts and subscripts is given in Section 4.7.

Definition 1.1. Let k be a nonnegative integer. A function f : U −→ R is said to be
Ck at p if its partial derivatives ∂jf /∂xi1 · · · ∂xij of all orders j ≤ k exist and are
continuous at p. The function f : U −→ R is C∞ at p if it is Ck for all k ≥ 0; in
other words, its partial derivatives of all orders

∂kf

∂xi1 · · · ∂xik
exist and are continuous at p. We say that f is Ck on U if it is Ck at every point in
U . A similar definition holds for a C∞ function on an open set U . A synonym for
C∞ is “smooth.’’

Example 1.2.
(i) AC0 function on U is a continuous function on U .

(ii) Let f : R −→ R be f (x) = x1/3. Then

f ′(x) =
{

1
3x

−2/3 for x �= 0,

undefined for x = 0.

Thus the function f is C0 but not C1 at x = 0.
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(iii) Let g : R −→ R be defined by

g(x) =
∫ x

0
f (t) dt =

∫ x

0
t1/3 dt = 3

4
x4/3.

Then g′(x) = f (x) = x1/3, so g(x) is C1 but not C2 at x = 0. In the same way
one can construct a function that is Ck but not Ck+1 at a given point.

(iv) The polynomial, sine, cosine, and exponential functions on the real line are all
C∞.

The function f is real-analytic at p if in some neighborhood of p it is equal to
its Taylor series at p:

f (x) = f (p)+
∑
i

∂f

∂xi
(p)(xi − pi)

+ 1

2!
∑
i,j

∂2f

∂xi∂xj
(p)(xi − pi)(xj − pj )+ · · · .

A real-analytic function is necessarily C∞, because as one learns in real anal-
ysis, a convergent power series can be differentiated term by term in its region of
convergence. For example, if

f (x) = sin x = x − 1

3!x
3 + 1

5!x
5 − · · · ,

then term-by-term differentiation gives

f ′(x) = cos x = 1 − 1

2!x
2 + 1

4!x
4 − · · · .

The following example shows that a C∞ function need not be real-analytic. The
idea is to construct a C∞ function f (x) on R whose graph, though not horizontal, is
“very flat’’ near 0 in the sense that all of its derivatives vanish at 0.

x

y

1

Fig. 1.1. AC∞ function all of whose derivatives vanish at 0.
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Example 1.3 (A C∞ function very flat at 0). Define f (x) on R by

f (x) =
{
e−1/x for x > 0;
0 for x ≤ 0.

(See Figure 1.1.) By induction, one can show that f is C∞ on R and that the
derivatives f (k)(0) = 0 for all k ≥ 0 (Problem 1.2).

The Taylor series of this function at the origin is identically zero in any neigh-
borhood of the origin, since all derivatives f (k)(0) = 0. Therefore, f (x) cannot be
equal to its Taylor series and f (x) is not real-analytic at 0.

1.2 Taylor’s Theorem with Remainder

Although a C∞ function need not be equal to its Taylor series, there is a Taylor’s the-
orem with remainder for C∞ functions which is often good enough for our purposes.
We prove in the lemma below the very first case when the Taylor series consists of
only the constant term f (p).

We say that a subset S of Rn is star-shaped with respect to a point p in S if for
every x in S, the line segment from p to x lies in S (Figure 1.2).

�

�

p

q

Fig. 1.2. Star-shaped with respect to p, but not with respect to q.

Lemma 1.4 (Taylor’s theorem with remainder). Let f be a C∞ function on an
open subset U of Rn star-shaped with respect to a point p = (p1, . . . , pn) in U .
Then there are C∞ functions g1(x), . . . , gn(x) on U such that

f (x) = f (p)+
n∑
i=1

(xi − pi)gi(x), gi(p) = ∂f

∂xi
(p).

Proof. Since U is star-shaped with respect to p, for any x in U the line segment
p + t (x − p), 0 ≤ t ≤ 1 lies in U (Figure 1.3). So f (p + t (x − p)) is defined for
0 ≤ t ≤ 1.
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�

�

p

x U

Fig. 1.3. The line segment from p to x.

By the chain rule,

d

dt
f (p + t (x − p)) =

∑
(xi − pi) ∂f

∂xi
(p + t (x − p)).

If we integrate both sides with respect to t from 0 to 1, we get

f (p + t (x − p))]1
0 =

∑
(xi − pi)

∫ 1

0

∂f

∂xi
(p + t (x − p)) dt. (1.1)

Let

gi(x) =
∫ 1

0

∂f

∂xi
(p + t (x − p)) dt.

Then gi(x) is C∞ and (1.1) becomes

f (x)− f (p) =
∑

(xi − pi)gi(x).
Moreover,

gi(p) =
∫ 1

0

∂f

∂xi
(p)dt = ∂f

∂xi
(p). �	

In case n = 1 and p = 0, this lemma says that

f (x) = f (0)+ xf1(x)

for some C∞ function f1(x). Applying the lemma repeatedly gives

fi(x) = fi(0)+ xfi+1(x),

where fi , fi+1 are C∞ functions. Hence,

f (x) = f (0)+ x(f1(0)+ xf2(x))

= f (0)+ xf1(0)+ x2(f2(0)+ xf3(x))

...

= f (0)+ f1(0)x + f2(0)x
2 + · · · + fi(0)xi + fi+1(x)x

i+1. (1.2)
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Differentiating (1.2) repeatedly and evaluating at 0, we get

fk(0) = 1

k!f
(k)(0), k = 1, 2, . . . , i.

So (1.2) is a polynomial expansion of f (x) whose terms up to the last term agree
with the Taylor series of f (x) at 0.

Remark 1.5. Being star-shaped is not such a restrictive condition, since any open ball

B(p, ε) = {x ∈ Rn | ||x − p|| < ε}

is star-shaped with respect to p. If f is a C∞ function defined on an open set U
containing p, then there is an ε > 0 such that

p ∈ B(p, ε) ⊂ U.

When its domain is restricted to B(p, ε), the function f is defined on a star-shaped
neighborhood of p and Taylor’s theorem with remainder applies.

Notation. It is customary to write the standard coordinates on R2 as x, y, and the
standard coordinates on R3 as x, y, z.

Problems

1.1. A function that is C2 but not C3

Find a function h : R −→ R that is C2 but not C3 at x = 0.

1.2.* A C∞ function very flat at 0
Let f (x) be the function on R defined in Example 1.3.

(a) Show by induction that for x > 0 and k ≥ 0, the kth derivative f (k)(x) is of the
form p2k(1/x) e−1/x for some polynomial p2k(y) of degree 2k in y.

(b) Prove that f is C∞ on R and that f (k)(0) = 0 for all k ≥ 0.

1.3. A diffeomorphism of an open interval with R

Let U ⊂ Rn and V ⊂ Rn be open subsets. A C∞ map F : U −→ V is called a
diffeomorphism if it is bijective and has a C∞ inverse F−1 : V −→ U .

(a) Show that the function f : (−π/2, π/2) −→ R, f (x) = tan x, is a diffeomor-
phism.

(b) Find a linear function h : (a, b) −→ (−1, 1), thus proving that any two finite open
intervals are diffeomorphic.

The composite f ◦ h : (a, b) −→ R is then a diffeomorphism of an open interval to R.
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1.4. A diffeomorphism of an open ball with Rn

(a) Show that the function h : (−π/2, π/2) −→ [0,∞),

h(x) =
{
e−1/x sec x for x ∈ (0, π/2),
0 for x ≤ 0,

is C∞ on (−π/2, π/2), strictly increasing on [0, π/2), and satisfies h(k) = 0 for
all k ≥ 0. (Hint: Let f (x) be the function of Example 1.3 and let g(x) = sec x.
Then h(x) = f (x)g(x). Use the properties of f (x).)

(b) Define the map F : B(0, π/2) ⊂ Rn −→ Rn by

F(x) =
⎧⎨⎩h(|x|)

x

|x| for x �= 0,

0 for x = 0.

Show that F : B(0, π/2) −→ Rn is a diffeomorphism.

1.5.* Taylor’s theorem with remainder to order 2
Prove that if f : R2 −→ R is C∞, then there exist C∞ functions f11, f12, f22 on R2

such that

f (x, y) = f (0, 0)+ ∂f

∂x
(0, 0)x + ∂f

∂y
(0, 0)y

+ x2f11(x, y)+ xyf12(x, y)+ y2f22(x, y).

1.6.* A function with a removable singularity
Let f : R2 −→ R be a C∞ function with f (0, 0) = 0. Define

g(t, u) =
{
f (t,tu)
t

for t �= 0;
0 for t = 0.

Prove that g(t, u) is C∞ for (t, u) ∈ R2. (Hint: Apply Problem 1.5.)

1.7. Bijective C∞ maps
Define f : R −→ R by f (x) = x3. Show that f is a bijective C∞ map, but that f−1

is notC∞. (In complex analysis a bijective holomorphic map f : C −→ C necessarily
has a holomorphic inverse.)
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Tangent Vectors in Rn as Derivations

In elementary calculus we normally represent a vector at a point p in R3 algebraically
as a column of numbers

v =
⎡⎣v1

v2

v3

⎤⎦
or geometrically as an arrow emanating from p (Figure 2.1).

�

p

v

Fig. 2.1. A vector v at p.

A vector at p is tangent to a surface at p if it lies in the tangent plane at p
(Figure 2.2), which is the limiting position of the secant planes through p. Intuitively,
the tangent plane to a surface at p is the plane in R3 that just “touches’’ the surface
at p.

�

p v

Fig. 2.2. A tangent vector v to a surface at p.
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Such a definition of a tangent vector to a surface presupposes that the surface is
embedded in a Euclidean space, and so would not apply to the projective plane, which
does not sit inside an Rn in any natural way.

Our goal in this chapter is to find a characterization of a tangent vector in Rn that
would generalize to manifolds.

2.1 The Directional Derivative

In calculus we visualize the tangent space Tp(Rn) at p in Rn as the vector space of
all arrows emanating from p. By the correspondence between arrows and column
vectors, this space can be identified with the vector space Rn. To distinguish between
points and vectors, we write a point in Rn as p = (p1, . . . , pn) and a vector v in the
tangent space Tp(Rn) as

v =
⎡⎢⎣v

1

...

vn

⎤⎥⎦ or 〈v1, . . . , vn〉.

We usually denote the standard basis for Rn or Tp(Rn) by {e1, . . . , en}. Then v =∑
viei . We sometimes drop the parentheses and write TpRn for Tp(Rn). Elements

of Tp(Rn) are called tangent vectors (or simply vectors) at p in Rn.
The line through a point p = (p1, . . . , pn)with direction v = 〈v1, . . . , vn〉 in Rn

has parametrization
c(t) = (p1 + tv1, . . . , pn + tvn).

Its ith component ci(t) is pi + tvi . If f is C∞ in a neighborhood of p in Rn and v is
a tangent vector at p, the directional derivative of f in the direction v at p is defined
to be

Dvf = lim
t−→0

f (c(t))− f (p)
t

= d

dt

∣∣∣∣
t=0

f (c(t)).

By the chain rule,

Dvf =
n∑
i=1

dci

dt
(0)

∂f

∂xi
(p) =

n∑
i=1

vi
∂f

∂xi
(p). (2.1)

In the notationDvf , it is understood that the partial derivatives are to be evaluated
at p, since v is a vector at p. So Dvf is a number, not a function. We write

Dv =
∑

vi
∂

∂xi

∣∣∣∣
p

for the operator that sends a function f to the numberDvf . To simplify the notation
we often omit the subscript p if it is clear from the context.
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2.2 Germs of Functions

A relation on a set S is a subset R of S × S. Given x, y in S, we write x ∼ y if and
only if (x, y) ∈ R. The relation is an equivalence relation if it satisfies the following
three properties:

(i) reflexive: x ∼ x for all x ∈ S.
(ii) symmetric: if x ∼ y, then y ∼ x.

(iii) transitive: if x ∼ y and y ∼ z, then x ∼ z.

As long as two functions agree on some neighborhood of a point p, they will have
the same directional derivatives at p. This suggests that we introduce an equivalence
relation on the C∞ functions defined in some neighborhood of p. Consider the set of
all pairs (f, U), whereU is a neighborhood ofp andf : U −→ R is aC∞ function. We
say that (f, U) is equivalent to (g, V ) if there is an open set W ⊂ U ∩ V containing
p such that f = g when restricted to W . This is clearly an equivalence relation
because it is reflexive, symmetric, and transitive. The equivalence class of (f, U) is
called the germ of f at p. We write C∞p (Rn) or simply C∞p if there is no possibility
of confusion, for the set of all germs of C∞ functions on Rn at p.

Example 2.1. The functions

f (x) = 1

1 − x
with domain R− {1} and

g(x) = 1 + x + x2 + x3 + · · ·
with domain the open interval (−1, 1) have the same germ at any point p in the open
interval (−1, 1).

An algebra over a field K is a vector space A over K with a multiplication map

µ : A× A −→ A,

usually written µ(a, b) = a × b, such that for all a, b, c ∈ A and r ∈ K ,

(i) (associativity) (a × b)× c = a × (b × c),
(ii) (distributivity) (a + b)× c = a × c+ b× c and a × (b+ c) = a × b+ a × c,

(iii) (homogeneity) r(a × b) = (ra)× b = a × (rb).
Equivalently, an algebra over a field K is a ring A which is also a vector space over
K such that the ring multiplication satisfies the homogeneity condition (iii). Thus, an
algebra has three operations: the addition and multiplication of a ring and the scalar
multiplication of a vector space. Usually we omit the multiplication sign and write
ab instead of a × b.

Addition and multiplication of functions induce corresponding operations onC∞p ,
making it into an algebra over R (Problem 2.2).
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2.3 Derivations at a Point

A map L : V −→ W between vector spaces over a field K is called a linear map or a
linear operator if for any r ∈ K and u, v ∈ V ,

(i) L(u+ v) = L(u)+ L(v);
(ii) L(rv) = rL(v).

To emphasize the fact that the scalars are in the fieldK , such a map is also said to be
K-linear.

For each tangent vector v at a point p in Rn, the directional derivative at p gives
a map of real vector spaces

Dv : C∞p −→ R.

By (2.1), Dv is R-linear and satisfies the Leibniz rule

Dv(fg) = (Dvf )g(p)+ f (p)Dvg, (2.2)

essentially because the partial derivatives ∂/∂xi |p have these properties.
In general, any linear mapD : C∞p −→ R satisfying the Leibniz rule (2.2) is called

a derivation at p or a point-derivation of C∞p . Denote the set of all derivations at p
by Dp(R

n). This set is in fact a real vector space, since the sum of two derivations at
p and a scalar multiple of a derivation at p are again derivations at p (Problem 2.3).

Thus far, we know that directional derivatives at p are all derivations at p, so
there is a map

φ : Tp(Rn) −→ Dp(R
n), (2.3)

v �→ Dv =
∑

vi
∂

∂xi

∣∣∣∣
p

.

Since Dv is clearly linear in v, the map φ is a linear operator of vector spaces.

Lemma 2.2. If D is a point-derivation of C∞p , then D(c) = 0 for any constant
function c.

Proof. As we do not know if every derivation at p is a directional derivative, we need
to prove this lemma using only the defining properties of a derivation at p.

By R-linearity, D(c) = cD(1). So it suffices to prove that D(1) = 0. By the
Leibniz rule

D(1) = D(1 × 1) = D(1)× 1 + 1 ×D(1) = 2D(1).

Subtracting D(1) from both sides gives 0 = D(1). �	
Theorem 2.3. The linear map φ : Tp(Rn) −→ Dp(R

n) defined in (2.3) is an isomor-
phism of vector spaces.
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Proof. To prove injectivity, suppose Dv = 0 for v ∈ Tp(Rn). Applying Dv to the
coordinate function xj gives

0 = Dv(x
j ) =

∑
i

vi
∂

∂xi

∣∣∣∣
p

xj =
∑
i

viδ
j
i = vj .

Hence, v = 0 and φ is injective.
To prove surjectivity, letD be a derivation of atp and let (f, V ) be a representative

of a germ in C∞p . Making V smaller if necessary, we may assume that V is an open
ball, hence star-shaped. By Taylor’s theorem with remainder (Lemma 1.4) there are
C∞ functions gi(x) in a neighborhood of p such that

f (x) = f (p)+
∑

(xi − pi)gi(x), gi(p) = ∂f

∂xi
(p).

ApplyingD to both sides and noting thatD(f (p)) = 0 andD(pi) = 0 by Lemma 2.2,
we get by the Leibniz rule

Df (x) =
∑

(Dxi)gi(p)+
∑

(pi − pi)Dgi(x)

=
∑

(Dxi)
∂f

∂xi
(p).

This proves that D = Dv for v = 〈Dx1, . . . , Dxn〉. �	
This theorem shows that one may identify the tangent vectors at p with the

derivations at p. Under the identification Tp(Rn) � Dp(R
n), the standard basis

{e1, . . . , en} for Tp(Rn) corresponds to the set {∂/∂x1|p, . . . , ∂/∂xn|p} of partial
derivatives. From now on, we will make this identification and write a tangent vector
v = 〈v1, . . . , vn〉 =∑

viei as

v =
∑

vi
∂

∂xi

∣∣∣∣
p

.

The vector space Dp(R
n) of derivations atp, although not as geometric as arrows,

turns out to be more suitable for generalization to manifolds.

2.4 Vector Fields

A vector field X on an open subset U of Rn is a function that assigns to each point p
in U a tangent vector Xp in Tp(Rn). Since Tp(Rn) has basis {∂/∂xi |p}, the vector
Xp is a linear combination

Xp =
∑

ai(p)
∂

∂xi

∣∣∣∣
p

, p ∈ U.

We say that the vector field X is C∞ on U if the coefficient functions ai are all C∞
on U .
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Example 2.4. On R2 − {0}, let p = (x, y). Then

X = −y√
x2 + y2

∂

∂x
+ x√

x2 + y2

∂

∂y

is the vector field of Figure 2.3.

Fig. 2.3. A vector field on R
2 − {0}.

One can identify vector fields on U with column vectors of C∞ functions on U :

X =
∑

ai
∂

∂xi
←→

⎡⎢⎣a
1

...

an

⎤⎥⎦ .
The ring of C∞ functions on U is commonly denoted C∞(U) or F(U). Since

one can multiply a C∞ vector field by a C∞ function and still get a C∞ vector field,
the set of all C∞ vector fields on U , denoted X(U), is not only a vector space over
R, but also a module over the ring C∞(U). We recall the definition of a module.

Definition 2.5. If R is a commutative ring with identity, then an R-module is a set A
with two operations, addition and scalar multiplication, such that

(1) under addition, A is an abelian group;
(2) for r, s ∈ R and a, b ∈ A,

(i) (closure) ra ∈ A;
(ii) (identity) if 1 is the multiplicative identity in R, then 1a = a;

(iii) (associativity) (rs)a = r(sa);
(iv) (distributivity) (r + s)a = ra + sa, r(a + b) = ra + rb.

If R is a field, then an R-module is precisely a vector space over R. In this sense,
a module generalizes a vector space by allowing scalars in a ring rather than a field.
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2.5 Vector Fields as Derivations

If X is a C∞ vector field on an open subset U of Rn and f is a C∞ function on U ,
we define a new function Xf on U by

(Xf )(p) = Xpf for any p ∈ U.
Writing X =∑

ai∂/∂xi , we get

(Xf )(p) =
∑

ai(p)
∂f

∂xi
(p),

or

Xf =
∑

ai
∂f

∂xi
,

which shows that Xf is a C∞ function on U . Thus, a C∞ vector field X gives rise
to an R-linear map

C∞(U) −→ C∞(U)
f �→ Xf.

Proposition 2.6 (Leibniz rule for a vector field). If X is a C∞ vector field and f
and g are C∞ functions on an open subset U of Rn, thenX(fg) satisfies the product
rule (Leibniz rule):

X(fg) = (Xf )g + fXg.
Proof. At each point p ∈ U , the vector Xp satisfies the Leibniz rule:

Xp(fg) = (Xpf )g(p)+ f (p)Xpg.
As p varies over U , this becomes an equality of functions:

X(fg) = (Xf )g + fXg. �	
If A is an algebra over a fieldK , a derivation of A is aK-linear mapD : A −→ A

such that
D(ab) = (Da)b + aDb for all a, b ∈ A.

The set of all derivations of A is closed under addition and scalar multiplication and
forms a vector space, denoted Der(A). As noted above, a C∞ vector field on an open
set U gives rise to a derivation of the algebra C∞(U). We therefore have a map

ϕ : X(U) −→ Der(C∞(U)),
X �→ (f �→ Xf ).

Just as the tangent vectors at a point p can be identified with the point-derivations of
C∞p , so the vector fields on an open set U can be identified with the derivations of the
algebraC∞(U), i.e., the map ϕ is an isomorphism of vector spaces. The injectivity of
ϕ is easy to establish, but the surjectivity of ϕ takes some work (see Problem 19.11).

Note that a derivation at p is not a derivation of the algebra C∞p . A derivation at
p is a map from C∞p to R, while a derivation of the algebra C∞p is a map from C∞p
to C∞p .
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Problems

2.1. Vector fields
Let X be the vector field x ∂/∂x + y ∂/∂y and f (x, y, z) the function x2 + y2 + z2

on R3. Compute Xf .

2.2. Algebra structure on C∞
p

Define carefully addition, multiplication, and scalar multiplication inC∞p . Prove that
addition in C∞p is commutative.

2.3. Vector space structure on derivations at a point
Let D and D′ be derivations at p in Rn, and c ∈ R. Prove that

(a) the sum D +D′ is a derivation at p.
(b) the scalar multiple cD is a derivation at p.

2.4. Product of derivations
Let A be an algebra over a field K . If D1 and D2 are derivations of A, show that
D1 ◦ D2 is not necessarily a derivation (it is ifD1 orD2 = 0), butD1 ◦ D2−D2 ◦ D1
is always a derivation of A.
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Alternating k-Linear Functions

This chapter is purely algebraic. Its purpose is to develop the properties of alternating
k-linear functions on a vector space for later application to the tangent space at a point
of a manifold.

3.1 Dual Space

If V and W are real vector spaces, we denote by Hom(V ,W) the vector space of
all linear maps f : V −→ W . Define the dual space V ∗ to be the vector space of all
real-valued linear functions on V :

V ∗ = Hom(V ,R).

The elements of V ∗ are called covectors or 1-covectors on V .
In the rest of this section, assume V to be a finite-dimensional vector space. Let

{e1, . . . , en} be a basis for V . Then every v in V is uniquely a linear combination
v = ∑

viei with vi ∈ R. Let αi : V −→ R be the linear function that picks out the
ith coordinate, αi(v) = vi . Note that αi is characterized by

αi(ej ) = δij =
{

1 if i = j ;
0 if i �= j .

Proposition 3.1. The functions α1, . . . , αn form a basis for V ∗.

Proof. We first prove that α1, . . . , αn span V ∗. If f ∈ V ∗ and v =∑
viei in V , then

f (v) =
∑

vif (ei) =
∑

f (ei)α
i(v).

Hence,
f =

∑
f (ei)α

i,

which shows that α1, . . . , αn span V ∗.
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To show linear independence, suppose
∑
ciα

i = 0 for some ci ∈ R. Applying
both sides to the vector ej gives

0 =
∑

ciα
i(ej ) =

∑
ciδ

i
j = cj , j = 1, . . . , n.

Hence, α1, . . . , αn are linearly independent. �	
This basis {α1, . . . , αn} for V ∗ is said to be dual to the basis {e1, . . . , en} for V .

Corollary 3.2. The dual space V ∗ of a finite-dimensional vector space V has the
same dimension as V .

Example 3.3 (Coordinate functions). With respect to a basis e1, . . . , en for a vector
spaceV , every v ∈ V can be written uniquely as a linear combination v =∑

bi(v)ei ,
where bi(v) ∈ R. Let α1, . . . , αn be the basis of V ∗ dual to e1, . . . , en. Then

αi(v) = αi

⎛⎝∑
j

bj (v)ej

⎞⎠ =
∑
j

bj (v)αi(ej ) =
∑
j

bj (v)δij = bi(v).

Thus, the set of coordinate functions b1, . . . , bn with respect to the basis e1, . . . , en
is precisely the dual basis to e1, . . . , en.

3.2 Permutations

Fix a positive integer k. A permutation of the set A = {1, . . . , k} is a bijection σ : A
−→ A. The product τσ of two permutations τ and σ ofA is the composition τ ◦ σ : A
−→ A, in that order; first apply σ , then τ . The cyclic permutation (a1 a2 · · · ar) is the
permutation σ such that σ(a1) = a2, σ(a2) = a3, . . . , σ (ar−1) = (ar), σ(ar) = a1,
and such thatσ fixes all the other elements ofA. The cyclic permutation (a1 a2 · · · ar)
is also called a cycle of length r or an r-cycle. A transposition is a cycle of the form
(a b) that interchanges a and b, leaving all other elements of A fixed.

A permutation σ : A −→ A can be described in two ways: as a matrix[
1 2 · · · k

σ(1) σ (2) · · · σ(k)
]

or as a product of disjoint cycles (a1 · · · ar1)(b1 · · · br2) · · · .
Example 3.4. Suppose the permuation σ : {1, 2, 3, 4, 5} −→ {1, 2, 3, 4, 5} maps 1, 2,
3, 4, 5 to 2, 4, 5, 1, 3 in that order. Then

σ =
[

1 2 3 4 5
2 4 5 1 3

]
= (1 2 4)(3 5).
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Let Sk be the group of all permutations of the set {1, . . . , k}. A permutation is
even or odd depending on whether it is the product of an even or an odd number of
transpositions. From the theory of permutations we know that this is a well-defined
concept: an even permutation can never be written as the product of an odd number
of transpositions and vice versa. The sign of a permutation σ , denoted sgn(σ ) or
sgn σ , is defined to be +1 or −1 depending on whether the permutation is even or
odd. Clearly, the sign of a permutation satisfies

sgn(στ) = sgn(σ ) sgn(τ )

for σ, τ ∈ Sk .
Example 3.5. The decomposition

(1 2 3 4 5) = (1 5)(1 4)(1 3)(1 2)

shows that the 5-cycle (1 2 3 4 5) is an even permutation.

More generally, the decomposition

(a1 a2 · · · ar) = (a1 ar)(a1 ar−1) · · · (a1 a3)(a1 a2)

shows that an r-cycle is an even permutation if and only if r is odd, and an odd
permutation if and only if r is even. Thus one way to compute the sign of a permutation
is to decompose it into a product of cycles and to count the number of cycles of even
length. For example, the permutation σ in Example 3.4 is odd because (1 2 4) is even
and (3 5) is odd.

An inversion in a permutation σ is an ordered pair (σ (i), σ (j)) such that i < j

but σ(i) > σ(j). Thus, the permutation σ in Example 3.4 has five inversions: (2, 1),
(4, 1), (5, 1), (4, 3), and (5, 3).

A second way to compute the sign of a permutation is to count the number of
inversions as in the following proposition.

Proposition 3.6. A permutation is even if and only if it has an even number of inver-
sions.

Proof. By multiplying σ by a number of transpositions, we can obtain the identity.
This can be achieved in k steps.

(1) First, look for the number 1 among σ(1), σ(2), . . . , σ (k). Every number pre-
ceding 1 in this list gives rise to an inversion. Suppose 1 = σ(i). Then
(σ (1), 1), . . . , (σ (i − 1), 1) are inversions of σ . Now move 1 to the begin-
ning of the list across the i − 1 elements σ(1), . . . , σ (i − 1). This requires i − 1
transpositions. Note that the number of transpositions is the number of inversions
ending in 1.

(2) Next look for the number 2 in the list: 1, σ (1), . . . , σ (i−1), σ (i+1), . . . , σ (k).
Every number other than 1 preceding 2 in this list gives rise to an inversion
(σ (m), 2). Suppose there are i2 such numbers. Then there are i2 inversions
ending in 2. In moving 2 to its natural position 1, 2, σ (1), σ (2), . . . , we need to
move it across i2 numbers. This requires i2 transpositions.
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Repeating this procedure, we see that for each j = 1, . . . , k, the number of
transpositions required to move j to its natural position is the same as the number
of inversions ending in j . In the end we achieve the ordered list 1, 2, . . . , k from
σ(1), σ (2), . . . , σ (k) by multiplying σ by as many transpositions as the total number
of inversions in σ . Therefore, sgn(σ ) = (−1)# inversions in σ . �	

3.3 Multilinear Functions

Denote by V k = V ×· · ·×V the Cartesian product of k copies of a real vector space
V . A function f : V k −→ R is k-linear if it is linear in each of its k arguments

f (. . . , av + bw, . . . ) = af (. . . , v, . . . )+ bf (. . . , w, . . . )
for a, b ∈ R and v,w ∈ V . Instead of 2-linear and 3-linear, it is customary to say
“bilinear’’ and “trilinear.’’ A k-linear function on V is also called a k-tensor on V .
We will denote the vector space of all k-tensors on V by Lk(V ). If f is a k-tensor on
V , we also call k the degree of f .

Example 3.7. The dot product f (v,w) = v · w on Rn is bilinear:

v · w =
∑

viwi,

where v =∑
viei and w =∑

wiei .

Example 3.8. The determinant f (v1, . . . , vn) = det[v1 · · · vn], viewed as a function
of the n column vectors v1, . . . , vn in Rn, is n-linear.

Definition 3.9. A k-linear function f : V k −→ R is symmetric if

f (vσ(1), . . . , vσ(k)) = f (v1, . . . , vk)

for all permutations σ ∈ Sk; it is alternating if

f (vσ(1), . . . , vσ(k)) = (sgn σ)f (v1, . . . , vk)

for all σ ∈ Sk .
Example 3.10.

(i) The dot product f (v,w) = v · w on Rn is symmetric.
(ii) The determinant f (v1, . . . , vn) = det[v1 · · · vn] on Rn is alternating.

We are especially interested in the spaceAk(V ) of all alternating k-linear functions
on a vector space V for k > 0. These are also called alternating k-tensors, k-
covectors, or multicovectors on V . For k = 0, we define a 0-covector to be a constant
so that A0(V ) is the vector space R. A 1-covector is simply a covector.
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3.4 Permutation Action on k-Linear Functions

If f is a k-linear function on a vector space V and σ is a permutation in Sk , we define
a new k-linear function σf by

(σf )(v1, . . . , vk) = f (vσ(1), . . . , vσ(k)).

Thus, f is symmetric if and only if σf = f for all σ ∈ Sk and f is alternating if and
only if σf = (sgn σ)f for all σ ∈ Sk .

When there is only one argument, the permutation group S1 is the identity group
and a 1-linear function is both symmetric and alternating. In particular,

A1(V ) = L1(V ) = V ∗.

Lemma 3.11. If σ, τ ∈ Sk and f is a k-linear function on V , then τ(σf ) = (τσ )f .

Proof. For v1, . . . , vk ∈ V ,

τ(σf )(v1, . . . , vk) = (σf )(vτ(1), . . . , vτ(k))

= (σf )(w1, . . . , wk) (letting wi = vτ(i))

= f (wσ(1), . . . , wσ(k))

= f (vτ(σ (1)), . . . , vτ(σ (k))) = f (v(τσ)(1), . . . , v(τσ )(k))

= (τσ )f (v1, . . . , vk). �	
In general, if G is a group and X is a set, a map

G×X −→ X

(σ, x) �→ σ · x
is called a left action of G on X if

(i) 1 · x = x where 1 is the identity in G and x is any element in X, and
(ii) τ · (σ · x) = (τσ ) · x for all τ, σ ∈ G, x ∈ X.

In this terminology, we have defined a left action of the permutation group Sk on the
space Lk(V ) of k-linear functions on V . Note that each permutation acts as a linear
function on the vector space Lk(V ) since σf is R-linear in f .

A right action of G on X is defined similarly; it is a map X ×G −→ X such that

(i) x · 1 = x,
(ii) (x · σ) · τ = x · (στ)

for all σ, τ ∈ G and x ∈ X.

Remark 3.12. In some books the notation forσf isf σ . In that notation, (f σ )τ = f τσ ,
not f στ .
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3.5 The Symmetrizing and Alternating Operators

Given any k-linear function f on a vector spaceV , there is a way to make a symmetric
k-linear function Sf from it:

(Sf )(v1, . . . , vk) =
∑
σ∈Sk

f (vσ(1), . . . , vσ(k))

or, in our new shorthand,

Sf =
∑
σ∈Sk

σf.

Similarly, there is a way to make an alternating k-linear function from f . Define

Af =
∑
σ∈Sk

(sgn σ)σf.

Proposition 3.13.
(i) The k-linear function Sf is symmetric.

(ii) The k-linear function Af is alternating.

Proof. We prove (ii) only and leave (i) as an exercise. If τ ∈ Sk ,

τ(Af ) =
∑
σ∈Sk

(sgn σ)τ(σf )

=
∑
σ∈Sk

(sgn σ)(τσ )f (Lemma 3.11)

= (sgn τ)
∑
σ∈Sk

(sgn τσ )(τσ )f

= (sgn τ)Af,

since as σ runs through all permutations in Sk , so does τσ . �	
Exercise 3.14 (Symmetrizing operator). Show that the k-linear function Sf is symmetric.

Lemma 3.15. If f is an alternating k-linear function on a vector space V , then
Af = (k!)f .

Proof.

Af =
∑
σ∈Sk

(sgn σ)σf =
∑
σ∈Sk

(sgn σ)(sgn σ)f = (k!)f. �	

Exercise 3.16 (The alternating operator). If f is a 3-linear function on a vector space V ,
what is (Af )(v1, v2, v3), where v1, v2, v3 ∈ V ?
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3.6 The Tensor Product

Let f be a k-linear function and g an 
-linear function on a vector space V . Their
tensor product is the (k + 
)-linear function f ⊗ g defined by

(f ⊗ g)(v1, . . . , vk+
) = f (v1, . . . , vk)g(vk+1, . . . , vk+
).

Example 3.17 (Euclidean inner product). Let e1, . . . , en be the standard basis for Rn

and let α1, . . . , αn be its dual basis. The Euclidean inner product on Rn is the bilinear
function 〈 , 〉 : Rn × Rn −→ R defined by

〈v,w〉 =
∑

viwi

for v =∑
viei andw =∑

wiei . We can express 〈 , 〉 in terms of the tensor product:

〈v,w〉 =
∑
i

viwi =
∑
i

αi(v)αi(w)

=
∑
i

(αi ⊗ αi)(v,w).

Hence, 〈 , 〉 = ∑
i α

i ⊗ αi . This notation is often used in differential geometry to
describe an inner product on a vector space.

Exercise 3.18 (Associativity of the tensor product). Check that the tensor product of multi-
linear functions is associative: if f, g, and h are multilinear functions on V , then

(f ⊗ g)⊗ h = f ⊗ (g ⊗ h).

3.7 The Wedge Product

If two multilinear functions f and g on a vector space V are alternating, then we
would like to have a product that is alternating as well. This motivates the definition
of the wedge product: for f ∈ Ak(V ) and g ∈ A
(V ),

f ∧ g = 1

k!
!A(f ⊗ g); (3.1)

or explicitly,

(f ∧ g)(v1, . . . , vk+
)

= 1

k!
!
∑

σ∈Sk+

(sgn σ)f (vσ(1), . . . , vσ(k))g(vσ(k+1), . . . , vσ(k+
)). (3.2)

By Proposition 3.13, f ∧ g is alternating.
When k = 0, the element f ∈ A0(V ) is simply a constant c. In this case, the

wedge product c ∧ g is scalar multiplication, since the right-hand side of (3.2) is
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1


!
∑
σ∈S


(sgn σ)cg(vσ(1), . . . , vσ(
)) = cg(v1, . . . , v
).

Thus c ∧ g = cg for c ∈ R and g ∈ A
(V ).
The coefficient 1/(k!
!) in the definition of the wedge product compensates for

repetitions in the sum: for every permutation σ ∈ Sk+
, there are k! permutations τ
in Sk that permute the first k arguments vσ(1), . . . , vσ(k) and leave the arguments of g
alone; for all τ in Sk , the resulting permutations στ in Sk+
 contribute the same term
to the sum since

(sgn στ)f (vστ(1), . . . , vστ(k)) = (sgn στ)(sgn τ)f (vσ(1), . . . , vσ(k))

= (sgn σ)f (vσ(1), . . . , vσ(k)),

where the first equality follows from the fact that (τ (1), . . . , τ (k)) is a permutation of
(1, . . . , k). So we divide by k! to get rid of the k! repeating terms in the sum coming
from the permutations of the k arguments of f ; similarly, we divide by 
! on account
of the 
 arguments of g.

Example 3.19. For f ∈ A2(V ) and g ∈ A1(V ),

A(f ⊗ g)(v1, v2, v3) = f (v1, v2)g(v3)− f (v1, v3)g(v2)+ f (v2, v3)g(v1)

− f (v2, v1)g(v3)+ f (v3, v1)g(v2)− f (v3, v2)g(v1).

Among these 6 terms, there are three pairs of equal terms:

f (v1, v2)g(v3) = −f (v2, v1)g(v3), and so on.

Therefore, after dividing by 2,

(f ∧ g)(v1, v2, v3) = f (v1, v2)g(v3)− f (v1, v3)g(v2)+ f (v2, v3)g(v1).

One way to avoid redundancies in the definition of f ∧g is to stipulate that in the
sum (3.2), σ(1), . . . , σ (k) be in ascending order and σ(k+ 1), . . . , σ (k+ 
) also be
in ascending order. We call a permutation σ ∈ Sk+
 a (k, 
)-shuffle if

σ(1) < · · · < σ(k) and σ(k + 1) < · · · < σ(k + 
).
Then one may rewrite (3.2) as

(f ∧ g)(v1, . . . , vk+
)

=
∑

(k,
)-shuffles
σ

(sgn σ)f (vσ(1), . . . , vσ(k))g(vσ(k+1), . . . , vσ(k+
)). (3.3)

Written this way, the definition of (f ∧ g)(v1, . . . , vk+
) is a sum of
(
k+

k

)
terms,

instead of (k + 
)! terms.

Example 3.20 (Wedge product of two covectors). If f and g are covectors on a vector
space V and v1, v2 ∈ V , then by (3.3)

(f ∧ g)(v1, v2) = f (v1)g(v2)− f (v2)g(v1).

Exercise 3.21 (Wedge product of two 2-covectors). Forf, g ∈ A2(V ), write out the definition
of f ∧ g using (2, 2)-shuffles.
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3.8 Anticommutativity of the Wedge Product

It follows directly from the definition of the wedge product (3.2) that f ∧g is bilinear
in f and in g.

Proposition 3.22. The wedge product is anticommutative: if f ∈ Ak(V ) and g ∈
A
(V ), then

f ∧ g = (−1)k
g ∧ f.
Proof. Define τ ∈ Sk+
 to be the permutation

τ =
[

1 · · · 
 
+ 1 · · · 
+ k
k + 1 · · · k + 
 1 · · · k

]
.

This means that

τ(1) = k + 1, . . . , τ (
) = k + 
, τ (
+ 1) = 1, . . . , τ (
+ k) = k.

Then

σ(1) = στ(
+ 1), . . . , σ (k) = στ(
+ k),
σ (k + 1) = στ(1), . . . , σ (k + 
) = στ(
).

For any v1, . . . , vk+
 ∈ V ,

A(f ⊗ g)(v1, . . . , vk+
)

=
∑

σ∈Sk+

(sgn σ)f (vσ(1), . . . , vσ(k))g(vσ(k+1), . . . , vσ(k+
))

=
∑

σ∈Sk+

(sgn σ)f (vστ(
+1), . . . , vστ(
+k))g(vστ(1), . . . , vστ(
))

= (sgn τ)
∑

σ∈Sk+

(sgn στ)g(vστ(1), . . . , vστ(
))f (vστ(
+1), . . . , vστ(
+k))

= (sgn τ)A(g ⊗ f )(v1, . . . , vk+
).

The last equality follows from the fact that as σ runs through all permutations in Sk+
,
so does στ .

We have proved
A(f ⊗ g) = (sgn τ)A(g ⊗ f ).

Dividing by k!
! gives
f ∧ g = (sgn τ)g ∧ f.

Exercise 3.23 (The sign of a permutation). Show that sgn τ = (−1)k
. �	
Corollary 3.24. If f is a k-covector on V and k is odd, then f ∧ f = 0.

Proof. By anticommutativity,

f ∧ f = (−1)k
2
f ∧ f

= −f ∧ f,
since k is odd. Hence, 2f ∧ f = 0. Dividing by 2 gives f ∧ f = 0. �	
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3.9 Associativity of the Wedge Product

If f is a k-covector and g is an 
-covector, we have defined their wedge product to
be the (k + 
)-covector

f ∧ g = 1

k!
!A(f ⊗ g).
To prove the associativity of the wedge product, we will follow Godbillon [7] by first
proving the following lemma on the alternating operator A.

Lemma 3.25. Suppose f is a k-linear function and g an 
-linear function on a vector
space V . Then

(i) A(A(f )⊗ g) = k!A(f ⊗ g), and
(ii) A(f ⊗ A(g)) = 
!A(f ⊗ g).

Proof. (i) By definition,

A(A(f )⊗ g) =
∑
σ∈Sk+


(sgn σ)σ

⎛⎝∑
τ∈Sk

(sgn τ)(τf )⊗ g
⎞⎠ .

We can view τ ∈ Sk as a permutation in Sk+
 such that

τ(i) = i for i = k + 1, . . . , k + 
.
For such a τ ,

(τf )⊗ g = τ(f ⊗ g).
Hence,

A(A(f )⊗ g) =
∑

σ∈Sk+


∑
τ∈Sk

(sgn σ)(sgn τ)(στ)(f ⊗ g).

Let µ = στ ∈ Sk+
. For each µ ∈ Sk+
, there are k! ways to write µ = στ with
σ ∈ Sk+
 and τ ∈ Sk , because each τ ∈ Sk determines a unique σ by the formula
σ = µτ−1. So the double sum above can be rewritten as

A(A(f )⊗ g) = k!
∑

µ∈Sk+

(sgnµ)µ(f ⊗ g)

= k!A(f ⊗ g).
The equality in (ii) is proved in the same way. �	

Proposition 3.26 (Associativity of the wedge product). LetV be a real vector space
and f, g, h alternating multilinear functions on V of degrees k, 
,m, respectively.
Then

(f ∧ g) ∧ h = f ∧ (g ∧ h).
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Proof. By the definition of the wedge product,

(f ∧ g) ∧ h = 1

(k + 
)!m!A((f ∧ g)⊗ h)

= 1

(k + 
)!m!
1

k!
!A(A(f ⊗ g)⊗ h)

= (k + 
)!
(k + 
)!m!k!
!A((f ⊗ g)⊗ h) (by Lemma 3.25(i))

= 1

k!
!m!A((f ⊗ g)⊗ h).
Similarly,

f ∧ (g ∧ h) = 1

k!(
+m)!A
(
f ⊗ 1


!m!A(g ⊗ h)
)

= 1

k!
!m!A(f ⊗ (g ⊗ h)).
Since the tensor product is associative, we conclude that

(f ∧ g) ∧ h = f ∧ (g ∧ h). �	
By associativity, we can omit the parentheses in a multiple wedge product such

as (f ∧ g) ∧ h and write simply f ∧ g ∧ h.

Corollary 3.27. Under the hypotheses of the proposition,

f ∧ g ∧ h = 1

k!
!m!A(f ⊗ g ⊗ h).
This corollary easily generalizes to an arbitrary number of factors: if fi ∈

Adi (V ), then

f1 ∧ · · · ∧ fr = 1

(d1)! . . . (dr )!A(f1 ⊗ · · · ⊗ fr). (3.4)

In particular, we have the following proposition. We use the notation [bij ] to denote

the matrix whose (i, j)-entry is bij .

Proposition 3.28 (Wedge product of 1-covectors). Ifα1, . . . , αk are linear functions
on a vector space V and v1, . . . , vk ∈ V , then

(α1 ∧ · · · ∧ αk)(v1, . . . , vk) = det[αi(vj )].
Proof. By (3.4),

(α1 ∧ · · · ∧ αk)(v1, . . . , vk) = A(α1 ⊗ · · · ⊗ αk)(v1, . . . , vk)

=
∑
σ∈Sk

(sgn σ)α1(vσ(1)) · · ·αk(vσ(k))

= det[αi(vj )]. �	
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3.10 A Basis for k-Covectors

Let e1, . . . , en be a basis for a real vector space V , and let α1, . . . , αn be the dual
basis for V ∗. Introduce the multi-index notation

I = (i1, . . . , ik)

and write eI for (ei1 , . . . , eik ) and αI for αi1 ∧ · · · ∧ αik .
A k-linear function f on V is completely determined by its values on all k-tuples

(ei1 , . . . , eik ). If f is alternating, then it is completely determined by its values on
(ei1 , . . . , eik ) with 1 ≤ i1 < · · · < ik ≤ n; that is, it suffices to consider eI with
I in ascending order. Suppose I, J are ascending multi-indices of length k. By
Proposition 3.28,

αI (eJ ) =
{

1 if I = J ;
0 if I �= J .

Proposition 3.29. The alternating k-linear functions αI , I = (i1 < · · · < ik), form
a basis for the space Ak(V ) of alternating k-linear functions on V .

Proof. First, we show linear independence. Suppose
∑
cIα

I = 0, cI ∈ R,
and I runs over ascending multi-indices of length k. Applying both sides to eJ ,
J = (j1 < · · · < jk), we get

0 =
∑

cIα
I (eJ ) = cJ ,

since among all ascending multi-indices I of length k there is only one equal to J .
This proves that the αI are linearly independent.

To show that the αI span Ak(V ), let f ∈ Ak(V ). We claim that

f =
∑

f (eI )α
I ,

where I runs over all ascending multi-indices of length k. Let g = ∑
f (eI )α

I .
By k-linearity and the alternating property, if two k-covectors agree on all eJ ,
J = (j1 < · · · < jk), then they are equal. But

g(eJ ) =
∑

f (eI )α
I (eJ ) =

∑
f (eI )δ

I
J = f (eJ ).

Therefore, f = g =∑
f (eI )α

I . �	
Corollary 3.30. If the vector space V has dimension n, then the vector space Ak(V )
of k-covectors on V has dimension

(
n
k

)
.

Proof. An ascending multi-index I = (i1 < · · · < ik) is obtained by choosing a
subset of k numbers from 1, . . . , n. This can be done in

(
n
k

)
ways. �	

Corollary 3.31. If k > dim V , then Ak(V ) = 0.

Proof. In αi1 ∧· · ·∧αik , at least two of the factors must be the same, say α. Because
α is a 1-covector, α ∧ α = 0 by Corollary 3.24, so αi1 ∧ · · · ∧ αik = 0. �	
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Problems

3.1. Tensor product of covectors
Let e1, . . . , en be a basis for a vector space V and let α1, . . . , αn be its dual basis for
V ∗. Suppose [gij ] ∈ Rn×n is an n× n matrix. Define a bilinear function f : V × V
−→ R by

f (v,w) =
∑

gij v
iwj

for v =∑
viei and w =∑

wjej in V . Describe f in terms of the tensor product of
αi and αj .

3.2. Hyperplanes

(a) LetV be a vector space of dimensionn andf : V −→ R a nonzero linear functional.
Show that dim ker f = n−1. A linear subspace of V of dimension n−1 is called
a hyperplane in V .

(b) Show that a nonzero linear functional on a vector space V is determined up to a
constant by its kernel, a hyperplane in V . In other words, if f and g : V −→ R

are nonzero linear functionals and ker f = ker g, then g = cf for some constant
c ∈ R.

3.3. A basis for k-tensors
Let V be a vector space of dimension n with basis e1, . . . , en. Let α1, . . . , αn be the
dual basis for V ∗. Show that a basis for the space Lk(V ) of k-linear functions on V
is {αi1 ⊗ · · · ⊗ αik } for all multi-indices (i1, . . . , ik). In particular, this shows that
dimLk(V ) = nk .

3.4. Alternating k-tensors
Let ω be a k-tensor on a vector space V . Prove that ω is alternating if and only if ω
changes sign whenever two successive arguments are interchanged:

ω(. . . , vi+1, vi, . . . ) = −ω(. . . , vi, vi+1, . . . )

for i = 1, . . . , k − 1.

3.5. Alternating k-tensors
Let ω be a k-tensor on a vector space V . Prove that ω is alternating if and only if
ω(v1, . . . , vk) = 0 whenever two of the vectors v1, . . . , vk are equal.

3.6. Wedge product and scalars
Let V be a vector space. For a, b ∈ R, f ∈ Ak(V ) and g ∈ A
(V ), show that
af ∧ bg = (ab) f ∧ g.

3.7. Transformation of a wedge product of covectors
Suppose two sets of covectors on a vector space V , ω1, . . . , ωk and τ 1, . . . , τ k , are
related by

ωi =
k∑
j=1

aij τ
j , i = 1, . . . , k,
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for a k × k matrix A = [aij ]. Show that

ω1 ∧ · · · ∧ ωk = (detA) τ 1 ∧ · · · ∧ τ k.
3.8. Transformation rule for a k-covector
Let ω be a k-covector on a vector space V . Suppose two sets of vectors u1, . . . , uk
and v1, . . . , vk in V are related by

uj =
i∑

j=1

aij vi, j = 1, . . . , k,

for a k × k matrix A = [aij ]. Show that

ω(u1, . . . , uk) = (detA)ω(v1, . . . , vk).

3.9.* Linear independence of covectors
Let α1, . . . , αk be 1-covectors on a vector space V . Show that α1 ∧ · · · ∧ αk �= 0 if
and only if α1, . . . , αk are linearly independent in the dual space V ∗.

3.10.* Exterior multiplication
Let α be a nonzero 1-covector andω a k-covector on a finite-dimensional vector space
V . Show that α ∧ω = 0 if and only if ω = α ∧ τ for some (k− 1)-covector τ on V .

3.11. Pullback of a k-covector
For any linear map L : V −→ W of vector spaces and any positive integer k, there is
a pullback map L∗ : Ak(W) −→ Ak(V ) defined by

L∗(f )(v1, . . . , vk) = f (L(v1), . . . , L(v)k)

for all v1, . . . , vk ∈ V . Show that if L : V −→ V is a linear operator of a vector space
V of dimension n, then L∗ : An(V ) −→ An(V ) is multiplication by the determinant
of L.
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Differential Forms on Rn

In this chapter we apply the multilinear algebra of Chapter 3 to define differential
forms on an open subset of Rn. Differential forms provide a way to unify the main
theorems of vector calculus in R3.

4.1 Differential 1-Forms and the Differential of a Function

The cotangent space to Rn at p, denoted by T ∗p (Rn) or T ∗pRn, is defined to be the
dual space (TpRn)∗ of the tangent space Tp(Rn). Thus, an element of the cotangent
space T ∗p (Rn) is a covector or a linear functional on the tangent space Tp(Rn). In
parallel with the definition of a vector field, a covector field or a differential 1-form ω
on an open subset U of Rn is a function that assigns to each point p in U a covector
ωp ∈ T ∗p (Rn). We call a differential 1-form a 1-form for short.

From any C∞ function f : U −→ R, we can construct a 1-form df , called the
differential of f , as follows. For p ∈ U and Xp ∈ TpU , define

(df )p(Xp) = Xpf.

Let x1, . . . , xn be the standard coordinates on Rn. We saw in Section 2.3 that the
set {∂/∂x1|p, . . . , ∂/∂xn|p} is a basis for the tangent space Tp(Rn).

Proposition 4.1. If x1, . . . , xn are the standard coordinates on Rn, then at each point
p ∈ Rn, {(dx1)p, . . . , (dx

n)p} is the basis for the cotangent space T ∗p (Rn) dual to

the basis {∂/∂x1|p, . . . , ∂/∂xn|p} for the tangent space Tp(Rn).

Proof. By definition,

(dxi)p

(
∂

∂xj

∣∣∣∣
p

)
= ∂

∂xj

∣∣∣∣
p

xi = δij . �	
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If ω is a 1-form on an open subset U of Rn, then by Proposition 4.1, at each point
p in U there is a linear combination

ωp =
∑

ai(p) (dx
i)p,

for some ai(p) ∈ R. As p varies over U , the coefficients ai become functions on U ,
and we may write ω =∑

ai dx
i . The covector field ω is said to be C∞ on U if the

coefficient functions ai are all C∞ on U .
If x, y, and z are the coordinates on R3, then dx, dy, and dz are 1-forms on R3. In

this way, we give independent meaning to what was merely a notation in elementary
calculus.

Proposition 4.2 (The differential in terms of coordinates). If f : U −→ R is a C∞
function on an open set U in Rn, then

df =
∑ ∂f

∂xi
dxi . (4.1)

Proof. By Proposition 4.1, at each point p in U ,

(df )p =
∑

ai(p) (dx
i)p (4.2)

for some constants ai(p) depending on p. Thus, df =∑
ai dx

i for some functions
ai onU . To evaluate aj , apply both sides of (4.2) to the coordinate vector field ∂/∂xj :

df

(
∂

∂xj

)
=
∑
i

ai dx
i

(
∂

∂xj

)
=
∑
i

aiδ
i
j = aj .

On the other hand, by the definition of the differential,

df

(
∂

∂xj

)
= ∂f

∂xi
. �	

Equation (4.1) shows that if f is a C∞ function, then the 1-form df is also C∞.

Example 4.3. Differential 1-forms occur naturally, even if one is interested only in
tangent vectors. Every tangent vector Xp ∈ Tp(Rn) is a linear combination of the
standard basis vectors:

Xp =
∑
i

bi(Xp)
∂

∂xi

∣∣∣∣
p

.

In Example 3.3 we saw that at each point p ∈ Rn, we have bi(Xp) = (dxi)p(Xp).
Hence, the coefficient bi of a vector with respect to the standard basis ∂/∂x1, . . . ,

∂/∂xn is none other than the dual form dxi on Rn.
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4.2 Differential k-Forms

More generally, a differential form ω of degree k or a k-form on an open subset U
of Rn is a function that assigns to each point p in U an alternating k-linear function
on the tangent space Tp(Rn), i.e., ωp ∈ Ak(TpRn). Since A1(TpRn) = T ∗p (Rn), the
definition of a k-form generalizes that of a 1-form in the preceding section.

By Proposition 3.29, a basis for Ak(TpRn) is

dxIp = dxi1p ∧ · · · ∧ dxikp , 1 ≤ i1 < · · · < ik ≤ n.
Therefore, at each point p in U , ωp is a linear combination

ωp =
∑

aI (p) dx
I
p, 1 ≤ i1 < · · · < ik ≤ n,

and a k-form ω on U is a linear combination

ω =
∑

aI dx
I ,

with function coefficients aI : U −→ R. We say that a k-form ω is C∞ on U if all the
coefficients aI are C∞ functions on U .

Denote by �k(U) the vector space of C∞ k-forms on U . A 0-form on U assigns
to each point p in U an element of A0(TpRn) = R. Thus, a 0-form on U is simply a
function on U , and �0(U) = C∞(U).

Since one can multiply C∞ k-forms by C∞ functions, the set �k(U) of C∞
k-forms on U is both a vector space over R and a module over C∞(U). With the
wedge product as multiplication, the direct sum�∗(U) =⊕n

k=0�
k(U) becomes an

algebra over R as well as a module overC∞(U). As an algebra, it is anticommutative
and associative.

Remark 4.4. There are no differential forms of degree > n on an open subset of Rn,
other than the zero differential form. This is because if deg dxI > n, then in the
expression dxI at least two of the 1-forms dxiα must be the same, forcing dxI = 0.

Example 4.5. Let x, y, z be the coordinates on R3. The C∞ 1-forms on R3 are

a(x, y, z) dx + b(x, y, z) dy + c(x, y, z) dz,
where a, b, c range over all C∞ functions on R3. The C∞ 2-forms are

a(x, y, z) dy ∧ dz+ b(x, y, z) dx ∧ dz+ c(x, y, z) dx ∧ dy
and the C∞ 3-forms are

a(x, y, z) dx ∧ dy ∧ dz.
Exercise 4.6 (A basis for 3-covectors). Let x1, x2, x3, x4 be the coordinates on R

4 and p a
point in R

4. Write down a basis for the vector space A3(Tp(R
4)).
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4.3 Differential Forms as Multilinear Functions on Vector Fields

If ω is a C∞ 1-form and X is a C∞ vector field on an open set U in Rn, we define a
function ω(X) on U by the formula

ω(X)p = ωp(Xp), p ∈ U.
Written out in coordinates,

ω =
∑

ai dx
i, X =

∑
bj

∂

∂xj
,

so

ω(X) =
(∑

ai dx
i
)(∑

bj
∂

∂xj

)
=
∑

aibi,

which shows that ω(X) is C∞ on U . Thus, a C∞ 1-form on U gives rise to a
map: X(U) −→ C∞(U).

This function is actually linear over the ring C∞(U) since if f ∈ C∞(U), then
ω(fX) = fω(X). Let F(U) = C∞(U). In this notation, a 1-form on U gives rise
to an F(U)-linear map: X(U) −→ F(U).

Similarly, a k-form on U gives rise to a k-linear map over F(U):

X(U)× · · · × X(U)(k times) −→ F(U).

Exercise 4.7 (Wedge product of a 2-form with a 1-form). Let ω be a 2-form and τ a 1-form
on R

3. If X, Y,Z are vector fields on M , then

ω ∧ τ(X, Y, Z) = ? .

4.4 The Exterior Derivative

To define the exterior derivative of a C∞ k-form on an open subset U of Rn, we
first define it on 0-forms: the exterior derivative of a C∞ function f ∈ C∞(U) is its
differential

df =
∑ ∂f

∂xi
dxi ∈ �1(U).

Definition 4.8. If ω =∑
I aI dx

I ∈ �k(U), then

dω =
∑
I

daI ∧ dxI =
∑
I

⎛⎝∑
j

∂aI

∂xj
dxj

⎞⎠ ∧ dxI ∈ �k+1(U).

Example 4.9. Letω be the 1-form f dx+g dy on R2, where f and g areC∞ functions
on R2. To simplify the notation, write fx = ∂f/∂x, fy = ∂f/∂y. Then
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dω = df ∧ dx + dg ∧ dy
= (fx dx + fy dy) ∧ dx + (gx dx + gy dy) ∧ dy
= (gx − fy) dx ∧ dy.

In this computation dy∧dx = −dx∧dy and dx∧dx = 0 by the anticommutativity
property of the wedge product (Proposition 3.22 and Corollary 3.24).

An algebraA over a fieldK is said to be graded if it can be written as a direct sum
A =⊕∞

k=0A
k of vector spaces overK so that the multiplication map sendsAk×A


to Ak+
. The notation A = ⊕∞
k=0A

k means that each element of A is uniquely a
finite sum

a = ai1 + · · · + aim,
where aij ∈ Aij .

Example 4.10. The polynomial algebra A = R[x, y] is graded by the degree: Ak

consists of all homogeneous polynomials of degree k in the variables x and y.

Example 4.11. The algebra �∗(U) of C∞ differential forms on U is also graded by
the degree.

Definition 4.12. LetA = ⊕∞
k=0A

k be a graded algebra over a fieldK . An antideriva-
tion of the graded algebra A is a K-linear mapD : A −→ A such that for ω ∈ Ak and
τ ∈ A
,

D(ωτ) = (Dω)τ + (−1)kωDτ. (4.3)

If the antiderivation sends Ak to Ak+m, then we say that it is an antiderivation of
degree m. (The degree m could be negative.)

Proposition 4.13.
(i) The exterior differentiation d : �∗(U) −→ �∗(U) is an antiderivation of degree 1:

d(ω ∧ τ) = (dω) ∧ τ + (−1)degωω ∧ dτ.
(ii) d2 = 0.

(iii) If f ∈ C∞(U) and X ∈ X(U), then (df )(X) = Xf .

Proof.
(i) Since both sides of (4.3) are linear in ω and in τ , it suffices to check the equality
for ω = f dxI and τ = g dxJ . Then

d(ω ∧ τ) = d(fg dxI ∧ dxJ )
=
∑ ∂(fg)

∂xi
dxi ∧ dxI ∧ dxJ

=
∑ ∂f

∂xi
dxi ∧ dxI ∧ g dxJ +

∑
f
∂g

∂xi
dxi ∧ dxI ∧ dxJ .
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In the second sum, moving the 1-form (∂g/∂xi) dxi across the k-form dxI results in
the sign (−1)k by anticommutativity. Hence,

d(ω ∧ τ) = dω ∧ τ + (−1)k
∑

f dxI ∧ ∂g

∂xi
dxi ∧ dxJ

= dω ∧ τ + (−1)kω ∧ dτ.
(ii) Again, by the R-linearity of d, it suffices to show that d2ω = 0 for ω = f dxI .
We compute:

d2(f dxI ) = d

(∑ ∂f

∂xi
dxi ∧ dxI

)
=
∑ ∂2f

∂xj ∂xi
dxj ∧ dxi ∧ dxI .

In this sum if i = j , then dxj ∧ dxi = 0; if i �= j , then ∂2f/∂xi∂xj is symmetric in
i and j , but dxj ∧ dxi is alternating in i and j , so the terms with i �= j pair up and
cancel out. For example,

∂2f

∂x1∂x2
dx1 ∧ dx2 + ∂2f

∂x2∂x1
dx2 ∧ dx1

= ∂2f

∂x1∂x2
dx1 ∧ dx2 + ∂2f

∂x1∂x2
(−dx1 ∧ dx2) = 0.

(iii) Let X =∑
ai∂/∂xi . Then

(df )(X) =
(∑ ∂f

∂xj
dxj

)(∑
ai

∂

∂xi

)
=
∑ ∂f

∂xi
ai = Xf. �	

Proposition 4.14 (Characterization of the exterior derivative). The three proper-
ties of Proposition 4.13 characterize uniquely exterior differentiation on an open set
U in Rn; that is, if (i)D : �∗(U) −→ �∗(U) is an antiderivation of degree 1 such that
(ii) D2 = 0 and (iii) for f ∈ C∞(U) and X ∈ X(U), (Df )(X) = Xf , then D = d.

Proof. Since every k-form on U is a sum of terms such as f dxi1 ∧ · · · ∧ dxik , by
linearity it suffices to show that D = d on a k-form of this type. Applying the three
properties, we get

D(f dxi1 ∧ · · · ∧ dxik )
= D(f Dxi1 ∧ · · · ∧Dxik ) (by (iii), Dxi = dxi)

= Df ∧ (Dxi1 ∧ · · · ∧Dxik ) (by (i) and (ii), since D2 = 0)

= df ∧ (dxi1 ∧ · · · ∧ dxik ) (by (iii) again)

= d(f dxi1 ∧ · · · ∧ dxik ).
Hence, D = d on �∗(U). �	
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4.5 Closed Forms and Exact Forms

A k-form ω on U is closed if dω = 0; it is exact if there is a (k − 1)-form τ such
that ω = dτ on U . Since d2 = 0, every exact form is closed. In the next section we
will discuss the meaning of closed and exact forms in the context of vector calculus
on R3.

Exercise 4.15 (A closed 1-form on the punctured plane). Define a 1-form ω on R
2 − {0} by

ω = 1

x2 + y2
(−y dx + x dy).

Show that ω is closed.

A collection of vector spaces {V k}∞k=0 with linear maps dk : V k −→ V k+1 such
that dk+1 ◦ dk = 0 is called a differential complex or a cochain complex. For any
open subset U of Rn, the exterior derivative d makes the vector space�∗(U) of C∞
forms on U into a cochain complex, called the de Rham complex of U :

�0(U)
d−→ �1(U)

d−→ �2(U) −→ · · · .
The closed forms are precisely the elements of the kernel of d and the exact forms
are the elements of the image of d.

4.6 Applications to Vector Calculus

The theory of differential forms unifies many theorems in vector calculus on R3. We
summarize here some results from vector calculus and then show how they fit into
the framework of differential forms.

A vector-valued function on R3 is the same as a vector field. Recall the three
operators on scalar- and vector-valued functions on R3:

{scalar func.} grad−→ {vector func.} curl−→ {vector func.} div−→ {scalar func.}

gradf =
⎡⎣fxfy
fz

⎤⎦ ,
curl

⎡⎣PQ
R

⎤⎦ =
⎡⎣∂/∂x∂/∂y

∂/∂z

⎤⎦×
⎡⎣PQ
R

⎤⎦ =
⎡⎣ Ry −Qz

−(Rx − Pz)
Qx − Py

⎤⎦ ,
div

⎡⎣PQ
R

⎤⎦ = Px +Qy + Rz.
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Proposition A. curl(gradf ) =
⎡⎣0

0
0

⎤⎦.

Proposition B. div

⎛⎝curl

⎡⎣PQ
R

⎤⎦⎞⎠ = 0.

Proposition C. On R3, a vector field F is the gradient of some scalar function f if
and only if curlF = 0.

Since every 1-form on R3 is a linear combination with function coefficients of
dx, dy, and dz, we can identify 1-forms with vector fields on R3 via

P dx +Qdy + R dz←→
⎡⎣PQ
R

⎤⎦ .
Similarly, the 2-forms on R3 can also be identified with vector fields on R3:

P dy ∧ dz+Qdz ∧ dx + R dx ∧ dy ←→
⎡⎣PQ
R

⎤⎦ .
In terms of these identifications, the exterior derivative of a 0-form f is

df = ∂f

∂x
dx + ∂f

∂y
dy + ∂f

∂z
dz←→

⎡⎣∂f/∂x∂f/∂y

∂f/∂x

⎤⎦ = gradf ;

the exterior derivative of a 1-form is

d(P dx +Qdy + R dz)
= (Ry −Qz) dy ∧ dz− (Rx − Pz) dz ∧ dx + (Qx − Py) dx ∧ dy, (4.4)

which corresponds to

curl

⎡⎣PQ
R

⎤⎦ =
⎡⎣ Ry −Qz

−(Rx − Pz)
Qx − Py

⎤⎦ ;
the exterior derivative of a 2-form is

d(P dy ∧ dz+Qdz ∧ dx + R dx ∧ dy)
= (Px +Qy + Rz) dx ∧ dy ∧ dz, (4.5)

which corresponds to

div

⎡⎣PQ
R

⎤⎦ = Px +Qy + Rz.
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Thus, after appropriate identifications, the exterior derivatives d on 0-forms, 1-
forms, and 2-forms are simply the three operators grad, curl, and div. In summary,
on an open subset U of R3, there are identifications

�0(U)
d−−−−→ �1(U)

d−−−−→ �2(U)
d−−−−→ �3(U)

�
⏐⏐� �

⏐⏐� �
⏐⏐� �

⏐⏐�
C∞(U) −−−−→

grad
X(U) −−−−→

curl
X(U) −−−−→

div
C∞(U).

Propositions A and B express the property d2 = 0 of the exterior derivative.
A vector field 〈P,Q,R〉 on R3 is the gradient of a C∞ function f if and only if

the corresponding 1-form P dx +Qdy + R dz is df . Proposition C expresses the
fact that a 1-form on R3 is exact if and only if it is closed.

On the other hand, Proposition C need not be true on a region other than R3, as
the following well-known example from calculus shows.

Example 4.16. If U = R3 − {z-axis}, and F is the vector field

F =
〈 −y
x2 + y2

,
x

x2 + y2
, 0

〉
on R3, then curl F = 0, but F is not the gradient of anyC∞ function onU . The reason
is that if F were the gradient of aC∞ functionf onU , then by the fundamental theorem
for line integrals, the line integral∫

C

− y

x2 + y2
dx + x

x2 + y2
dy

over any closed curveC would be zero. However, on the unit circleC, with x = cos t
and y = sin t for 0 ≤ t ≤ 2π , this integral is∫

C

−y dx + x dy =
∫ 2π

0
−(sin t) d(cos t)+ (cos t) d(sin t) = 2π.

In terms of differential forms, the 1-form

ω = −y
x2 + y2

dx + x

x2 + y2
dy

is closed but not exact on U .

It turns out that whether Proposition C is true for a region U depends only on
the topology of U . One measure of the failure of a closed k-form to be exact is the
quotient vector space

Hk(U) := {closed k-forms on U}
{exact k-forms on U} ,
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called the kth de Rham cohomology of U .
The generalization of Proposition C to any differential form on Rn is called the

Poincaré lemma: for k ≥ 1, every closed k-form on Rn is exact. This is of course
equivalent to the vanishing of the kth de Rham cohomology Hk(Rn) for k ≥ 1. We
will prove it in Chapter 26.

4.7 Convention on Subscripts and Superscripts

In differential geometry it is customary to index vector fields with subscripts
e1, . . . , en, and differential forms with superscripts ω1, . . . , ωn. Being 0-forms, co-
ordinate functions take superscripts, x1, . . . , xn. Their differentials, being 1-forms,
should also have superscripts, and indeed they do, dx1, . . . , dxn. Coordinate vector
fields ∂/∂x1, . . . , ∂/∂xn are considered to have subscripts because the i in ∂/∂xi ,
although a superscript for xi , is in the lower half of the fraction.

Coefficient functions can have superscripts or subscripts depending on whether
they are the coefficient functions of a vector field or of a differential form. For a
vector field X = ∑

aiei , the coefficient functions ai have superscripts; the idea is
that the superscript in ai “cancels out’’ the subscript in ei . For the same reason, the
coefficient functions bj in a differential form ω =∑ bj dx

j have subscripts.
The beauty of this convention is that there is a “conservation of indices’’ on the

two sides of the equality sign. For example, with ei = ∂/∂xi ,

ω(X) =
(∑

bj dx
j
)(∑

ai
∂

∂xi

)
=
∑

bia
i;

after cancellation of superscripts and subscripts, both sides of the equality sign have
zero net index. As another example, if X =∑ ai∂/∂xi , then

ai = (dxi)(X).
Here both sides have a net superscript i. This convention is a useful mnemonic aid
in some of the transformation formulas of differential geometry.

Problems

4.1. A 1-form on R3

Let ω be the 1-form z dx − dz and X be the vector field y ∂/∂x + x ∂/∂y on R3.
Compute ω(X) and dω.

4.2. A 2-form on R3

At each point p ∈ R3, define a bilinear function ωp on Tp(R3) by

ωp(a, b) = ωp
⎛⎝⎡⎣a1

a2

a3

⎤⎦ ,
⎡⎣b1

b2

b3

⎤⎦⎞⎠ = p3 det

[
a1 b1

a2 b2

]
,
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for tangent vectors a, b ∈ Tp(R
3), where p3 is the third component of p =

(p1, p2, p3). Since ωp is an alternating bilinear function on Tp(R3), ω is a 2-form
on R3. Write ω in terms of the standard basis dxi ∧ dxj at each point.

4.3. Exterior calculus
Suppose the standard coordinates on R2 are called r and θ (this R2 is the (r, θ)-plane,
not the (x, y)-plane). If x = r cos θ and y = r sin θ , calculate dx, dy, and dx ∧ dy
in terms of dr and dθ .

4.4. Exterior calculus
Suppose the standard coordinates on R3 are called ρ, φ, and θ . If x = ρ sin φ cos θ ,
y = ρ sin φ sin θ , and z = ρ cosφ, calculate dx, dy, dz, and dx ∧ dy ∧ dz in terms
of dρ, dφ, and dθ .

4.5. Wedge product
Let α be a 1-form and β a 2-form on R3. Then

α = a1 dx
1 + a2 dx

2 + a3 dx
3,

β = b1 dx
2 ∧ dx3 + b2 dx

3 ∧ dx1 + b3 dx
1 ∧ dx2.

Compute α ∧ β.

4.6. Wedge product and cross product
To a 1-covector α = a1 dx + a2 dy + a3 dz on R3 we associate the vector vα =
〈a1, a2, a3〉 in R3; to a 2-covector γ = c1 dy ∧ dz+ c2 dz∧ dx + c3 dx ∧ dy on R3,
we associate the vector vγ = 〈c1, c2, c3〉. Show that under this correspondence, the
wedge product of 1-covectors corresponds to the cross product of vectors in R3: if
α = a1 dx + a2 dy + a3 dz and β = b1 dx + b2 dy + b3 dz, then vα∧β = vα × vβ .

4.7.* Interior multiplication
If ω is a k-covector on a vector space V and v ∈ V , the interior multiplication or
contraction of ω with v is the (k − 1)-covector ιvω defined by

(ιvω)(v2, . . . , vk) = ω(v, v2, . . . , vk)

for all v2, . . . , vk ∈ V . If α1, . . . , αk are 1-covectors on V , prove that

ιv(α
1 ∧ · · · ∧ αk) =

k∑
i=1

(−1)i+1αi(v)α1 ∧ · · · ∧ α̂i ∧ · · · ∧ αk,

where the caret ̂ over αi means that αi is omitted from the wedge product. (Hint:
Use the determinant formula for the wedge product of 1-covectors (Proposition 3.28).)

4.8.* Interior multiplication
Keeping the same notation as in the preceding problem, prove that

(a) ιv ◦ ιv = 0;
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(b) for ω ∈ Ak(V ) and τ ∈ A
(V ),
ιv(ω ∧ τ) = (ιvω) ∧ τ + (−1)kω ∧ ιvτ.

Thus, ιv is an antiderivation of degree −1 whose square is zero. (Hint for (b): By
the linearity of ιv , we may assume that ω and τ are products of 1-covectors. Apply
Problem 4.7.)

4.9. Commutator of derivations and antiderivations
LetA = ⊕∞

k=0A
k be a graded algebra over a fieldK . A superderivation ofA of degree

m is a K-linear map D : A −→ A such that D(Ak) ⊂ (Ak+m) and for all a ∈ Ak and
b ∈ A
,

D(ab) = (Da)b + (−1)kma(Db).

If D1 and D2 are two superderivations of A of respective degrees m1 and m2, define
their commutator to be

[D1,D2] = D1 ◦ D2 − (−1)m1m2D2 ◦ D1.

Show that [D1,D2] is a superderivation of degree m1 + m2. (A superderivation is
said to be even or odd depending on the parity of its degree. An even superderivation
is a derivation; an odd superderivation is an antiderivation.)
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Manifolds

Intuitively, a manifold is a generalization of curves and surfaces to arbitrary dimen-
sion. While there are many different kinds of manifolds—topological manifolds,
Ck-manifolds, analytic manifolds, and complex manifolds, in this book we are con-
cerned mainly with smooth manifolds.

5.1 Topological Manifolds

We first recall a few definitions from point-set topology. For more details, see Ap-
pendix A. A topological space is second countable if it has a countable basis. A
neighborhood of a point p in a topological spaceM is any open set containing p. An
open cover of M is a collection {Uα}α∈A of open sets in M whose union

⋃
α∈A Uα

is M .

Definition 5.1. A topological space M is locally Euclidean of dimension n if every
point p in M has a neighborhood U such that there is a homeomorphism φ from U

onto an open subset of Rn. We call the pair (U, φ : U −→ Rn) a chart,U a coordinate
neighborhood or a coordinate open set, and φ a coordinate map or a coordinate
system on U . We say that a chart (U, φ) is centered at p ∈ U if φ(p) = 0. A chart
(U, φ) about p simply means that (U, φ) is a chart and p ∈ U .

Definition 5.2. A topological manifold of dimension n is a Hausdorff, second count-
able, locally Euclidean space of dimension n.

For the dimension to be well defined, we need to know that for n �= m an open
subset of Rn is not homeomorphic to an open subset of Rm. This is indeed true, but is
not easy to prove (see [4] for a discussion and further references). We will not pursue
this point as we are mainly interested in smooth manifolds, for which the analogous
result is easy to prove (Corollary 8.8). Of course, if a topological manifold has
several connected components, it is possible for each component to have a different
dimension.
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Example 5.3. The Euclidean space Rn is covered by a single chart (Rn, 1Rn), where
1Rn : Rn −→ Rn is the identity map. It is the prime example of a topological manifold.
Every open subset of Rn is also a topological manifold, with chart (U, 1U).

Recall that the Hausdorff condition and second countability are “hereditary prop-
erties’’; that is, they are inherited by subspaces: a subspace of a Hausdorff space is
Hausdorff (Proposition A.23) and a subspace of a second countable space is second
countable (Proposition A.19). So any subspace of Rn is automatically Hausdorff and
second countable.

Example 5.4 (The cusp). The graph of y = x2/3 in R2 is a topological manifold
(Figure 5.1(a)). By virtue of being a subspace of R2, it is Hausdorff and second
countable. It is locally Euclidean, because it is homeomorphic to R via (x, x2/3) �→ x.

(a) Cusp (b) Cross

Fig. 5.1.

Example 5.5 (The cross). Show that the cross in R2 in Figure 5.1 with the subspace
topology is not locally Euclidean at p, and so cannot be a topological manifold.

Solution. If a space is locally Euclidean of dimension n at p, then p has a neighbor-
hood U homeomorphic to an open ball B := B(0, ε) ⊂ Rn with p mapping to 0.
The homeomorphism: U −→ B restricts to a homeomorphism: U − {p} −→ B − {0}.
Now B−{0} is either connected if n ≥ 2 or has two connected components if n = 1.
SinceU−{p} has four connected components, there can be no homeomorphism from
U − {p} to B − {0}. This contradiction proves that the cross is not locally Euclidean
at p. �	

5.2 Compatible Charts

Definition 5.6. Two charts (U, φ : U −→ Rn), (V ,ψ : V −→ Rn) of a topological
manifold are C∞-compatible if the two maps

φ ◦ ψ−1 : ψ(U ∩ V ) −→ φ(U ∩ V ), ψ ◦ φ−1 : φ(U ∩ V ) −→ ψ(U ∩ V )
are C∞ (Figure 5.2). These two maps are called the transition functions between the
charts. If U ∩ V is empty, then the two charts are automatically C∞-compatible.
To simplify the notation, we will sometimes write Uαβ for Uα ∩ Uβ and Uαβγ for
Uα ∩ Uβ ∩ Uγ .
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φ ψ

U Vφ(U ∩ V )
Fig. 5.2. The transition function ψ ◦ φ−1 is defined on φ(U ∩ V ).

Since we are interested only in C∞-compatible charts, we often omit to mention
C∞ and speak simply of compatible charts.

Definition 5.7. A C∞ atlas or simply an atlas on a locally Euclidean space M is a
collection {(Uα, φα)} of C∞-compatible charts that cover M , i.e., such that M =⋃
α Uα .

Although the C∞ compatibility of charts is clearly reflexive and symmetric, it
is not transitive. The reason is as follows. Suppose (U1, φ1) is C∞-compatible
with (U2, φ2), and (U2, φ2) is C∞-compatible with (U3, φ3). Note that the three
coordinate functions are simultaneously defined only on the triple intersection U123.
Thus, the composite

φ3 ◦ φ−1
1 = (φ3 ◦ φ−1

2 ) ◦ (φ2 ◦ φ−1
1 )

is C∞ but only on φ1(U123), not necessarily on φ1(U13) (Figure 5.3). A priori we
know nothing about φ3 ◦ φ−1

1 on φ1(U13 − U123) and so we cannot conclude that
(U1, φ1) and (U3, φ3) are C∞-compatible.

φ1(U123)

φ1 φ2

φ3

U1 U2

U3

Fig. 5.3. φ3 ◦ φ−1
1 is C∞ on φ1(U123).

We say that a chart (V ,ψ) is compatible with an atlas {(Uα, φα)} if it is compatible
with all the charts (Uα, φα) of the atlas.

Lemma 5.8. Let {(Uα, φα)} be an atlas on a locally Euclidean space. If two charts
(V ,ψ) and (W, σ) are both compatible with the atlas {(Uα , φα)}, then they are
compatible with each other.
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Proof. (See Figure 5.4.) Let p ∈ V ∩W . We need to show that σ ◦ ψ−1 is C∞ at
ψ(p). Since {(Uα, φα)} is an atlas forM , p ∈ Uα for some α. Then p is in the triple
intersection V ∩W ∩ Uα .

� � �

�

p

ψ(p) φα(p) σ (p)φα ◦ ψ−1 σ ◦ φ−1
α

V W

Uα
ψ σ

φα

Fig. 5.4. Two charts (V ,ψ), (W, σ) compatible with an atlas.

By the remark above, σ ◦ ψ−1 = (σ ◦ φ−1
α ) ◦ (φα ◦ ψ−1) is C∞ on ψ(V ∩W ∩

Uα), hence at ψ(p). Since p is an arbitrary point of V ∩W , this proves that σ ◦ ψ−1

is C∞ on ψ(V ∩W). Similarly, ψ ◦ σ−1 is C∞ on σ(V ∩W). �	

5.3 Smooth Manifolds

An atlas A on a locally Euclidean space is said to be maximal if it is not contained in
a larger atlas; in other words, if M is any other atlas containing A, then M = A.

Definition 5.9. A smooth or C∞ manifold is a topological manifoldM together with
a maximal atlas. The maximal atlas is also called a differentiable structure on M .
A manifold is said to have dimension n if all of its connected components have
dimension n. A manifold of dimension n is also called an n-manifold .

In Corollary 8.8 we will prove that if an open set U ⊂ Rn is diffeomorphic to an
open set V ⊂ Rm, then n = m. As a consequence, the dimension of a manifold at a
point is well defined.

In practice, to check that a topological manifold M is a smooth manifold, it is
not necessary to exhibit a maximal atlas. The existence of any atlas on M will do,
because of the following proposition.

Proposition 5.10. Any atlas A = {(Uα, φα)} on a locally Euclidean space is con-
tained in a unique maximal atlas.
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Proof. Adjoin to the atlas A all charts (Vi, ψi) that are compatible with A. By
Proposition 5.8 the charts (Vi, ψi) are compatible with one another. So the enlarged
collection of charts is an atlas. Any chart compatible with the new atlas must be
compatible with the original atlas A and so by construction belongs to the new atlas.
This proves that the new atlas is maximal.

Let M be the maximal atlas containing A that we have just constructed. If M′ is
another maximal atlas containing A, then all the charts in M′ are compatible with A
and so by construction must belong to M. This proves that M′ ⊂ M. Since both are
maximal, M′ = M. Therefore, the maximal atlas containing A is unique. �	

In summary, to show that a topological space M is a C∞ manifold, it suffices to
check:

(i) M is Hausdorff and second countable,
(ii) M has a C∞ atlas (not necessarily maximal).

From now on by a manifold we will mean a C∞ manifold. We use the words
smooth and C∞ interchangeably.

5.4 Examples of Smooth Manifolds

Example 5.11. The Euclidean space Rn is a smooth manifold with a single chart
(Rn, r1, . . . , rn), where r1, . . . , rn are the standard coordinates on Rn.

Example 5.12. Any open subset V of a manifold M is also a manifold. If {(Uα, φα)}
is an atlas forM , then {(Uα ∩V, φα|Uα∩V } is an atlas for V , where φα|Uα∩V : Uα ∩V
−→ Rn denotes the restriction of φα to the subset Uα ∩ V .

Example 5.13 (The graph of a smooth function). For U an open subset of Rn and
f : U −→ Rm a C∞ function, the graph of f is defined to be the subspace

�(f ) = {(x, f (x)) ∈ U × Rm}.
The two maps

φ : �(f ) −→ U, (x, f (x)) �→ x,

and
1 × f : U −→ �(f ), x �→ (x, f (x))

are continuous and inverse to each other, and so are homeomorphisms. The graph
�(f ) of aC∞ function f : U −→ Rm has an atlas with a single chart (�(f ), φ), and is
therefore a C∞ manifold. This shows that many of the familiar surfaces of calculus,
for example an elliptic paraboloid or a hyperbolic paraboloid, are manifolds.

Example 5.14. For any two positive integers m and n let Rm×n be the vector space
of all m× n matrices. Since Rm×n is isomorphic to Rmn, we give it the topology of
Rmn. The general linear group GL(n,R) is by definition
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GL(n,R) := {A ∈ Rn×n | detA �= 0} = det−1(R− {0}).
Since the determinant function

det : Rn×n −→ R

is continuous, GL(n,R) is an open subset of Rn×n � Rn
2

and is therefore a manifold.

φ1

φ2
φ4 φ3

U1

U2

U3U4

Fig. 5.5. Charts on the unit circle.

Example 5.15 (The unit circle in the plane). The equation x2 + y2 = 1 defines the
unit circle S1 in R2. We can cover the unit circle by four open sets: the upper
and lower semicircles U1, U2, and the right and left semicircles U3, U4. On U1 and
U2, the coordinate function x is a homeomorphism onto the open interval (−1, 1)
in the x-axis. Thus, φi(x, y) = x for i = 1, 2. Similarly, on U3 and U4, y is a
homeomorphism onto the open interval (−1, 1) in the y-axis (Figure 5.5).

It is easy to check that on every nonempty pairwise intersectionUα∩Uβ , φβ ◦ φ−1
α

is C∞. For example, on U1 ∩ U3,

φ3 ◦ φ−1
1 (x) = φ3(x,

√
1 − x2) =

√
1 − x2,

which is C∞. On U2 ∩ U4,

φ4 ◦ φ−1
2 (x) = φ4(x,−

√
1 − x2) = −

√
1 − x2,

which is also C∞. Thus, {(Ui, φi)}4i=1 is an atlas on S1. By Proposition 5.10, this
atlas is contained in a unique maximal atlas. Hence, the unit circle is a manifold.

Example 5.16 (The product manifold ). If M and N are C∞ manifolds, then M × N
with its product topology is Hausdorff and second countable (Corollary A.25 and
Proposition A.26). To show that M × N is a manifold, it remains to exhibit an atlas
on it.

Proposition 5.17 (An atlas for a product manifold). If {(Uα, φα)} and {(Vi, ψi)}
are atlases for M and N , respectively, then

{(Uα × Vi, φα × ψi : Uα × Vi −→ Rm+n)}
is an atlas on M ×N . Therefore, if M and N are manifolds, then so is M ×N .



5.4 Examples of Smooth Manifolds 53

Proof. Problem 5.4. �	

Example 5.18. It follows from Proposition 5.17 that the infinite cylinder S1 ×R and
the torus S1 × S1 are manifolds (Figure 5.6).

Infinite cylinder Torus

Fig. 5.6.

Since M ×N × P = (M ×N)× P is the successive product of pairs of spaces,
ifM,N and P are manifolds, then so isM ×N ×P . Thus, the n-dimensional torus,
S1 × · · · × S1 (n times), is a manifold.

Problems

5.1. The real line with two origins
Let A and B be two points not on the real line R. Consider the set S = (R− {0}) ∪
{A,B}.

�

�
A

B

For any two positive real numbers c, d, define

IA(−c, d) = (−c, 0) ∪ {A} ∪ (0, d)

and similarly for IB(−c, d), with B instead of A. Define a topology on S as follows:
On (R − {0}), use the subspace topology inherited from R, with open intervals as
a basis. A basis at A is the set {IA(−c, d) | c, d > 0}; similarly, a basis at B is
{IB(−c, d) | c, d > 0}.
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(a) Prove that the map h : IA(−c, d) −→ (−c, d) defined by

h(x) = x for x ∈ (−c, 0) ∪ (0, d),
h(A) = 0,

is a homeomorphism.

(b) Show that S is locally Euclidean and second countable, but not Hausdorff.

�

q

Fig. 5.7. Sphere with a hair.

5.2. Sphere with a hair
Prove that the sphere with a hair in R3 (Figure 5.7) is not locally Euclidean at q.
Hence it cannot be a topological manifold. (Hint: Mimic Example 5.5.)

U6

U5

U4 U3 U1

U2

Fig. 5.8. Charts on the unit sphere.

5.3. Charts on the sphere
Let S2 be the unit sphere

x2 + y2 + z2 = 1

in R3. Define in S2 the six charts corresponding to the six hemispheres—the front,
rear, right, left, upper, and lower hemispheres (Figure 5.8):
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U1 = {(x, y, z) ∈ S2 | x > 0}, φ1(x, y, z) = (y, z),

U2 = {(x, y, z) ∈ S2 | x < 0}, φ2(x, y, z) = (y, z),

U3 = {(x, y, z) ∈ S2 | y > 0}, φ3(x, y, z) = (x, z),

U4 = {(x, y, z) ∈ S2 | y < 0}, φ4(x, y, z) = (x, z),

U5 = {(x, y, z) ∈ S2 | z > 0}, φ5(x, y, z) = (x, y),

U6 = {(x, y, z) ∈ S2 | z < 0}, φ6(x, y, z) = (x, y).

Describe the domain φ4(U14) of φ1 ◦ φ−1
4 and show that φ1 ◦ φ−1

4 is C∞ on φ4(U14).
Do the same for φ6 ◦ φ−1

1 .

5.4. An atlas for a product manifold
Prove Proposition 5.17.
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Smooth Maps on a Manifold

Using coordinate charts we can transfer the notion of differentiability from Rm to a
smooth manifold M .

6.1 Smooth Functions and Maps

Definition 6.1. LetM be a smooth manifold of dimension n. A function f : M −→ R

is said to be C∞ or smooth at a point p in M if there is a chart (U, φ) containing p
in the atlas ofM such that f ◦ φ−1, which is defined on the open subset φ(U) of Rn,
is C∞ at φ(p) (see Figure 6.1).

�

φ(p) φ(U) ⊂ R
n

� p
U

M

R

f

φ

Fig. 6.1. Checking that a function f is C∞ at p by pulling back to R
n.

This definition is independent of the chart (U, φ), for if (V ,ψ) is any other chart
in the atlas containing p, then on ψ(U ∩ V )

f ◦ ψ−1 = (f ◦ φ−1) ◦ (φ ◦ ψ−1),

which is C∞ at ψ(p) (see Figure 6.2). The function f is said to be C∞ on M if it is
C∞ at every point of M .

We emphasize again that by manifolds we always mean C∞ manifolds and that
we use the terms “C∞’’ and “smooth’’ interchangeably.
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�

p

�

ψ(p)

�

φ(p)

R

f

φ ◦ ψ−1

ψ−1
φ−1

UV

Fig. 6.2. Checking that a function f is C∞ at p via two charts.

Notation. We generally denote a manifold byM and its dimension by n. However,
in speaking of two manifolds simultaneously, as in a map f : N −→ M , the dimension
of N will be n and the dimension of M will be m.

Definition 6.2. Let F : N −→ M be a map and h a function onM . The pullback of h
by F , denoted F ∗h, is the composite function h ◦ F .

In this terminology, a function f onM is C∞ on a chart (U, φ) if its pullback by
φ−1 is C∞ on the subset φ(U) of a Euclidean space.

Definition 6.3. Let N and M be manifolds of dimension n and m, respectively. A
map F : N −→ M is C∞ at a point p in N if there is a chart (V ,ψ) in M containing
F(p) and a chart (U, φ) in N containing p such that the composition ψ ◦ F ◦ φ−1,
a map from an open subset of Rn to Rm, is C∞ at φ(p) (see Figure 6.3). By the
continuity of F , one can always choose U small enough so that F(U) ⊂ V .

φ(p)

V

F(p)
�

�

�

U

p

F

φ−1 ψ

N M

Fig. 6.3. Checking that a map F : N → M is C∞ at p.

This definition of a map F : N −→ M being C∞ at p in N is in fact independent
of the choice of charts (see Problem 6.1).
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Definition 6.4. The map F : N −→ M is said to be C∞ if it is C∞ at every point of
N . It is a diffeomorphism if it is bijective and both F and its inverse F−1 are C∞.

Example 6.5. If (U, F ) is a chart in the atlas of a manifoldM of dimension n, then F
is C∞, because with ψ : Rn −→ Rn being the identity map, ψ ◦ F ◦ F−1 is C∞. The
inverse map F−1 : F(U) −→ U is also C∞ because in Definition 6.3 one can take
ψ = F and φ = 1F(U). Then ψ ◦ F−1 ◦ 1F(U) = 1F(U) is C∞.

Proposition 6.6 (Composite of C∞ maps). If F : N −→ M and G : M −→ P are
C∞ maps of manifolds, then the composite G ◦ F : N −→ P is C∞.

Proof. Problem 6.2. �	

Proposition 6.7. Let U be an open subset of a manifold M . If F : U −→ Rn is a
diffeomorphism onto its image, then (U, F ) is a chart in the atlas of M .

Proof. For any chart (Uα, φα) in the atlas ofM , both F ◦ φ−1
α and φα ◦ F−1 areC∞.

Hence, (U, F ) is compatible with the atlas. By the maximality of the atlas of M , the
chart (U, F ) is in the atlas. �	

Now that we know what it means for a map between manifolds to be C∞, we can
define a Lie group.

Definition 6.8. A Lie group is a C∞ manifold G having a group structure such that
the multiplication map

µ : G×G −→ G

and the inverse map

ι : G −→ G, ι(x) = x−1,

are both C∞.

Similarly, a topological group is a topological space having a group structure such
that the multiplication and inverse maps are both continuous. Note that a topological
group is required to be a topological space, not a topological manifold.

Example 6.9.

(i) The Euclidean space Rn is a Lie group under addition.
(ii) The set C× of nonzero complex numbers is a Lie group under multiplication.

(iii) The unit circle S1 in C× is a Lie group under multiplication.

In Chapter 15 we will study a few less obvious examples of Lie groups.
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6.2 Partial Derivatives

Let (U, φ) be a chart and f a C∞ function on a manifold M of dimension n. As a
function into Rn, φ has n components x1, . . . , xn. This means if r1, . . . , rn are the
standard coordinates on Rn, then xi = ri ◦ φ. For p ∈ U , we define the partial
derivative ∂f/∂xi at p to be

∂

∂xi

∣∣∣∣
p

f := ∂f

∂xi
(p) = ∂(f ◦ φ−1)

∂ri
(φ(p)).

This equation may be rewritten in the form

∂f

∂xi
(φ−1(φ(p))) = ∂(f ◦ φ−1)

∂ri
(φ(p)).

Thus, as functions on φ(U),

∂f

∂xi
◦ φ−1 = ∂(f ◦ φ−1)

∂ri
.

The partial derivative ∂f/∂xi is C∞ on U because its pullback (∂f/∂xi) ◦ φ−1 is
C∞ on φ(U).

In the next proposition we see that partial derivatives on a manifold behave as
they should.

Proposition 6.10. Suppose (U, x1, . . . , xn) is a chart on a manifold. Then ∂xi/∂xj =
δij .

Proof. At a point p ∈ U , by the definition of ∂/∂xj |p,

∂xi

∂xj
(p) = ∂

∂rj

∣∣∣∣
φ(p)

xi ◦ φ−1

= ∂

∂rj

∣∣∣∣
φ(p)

(ri ◦ φ) ◦ φ−1 = ∂

∂rj

∣∣∣∣
φ(p)

ri = δij . �	

6.3 The Inverse Function Theorem

Let U be an open subset of Rn. Suppose

f = (f 1, . . . , f n) : U −→ Rn

is a diffeomorphism of U onto some open subset of Rn. Then the chart (U, f ) is
compatible with the standard chart (Rn, r1, . . . , rn). Therefore, (U, f ) is an element
of the maximal atlas that determines the differentiable structure of Rn. In other words,
any diffeomorphism of an open subset U of Rn may be thought of as a coordinate
system on U .
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More generally, givenn smooth functionsf 1, . . . , f n in a neighborhood of a point
p in a manifold of dimension n, one would like to know if they form a coordinate
system, possibly on a smaller neighborhood of p. The inverse function theorem
provides an answer.

Definition 6.11. Let U be an open subset of Rn. A smooth map f = (f 1, . . . , f n) :
U −→ Rn is locally invertible at p ∈ U if f has a smooth inverse in some neighbor-
hood of p. The matrix of partial derivatives [∂f i/∂rj ] is called the Jacobian matrix
of f , and its determinant det[∂f i/∂rj ] the Jacobian determinant of f . The Jacobian
determinant is also written as ∂(f 1, . . . , f n)/∂(r1, . . . , rn).

We will use the phrase “near p’’ to mean “in a neighborhood of p.’’

Theorem 6.12 (Inverse function theorem for Rn). Let f : W −→ Rn be a C∞ map
defined on an open subset W of Rn. For any point p in W , the map f is locally
invertible at p if and only if the Jacobian determinant det[∂f i/∂rj (p)] is not zero.

This theorem is usually proved in a course on real analysis, for example, in [17].

Theorem 6.13 (Inverse function theorem for a manifold). Let M be an n-dimen-
sional manifold, p a point in M , and f = (f 1, . . . , f n) : W −→ Rn a C∞ map
defined on a neighborhood W of p. Suppose that relative to some chart (U, φ) =
(U, x1, . . . , xn) containingp, the Jacobian determinant det[∂f i/∂xj (p)] �= 0. Then
there is a neighborhood V of p on which f is a diffeomorphism onto its image.
Moreover, (V , f ) is a chart in the differentiable structure of M . (See Figure 6.4.)

�

p

f
�

f (p)

�φ(p)

U

W

V

φ

Fig. 6.4. The map f is locally invertible at p.

Proof. By definition,

∂f i

∂xj
(p) = ∂(f i ◦ φ−1)

∂rj
(φ(p)).

By the inverse function theorem for Rn, the map f ◦ φ−1 is locally invertible at
φ(p). So f = (f ◦ φ−1) ◦ φ is a diffeomorphism in some neighborhood V of p. By
Proposition 6.7, (V , f ) is a chart in the atlas of M . �	
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Problems

6.1. Smoothness of a map at a point
Suppose F : N −→ M is C∞ at p ∈ N . Show that if (U ′, φ′) is any chart containing
p in the atlas of N and (V ′, ψ ′) is any chart containing F(p) in the atlas of M , then
ψ ′ ◦ F ◦ (φ′)−1 is C∞ at φ′(p).

6.2. Composition of smooth maps
Prove Proposition 6.6.

6.3. Differentiable structures on R

Let R be the real line with the differentiable structure given by the maximal atlas of the
chart (R, φ = id : R −→ R), and let R′ be the real line with the differentiable structure
given by the maximal atlas of the chart (R, ψ : R −→ R), where ψ(x) = x1/3.

(a) Show that these two differentiable structures are distinct.
(b) Show that there is a diffeomorphism between R and R′. (Hint: The identity map

is not the desired diffeomorphism; in fact, the identity map is not smooth.)

6.4.* Coordinate maps are C∞
Show that if (U, φ) is a chart in the atlas of a manifold, then φ is C∞.

6.5. Smooth functions
Show that f : M −→ R is C∞ if and only if for every chart (U, φ) in the atlas of M ,
the function f ◦ φ−1 is C∞ on φ(U).

6.6. Smooth maps
Show that a map f : M −→ N of manifolds isC∞ if and only if for every chart (U, φ)
in the atlas of M and (V ,ψ) in the atlas of N , the composite ψ ◦ f ◦ φ−1 is C∞ on
φ(f−1(V ) ∩ U).
6.7. General linear group
Show that the general linear group GL(n,R) defined in Example 5.14 is a Lie group
under matrix multiplication.

6.8. Group of automorphisms of a vector space
Let V be a finite-dimensional vector space over R, and GL(V ) the group of all linear
isomorphisms of V itself. A basis e1, . . . , en for V induces a bijection

GL(n,R) −→ GL(V ),

[aij ] �→ (ej �→
∑
i

aij ei),

making GL(V ) into a C∞ manifold, which we denote temporarily by GL(V )e. If
GL(V )u is the manifold structure induced from another basis u1, . . . , un for V , show
that GL(V )e is diffeomorphic to GL(V )u.
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Quotients

Gluing the edges of a malleable square is one way to create new surfaces. For example,
gluing together the top and bottom edges of a square gives a cylinder; gluing together
the boundaries of the cylinder with matching orientations gives a torus (Figure 7.1).
This gluing process is called an identification or a quotient construction.

Fig. 7.1. Gluing the edges of a malleable square.

Even if the original space is a manifold, a quotient space is often not a manifold.
The main results of this chapter give conditions under which the quotient space
remains second countable and Hausdorff. We then study the real projective space as
an example of a quotient manifold.

7.1 The Quotient Topology

Suppose∼ is an equivalence relation on the set S. The equivalence class [x] of x is the
set of all elements in S equivalent to x. An equivalence relation on S partitions S into
disjoint subsets consisting of equivalence classes. We denote the set of equivalence
classes by S/∼ and call this set the quotient of S by the equivalence relation∼. There
is a natural projection map π : S −→ S/∼ that sends x ∈ S to its equivalence class
[x].

We call a set U in S/∼ open if and only if π−1(U) is open in S. Clearly, both the
empty set ∅ and the entire quotient S/∼ are open. Since
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π−1

(⋃
α

Uα

)
=
⋃
α

π−1(Uα),

and

π−1

(⋂
i

Ui

)
=
⋂
i

π−1(Ui),

the collection of open sets in S/∼ is closed under arbitrary union and finite intersec-
tion, and is therefore a topology. It is called the quotient topology on S/∼. With this
topology, S/∼ is called the quotient space of S by the equivalence relation ∼. With
the quotient topology on S/∼, the projection map π : S −→ S/∼ is automatically
continuous, because the inverse image of an open set in S/∼ is by definition open in
S. However, π need not be an open map, as Example 7.7 shows.

7.2 Continuity of a Map on a Quotient

Let∼ be an equivalence relation on the topological space S and give S/∼ the quotient
topology. Suppose a function f : S −→ Y from S to another topological space Y is
constant on each equivalence class. Then it induces a map f̄ : S/∼ −→ Y by

f̄ ([p]) = f (p) for p ∈ S.
In other words, there is a commutative diagram

S Y�f

S/∼
�

π f̄

�
�

�
��

Proposition 7.1. The induced map f̄ : S/∼ −→ Y is continuous if and only if the map
f : S −→ Y is continuous.

Proof.
(⇒) If f̄ is continuous, then as the composite f̄ ◦ π of continuous functions, f is
also continuous.

(⇐) Suppose f is continuous. Let V be open in Y . Then f−1(V ) = π−1(f̄−1(V ))

is open in S. By the definition of quotient topology, f̄−1(V ) is open in S/∼. Hence,
f̄ : S/∼ −→ Y is continuous. �	

This proposition gives a useful criterion for checking if a function f̄ on a quotient
space S/∼ is continuous: simply lift the function f̄ to f := f ◦ π on S and check
the continuity of the lifted map f on S. For an example of this, see Example 7.2 and
Proposition 7.3.
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7.3 Identification of a Subset to a Point

If A is a subspace of a topological space S, we define a relation ∼ on S by declaring

x ∼ x for all x ∈ S
(so that the relation would be reflexive) and

x ∼ y for all x, y ∈ A.
This is an equivalence relation on S. We say that the quotient space S/∼ is obtained
from S by identifying A to a point.

Example 7.2. Let I be the unit interval [0, 1] and I/∼ the quotient space obtained
from I by identifying the two points {0, 1} to a point. Denote by S1 the unit circle in
the complex plane. The function f : I −→ S1, f (x) = exp(2πix) assumes the same
value at 0 and 1 (Figure 7.2), and so induces a function

f̄ : I/∼ −→ S1.

�

0 1

f

Fig. 7.2. The unit circle as a quotient space of the unit interval.

Proposition 7.3. The function f̄ : I/∼ −→ S1 is a homeomorphism.

Proof. Since f is continuous, f̄ is also continuous by Proposition 7.1. Clearly, f̄ is a
bijection. As the continuous image of the compact set I , the quotient I/∼ is compact.
Thus, f̄ is a continuous bijection from the compact space I/∼ to the Hausdorff space
S1. By Proposition A.39, f̄ is a homeomorphism. �	

7.4 A Necessary Condition for a Hausdorff Quotient

The quotient construction does not in general preserve the Hausdorff property or
second countability. Indeed, since every singleton set in a Hausdorff space is closed,
if π : S −→ S/∼ is the projection and the quotient S/∼ is Hausdorff, then for any
p ∈ S, its image {π(p)} is closed in S/∼. By the continuity of π , the inverse image
π−1({π(p)}) = [p] is closed in S. This gives a necessary condition for a quotient
space to be Hausdorff.
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Proposition 7.4. If the quotient space S/∼ is Hausdorff, then the equivalence class
[p] of any point p in S is closed in S.

Example 7.5. Define an equivalence relation ∼ on R by identifying the open interval
(0,∞) to a point. Then the quotient space R/∼ is not Hausdorff because the point
corresponding to the equivalence class (0,∞) is not closed.

7.5 Open Equivalence Relations

In this section we follow the treatment of Boothby [2] and derive conditions under
which a quotient space is Hausdorff or second countable. Recall that a map f : X
−→ Y of topological spaces is open if the image of any open set under f is open.

Definition 7.6. An equivalence relation∼ on a topological space S is said to be open
if the projection map π : S −→ S/∼ is open.

In other words, the equivalence relation ∼ on S is open if and only if for every
open set U in S, the set

π−1(π(U)) =
⋃
x∈U

[x]

of all points equivalent to some point of U is open.

Example 7.7. The projection map to a quotient space is in general not open. For
example, let ∼ be the equivalence relation on the real line R that identifies the two
points 1 and −1, and π : R −→ R/∼ the projection map.

� �
�( )

−2 0−1 1

π

(

)

Fig. 7.3. A projection map that is not open.

Let V be the open interval (−2, 0). Then

π−1(π(V )) = (−2, 0) ∪ {−1},
which is not open in R (Figure 7.3). Thus, π(V ) is not open in the quotient space. In
this example the projection map π : R −→ R/∼ is not an open map.

Given an equivalence relation∼ on S, we letR be the subset of S×S that defines
the relation:

R = {(x, y) ∈ S × S | x ∼ y}.
We call R the graph of the equivalence relation ∼.
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Fig. 7.4. The graph R of an equivalence relation.

Theorem 7.8. Suppose ∼ is an open equivalence relation on S. Then the quotient
space S/∼ is Hausdorff if and only if the graphR of the equivalence relation is closed
in S × S.

Proof.
(⇒) Suppose S/∼ is Hausdorff. We will show that S × S − R is an open set. Let
(x, y) ∈ S×S−R. Then x � y. So [x] �= [y] in S/∼. Since S/∼ is Hausdorff, there
are disjoint open sets Ũ , Ṽ in S/∼ with [x] ∈ Ũ and [y] ∈ Ṽ . Since Ũ and Ṽ are
disjoint, no element in U := π−1(Ũ) is equivalent to an element of V := π−1(Ṽ ).
This means U × V is open and disjoint from R in S × S. So

(x, y) ∈ U × V ⊂ S × S − R,
which proves that S × S − R is open in S × S.

(⇐) Suppose R is closed in S × S and [x] �= [y] in S/∼. Then x � y. Thus,
(x, y) ∈ S × S − R. Since S × S − R is open, there is a basic open set U × V

containing (x, y) and contained in S × S −R (Figure 7.4). Thus, no element of U is
equivalent to an element of V , so π(U) and π(V ) are disjoint in S/∼. Since π : S
−→ S/∼ is an open map, π(U) and π(V ) are open in S/∼. Moreover, [x] ∈ π(U)
and [y] ∈ π(V ). This proves that S/∼ is Hausdorff. �	
Theorem 7.9. Let ∼ be an open equivalence relation on a space S with projection
π : S −→ S/∼. If B = {Bα} is a basis for S, then its image {π(Bα)} under π is a
basis for S/∼.

Proof. Since π is an open map, {π(Bα)} is a collection of open sets in S/∼. Let W
be an open set in S/∼ and [x] ∈ W , x ∈ S. Then x ∈ π−1(W). Since π−1(W) is
open, there is a basic open set Bα ∈ B such that

x ∈ Bα ⊂ π−1(W).

Then
[x] = π(x) ∈ π(Bα) ⊂ W,

which proves that {π(Bα)} is a basis for S/∼. �	
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Corollary 7.10. If ∼ is an open equivalence relation on a second countable space S,
then the quotient space S/∼ is second countable.

7.6 The Real Projective Space

Define an equivalence relation on Rn+1 − {0} by

x ∼ y iff y = tx for some nonzero real number t,

where x, y ∈ Rn+1 − {0}. The real projective space RPn is the quotient space of
Rn+1 − {0} by this equivalence relation. We denote the equivalence class of a point
(a0, . . . , an) ∈ Rn+1 − {0} by [a0, . . . , an] and let π : Rn+1 − {0} −→ RPn be the
projection. We call [a0, . . . , an] the homogeneous coordinates on RPn.

Geometrically two nonzero points in Rn+1 are equivalent if and only if they lie
on the same line through the origin. So RPn can be interpreted as the set of all lines
through the origin in Rn+1.

�

�

�

Fig. 7.5. The real projective plane RP 2 as the set of lines through 0 in R
3.

Each line through the origin in Rn+1 meets the unit sphere Sn in a pair of antipodal
points, and conversely, a pair of antipodal points on Sn determines a unique line
through the origin (Figure 7.5). This suggests that we define an equivalence relation
∼ on Sn by identifying the antipodal points:

x ∼ y iff x = ±y, x, y ∈ Sn.
We then have a bijection RPn ↔ Sn/∼.

Exercise 7.11 (Real projective space as a quotient of a sphere).* Prove that the map
f : R

n+1 − {0} −→ Sn given by

f (x) = x

|x|
induces a homeomorphism f̄ : RPn −→ Sn/∼. (Hint: Find an inverse map

ḡ : Sn/∼ −→ RPn

and show that both f̄ and ḡ are continuous.)
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�
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0

Fig. 7.6. The real projective line RP 1 as the set of lines through 0 in R
2.

Example 7.12. The real projective line RP 1.
Each line through the origin in R2 meets the unit circle in a pair of antipodal

points. By Exercise 7.11, RP 1 is homeomorphic to the quotient S1/∼, which is in
turn homeomorphic to the closed upper semicircle with the two endpoints identified
(Figure 7.6). Thus, RP 1 is homeomorphic to S1.

Example 7.13. The real projective plane RP 2. By Exercise 7.11, there is a homeo-
morphism

RP 2 � S2/{antipodal points} = S2/∼.
For points not on the equator, each pair of antipodal points contains a unique point
in the upper hemisphere. Thus, there is a bijection between S2/∼ and the quotient
of the closed upper hemisphere in which each pair of antipodal points on the equator
are identified. It is not difficult to show that this bijection is a homeomorphism.

Let H 2 be the closed upper hemisphere

H 2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1, z ≥ 0}
and let D2 be the closed unit disk

D2 = {(x, y) ∈ R2 | x2 + y2 ≤ 1}.
These two spaces are homeomorphic to each other via the continuous map

ϕ : H 2 −→ D2

ϕ(x, y, z) = (x, y)

and its inverse

ψ : D2 −→ H 2

ψ(x, y) =
(
x, y,

√
1 − x2 − y2

)
.

On H 2, define an equivalence relation ∼ by identifying the antipodal points on the
equator:

(x, y, 0) ∼ (−x,−y, 0), x2 + y2 = 1.
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On D2, define an equivalence relation ∼ by identifying the antipodal points on the
boundary circle:

(x, y) ∼ (−x,−y), x2 + y2 = 1.

Then ϕ and ψ induce homeomorphisms

ϕ̄ : H 2/∼ −→ D2/∼, ψ̄ : D2/∼ −→ H 2/∼.

In summary, there is a sequence of homeomorphisms

RP 2 � S2/∼ � H 2/∼ � D2/∼

that identifies the real projective plane as the quotient of the closed disk D2 with the
antipodal points on its boundary identified. This may be the best way to picture RP 2

(Figure 7.7).

� �

Fig. 7.7. The real projective plane as the quotient of a disk.

The real projective plane RP 2 cannot be embedded as a submanifold of R3.
However, if we allow self-intersection, then we can map RP 2 into R3 as a cross-cap
(Figure 7.8). This map is not one-to-one.
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Fig. 7.8. The real projective plane immersed as a cross-cap in R
3.

Proposition 7.14. The equivalence relation∼ on Rn+1−{0} in the definition of RPn

is an open equivalence relation.
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Proof. For an open set U ⊂ Rn+1 − {0}, the image π(U) is open in RPn if and only
if π−1(π(U)) is open in Rn+1−{0}. But π−1(π(U)) consists of all points equivalent
to some points of U ; that is,

π−1(π(U)) =
⋃
t∈R×

tU.

Since multiplication by t ∈ R× is a homeomorphism of Rn+1 − {0}, the set tU is
open for any t . Therefore, their union π−1(π(U)) is also open. �	
Corollary 7.15. The real projective space RPn is second countable.

Proof. Apply Corollary 7.10. �	
Proposition 7.16. The real projective space RPn is Hausdorff.

Proof. Let S = Rn+1 − {0} and consider the set

R = {(x, y) ∈ S × S | y = tx for some t ∈ R×}.
If we write x and y as column vectors, then [x y] is an (n+1)×2 matrix, and R may
be characterized as the set of matrices [x y] in S × S of rank ≤ 1. By a standard fact
from linear algebra, this is equivalent to the vanishing of all 2 × 2 minors of [x y]
(see Problem B.1). As the zero set of finitely many polynomials, R is a closed subset
of S × S. Since ∼ is an open equivalence relation on S, and R is closed in S × S, by
Theorem 7.8 the quotient S/∼ � RPn is Hausdorff. �	

7.7 The Standard C∞ Atlas on a Real Projective Space

Let [a0, . . . , an] be the homogeneous coordinates on the projective space RPn. Al-
though a0 is not a well-defined function on RPn, the condition a0 �= 0 is independent
of the choice of a representative for [a0, . . . , an]. Hence, the condition a0 �= 0 makes
sense on RPn, and we may define

U0 := {[a0, . . . , an] ∈ RPn | a0 �= 0}.
Similarly, for each i = 1, . . . , n, let

Ui := {[a0, . . . , an] ∈ RPn | ai �= 0}.
Define

φ0 : U0 −→ Rn

by

[a0, . . . , an] �→
(
a1

a0
, . . . ,

an

a0

)
.

This map has a continuous inverse
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(b1, . . . , bn) �→ [1, b1, . . . , bn]

and is therefore a homeomorphism. Similarly, there are homeomorphisms for each
i = 1, . . . , n:

φi : Ui −→ Rn

[a0, . . . , an] �→
(
a0

ai
, . . . ,

âi

ai
, . . . ,

an

ai

)
,

where the caret sign̂ over ai/ai means that that entry is to be omitted. This proves
that RPn is locally Euclidean with the (Ui, φi) as charts.

On the intersection U0 ∩ U1, a0 �= 0 and a1 �= 0, and there are two coordinates
systems

[a0, a1, a2, . . . , an]

(
a0

a1
,
a2

a1
, . . . ,

an

a1

)
.

(
a1

a0
,
a2

a0
, . . . ,

an

a0

)
φ1φ0

Let us call the coordinate functions onU0, x1, . . . , xn, and the coordinate functions
on U1, y1, . . . , yn. On U0,

xi = ai

a0
, i = 1, . . . , n,

and on U1,

y1 = a0

a1
, y2 = a2

a1
, . . . , yn = an

a1
.

Then on U0 ∩ U1,

y1 = 1

x1
, y2 = x2

x1
, y3 = x3

x1
, . . . , yn = xn

x1
;

that is,

φ1 ◦ φ−1
0 (x) =

(
1

x1
,
x2

x1
,
x3

x1
, . . . ,

xn

x1

)
.

This is a C∞ function because x1 �= 0 on φ0(U0 ∩ U1). On any other Ui ∩ Uj an
analogous formula holds. Therefore, the collection {(Ui, φi)}i=0,...,n is aC∞ atlas for
RPn, called the standard atlas. This concludes the proof that RPn is aC∞ manifold.
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Problems

7.1.* Quotient space by a group
Suppose a left action of a topological groupG on a topological space S is continuous;
this simply means that the map G × S −→ S describing the action is continuous.
Define two point x, y of S to be equivalent if there is a g ∈ G such that y = gx. Let
G\S be the quotient space. Prove that the projection map π : S −→ G\S is an open
map.

7.2. The Grassmannian G(k, n)

The Grassmannian G(k, n) is the set of all k-planes through the origin in Rn. Such
a k-plane is a linear subspace of dimension k of Rn and has a basis consisting of k
linearly independent vectors a1, . . . , ak in Rn. It is therefore completely specified by
an n× k matrix A = [a1 · · · ak] of rank k, where the rank of a matrix A, denoted by
rkA, is defined to be the number of linearly independent columns of A. This matrix
is called a matrix representative of the k-plane. (For properties of the rank, see the
problems in Appendix B.)

Two bases a1, . . . , ak and b1, . . . , bk determine the same k-plane if there is a
change of basis matrix g = [gij ] ∈ GL(k,R) such that

bj =
∑
i

aigij , 1 ≤ i, j ≤ k.

In matrix notation, B = Ag.
Let F(k, n) be the set of all n× k matrices of rank k, topologized as a subspace

of Rn×k , and ∼ the equivalence relation:

A ∼ B iff there is a matrix g ∈ GL(k,R) such that B = Ag.

In the notation of Problem B.3, F(k, n) is the set Dmax in Rn×k and is therefore an
open subset. There is a bijection betweenG(k, n) and the quotient space F(k, n)/∼.
We give the Grassmannian G(k, n) the quotient topology on F(k, n)/∼.

(a) Show that ∼ is an open equivalence relation. (Hint: Mimic the proof of Propo-
sition 7.14.)

(b) Prove that the GrassmannianG(k, n) is second countable. (Hint: Mimic the proof
of Corollary 7.15.)

(c) Let S = F(k, n). Prove that the graph R in S×S of the equivalence relation∼ is
closed. (Hint: Two matrices A = [a1 · · · ak] and B = [b1 · · · bk] in F(k, n) are
equivalent iff every column of B is a linear combination of the columns of A iff
rk[AB] ≤ k iff all (k + 1)× (k + 1) minors of [AB] are zero.)

(d) Prove that the Grassmannian G(k, n) is Hausdorff. (Hint: Mimic the proof of
Proposition 7.16.)

Next we want to find a C∞ atlas on the Grassmannian G(k, n). For simplicity, we
specialize toG(2, 4). For any 4×2 matrixA, letAij be the 2×2 submatrix consisting
of its ith row and j th row. Define
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Vij = {A ∈ F(2, 4) | Aij is nonsingular}.
Because the complement of Vij in F(2, 4) is defined by the vanishing of detAij , we
conclude that Vij is an open subset of F(2, 4).

(e) Prove that if A ∈ Vij , then Ag ∈ Vij for any nonsingular matrix g ∈ GL(2,R).

Define Uij = Vij /∼. Since ∼ is an open equivalence relation, Uij = Vij /∼ is an
open subset of G(2, 4).

For A ∈ V12,

A ∼ AA−1
12 =

⎡⎢⎢⎣
1 0
0 1
∗ ∗
∗ ∗

⎤⎥⎥⎦ =
[

I

A34A
−1
12

]
.

This shows that the matrix representatives of a 2-plane in U12 have a canonical form
B in which B12 is the identity matrix.

(e) Show that the map φ̃12 : V12 −→ R2×2,

φ̃12(A) = A34A
−1
12 ,

induces a homeomorphism φ12 : U12 −→ R2×2.
(f) Define similarly a homeomorphism φij : Uij −→ R2×2. Compute φ12 ◦ φ−1

23 , and
show that it is C∞.

(g) Show that {Uij | 1 ≤ i < j ≤ 4} is an open over of G(2, 4) and that G(2, 4) is a
smooth manifold.

Similar consideration shows that F(k, n) has an open cover {VI }, where I is an
ascending multi-index

1 ≤ i1 < . . . ik ≤ n.
ForA ∈ F(k, n), letAI be the k× k submatrix ofA consisting of i1th, . . . , ikth rows
of A. Define

VI = {A ∈ G(k, n) | detAI �= 0}.
Next define φ̃I : VI −→ R(n−k)×k by

φ̃I (A) = (AA−1
I )I ′ ,

where ( )I ′ denotes the (n − k) × k submatrix obtained from the complement I ′
of the multi-index I . Let UI = VI /∼. Then φ̃ induces a homeomorphism φ : UI
−→ R(n−k)×k . It is not difficult to show that {(UI , φI )} is a C∞ atlas for G(k, n).
Therefore the Grassmannian G(k, n) is a C∞ manifold of dimension k(n− k).
7.3.* The real projective space
Show that the real projective space RPn is compact. (Hint: Use Exercise 7.11.)
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The Tangent Space

8.1 The Tangent Space at a Point

In Chapter 2 we saw that for any point p in an open set U in Rn there are two
equivalent ways to define a tangent vector at p:

(i) as an arrow (Figure 8.1), represented by a column vector;

�

p

⎡⎢⎣a
1

...

an

⎤⎥⎦
Fig. 8.1. A tangent vector in R

n as an arrow and as a column vector.

(ii) as a point-derivation of C∞p , the algebra of germs of C∞ functions at p.

Both definitions generalize to a manifold. In the arrow approach, one defines a
tangent vector at p in a manifold M by first choosing a chart (U, φ) at p and then
decreeing a tangent vector at p to be an arrow at φ(p) in φ(U). This approach, while
more visual, is complicated to work with, since a different chart (V ,ψ) at p would
give rise to a different set of tangent vectors at p and one would have to decide how
to identify the arrows at φ(p) in U with the arrows at ψ(p) in ψ(V ).

The cleanest and most intrinsic definition of a tangent vector at p in M is as a
point-derivation and this is the approach we shall adopt.

Just as for Rn, we define a germ of a C∞ function at p inM to be an equivalence
class ofC∞ functions defined in a neighborhood of p inM , two such functions being
equivalent if they agree on some, possibly smaller, neighborhood of p. The set of
germs of C∞ real-valued functions at p in M is denoted C∞p (M). The addition and
multiplication of functions make C∞p (M) into a ring; with scalar multiplication by
real numbers, C∞p (M) becomes an algebra over R.
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Generalizing a derivation at a point in Rn, we define a derivation at a point in a
manifold M , or a point-derivation of C∞p (M), to be a linear map D : C∞p (M) −→ R

such that
D(fg) = (Df )g(p)+ f (p)Dg.

Definition 8.1. A tangent vector at a point p in a manifold M is a derivation at p.

As for Rn, the tangent vectors at p form a vector space Tp(M), called the tangent
space of M at p. We also write TpM instead of Tp(M).

Remark 8.2 (Tangent space to an open subset). If U is an open set containing p
in M , then the algebra C∞p (U) of germs of C∞ functions in U at p is the same as
C∞p (M). Hence, TpU = TpM .

Given a coordinate neighborhood (U, φ) = (U, x1, . . . , xn) about a point p in a
manifold M , we recall the definition of the partial derivatives ∂/∂xi first introduced
in Chapter 6. Let r1, . . . , rn be the standard coordinates on Rn. Then

xi = ri ◦ φ : U −→ R.

If f is a smooth function in a neighborhood of p, we set

∂

∂xi

∣∣∣∣
p

f = ∂

∂ri

∣∣∣∣
φ(p)

f ◦ φ−1 ∈ R.

It is easily checked that ∂/∂xi |p satisfies the derivation property and so is a tangent
vector at p.

To simplify the notation, we will often write ∂/∂xi instead ∂/∂xi |p if it is under-
stood at which point the tangent vector is located.

8.2 The Differential of a Map

Let F : N −→ M be a C∞ map between two manifolds. At each point p ∈ N , the
map F induces a linear map of tangent spaces, called its differential at p,

F∗ : TpN −→ TF(p)M

as follows. If Xp ∈ TpN , then F∗(Xp) is the tangent vector in TF(p)M defined by

(F∗(Xp))f = Xp(f ◦ F) ∈ R for f ∈ C∞F(p)(M). (8.1)

Exercise 8.3 (The differential of a map). Check that F∗(Xp) is a derivation at F(p) and that
F∗ : TpN −→ TF(p)M is a linear map.

To make the dependence on p explicit we sometimes write F∗,p instead of F∗.
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Example 8.4. SupposeF : Rn −→ Rm is smooth andp is a point in Rn. Let x1, . . . , xn

be the coordinates on Rn and y1, . . . , ym the coordinates on Rm. Then the tan-
gent vectors ∂/∂x1|p, . . . , ∂/∂xn|p form a basis for the tangent space Tp(Rn) and
∂/∂y1|F(p), . . . , ∂/∂ym|F(p) form a basis for the tangent space TF(p)(Rm). The lin-
ear map F∗ : Tp(Rn) −→ TF(p)(R

m) is described by a matrix [aij ] relative to these
two bases:

F∗

(
∂

∂xj

∣∣∣∣
p

)
=
∑

akj
∂

∂yk

∣∣∣∣
F(p)

, akj ∈ R. (8.2)

Let F i = yi ◦ F be the ith component of F . We can find aij by evaluating both sides

of (8.2) on yi :

RHS =
∑

akj
∂

∂yk

∣∣∣∣
F(p)

yi =
∑

akj δ
i
k = aij ,

LHS = F∗

(
∂

∂xj

∣∣∣∣
p

)
yi = ∂

∂xj

∣∣∣∣
p

yi ◦ F = ∂F i

∂xj
(p).

So the matrix ofF∗ relative to the bases {∂/∂xj |p} and {∂/∂yi |F(p)} is [∂F i/∂xj (p)].
This is precisely the Jacobian matrix of the derivative of F at p. Thus, the differential
of a map between manifolds generalizes the derivative of a map between Euclidean
spaces.

8.3 The Chain Rule

Let F : N −→ M and G : M −→ P be smooth maps of manifolds, and p ∈ N . The
differentials of F at p and G at F(p) are linear maps:

TpN
F∗,p−−→ TF(p)M

G∗,F (p)−−−−→ TG(F(p))P .

Theorem 8.5 (The chain rule). If F : N −→ M and G : M −→ P are smooth maps
of manifolds and p ∈ N , then

(G ◦ F)∗,p = G∗,F (p) ◦ F∗,p.

Proof. Let Xp ∈ TpN and f a smooth function at G(F(p)) in P . Then

((G ◦ F)∗Xp)f = Xp(f ◦ G ◦ F)

and

((G∗ ◦ F∗)Xp)f = (G∗(F∗Xp))f
= (F∗Xp)(f ◦ G)
= Xp(f ◦ G ◦ F). �	
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Example 8.13 shows that when written out in terms of matrices, the chain rule
of Theorem 8.5 assumes a more familiar form as a sum of products of derivatives of
functions.

Remark 8.6. The differential of the identity map 1M : M −→ M at any point p in M
is the identity map

1TpM : TpM −→ TpM,

because
((1M)∗Xp)f = Xp(f ◦ 1M) = Xpf,

for any Xp ∈ TpM and f ∈ C∞p (M).
Corollary 8.7. If F : N −→ M is a diffeomorphism of manifolds and p ∈ N , then
F∗ : TpN −→ TF(p)M is an isomorphism of vector spaces.

Proof. To say that F is a diffeomorphism means that it has a differentiable inverse
G : M −→ N such that G ◦ F = 1N and F ◦ G = 1M . By the chain rule,

(G ◦ F)∗ = G∗ ◦ F∗ = (1N)∗ = 1TpN ,

(F ◦ G)∗ = F∗ ◦ G∗ = (1M)∗ = 1TF(p)M.

Hence, F∗ and G∗ are isomorphisms. �	
Corollary 8.8 (Invariance of dimension). If an open set U ⊂ Rn is diffeomorphic
to an open set V ⊂ Rm, then n = m.

Proof. Let F : U −→ V be a diffeomorphism and let p ∈ U . By Corollary 8.7,
F∗,p : TpU −→ TF(p)V is an isomorphism of vector spaces. Since TpU � Rn and
TF(p) � Rm, we must have that n = m. �	

8.4 Bases for the Tangent Space at a Point

If (U, φ) = (U, x1, . . . , xn) is a coordinate neighborhood about a point p in a man-
ifold M and r1, . . . , rn are the standard coordinates on Rn, we defined earlier the
partial derivatives

∂

∂xi

∣∣∣∣
p

f = ∂

∂ri

∣∣∣∣
φ(p)

f ◦ φ−1 ∈ R. (8.3)

Since φ : U −→ Rn is a diffeomorphism onto its image, by Corollary 8.7 the differ-
ential

φ∗ : TpM −→ Tφ(p)(R
n)

is a vector space isomorphism.

Proposition 8.9. Let (U, φ) = (U, x1, . . . , xn) be a chart about a point p in a man-
ifold M . Then

φ∗

(
∂

∂xi

∣∣∣∣
p

)
= ∂

∂ri

∣∣∣∣
φ(p)

.
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Proof. For any f ∈ C∞φ(p)(Rn),

φ∗

(
∂

∂xi

∣∣∣∣
p

)
f = ∂

∂xi

∣∣∣∣
p

f ◦ φ (definition of φ∗)

= ∂

∂ri

∣∣∣∣
φ(p)

f ◦ φ ◦ φ−1 (definition of ∂/∂xi |p)

= ∂

∂ri

∣∣∣∣
φ(p)

f. �	

Proposition 8.10. If (U, φ) = (U, x1, . . . , xn) is a chart containing p, then the
tangent space TpM has basis

∂

∂x1

∣∣∣∣
p

, . . . ,
∂

∂xn

∣∣∣∣
p

.

Proof. An isomorphism of vector spaces carries a basis to a basis. By Proposi-
tion 8.9 the isomorphism φ∗ : TpM −→ Tφ(p)(R

n) maps ∂/∂x1|p, . . . , ∂/∂xn|p to
∂/∂r1|φ(p), . . . , ∂/∂rn|φ(p), which is a basis for the tangent space Tφ(p)(Rn). There-
fore, ∂/∂x1|p, . . . , ∂/∂xn|p is a basis for TpM . �	

Proposition 8.11 (Transition matrix for coordinate vectors). Suppose (U, x1,

. . . , xn) and (V , y1, . . . , yn) are two coordinate charts on a manifold M . Then

∂

∂xj
=
∑
i

∂yi

∂xj

∂

∂yi

on U ∩ V .

Proof. At each point p ∈ U ∩ V , the sets {∂/∂xj |p} and {∂/∂yi |p} are both bases
for the tangent space TpM , so there is a matrix [aij (p)] of real numbers such that on
U ∩ V

∂

∂xj
=
∑
k

akj
∂

∂yk
.

Applying both sides of the equation to yi , we get

∂yi

∂xj
=
∑
k

akj
∂yi

∂yk

=
∑
k

akj δ
i
k (by Proposition 6.10)

= aij . �	
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8.5 Local Expression for the Differential

Given a smooth map of manifolds, F : N −→ M , and p ∈ N , we choose charts
(U, x1, . . . , xn) about p in N and (V , y1, . . . , ym) about F(p) in M . We can now
find a local expression for the differential F∗,p : TpN −→ TF(p)M as in Example 8.4.

By Proposition 8.10, {∂/∂xj |p}nj=1 is a basis for TpN and {∂/∂yi |F(p)}mi=1 is a
basis for TF(p)M . Therefore, F∗ = F∗,p is completely determined by the numbers
aij such that

F∗

(
∂

∂xj

∣∣∣∣
p

)
=

m∑
k=1

akj
∂

∂yk

∣∣∣∣
F(p)

, j = 1, . . . , n.

Evaluating both sides on yi , we find that

aij =
(

m∑
k=1

akj
∂

∂yk

∣∣∣∣
F(p)

)
yi = F∗

(
∂

∂xj

∣∣∣∣
p

)
yi = ∂

∂xj

∣∣∣∣
p

yi ◦ F = ∂F i

∂xj
(p).

We state this result as a proposition.

Proposition 8.12. Given a smooth map F : N −→M of manifolds and a point p ∈ N ,
let (U, x1, . . . , xn) and (V , y1, . . . , ym) be coordinate charts about p inN and F(p)
in M , respectively. Relative to the bases {∂/∂xj |p} for Tp(N) and {∂/∂yi |F(p)} for
TF(p)(M), the differential F∗,p : Tp(N) −→ TF(p)(M) is represented by the matrix
[∂F i/∂xj (p)], where F i = yi ◦ F is the ith component of F .

This proposition is in the spirit of the “arrow’’ approach to tangent vectors. Here
each tangent vector in Tp(N) is represented by a column vector relative to the basis
{∂/∂xj |p} and the differential F∗,p is represented by a matrix.

Example 8.13 (The chain rule in calculus notation). Suppose w = G(x, y, z) is a
C∞ function: R3 −→ R and (x, y, z) = F(t) is a C∞ function: R −→ R3. Under
composition,

w = (G ◦ F)(t) = G(x(t), y(t), z(t))

becomes a C∞ function of t ∈ R. The differentials F∗, G∗, and (G ◦ F)∗ are
represented by the matrices⎡⎣dx/dtdy/dt

dz/dt

⎤⎦ , [
∂w

∂x

∂w

∂y

∂w

∂z

]
, and

dw

dt
,

respectively. In terms of matrices, the chain rule (G ◦ F)∗ = G∗ ◦ F∗ is equivalent to

dw

dt
=
[
∂w

∂x

∂w

∂y

∂w

∂z

]⎡⎣dx/dtdy/dt

dz/dt

⎤⎦
= ∂w

∂x

dx

dt
+ ∂w

∂y

dy

dt
+ ∂w

∂z

dz

dt
.

This is the usual form of the chain rule taught in calculus.
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8.6 Curves in a Manifold

A smooth curve in a manifoldM is by definition a smooth map c : (a, b) −→ M from
some open interval (a, b) into M . Usually we assume 0 ∈ (a, b) and say that c is
a curve starting at p if c(0) = p. The velocity vector c′(t) of the curve c at time
t ∈ (a, b) is defined to be

dc

dt
(t) := c′(t) := c∗

(
d

dt

∣∣∣∣
t

)
∈ Tc(t)(M).

We also say that c′(t) is the velocity of c at the point c(t).

Example 8.14. Define c : R −→ R2 by

c(t) = (t2, t3).

(See Figure 8.2.)

1−1

1

−1

x

y

Fig. 8.2. A cuspidal cubic.

Then c′(t) is a linear combination of ∂/∂x and ∂/∂y at c(t):

c′(t) = a
∂

∂x
+ b ∂

∂y
.

To compute a, we evaluate both sides on x:

a =
(
a
∂

∂x
+ b ∂

∂y

)
x = c′(t)x

= c∗
(
d

dt

)
x = d

dt
(x ◦ c) = d

dt
t2 = 2t.

Similarly,

b =
(
a
∂

∂x
+ b ∂

∂y

)
y = c′(t)y

= c∗
(
d

dt

)
y = d

dt
(y ◦ c) = d

dt
t3 = 3t2.
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Thus,

c′(t) = 2t
∂

∂x
+ 3t2

∂

∂y
.

In terms of the basis {∂/∂x|c(t), ∂/∂y|c(t)} for Tc(t)(R2),

c′(t) =
[

2t
3t2

]
.

More generally, as in this example, to compute the velocity vector of a curve c in
Rn, one can simply differentiate the components of c. This shows that our definition
of the velocity vector of a curve agrees with the usual definition in vector calculus.

Proposition 8.15 (Velocity of a curve in local coordinates). Let c : (a, b) −→M be
a curve, and let (U, x1, . . . , xn) be a coordinate chart about c(t). Write ci = xi ◦ c
for the ith component of c in the chart. Then c′(t) is given by

c′(t) =
n∑
j=1

(ci)′(t) ∂

∂xi

∣∣∣∣
c(t)

.

Thus, relative to the basis {∂/∂xi |p} for Tc(t)(M), the velocity c′(t) is represented by
the column vector ⎡⎢⎣(c

1)′(t)
...

(cn)′(t)

⎤⎥⎦ .
Proof. Problem 8.4. �	

Every curve c at p in a manifoldM gives rise to a tangent vector c′(0) in Tp(M).
Conversely, one can show that every tangent vector Xp ∈ Tp(M) is the velocity
vector of some curve at p, as follows.

Proposition 8.16 (Existence of a curve with a given initial vector). For any point
p in a manifold M and any tangent vector Xp ∈ TpM , there is a smooth curve
c : (−ε, ε) −→M for some ε > 0 such that c(0) = p and c′(0) = Xp.

Proof. Let (U, φ) = (U, x1, . . . , xn)be a chart centered atp, i.e.,φ(p) = (0, . . . , 0).
SupposeXp =∑

ai∂/∂xi |p at p. Let r1, . . . , rn be the standard coordinates on Rn.
Then xi = ri ◦ φ. To find a curve c at p with c′(0) = Xp, start with a curve α in Rn

with α(0) = 0 and α′(0) =∑
ai∂/∂ri |0. We then map α toM via φ−1 (Figure 8.3).

The simplest such α is

α(t) = (a1t, . . . , ant), t ∈ (−ε, ε),
where ε is sufficiently small so that α(t) lies in φ(U). Define c = φ−1 ◦ α : (−ε, ε)
−→ M . We leave it as an exercise to show that c(0) = p and c′(0) = Xp. �	
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�

α φ

p

Xp =∑
ai

∂

∂xi

∣∣∣∣
p

∑
ai

∂

∂ri

∣∣∣∣
0

r2

r1

U

Fig. 8.3. Existence of a curve through a point with a given initial vector.

8.7 Computing the Differential Using Curves

We have introduced two ways of computing the differential of a smooth map, in terms
of derivations at a point (Equation (8.1)) and local coordinates (Proposition 8.12).
The next proposition gives still another way of computing the differential F∗,p, this
time using curves.

Proposition 8.17. Let F : N −→ M be a smooth map of manifolds, p ∈ N , and
Xp ∈ TpN . If c is a curve starting at p in N with velocity Xp at p, then

F∗,p(Xp) = d

dt

∣∣∣∣
0
F ◦ c(t);

In other words, F∗,p(Xp) is the velocity vector of the image curve F ◦ c at F(p).

Proof. By hypothesis, c(0) = p and c′(0) = Xp. Then

F∗,p(Xp) = F∗,p(c′(0))

= F∗,p ◦ c∗,0
(
d

dt

∣∣∣∣
0

)
= (F ◦ c)∗,0

(
d

dt

∣∣∣∣
0

)
(by the chain rule, Theorem 8.5)

= d

dt

∣∣∣∣
0
F ◦ c(t). �	

Example 8.18 (Differential of left multiplication). If g is a matrix in the general linear
group GL(n,R), let 
g : GL(n,R) −→ GL(n,R) be left multiplication by g; thus,

g(B) = gB for any B ∈ GL(n,R). Since GL(n,R) is an open subset of the vector
space Rn×n, the tangent space Tg(GL(n,R)) can be identified with Rn×n. Show that
with this identification the differential (
g)∗,I : TI (GL(n,R)) −→ Tg(GL(n,R)) is
also left multiplication by g.
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Solution. Let X ∈ TI (GL(n,R)) = Rn×n. To compute (
g)∗,I (X), choose a curve
c(t) in GL(n,R) with c(0) = I and c′(0) = X. By Proposition 8.17,

(
g)∗,I (X) = d

dt

∣∣∣∣
t=0


g(c(t)) = d

dt

∣∣∣∣
t=0

gc(t) = gc′(0) = gX. �	

8.8 Rank, Critical and Regular Points

The rank of a linear transformation L : V −→ W between finite-dimensional vector
spaces is the dimension of the image L(V ) as a subspace of W . If L is represented
by a matrix A relative to a basis for V and a basis for W , then the rank of L is the
same as the rank of A, because the image L(V ) is simply the column space of A.

Now consider a smooth map f : N −→ M of manifolds. Its rank at a point
p in N , denoted by rk f (p), is defined as the rank of the differential f∗,p :
Tp(N) −→ Tf (p)(M). Relative to the coordinate neighborhoods (U, x1, . . . , xn)

at p and (V , y1, . . . , ym) at f (p), the differential is represented by the Jacobian
matrix [∂f i/∂xj (p)] (Proposition 8.12), so

rk f (p) = rk

[
∂f i

∂xj
(p)

]
.

Since the differential of a map is independent of the coordinate chart, so is its rank.

Definition 8.19. A point p in N is a critical point of f if the differential

f∗,p : TpN −→ Tf (p)M

fails to be surjective. It is a regular point of f if the differential f∗,p is surjective.
A point in M is a critical value if it is the image of a critical point; otherwise it is a
regular value.

�

�

�

�

�

×

×

×

×

×

= critical points

= critical values

f

N
M

Fig. 8.4. Critical points and critical values.

Two aspects of this definition merit elaboration:
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(i) We do not define a regular value to be the image of a regular point. In fact,
a regular value need not be in the image of f at all. Any point of M not in
the image of f is automatically a regular value because it is not the image of a
critical point.

(ii) A point c in M is a critical value if and only if some point in the preimage
f−1({c}) is a critical point. A point c in the image of f is a regular value if and
only if every point in the preimage f−1({c}) is a regular point.

Proposition 8.20. For a real-valued function f : M −→ R, a point p inM is a critical
point if and only if relative to some chart (U, x1, . . . , xn) containing p, all the partial
derivatives

∂f

∂xj
(p) = 0, j = 1, . . . , n.

Proof. By Proposition 8.12 the differential f∗,p : TpM −→ Tf (p)R � R is repre-
sented by the matrix [

∂f

∂x1
(p) . . .

∂f

∂xn
(p)

]
.

Since the image of f∗,p is a linear subspace of R, it is either zero-dimensional or
one-dimensional. In other words, f∗,p is either the zero map or a surjective map.
Therefore, f∗,p fails to be surjective if and only if all the partial derivatives ∂f/∂xi(p)
are zero. �	

Problems

8.1.* Differential of a map
Let F : R2 −→ R3 be the map

(u, v,w) = F(x, y) = (x, y, xy).

Compute F∗(∂/∂x) as a linear combination of ∂/∂u, ∂/∂v, and ∂/∂w.

8.2. Differential of a map
Fix a real number α and define F : R2 −→ R2 by[

u

v

]
= (u, v) = F(x, y) =

[
cosα − sin α
sin α cosα

] [
x

y

]
.

Let X = −y ∂/∂x + x ∂/∂y be a vector field on R2. If F∗(X) = a ∂/∂u + b ∂/∂v,
find a and b in terms of x, y, and α.

8.3. Transition matrix for coordinate vectors
Let x, y be the standard coordinates on R2, and let U be the open set

U = R2 − {(x, 0) | x ≥ 0}.
On U the polar coordinates r, θ are uniquely defined by
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x = r cos θ,

y = r sin θ, r > 0, 0 < θ < 2π.

Find ∂/∂r and ∂/∂θ in terms of ∂/∂x and ∂/∂y.

8.4.* Velocity of a curve in local coordinates
Prove Proposition 8.15.

8.5. Velocity vector
Let p = (x, y) be a point in R2. Then

cp(t) =
[

cos 2t − sin 2t
sin 2t cos 2t

] [
x

y

]
, t ∈ R,

is a curve with initial point p in R2. Compute the velocity vector c′p(0).

8.6. Differential of a linear map
LetL : Rn −→ Rm be a linear map. For anyp ∈ Rn, there is a canonical identification:
Tp(R

n)
∼−→ Rn given by ∑

ai
∂

∂xi
�→ a = 〈a1, . . . , an〉.

Show that the differential L∗,p : Tp(Rn) −→ Tf (p)(R
m) is the map L : Rn −→ Rm

itself, with the identification of the tangent spaces as above.

8.7.* Tangent space to a product
If M and N are manifolds, let π1 : M ×N −→ M and π2 : M ×N −→ N be the two
projections. Prove that for (p, q) ∈ M ×N ,

π1∗ × π2∗ : T(p,q)(M ×N) −→ TpM × TqN
is an isomorphism.

8.8. Differentials of multiplication and inverse
Let G be a Lie group with multiplication map µ : G × G −→ G, inverse map ι : G
−→ G, and identity element e.

(a) Show that the differential at the identity of the multiplication map µ is addition:

µ∗,(e,e) : TeG× TeG −→ TeG,

µ∗,(e,e)(Xe, Ye) = Xe + Ye.
(Hint: First, compute µ∗,(e,e)(Xe, 0) and µ∗,(e,e)(0, Ye) using Proposition 8.17.)

(b) Show that the differential at the identity of ι is the negative:

ι∗,e : TeG −→ TeG,

ι∗,e(Xe) = −Xe.
(Hint: Take the differential of µ(c(t), (ι ◦ c)(t)) = e.)
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8.9.* Transforming vectors to coordinate vectors
Let X1, . . . , Xn be n vector fields on an open subset U of a manifold of dimension
n. Suppose that at p ∈ U , the vectors (X1)p, . . . , (Xn)p are linearly independent.
Show that there is a chart (V , x1, . . . , xn) about p such that (Xi)p = (∂/∂xi)p for
all i = 1, . . . , n.
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Submanifolds

We now have two ways of showing that a given topological space is a manifold:

(a) by checking directly that the space is Hausdorff, second countable, and has aC∞
atlas;

(b) by exhibiting it as an appropriate quotient space. Chapter 7 lists some conditions
under which a quotient space is a manifold.

In this chapter we introduce the concept of a regular submanifold of a manifold,
a subset that is locally defined by the vanishing of some of the coordinate functions.
Using the inverse function theorem, we derive a criterion, called the regular level set
theorem, that can often be used to show that a level set of a C∞ map of manifolds is
a regular submanifold and therefore a manifold.

Although the regular level set theorem is a simple consequence of the constant
rank theorem to be discussed in Chapter 11, deducing it directly from the inverse
function theorem has the advantage of producing explicit coordinate functions on the
submanifold.

9.1 Submanifolds

The xy-plane in R3 is the prototype of a regular submanifold of a manifold. It is
defined by the vanishing of a coordinate function z.

Definition 9.1. A subset S of a manifold N of dimension n is a regular submanifold
of dimension k if for every p ∈ S there is a coordinate neighborhood (U, φ) =
(U, x1, . . . , xn) of p in the atlas of N such that U ∩ S is defined by the vanishing of
n− k of the coordinate functions. By renumbering the coordinates, we may assume
these n− k coordinate functions are xk+1, . . . , xn.

We call such a chart (U, φ) in N an adapted chart relative to S. On U ∩ S,
φ = (x1, . . . , xk, 0, . . . , 0). Let

φS : U ∩ S −→ Rk
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be the restriction of the first k components of φ to U ∩ S, that is, φS = (x1, . . . , xk).

Definition 9.2. If S is a regular submanifold of dimension k in a manifold N of
dimension n, then n− k is said to be the codimension of S in N .

Remark 9.3. As a topological space, a regular submanifold of N is required to have
the subspace topology.

Example 9.4. In the definition of a regular submanifold, the dimension k of the sub-
manifold may be equal to n, the dimension of the manifold. In this case, U ∩ S is
defined by the vanishing of none of the coordinate functions and so U ∩ S = U . An
open subset of a manifold is a regular submanifold of the same dimension.

Remark 9.5. There are other types of submanifolds, but for now by a “submanifold’’
we will always mean a “regular submanifold.’’

Example 9.6. The interval S := (−1, 1) on the x-axis is a regular submanifold of
the xy-plane (Figure 9.1). As an adapted chart, we can take the open square U =
(−1, 1) × (−1, 1) with coordinates x, y. Then U ∩ S is precisely the zero set of y
on U .

V is not an adapted chartU is an adapted chart

U V

−1 1 −1 1

Fig. 9.1.

Note that if V = (−2, 0)× (−1, 1), then (V , x, y) would not be an adapted chart
relative to S, since V ∩ S is the open interval (−1, 0) on the x-axis, while the zero
set of y on V is the open interval (−2, 0) on the x-axis.

Example 9.7. Let � be the graph of the function f (x) = sin(1/x) on the interval
(0, 1), and let S be the union of � and the open interval

I = {(0, y) ∈ R2 | −1 < y < 1}.
The subset S of R2 is not a regular submanifold for the following reason: if p is
in the interval I , then there is no adapted chart containing p, since any sufficiently
small neighborhood U of p in R2 intersects S in infinitely many components. (The
closure of � in R2 is called the topologist’s sine curve (Figure 9.2). It differs from S

in including the endpoints (1, sin 1), (0, 1), and (0,−1).)
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0.2 0.4 0.6

1

−1

x

y

� � �

� � �

Fig. 9.2. The topologist’s sine curve.

Proposition 9.8. Let S be a regular submanifold ofN and A = {(U, φ)} a collection
of compatible adapted charts of N that covers S. Then {(U ∩ S, φS)} is an atlas for
S. Therefore, a regular submanifold is itself a manifold. If N has dimension n and S
is locally defined by the vanishing of n− k coordinates, then dim S = k.

U
V

S

φ ψ

Fig. 9.3. Overlapping adapted charts relative to a regular submanifold S.

Proof. Let (U, φ) = (U, x1, . . . , xn) and (V ,ψ) = (V , y1, . . . , yn) be two adapted
charts in the given collection (Figure 9.3). Assume that they intersect. Then for
p ∈ U ∩ V ∩ S,

φ(p) = (x1, . . . , xk, 0, . . . , 0) and ψ(p) = (y1, . . . , yk, 0, . . . , 0),

so
φS(p) = (x1, . . . , xk) and ψS(p) = (y1, . . . , yk).

Therefore,
ψS ◦ φ−1

S (x1, . . . , xk) = (y1, . . . , yk).

Since y1, . . . , yk are C∞ functions of x1, . . . , xk , the transition function ψS ◦ φ−1
S is

C∞. Hence, any two charts in {(U ∩ S, φS)} are C∞ compatible. Since {U ∩ S}U∈A

is an open cover of S, the collection {(U ∩ S, φS)} is an atlas for S. �	
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9.2 The Zero Set of a Function

A level set of a map f : N −→ M is the subset

f−1({c}) = {p ∈ N | f (p) = c}
for some c ∈ M . The usual notation for a level set is f−1(c), rather than the more
correct f−1({c}). If f : N −→ Rm, then Z(f ) := f−1(0) is the zero set of f . The
inverse image f−1(c) of a regular value c is called a regular level set.

Example 9.9 (The 2-sphere in R3). Define

f (x, y, z) = x2 + y2 + z2 − 1

on R3. Then the level set

f−1(0) = {(x, y, z) ∈ R3 | f (x, y, z) = x2 + y2 + z2 − 1 = 0}
is the unit 2-sphere S2. We will use the inverse function theorem to find adapted
charts of R3 that cover S2.

Since
∂f

∂x
= 2x,

∂f

∂y
= 2y,

∂f

∂z
= 2z,

the only critical point of f is (0, 0, 0), which does not lie on the sphere S2. Thus, all
points on the sphere are regular points of f and 0 is a regular value of f .

Let p be a point of S2 at which (∂f/∂x)(p) = 2x(p) �= 0. Then the Jacobian
matrix of the map (f, y, z) : R3 −→ R3 is⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂f

∂x

∂f

∂y

∂f

∂z

∂y

∂x

∂y

∂y

∂y

∂z

∂z

∂x

∂z

∂y

∂z

∂z

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂f

∂x

∂f

∂y

∂f

∂z

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

and the Jacobian determinant at p is ∂f/∂x(p) �= 0. By the inverse function theorem
(Theorem 6.13), there is a neighborhood Up of p in R3 so that (Up, f, y, z) is a chart
in the atlas of R3. In this chart, the set Up ∩ S2 is defined by the vanishing of the
first coordinate f = 0. Thus, (Up, f, y, z) is an adapted chart relative to S2, and
(Up ∩ S2, y, z) is a chart for S2.

Similarly, if (∂f/∂y)(p) �= 0, then there is an adapted chart (Vp, x, f, z) con-
taining p in which the set Vp ∩ S2 is the zero set of the second coordinate f . If
(∂f/∂z)(p) �= 0, then there is an adapted chart (Wp, x, y, f ) containing p. As p
varies over all points of the sphere, we obtain a collection of adapted charts of R3

covering S2. Therefore, S2 is a regular submanifold of R3. By Proposition 9.8, S is
a manifold of dimension 2.
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This is an important example because one can generalize its proof almost verbatim
to prove that a regular level set of a function f : N −→ R is a regular submanifold
of N . The idea is that in a coordinate neighborhood (U, x1, . . . , xn) if a partial
derivative ∂f/∂xi(p) �= 0, then we replace the coordinate xi by f .

Theorem 9.10. Let f : N −→ R be a C∞ function on the manifold N . Then a
nonempty regular level set S = f−1(c) is a regular submanifold of N of codi-
mension 1.

Proof. Replacing f by f − c if necessary, we may assume c = 0. Let p ∈ S. Since
p is a regular point of f , there is a chart (U, x1, . . . , xn) containing p relative to
which (∂f/∂xi)(p) �= 0 for some i. By renumbering x1, . . . , xn, we may assume
that (∂f/∂x1)(p) �= 0.

The Jacobian matrix of the C∞ map (f, x2, . . . , xn) : U −→ Rn is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f

∂x1

∂f

∂x2
· · · ∂f

∂xn

∂x2

∂x1

∂x2

∂x2
· · · ∂x

2

∂xn
...

...
. . .

...
∂xn

∂x1

∂xn

∂x2
· · · ∂x

n

∂xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f

∂x1
∗ · · · ∗

0 1 · · · 0

...
...
. . .

...

0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

So the Jacobian determinant atp is ∂f/∂x1(p) �= 0. By the inverse function theorem,
there is a neighborhood Up of p on which f, x2, . . . , xn form a coordinate system.
Relative to the chart (Up, f, x2, . . . , xn) the level set Up ∩ S is defined by setting
the first coordinate f = 0, so (Up, f, x2, . . . , xn) is an adapted chart relative to S.
Therefore, S is a regular submanifold of dimension n− 1 in N . �	

9.3 The Regular Level Set Theorem

The generalization ofTheorem 9.10 to a level set of a function toRm is straightforward.

Theorem 9.11. Let f : N −→ Rm be a C∞ map on a manifold N of dimension n.
Then a nonempty regular level set S = f−1(c) is a regular submanifold of dimension
n−m of N .

Proof. As in the proof of Theorem 9.10, by replacing f by f − c, we may assume
that c = 0 ∈ Rm. Let p be any point of S and let (U, x1, . . . , xn) be a chart of N
containing p. Since p is a regular point of f , the matrix [∂f i/∂xj (p)] has rank m,
so n ≥ m. By renumbering the f i and xj ’s, we may assume that the first m × m

block [∂f i/∂xj (p)]1≤i,j≤m is nonsingular.
Replace the firstm coordinates x1, . . . , xm in the chart (U, x) by f 1, . . . , f m. We

claim that there is a neighborhood Up of p so that (Up, f 1, . . . , f m, xm+1, . . . , xn)

is a chart in the atlas of N . It suffices to compute its Jacobian matrix at p:
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∂f i

∂xj

∂f i

∂xβ

∂xα

∂xj

∂xα

∂xβ

⎤⎥⎥⎦ =

⎡⎢⎢⎣
∂f i

∂xj
∗

0 I

⎤⎥⎥⎦ ,
where 1 ≤ i, j ≤ m and m+ 1 ≤ α, β ≤ n. Since this matrix has determinant

det

[
∂f i

∂xj
(p)

]
1≤i,j≤m

�= 0,

the inverse function theorem implies the claim.
In the chart (Up, f 1, . . . , f m, xm+1, . . . , xn), the set S is obtained by setting

the first m coordinate functions f 1, . . . , f m equal to 0. So (Up, f
1, . . . , f m,

xk+1, . . . , xn) is an adapted chart for Rn relative to S. Therefore, S is a regular
submanifold of N of dimension n−m. �	

The proof of Theorem 9.11 gives the following useful lemma.

Lemma 9.12. Let f : N −→ Rm be a C∞ map on a manifold N of dimension n and
let S be the level set f−1(0). If relative to some coordinate chart (U, x1, . . . , xn)

about p ∈ S, the Jacobian determinant ∂(f 1, . . . , f m)/∂(xj1 , . . . , xjm) �= 0, then
in some neighborhood of p one may replace xj1 , . . . , xjm by f 1, . . . , f m to obtain
an adapted chart for N relative to S.

The next step is to extend Theorem 9.11 to a regular level set of a map between
smooth manifolds. This very useful theorem does not seem to have an agreed-upon
name in the literature. It is known variously as the implicit function theorem, the
preimage theorem [9], the regular level set theorem [11], among other nomenclatures.
We will follow [11] and call it the regular level set theorem.

Theorem 9.13 (Regular level set theorem). Let f : N −→ M be a C∞ map of
manifolds, with dimN = n and dimM = m. Then a nonempty regular level set
f−1(c) is a regular submanifold of N of dimension equal to n−m.

Proof. Choose a chart (V ,ψ) about c in M with ψ(c) = 0. Consider the map
ψ ◦ f : f−1(V ) −→ Rm. Since (ψ ◦ f )∗ = ψ∗ ◦ f∗ and ψ∗ is an isomorphism at
every point of V ,

rk(ψ ◦ f )∗,q = rk f∗,q

for all q ∈ f−1(V ). Hence, c is a regular value of f if and only if 0 is a regular
value of ψ ◦ f . Moreover, (ψ ◦ f )−1(0) = f−1(c). By Theorem 9.11, the level set
(ψ ◦ f )−1(0) is a regular submanifold of f−1(V ) of dimension n−m. Since f−1(V )

is open inN , the adapted charts of f−1(V ) that cover f−1(c) are also adapted charts
of N that cover f−1(c). It follows that f−1(c) is a regular submanifold of N of
dimension n−m. �	
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9.4 Examples of Regular Submanifolds

Example 9.14 (Hypersurface). Show that the solution set S of x3 + y3 + z3 = 1 in
R3 is a manifold of dimension 2.

Solution. Let f (x, y, z) = x3 + y3 + z3. Then S = f−1(1). Since ∂f/∂x = 3x2,
∂f/∂y = 3y2, and ∂f/∂z = 3z2, the only critical point of f is (0, 0, 0), which is not
in S. Thus, 1 is a regular value of f : R3 −→ R. By the regular level set theorem
(Theorem 9.13), S is a regular submanifold of R3 of dimension 2. So S is a manifold
(Proposition 9.8). �	
Example 9.15 (Solution set of two polynomial equations). Decide if the subset S of
R3 defined by the two equations

x3 + y3 + z3 = 1,

x + y + z = 0

is a regular submanifold of R3.

Solution. Define F : R3 −→ R2 by

(u, v) = F(x, y, z) = (x3 + y3 + z3, x + y + z).
Then S is the level set F−1(1, 0). The Jacobian matrix of F is

J (F ) =
[
ux uy uz
vx vy vz

]
=
[

3x2 3y2 3z2

1 1 1

]
,

where ux = ∂u/∂x and so forth. The critical points of F are the points (x, y, z)
where the matrix J (F ) has rank < 2. That is precisely where all 2 × 2 minors of
J (F ) are zero: ∣∣∣∣3x2 3y2

1 1

∣∣∣∣ = 0,

∣∣∣∣3x2 3z2

1 1

∣∣∣∣ = 0. (9.1)

(The third condition ∣∣∣∣3y2 3z2

1 1

∣∣∣∣ = 0

is a consequence of these two.) Solving (9.1), we get y = ±x, z = ±x. Since
x + y + z = 0 on S, this implies that (x, y, z) = (0, 0, 0). Since (0, 0, 0) does not
satisfy the first equation x3 + y3 + z3 = 1, there are no critical points of F on S.
Therefore, S is a regular level set. By the regular level set theorem, S is a regular
submanifold of R3 of dimension 1. �	
Example 9.16 (Special linear group). As a set, the special linear group SL(n,R) is
the subset of GL(n,R) consisting of matrices of determinant 1. Since

det(AB) = (detA)(detB) and det(A−1) = 1

detA
,
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SL(n,R) is a subgroup of GL(n,R). To show that it is a regular submanifold, we let
f : GL(n,R) −→ R be the determinant map,

f (A) = detA,

and apply the regular level set theorem to f−1(1) = SL(n,R). We need to check
that 1 is a regular value of f .

Let Sij denote the submatrix ofA = [aij ] ∈ Rn×n obtained by deleting its ith row
and j th column. Then mij := det Sij is the (i, j)-minor of A. From linear algebra
we have a formula for computing the determinant by expanding along any row or any
column; if we expand along the ith row,

f (A) = detA = (−1)i+1ai1mi1 + (−1)i+2ai2mi2 + · · · + (−1)i+nainmin. (9.2)

Therefore
∂f

∂aij
= (−1)i+jmij .

Hence, a matrix A ∈ GL(n,R) is a critical point of f if and only if all the
(n− 1)× (n− 1) minors mij of A are 0. By (9.2) such a matrix A has determinant
0. Since every matrix in SL(n,R) has determinant 1, all the matrices in SL(n,R)
are regular points of the determinant function. By the regular level set theorem
(Theorem 9.13), SL(n,R) is a regular submanifold of GL(n,R) of codimension
1, i.e.,

dim SL(n,R) = dim GL(n,R)− 1 = n2 − 1.

Problems

9.1. Regular values
Define f : R2 −→ R by

f (x, y) = x3 − 6xy + y2.

Find all values c ∈ R for which the level set f−1(c) is a regular submanifold of R2.

9.2. Solution set of one equation
Let x, y, z, w be the standard coordinates on R4. Is the solution set of x5 + y5 +
z5 +w5 = 1 in R4 a manifold? Explain why or why not. (Assume that the subset is
given the subspace topology.)

9.3. Solution set of two equations
Is the solution set of the system of equations

x3 + y3 + z3 = 1, z = xy,

in R3 a C∞ manifold? Prove your answer.
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9.4.* Regular submanifolds
A subset S of R2 has the property that locally on S one of the coordinates is a C∞
function of the other coordinate. Show that S is a regular submanifold of R2. (Note
that the unit circle defined by x2 + y2 = 1 has this property. At every point of the
circle, there is a neighborhood in which y is aC∞ function of x or x is aC∞ function
of y.)

9.5. Graph of a smooth function
Show that the graph �(f ) of a smooth function f : R2 −→ R,

�(f ) = {(x, y, f (x, y)) ∈ R3},
is a regular submanifold of R3.

9.6. Euler’s formula
ApolynomialF(x0, . . . , xn) ∈ R[x0, . . . , xn] is homogeneous of degree k if it is a lin-
ear combination of monomials xi00 · · · xinn of degree

∑n
j=0 ij = k. Let F(x0, . . . , xn)

be a homogeneous polynomial of degree k. Clearly, for any t ∈ R,

F(tx0, . . . , txn) = tkF (x0, . . . , xn). (9.3)

Show that
n∑
i=0

xi
∂F

∂xi
= kF.

9.7. Smooth projective hypersurface
On the projective space RPn a homogeneous polynomial F(x0, . . . , xn) of degree k
is not a function since its value at a point [a0, . . . , an] is not unique. However, the
zero set in RPn of a homogeneous polynomial F(x0, . . . , xn) is well defined, since
F(a0, . . . , an) = 0 iff

F(ta0, . . . , tan) = tkF (a0, . . . , an) = 0 for all t ∈ R×.

The zero set of finitely many homogeneous polynomials in RPn is called a (real)
projective variety. A projective variety defined by a single homogeneous poly-
nomial of degree k is called a hypersurface of degree k. Show that the hyper-
surface Z(F) defined by F(x0, x1, x2) = 0 is smooth if ∂F/∂x0, ∂F/∂x1, and
∂F/∂x2 are not simultaneously zero on Z(F). (Hint: In (U0, x, y), F(x0, x1, x2) =
xk0F(1, x1/x0, x2/x0) = xk0F(1, x, y), where we set x = x1/x0 and y = x2/x0.
Define f (x, y) = F(1, x, y). Then f and F have the same zero set in U0.)

9.8. Product of regular submanifolds
If Si is a regular submanifold of the manifold Mi for i = 1, 2, prove that S1 × S2 is
a regular submanifold of M1 ×M2.

9.9. The transversality theorem
A C∞ map f : N −→ M is said to be transversal to a manifold S ⊂ M if for every
p ∈ f−1(S),
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f∗(TpN)+ Tf (p)S = Tf (p)M. (9.4)

(IfA andB are subspaces of a vector space, their sumA+B is the subspace consisting
of all a + b with a ∈ A and b ∈ B. The sum need not be a direct sum.) The goal
of this exercise is to prove the transversality theorem: if a C∞ map f : N −→ M

is transversal to a regular submanifold S of codimension k in M , then f−1(S) is a
regular submanifold of codimension k in N .

When S consists of a single point c, transversality of f to S simply means that
f−1(c) is a regular level set. Thus the transversality theorem is a generalization of
the regular level set theorem. It is especially useful in giving conditions under which
the intersection of two submanifolds is a submanifold.

Let p ∈ f−1(S) and (U, x1, . . . , xm) be an adapted chart centered at f (p) for
M relative to S such that U ∩ S = Z(xm−k+1, . . . , xm), the zero set of the functions
xm−k+1, . . . , xm. Define g : U −→ Rk to be the map

g = (xm−k+1, . . . , xm).

(a) Show that f−1(U) ∩ f−1(S) = (g ◦ f )−1(0).
(b) Show that f−1(U)∩f−1(S) is a regular level set of the function g ◦ f : f−1(U)

−→ Rk .
(c) Prove the transversality theorem.

S S

f (N)
f (N)

f transversal to S in R2 f not transversal to S in R2
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Categories and Functors

10.1 Categories

Many of the problems in mathematics share common features. For example, in
topology one is interested in knowing if two topological spaces are homeomorphic
and in group theory one is interested in knowing if two groups are isomorphic. This
has given rise to the theory of categories and functors, which tries to clarify the
structural similarities among different areas of mathematics.

A category consists of a collection of elements, called objects, and for any two
objects A and B, a set Hom(A,B) of morphisms from A to B, such that given
any morphism f ∈ Hom(A,B) and any morphism g ∈ Hom(B,C), the composite
g ◦ f ∈ Hom(A,C) is defined. Furthermore, the composition of morphisms is
required to satisfy two properties:

(i) the identity axiom: for each object A, there is an identity morphism 1A ∈
Hom(A,A) such that for any f ∈ Hom(A,B) and g ∈ Hom(B,A),

f ◦ 1A = f and 1A ◦ g = g;
(ii) the associative axiom: for f ∈ Hom(A,B), g ∈ Hom(B,C), and h ∈

Hom(C,D),
h ◦ (g ◦ f ) = (h ◦ g) ◦ f.

If f ∈ Hom(A,B), we often write f : A −→ B.

Example 10.1. The category of groups and group homomorphisms is the category in
which the objects are groups and for any two groups A and B, Hom(A,B) is the set
of group homomorphisms from A to B.

Example 10.2. The collection of all vector spaces over R together with linear maps
between vector spaces is a category.

Example 10.3. The collection of all topological spaces together with continuous maps
between them is called the continuous category.
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Example 10.4. The collection of smooth manifolds together with smooth maps be-
tween them is called the smooth category.

Example 10.5. We call a pair (M, q), where M is a manifold and q a point in M , a
pointed manifold . Given any two such pairs (N, p) and (M, q), let Hom((N, p),
(M, q)) be the set of all smooth maps F : N −→ M such that F(p) = q. This gives
rise to the category of pointed manifolds.

Definition 10.6. Two objectsA and B in a category are said to be isomorphic if there
are morphisms f : A −→ B and g : B −→ A such that

g ◦ f = 1A and f ◦ g = 1B.

In this case both f and g are called isomorphisms.

10.2 Functors

Definition 10.7. A (covariant) functor F from one category C to another category
D is a map that associates to each object A in C an object F(A) in D and to each
morphism f : A −→ B a morphism F(f ) : F(A) −→ F(B) such that

(i) F(1A) = 1F(A);
(ii) F(f ◦ g) = F(f ) ◦ F(g).

Example 10.8. The tangent space construction is a functor from the category of
pointed manifolds to the category of vector spaces. To each pointed manifold
(N, p) we associate the tangent space Tp(N) and to each smooth map f : (N, p)
−→ (M, f (p)), we associate the differential f∗ : TpN −→ Tf (p)M .

The functorial property (i) holds because if 1 : N −→ N is the identity map, then
its differential 1∗ : TpN −→ TpN is also the identity map.

The functorial property (ii) holds because in this context it is the chain rule

(g ◦ f )∗ = g∗ ◦ f∗.

Proposition 10.9. Let F : C −→ D be a functor from a category C to a category D. If
f : A −→ B is an isomorphism in C, then F(f ) : F(A) −→ F(B) is an isomorphism
in D.

Proof. Problem 10.2. �	
Note that we can recast Corollary 8.7 in a more functorial form. Suppose f : N

−→ M is a diffeomorphism. Then (N, p) and (M, f (p)) are isomorphic objects in
the category of pointed manifolds. By Proposition 10.9, the tangent spaces TpN and
Tf (p)M must be isomorphic as vector spaces.

If in the definition of a covariant functor, we reverse the direction of the arrow
for the morphism F(f ), then we obtain a contravariant functor. More precisely, the
definition is as follows.
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Definition 10.10. A contravariant functor F from one category C to another category
D is a map that associates to each object A in C an object F(A) in D and to each
morphism f : A −→ B a morphism F(f ) : F(B) −→ F(A) such that

(i) F(1A) = 1F(A);
(ii) F(f ◦ g) = F(g) ◦ F(f ). (Note the reversal of order.)

An example of a contravariant functor is the dual of a vector space, which we
review in the next section.

10.3 Dual Maps

Let V be a real vector space. Recall that its dual space V ∗ is the vector space of all
linear functionals on V , i.e., linear functions α : V −→ R. We also write

V ∗ = Hom(V ,R).

If V is a finite-dimensional vector space with basis {e1, . . . , en}, then by Proposi-
tion 3.1 its dual spaceV ∗ has as a basis the collection of linear functionals {α1, . . . , αn}
defined by

αi(ej ) = δij , 1 ≤ i, j ≤ n.
Since a linear function on V is determined by what it does on a basis of V , this set of
equations defines αi uniquely.

A linear map L : V −→ W of vector spaces induces a linear map L∗, called the
dual of L, on the dual spaces:

L∗ : W ∗ −→ V ∗,
(L∗α)(v) = α(L(v)), for α ∈ W ∗, v ∈ V.

Thus, L∗α = α ◦ L. Note that the dual of L reverses the direction of the arrow.

Proposition 10.11 (Functorial properties of the dual). Suppose V , W , and S are
real vector spaces.

(i) If 1V : V −→ V is the identity map on V , then 1∗V : V ∗ −→ V ∗ is the identity map
on V ∗.

(ii) If f : V −→W and g : W −→ S are linear maps, then (g ◦ f )∗ = f ∗ ◦ g∗.

Proof. Problem 10.3. �	

According to this proposition, the dual construction ( ) �→ ( )∗ is a contravariant
functor from the category of vector spaces to itself. Consequently, if f : V −→ W is
an isomorphism, then so is its dual f ∗ : W ∗ −→ V ∗ (cf. Proposition 10.9).
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Problems

10.1. Differential of the inverse map
IfF : N −→ M is a diffeomorphism of manifolds andp ∈ N , prove that (F−1)∗,F (p) =
(F∗,p)−1.

10.2. Isomorphism under a functor
Prove Proposition 10.9.

10.3. Functorial properties of the dual
Prove Proposition 10.11.

10.4. Matrix of the dual map
Suppose a linear transformation L : V −→ V̄ is represented by the matrix A = [aij ]
relative to a basis e1, . . . , en for V and ē1, . . . , ēm for V̄ :

L(ej ) =
∑
i

aij ēi .

Let α1, . . . , αn and ᾱ1, . . . , ᾱm be the dual bases for V ∗ and V̄ ∗, respectively. Prove
that if L∗(ᾱi) =∑

j b
i
jα

j , then bij = aij .

10.5. Injectivity of the dual map

(a) Suppose V andW are vector spaces of possibly infinite dimension over a fieldK .
Show that if a linear map L : V −→ W is surjective, then its dual L∗ : W ∗ −→ V ∗
is injective.

(b) Suppose V and W are finite-dimensional vector spaces of a field K . Prove the
converse of the implication in (a).
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The Rank of a Smooth Map

In this chapter we analyze the local structure of a smooth map on the basis of its rank.
Recall that the rank of a smooth map f : N −→ M at a point p ∈ N is the rank of
its differential at p. Two cases are of special interest: when the map f has maximal
rank at a point or constant rank in a neighborhood. Let n = dimN and m = dimM .
In case f : N −→ M has maximal rank at p, there are three not mutually exclusive
possibilities:

(i) If n = m, then by the inverse function theorem, f is a local diffeomorphism at
p.

(ii) If n ≤ m, then the maximal rank is n and f is an immersion at p.

(iii) If n ≥ m, then the maximal rank is m and f is a submersion at p.

Because manifolds are locally Euclidean, theorems on the rank of a smooth map
between Euclidean spaces (Appendix B) translate easily to theorems about manifolds.
This leads to the constant rank theorem for manifolds, which gives a simple normal
form for a smooth map having constant rank on an open set (Theorem 11.1). As an
immediate consequence, we obtain a criterion for a level set to be a regular submani-
fold which, following [11], we call the constant-rank level set theorem. As we explain
in Section 11.2, maximal rank at a point implies constant rank in a neighborhood, so
immersions and submersions are maps of constant rank. The constant rank theorem
specializes to the immersion theorem and the submersion theorem, giving simple nor-
mal forms for an immersion and a submersion. The regular level set theorem, which
we encountered in Section 9.3, is now seen to be a special case of the constant-rank
level set theorem.

By the regular level set theorem the preimage of a regular value of a smooth map
is a manifold. The image of a smooth map, on the other hand, does not generally have
a nice structure. Using the immersion theorem we derive conditions under which the
image of a smooth map is a manifold.
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11.1 Constant Rank Theorem

Suppose f : N −→ M is a C∞ map of manifolds and we want to show that the level
set f−1(c) is a manifold for some c in M . In order to apply the regular level set
theorem, we need the differential f∗ to have maximal rank at every point of f−1(c).
Sometimes this is not true; even if true, it may be difficult to show. In such cases, the
constant-rank level set theorem may be helpful. It has one cardinal virtue: it is not
necessary to know precisely the rank of f ; it suffices that the rank be constant.

Because manifolds are locally Euclidean, the constant rank theorem for Euclidean
spaces (Theorem B.6) has an immediate analogue for manifolds.

Theorem 11.1 (Constant rank theorem). Let N and M be manifolds of respective
dimensions n andm. Suppose f : N −→M has constant rank k in a neighborhood of
a point p inN . Then there are charts (U, φ) centered at p inN and (V ,ψ) centered
at f (p) in M such that in a neighborhood of φ(p),

ψ ◦ f ◦ φ−1(r1, . . . rn) = (r1, . . . , rk, 0, . . . , 0).

Proof. Choose a chart (Ū , φ̄) about p in N and (V̄ , ψ̄) about f (p) in M . Then
ψ̄ ◦ f ◦ φ̄−1 is a map between open subsets of Euclidean spaces. Because φ̄
and ψ̄ are diffeomorphisms, ψ̄ ◦ f ◦ φ̄−1 has the same constant rank k as f in a
neighborhood of φ̄(p) in Rn. By the constant rank theorem for Euclidean spaces
(Theorem B.6) there are a diffeomorphism G of a neighborhood of φ(p) in Rn and
a diffeomorphism F of a neighborhood of (ψ̄ ◦ f )(p) in Rm such that

F ◦ ψ̄ ◦ f ◦ φ̄−1 ◦ G−1(r1, . . . , rn) = (r1, . . . , rk, 0, . . . , 0).

Let φ = G ◦ φ̄ and ψ = F ◦ ψ̄ . �	
From this the constant-rank level set theorem follows easily.

Theorem 11.2 (Constant-rank level set theorem). Let f : N −→M be a C∞ map
of manifolds and c ∈ M . If f has constant rank k in a neighborhood of the level set
f−1(c) in N , then f−1(c) is a regular submanifold of N of codimension k.

Proof. Let p be an arbitrary point in f−1(c). By the constant rank theorem there
are a coordinate chart (U, φ) = (U , x1, . . . , xn) centered at p ∈ N and a coordinate
chart (V ,ψ) = (V , y1, . . . , ym) centered at f (p) = c ∈ M such that

ψ ◦ f ◦ φ−1(r1, . . . , rn) = (r1, . . . , rk, 0, . . . , 0) ∈ Rm.

This shows that the level set (ψ ◦ f ◦ φ−1)−1(0) is defined by the vanishing of the
coordinates r1, . . . , rk .

The image of the level f−1(c) under φ is the level set (ψ ◦ f ◦ φ−1)−1(0)
(Figure 11.1), since

φ(f−1(c)) = φ(f−1(ψ−1(0)) = (ψ ◦ f ◦ φ−1)−1(0).

Thus, the level set f−1(c) inU is defined by the vanishing of the coordinate functions
x1, . . . , xk . This proves that f−1(c) is a regular submanifold of N of codimen-
sion k. �	



11.2 Immersions and Submersions 107
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φ f ψ

φ(f−1(c)) f−1(c)
c 0

U V

Fig. 11.1. Constant-rank level set.

Example 11.3 (Orthogonal group). The orthogonal group O(n) is defined to be the
subgroup ofGL(n,R) consisting of matricesA such thatATA = I , the n×n identity
matrix. Using the constant rank theorem, prove that O(n) is a regular submanifold
of GL(n,R).

Solution. Define f : GL(n,R) −→ GL(n,R) by f (A) = ATA. Then O(n) is the
level set f−1(I ). If A and B are two elements of GL(n,R), then B = AC for some
matrix C in GL(n,R). Denote by 
C and rC : GL(n,R) −→ GL(n,R) the left and
right multiplication by C, respectively. Since

f (AC) = (AC)T AC = CT AT AC = CT f (A)C,

we have
f ◦ rC(A) = 
CT ◦ rC ◦ f (A).

Hence,
f ◦ rC = 
CT ◦ rC ◦ f.

By the chain rule,

f∗,AC ◦ (rC)∗,A = (
CT )∗,AT AC ◦ (rC)∗,AT A ◦ f∗,A. (11.1)

Since left and right multiplications are diffeomorphisms, their differentials are iso-
morphisms. Composition with an isomorphism does not change the rank of a linear
map. Hence, in (11.1),

rk f∗,AC = rk f∗,A.

As AC and A are two arbitrary points of GL(n,R), this proves that the differential
of f has constant rank on GL(n,R). By the constant-rank level set theorem, the
orthogonal group O(n) = f−1(I ) is a regular submanifold of GL(n,R). �	

11.2 Immersions and Submersions

Definition 11.4. A smooth map f : N −→ M of manifolds is an immersion if the
differential f∗,p : TpN −→ Tf (p)M is injective for every p in N . It is a submersion
if f∗,p is surjective for every p in N .
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We can also speak of a smooth map f : N −→ M being an immersion or a
submersion at a single point p in N ; this would mean that its differential f∗,p at p
is injective or surjective, respectively. Note that f : N −→ M is a submersion at p if
and only if p is a regular point of f .

Example 11.5. The prototype of an immersion is the inclusion of Rn in a higher-
dimensional Rm:

i(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0).

The prototype of a submersion is the projection of Rn onto a lower-dimensional Rm:

π(x1, . . . , xm, xm+1, . . . , xn) = (x1, . . . , xm).

According to Theorem 11.8 below, every immersion is locally an inclusion and every
submersion is locally a projection.

Example 11.6. IfU is an open subset of a manifoldM , then the inclusion i : U −→ M

is both an immersion and a submersion. This example shows in particular that a
submersion need not be onto.

Consider aC∞ map f : N −→ M . Let (U, x1, . . . , xn) be a chart aboutp inN and
(V , y1, . . . , ym) a chart about f (p) in M . Write f i = yi ◦ f for the ith component
of f in the chart (V , y1, . . . , ym). Then the linear map f∗,p is represented by the
matrix [∂f i/∂xj (p)] (Proposition 8.12). Hence,

f∗,p is injective ⇔ n ≤ m and rk[∂f i/∂xj (p)] = n,

f∗,p is surjective ⇔ n ≥ m and rk[∂f i/∂xj (p)] = m.
(11.2)

The rank of a matrix is the number of linearly independent rows of the matrix;
it is also the number of linearly independent columns. Thus, for an m by n matrix
the maximum possible rank of a matrix is the minimum of m and n. It follows from
(11.2) that being an immersion or a submersion at p is equivalent to the maximality
of rk[∂f i/∂xj (p)].

Having maximal rank at a point is an open condition in the sense that the set

Dmax(f ) = {p ∈ U | f∗,p has maximal rank at p}
is an open subset of U . This is because if k is the maximal rank, then

rk f∗,p = k iff rk[∂f i/∂xj (p)] = k

iff rk[∂f i/∂xj (p)] ≥ k (since k is maximal).

So the complement U −Dmax(f ) is defined by

rk[∂f i/∂xj (p)] < k,

which is equivalent to the vanishing of all k× k minors of the matrix [∂f i/∂xj (p)].
As the zero set of finitely many continuous functions, U −Dmax(f ) is closed and so
Dmax(f ) is open. In particular, if f has maximal rank at p, then it has maximal rank
at all points in some neighborhood of p.
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Proposition 11.7. Let N andM be manifolds of respective dimensions n and m. If a
C∞ map f : N −→M is an immersion at a point p ∈ N , then it has constant rank n
in a neighborhood of p. If a C∞ map f : N −→M is a submersion at a point p ∈ N ,
then it has constant rank m in a neighborhood of p.

The following theorems are therefore simply special cases of the constant rank
theorem.

Theorem 11.8. Let N and M be manifolds of respective dimensions n and m.

(i) (Immersion theorem) Suppose f : N −→ M is an immersion at p ∈ N . Then
there are charts (U, φ) centered at p in N and (V ,ψ) centered at f (p) in M
such that in a neighborhood of φ(p),

ψ ◦ f ◦ φ−1(r1, . . . , rn) = (r1, . . . , rn, 0, . . . , 0).

(ii) (Submersion theorem) Suppose f : N −→ M is a submersion at p in N . Then
there are charts (U, φ) centered at p in N and (V ,ψ) centered at f (p) in M
such that in a neighborhood of φ(p):

ψ ◦ f ◦ φ−1(r1, . . . , rm, rm+1, . . . , rn) = (r1, . . . , rm).

Corollary 11.9. A submersion f : N −→M of manifolds is an open map.

Proof. LetW be an open subset of N . We need to show that its image f (W) is open
in M . Choose a point f (p) in f (W), with p ∈ W . By the submersion theorem, f
is locally a projection. Since a projection is an open map (Problem A.4), there is an
open neighborhood U of p in W such that f (U) is open in M . Clearly,

f (p) ∈ f (U) ⊂ f (W).

Hence, f (W) is open in M . �	

There is a close connection between submersions and regular level sets. Indeed,
for a C∞ map f : N −→ M of manifolds, a level set f−1(c) is regular if and only if
f is a submersion at every point of f−1(c). Since the maximality of the rank of f
is an open condition, a regular level set f−1(c) has a neighborhood on which f has
constant rank m. This shows that the regular level theorem (Theorem 9.13) is in fact
a special case of the constant-rank level set theorem (Theorem 11.2).

11.3 Images of Smooth Maps

The following are all examples of C∞ maps f : N −→ M , with N = R and
M = R2.
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Example 11.10. f (t) = (t2, t3).
This map f is one-to-one, because t �→ t3 is one-to-one. Since f ′(0) = (0, 0),

the differential f∗,0 : T0R −→ T(0,0)R
2 is the zero map and hence not injective; so f

is not an immersion at 0. Its image is the cuspidal cubic y2 = x3 (Figure 11.2).

1−1

1

−1

x

y

Fig. 11.2. Cuspidal cubic, not an immersion.

Example 11.11. f (t) = (t2 − 1, t3 − t).
Since the equation f ′(t) = (2t, 3t2 − 1) = (0, 0) has no solution in t , this map

f is an immersion. It is not one-to-one, because it maps both t = 1 and t = −1 to
the origin. To find an equation for the image f (N), let x = t2 − 1 and y = t3 − t .
Then y = t (t2 − 1) = tx; so

y2 = t2x2 = (x + 1)x2.

Thus the image f (N) is the nodal cubic y2 = x2(x + 1) (Figure 11.3).

1

−1

1−1 x

y

Fig. 11.3. Nodal cubic, an immersion but not one-to-one.

Example 11.12. The map f in Figure 11.4 is a one-to-one immersion but its image,
with the subspace topology of R2, is not homeomorphic to the domain R, because
there are points near f (p) in the image that correspond to points in R far away from
p. More precisely, if U is an interval about p as shown, there is no neighborhood V
of f (p) in f (N) such that f−1(V ) ⊂ U ; hence, f−1 is not continuous.
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f (p)p
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Fig. 11.4. A one-to-one immersion that is not an embedding.

Example 11.13. The manifold M in Figure 11.5 is the union of the graph of y =
sin(1/x) on the interval (0, 1), the open line segment from y = 0 to y = 1 on the
y-axis, and a smooth curve joining (0, 0) and (1, sin 1). The map f is a one-to-one
immersion whose image with the subspace topology is not homeomorphic to R.

� � �

� � �

�

�

f

N = R

M

Fig. 11.5. A one-to-one immersion that is not an embedding.

Notice that in these examples the image f (N) is not a regular submanifold of
M = R2. We would like conditions on the map f so that its image f (N) would be
a regular submanifold of M .

Definition 11.14. AC∞ map f : N −→ M is called an embedding if

(i) it is a one-to-one immersion and
(ii) the image f (N) with the subspace topology is homeomorphic to N under f .

(The phrase “one-to-one’’ in this definition is redundant since a homeomorphism
is necessarily one-to-one.)

Remark 11.15. Unfortunately, there is quite a bit of confusion about terminology in
the literature concerning the use of the word “submanifold.’’ Many authors give the
image f (N) of a one-to-one immersion f : N −→ M not the subspace topology, but
the topology inherited from f , i.e., a subset f (U) of f (N) is said to be open if and
only ifU is open inN . With this topology, f (N) is by definition homeomorphic toN .
These authors define a submanifold to be the image of any one-to-one immersion with
the topology and differentiable structure inherited from f . Such a set is sometimes
called an immersed submanifold ofM . Figures 11.4 and 11.5 show two examples of
immersed submanifolds. If the underlying set of an immersed submanifold is given
the subspace topology, then the resulting space need not be a manifold at all!
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For us, a submanifold without any qualifying adjective is always a regular sub-
manifold . To recapitulate, a regular submanifold of a manifoldM is a subset S ofM
with the subspace topology such that every point of S has a neighborhood U ∩ S that
is defined by the vanishing of coordinate functions on U , where U is a chart in M .

) (�

−π
2

π
2

3π
2

f

1

−1

x

y

1−1

(

)

A

B

−π
2

3π
2

g

1

−1

x

y

1−1

(

)

A

B

Fig. 11.6. The figure-eight as two distinct immersed submanifolds of R
2.

Example 11.16 (The figure-eight). The figure-eight is the image of a one-to-one im-
mersion

f (t) = (cos t, sin 2t), −π/2 < t < 3π/2

(Figure 11.6). As such, it is an immersed submanifold of R2, with a topology and
manifold structure induced from the open interval (−π/2, 3π/2) by f . Because of
the presence of a cross at the origin, it cannot be a regular submanifold of R2. In fact,
with the subspace topology of R2, the figure-eight is not even a manifold.

The figure-eight is also the image of the one-to-one immersion

g(t) = (cos t,− sin 2t), −π/2 < t < 3π/2

(Figure 11.6). The maps f and g induce distinct immersed submanifold structures
on the figure-eight. For example, the open interval from A to B in Figure 11.6 is
an open set in the topology induced from g, but it is not an open set in the topology
induced from f .

Theorem 11.17. If f : N −→ M is an embedding, then its image f (N) is a regular
submanifold of M .

Proof. Let p ∈ N . By the immersion theorem (Theorem 11.8), there are lo-
cal coordinates (U, x1, . . . , xn) near p and (V , y1, . . . , ym) near f (p) so that
f : U −→ V has the form



11.4 Smooth Maps into a Submanifold 113

�N p

U f
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f (p)
f (N)

V

V ′
( )

Fig. 11.7. The image of an embedding is a regular submanifold.

(x1, . . . , xn) −→ (x1, . . . , xn, 0, . . . , 0).

Thus, f (U) is defined in V by the vanishing of the coordinates yn+1, . . . , ym.
This alone does not prove that f (N) is a regular submanifold, since V ∩ f (N) may
be larger than f (U). (Think about Examples 11.12 and 11.13.) We need to show
that in some neighborhood of f (p) in V , the set f (N) is defined by the vanishing of
m− n coordinates.

Since f (N) with the subspace topology is homeomorphic to N , the image f (U)
is open in f (N). By the definition of the subspace topology, there is an open set V ′
in M such that V ′ ∩ f (N) = f (U) (Figure 11.7). In V ∩ V ′,

V ∩ V ′ ∩ f (N) = V ∩ f (U) = f (U),

and f (U) is defined by the vanishing of yn+1, . . . , ym. Thus, (V ∩ V ′, y1, . . . , ym)

is an adapted chart containing f (p) for f (N). Since f (p) is an arbitrary point of
f (N), this proves that f (N) is a regular submanifold of M . �	
Theorem 11.18. If N is a regular submanifold of M , then the inclusion i : N −→M ,
i(p) = p, is an embedding.

Proof. Since a regular submanifold has the subspace topology and i(N) also has the
subspace topology, i : N −→ i(N) is a homeomorphism. It remains to show that
i : N −→ M is an immersion.

Let p ∈ N . Choose an adapted chart (V , y1, . . . , yn, yn+1, . . . , ym) for M
about p such that V ∩ N is the zero set of yn+1, . . . , ym. Relative to the charts
(V ∩N, y1, . . . , yn) for N and (V , y1, . . . , ym) for M , the inclusion i is given by

(y1, . . . , yn) �→ (y1, . . . , yn, 0, . . . , 0),

which shows that i is an immersion. �	
In the literature the image of an embedding is often called an embedded subman-

ifold . Theorems 11.17 and 11.18 show that an embedded submanifold and a regular
submanifold are one and the same thing.

11.4 Smooth Maps into a Submanifold

Suppose f : N −→ M is a C∞ map whose image f (N) lies in a subset S ⊂ M . If S
is a manifold, is the induced map f̃ : N −→ S also C∞? This question is more subtle
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than it looks, because the answer depends on whether S is a regular submanifold or
an immersed submanifold of M .

Example 11.19. Consider the one-to-one immersions f and g : I −→ R2 in Exam-
ple 11.16, where I is the open interval (−π/2, 3π/2) in R. Let S be the figure-eight
in R2 with the immersed submanifold structure induced from g. Because the image
of f : I −→ R2 lies in S, the C∞ map f induces a map f̃ : I −→ S.

The open interval from A to B in Figure 11.6 is an open neighborhood of 0 in S.
Its inverse image under f̃ contains 0 as an isolated point and is therefore not open.
This shows that although f : I −→ R2 is C∞, the induced map f̃ : I −→ S is not
continuous and therefore not C∞.

Theorem 11.20. Suppose F : N −→ M is C∞ and the image of F lies in a subset S
of M . If S is a regular submanifold of M , then the induced map F̃ : N −→ S is C∞.

Proof. Letp ∈ N . Denote the dimensions ofN ,M , andS byn,m, and s, respectively.
By hypothesis, F(p) ∈ S ⊂ M . Since S is a regular submanifold of M , there is
an adapted coordinate chart (V ,ψ) = (V , y1, . . . , ym) for M about F(p) such that
S∩V is the zero set of ys+1, . . . , ym, with coordinate mapψS = (y1, . . . , ys). By the
continuity of F , it is possible to choose a coordinate chart (U, φ) = (U, x1, . . . , xn)

about p such that F(U) ⊂ V . Then F(U) ⊂ V ∩ S so that on φ(U),

ψ ◦ F ◦ φ−1(x1, . . . , xn) = (y1, . . . , ys, 0, . . . , 0)

and
ψS ◦ F̃ ◦ φ−1(x1, . . . , xn) = (y1, . . . , ys),

which shows that F̃ is C∞ on U . �	
Example 11.21. The multiplication map

µ : GL(n,R)× GL(n,R) −→ GL(n,R)

(A,B) �→ AB

is clearly C∞ because

(AB)ij =
n∑
k=1

aikbkj

is a polynomial and hence a C∞ function of the coordinates aik and bkj . However,
one cannot conclude in the same way that the multiplication map

µ̄ : SL(n,R)× SL(n,R) −→ SL(n,R)

is C∞. This is because {aij }1≤i,j≤n is not a coordinate system on SL(n,R); there is
one coordinate too many.

Since SL(n,R) × SL(n,R) is a regular submanifold of GL(n,R) × GL(n,R),
the inclusion map
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i : SL(n,R)× SL(n,R) −→ GL(n,R)× GL(n,R)

is C∞ by Theorem 11.18; therefore, the composition

µ ◦ i : SL(n,R)× SL(n,R) −→ GL(n,R)

is also C∞. Because the image of µ ◦ i lies in SL(n,R), and SL(n,R) is a regular
submanifold of GL(n,R) (see Example 9.16), by Theorem 11.20 the induced map

µ̄ : SL(n,R)× SL(n,R) −→ SL(n,R)

is C∞.

11.5 The Tangent Plane to a Surface in R3

Suppose f (x1, x2, x3) is a real-valued function on R3 with no critical points on its
zero set N . By the regular level set theorem, N is a regular submanifold of R3. By
Theorem 11.18 the inclusion i : N −→ R3 is an embedding, so at any point p in N ,
i∗,p : TpN −→ TpR3 is injective. We may therefore think of the tangent plane TpN
as a plane in TpR3 � R3 (Figure 11.8). We would like to find the equation of this
plane.

�

p
Tp(N)

N

Fig. 11.8. Tangent plane to a surface N at p.

Suppose v =∑
vi ∂/∂xi is a vector inTpN . Under the isomorphismTpR3 � R3,

we identify v with the vector 〈v1, v2, v3〉 in R3. Let c(t) be a curve lying in N with
c(0) = p and c′(0) = 〈v1, v2, v3〉. Since c(t) lies in N , f (c(t)) = 0 for all t . By the
chain rule,

0 = d

dt
f (c(t)) =

3∑
i=1

∂f

∂xi
(c(t))(ci)′(t).

At t = 0,

0 =
3∑
i=1

∂f

∂xi
(c(0))(ci)′(0) =

3∑
i=1

∂f

∂xi
(p)vi .

One usually translates the tangent plane from the origin top by making the substitution
vi = xi − pi . Then the tangent plane to N at p is defined by the equation
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3∑
i=1

∂f

∂xi
(p)(xi − pi) = 0. (11.3)

Example 11.22 (Tangent plane to a sphere). Let f (x, y, z) = x2 + y2 + z2 − 1. To
get the equation of the tangent plane to the unit sphere S2 in R3 at (a, b, c) ∈ S2, we
compute

∂f

∂x
= 2x,

∂f

∂y
= 2y,

∂f

∂z
= 2z.

At p = (a, b, c),

∂f

∂x
(p) = 2a,

∂f

∂y
(p) = 2b,

∂f

∂z
(p) = 2c.

By (11.3) the equation of the tangent plane to the sphere at (a, b, c) is

2a(x − a)+ 2b(y − b)+ 2c(z− c) = 0,

or
ax + by + cz = 1,

since a2 + b2 + c2 = 1.

Problems

11.1. Tangent vector to a sphere
The unit sphere Sn in Rn+1 is defined by the equation

∑n+1
i=1 (x

i)2 = 1. For p ∈ Sn,
show that a necessary and sufficient condition for Xp =∑

ai∂/∂xi |p to be tangent
to Sn at p is

∑
aipi = 0.

11.2.* Critical points of a smooth map on a compact manifold
Show that a smooth map f from a compact manifold N to Rm has a critical point.
(Hint: Use Corollary 11.9 and the connectedness of Rm.)

11.3. Differential of an inclusion map
On the upper hemisphere of the unit sphereS2, we have the coordinate mapφ = (u, v),
where

u(a, b, c) = a and v(a, b, c) = b.

So the derivations ∂/∂u|p, ∂/∂v|p are tangent vectors of S2 at any pointp = (a, b, c)

on the upper hemisphere. Let i : S2 −→ R3 be the inclusion and x, y, z the standard
coordinates on R3. The differential i∗ : TpS2 −→ TpR3 maps ∂/∂u|p, ∂/∂v|p into
TpR3. Thus,

i∗

(
∂

∂u

∣∣∣∣
p

)
= α1 ∂

∂x

∣∣∣∣
p

+ β1 ∂

∂y

∣∣∣∣
p

+ γ 1 ∂

∂z

∣∣∣∣
p

,

i∗

(
∂

∂v

∣∣∣∣
p

)
= α2 ∂

∂x

∣∣∣∣
p

+ β2 ∂

∂y

∣∣∣∣
p

+ γ 2 ∂

∂z

∣∣∣∣
p

,

for some constants αi , βi , γ i . Find (αi, βi, γ i) for i = 1, 2.
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11.4. One-to-one immersion of a compact manifold
Let f : N −→ M be a one-to-one immersion. Prove that if N is compact, then f (N)
is a regular submanifold of M .

11.5. Multiplication map in SL(n, R)

Let f : GL(n,R) −→ R be the determinant map f (A) = detA = det[aij ]. For
A ∈ SL(n,R), at least one partial derivative ∂f/∂ak
(A) �= 0 for some (k, 
) (Ex-
ample 9.16). Use Lemma 9.12 and the implicit function theorem to prove that

(a) there is a neighborhood of A in SL(n,R) in which aij , (i, j) �= (k, 
), form a
coordinate system, andak
 is aC∞ function of the other entriesaij , (i, j) �= (k, 
);

(b) the multiplication map

µ̄ : SL(n,R)× SL(n,R) −→ SL(n,R)

is C∞.
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The Tangent Bundle

Let M be a manifold. For each point p ∈ M , the tangent space TpM is the vector
space of all point-derivations of C∞p (M), the algebra of germs of C∞ functions at p.
The tangent bundle of M is the disjoint union of all the tangent spaces of M:

TM =
∐
p∈M

TpM =
⋃
p∈M

{p} × TpM.

To form the disjoint union here, we attach a label p to each element of TpM . So
defined, TM is simply a set, with no topology or manifold structure. We will make
it into a smooth manifold and show that it is a C∞ vector bundle over M . The first
step is to give it a topology.

12.1 The Topology of the Tangent Bundle

Let (U, φ) = (U, x1, . . . , xn) be a coordinate chart forM . At a point p ∈ U , a basis
for TpM is (∂/∂x1)|p, . . . , (∂/∂xn)|p, so a tangent vector Xp ∈ TpM is uniquely a
linear combination

Xp =
n∑
i

ai
∂

∂xi

∣∣∣∣
p

,

where ai = ai(Xp) ∈ R depends on Xp. Since φ∗(Xp) = ∑
ai ∂/∂ri |φ(p) ∈

Tφ(p)(R
n), we may identify φ∗(Xp) with the column vector 〈a1, . . . , an〉 in Rn. Let

T U =
∐
p∈U

TpU =
∐
p∈U

TpM.

(We saw in Remark 8.2 that TpU = TpM .) If we define

φ̃ = (φ, φ∗) : T U −→ φ(U)× Rn (12.1)

(p,Xp) �→ (x1(p), . . . , xn(p), a1(Xp), . . . , a
n(Xp)),
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then φ̃ is a bijection, with inverse

(φ(p), a1, . . . , an) �→
(
p,
∑

ai
∂

∂xi

∣∣∣∣
p

)
.

We can therefore use φ̃ to transfer the topology of φ(U)×Rn to T U : a set A in T U
is open if and only if φ̃(A) is open in φ(U)× Rn.

Let B be the collection of all open subsets of T (Uα) asUα runs over all coordinate
open sets in M .

Lemma 12.1. Let U and V be coordinate open sets inM . If A is open in T U and B
is open in T V , then A ∩ B is open in T (U ∩ V ).
Proof. Since T (U ∩ V ) is a subspace of T U , A ∩ T (U ∩ V ) is open in T (U ∩ V ).
Similarly, B ∩ T (U ∩ V ) is open in T (U ∩ V ). But

A ∩ B ⊂ T U ∩ T V = T (U ∩ V ).
Hence,

A ∩ B = (A ∩ T (U ∩ V )) ∩ (B ∩ T (U ∩ V ))
is open in T (U ∩ V ). �	

It follows from this lemma that the collection B satisfies the conditions (i) and
(ii) of Proposition A.14 for a collection of subsets to be a basis for some topology on
TM . We give the tangent bundle TM the topology generated by the basis B.

Lemma 12.2. A manifoldM has a countable basis consisting of coordinate open sets.

Proof. Let {(Uα, φα)} be the maximal atlas on M and B = {Bi} a countable basis
forM . For each coordinate open set Uα and a point p ∈ Uα , choose a basic open set
Bp,α ∈ B such that

p ∈ Bp,α ⊂ Uα.

The collection {Bp,α}, without duplicate elements, is a subcollection of B and is
therefore countable.

Given any open set U in M and a point p ∈ U , there is a coordinate open set Uα
such that

p ∈ Uα ⊂ U.

Hence,
p ∈ Bp,α ⊂ U,

which shows that {Bp,α} is a basis for M . �	
Proposition 12.3. The tangent bundle TM of a manifold M is second countable.

Proof. Let {Ui}∞i=1 be a countable basis of M consisting of coordinate open sets.
Since T Ui � Ui × Rn, it is diffeomorphic to an open subset of R2n and is therefore
second countable. For each i, choose a countable basis {Bi,j }∞j=1 for T Ui . Then
{Bi,j }∞i,j=1 is a countable basis for the tangent bundle. �	
Proposition 12.4. The tangent bundle TM of a manifold M is Hausdorff.

Proof. Problem 12.1. �	
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12.2 The Manifold Structure on the Tangent Bundle

Next we show that if {(Uα, φα)} is a C∞ atlas forM , then {(T Uα, φ̃α)} is a C∞ atlas
for TM . It is clear that TM = ∪αT Uα . It remains to check that on (T Uα)∩ (T Uβ),
φ̃α and φ̃β are C∞ compatible.

Recall that if (U, x1, . . . , xn), (V , y1, . . . , yn) are two charts onM , then for any
p ∈ U∩V there are two bases singled out for the tangent space Tp(M): {∂/∂xj |p}nj=1

and {∂/∂yi |p}ni=1. So any tangent vector Xp ∈ Tp(M) has two descriptions:

Xp =
∑
j

aj
∂

∂xj

∣∣∣∣
p

=
∑
i

bi
∂

∂yi

∣∣∣∣
p

. (12.2)

It is easy to compare them. By applying both sides to xk , we find that

ak =
⎛⎝∑

j

aj
∂

∂xj

⎞⎠ xk = (∑
i

bi
∂

∂yi

)
xk =

∑
i

bi
∂xk

∂yi
.

Similarly, applying both sides of (12.2) to yk gives

bk =
∑
j

aj
∂yk

∂xj
.

Write Uαβ = Uα ∩ Uβ . Then

φ̃β ◦ φ̃−1
α : φα(Uαβ)× Rn −→ φβ(Uαβ)× Rn

is given by

(x, a1, . . . , an) �→
⎛⎝φ−1

α (x),
∑
j

aj
∂

∂xj

⎞⎠ �→ (φβ ◦ φ−1
α (x), b1, . . . , bn),

where

bi =
∑
j

aj
∂yi

∂xj
.

By the definition of an atlas, φβ ◦ φ−1
α (x) is C∞; its components are simply the yi’s.

So the yi’s are C∞ functions of the xj ’s. This implies that all the partial derivatives
∂yi/∂xj are C∞ functions. Therefore, φ̃β ◦ φ̃−1

α is C∞. This completes the proof
that the tangent bundle TM is a C∞ manifold, with {(T Uα, φ̃α)} as a C∞ atlas.

12.3 Vector Bundles

On the tangent bundle TM of a smooth manifoldM , there is a natural projection map
π : TM −→ M , π(p,Xp) = p. This makes the tangent bundle into a C∞ vector
bundle, which we now define.
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Given any map π : E −→ M , we call the inverse image π−1(p) := π−1({p}) of
a point p ∈ M the fiber at p. The fiber at p is often written Ep. A surjective smooth
map π : E −→ M of manifolds is said to be locally trivial of rank r if

(i) each fiber π−1(p) has the structure of a vector space of dimension r;
(ii) for each p ∈ M , there are an open neighborhood U of p and a fiber-preserving

diffeomorphism

φ : π−1(U) −→ U × Rr

that maps each fiber π−1(q) to the corresponding fiber {q}×Rr isomorphically
as vector spaces, for all q ∈ U . Such an open set is called a trivializing open set
for E.

The collection {(U, φ)}, with {U} an open cover ofM , is called a local trivialization
for E, and {U} is called a trivializing open cover of M for E.

AC∞ vector bundle of rank r is a triple (E,M, π) consisting of manifoldsE,M ,
and a surjective smooth mapπ : E −→ M that is locally trivial of rank r . The manifold
E is called the total space of the vector bundle and M the base space. By abuse of
language, we say that E is a vector bundle over M .

Example 12.5 (The product bundle). Given a manifoldM , let π : M ×Rr −→ M be
the projection to the first factor. Then M × Rr is a vector bundle of rank r over M ,
called the product bundle of rank r . It has a local trivialization given by the identity
map 1M×R : M × R −→ M × R. The infinite cylinder S1 × R is the product bundle
of rank 1 over the circle (Figure 12.1).

π

Fig. 12.1. A circular cylinder is a product bundle over a circle.

Let πE : E −→ M , πF : F −→ N be two vector bundles, possibly of different
ranks. A bundle map from E to F is a pair of maps (f, f̃ ), f : M −→ N and f̃ : E
−→ F such that
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(i) the diagram

M N�
f

E F�f̃

�

πE

�

πF

is commutative, meaning πF ◦ f̃ = f ◦ πE ;
(ii) f̃ is linear on each fiber, i.e., for each p ∈ M , f̃ : Ep −→ Ff (p) is a linear map

of vector spaces.

The collection of all vector bundles together with bundle maps between them
forms a category. Thus, it makes sense to speak of an isomorphism of vector bundles.
Any bundle isomorphic to a product bundle is called a trivial bundle.

A smooth map f : N −→ M of manifolds induces a bundle map (f, f̃ ), where
f̃ : TN −→ TM is given by

f̃ (p,Xp) = (f (p), f∗(Xp)) ∈ Tf (p)M
for all Xp ∈ TpN .

12.4 Smooth Sections

A section of a vector bundle π : E −→ M is a map s : M −→ E such that π ◦ s = 1M .
This condition means precisely that for each p in M , s(p) ∈ Ep. Pictorially we
visualize a section as a cross-section of the bundle (Figure 12.2). We say that a
section is smooth if it is smooth as a map from M to E.

π

s

�

�

p

s(p)

Fig. 12.2. A section of a vector bundle.

Definition 12.6. A vector field X on a manifoldM is a function that assigns a tangent
vectorXp ∈ TpM to each point p ∈ M . In terms of the tangent bundle, a vector field
on M is simply a section of the tangent bundle π : TM −→ M and the vector field is
smooth if it is smooth as a map from M to TM .
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Example 12.7. The formula

X(x,y) = −y ∂
∂x

+ x ∂
∂y

=
[−y
x

]
defines a smooth vector field on R2 (Figure 12.3).

Fig. 12.3. The vector field (−y, x) in R
2.

Proposition 12.8. Let s and t be C∞ sections of a C∞ vector bundle π : E −→ M

and let f be a C∞ function on M . Then

(i) the sum s + t defined by

(s + t)(p) = s(p)+ t (p) ∈ Ep, p ∈ M,
is a C∞ section of E.

(ii) the product f s defined by

(f s)(p) = f (p)s(p), p ∈ M,
is a C∞ section of E.

Proof.
(i) It is clear that s + t is a section of E. To show that it is C∞, fix a point p ∈ M
and let V be a trivializing open set for E containing p, with C∞ trivialization

φ : π−1(V ) −→ V × Rr .

Suppose
φ ◦ s(q) = (q, a1(q), . . . , ar (q))

and
φ ◦ t (q) = (q, b1(q), . . . , br (q))

for q ∈ V . Because s and t are C∞ maps, ai and bi are C∞ functions on V . Since
φ is linear on each fiber,
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φ ◦ (s + t)(q) = (q, a1(q)+ b1(q), . . . , ar (q)+ br(q)), q ∈ V.
This proves that s+ t is a C∞ map on V and hence at p. Since p is an arbitrary point
of M , the section s + t is C∞ on M .

(ii) We omit the proof as it is similar to that of (i). �	
Denote the set of all C∞ sections of E by �(E). The proposition shows that

�(E) is not only a vector space over R, but also a module over C∞(M). For any
open setU , one can also consider the vector space �(U,E) ofC∞ sections ofE over
U . Then �(U,E) is both a vector space over R and a C∞(U)-module. Note that
�(M,E) = �(E).

12.5 Smooth Frames

A frame for a vector bundle π : E −→ M over an open setU is a collection of sections
s1, . . . , sr of E over U such that at each point p ∈ U , the elements s1(p), . . . , sr (p)
form a basis for the fiber Ep := π−1(p). A frame s1, . . . , sr is said to be smooth or
C∞ if s1, . . . , sr are C∞ as sections of E over U . A frame for the tangent bundle
TM −→ M over an open set U is called simply a frame on U .

Example 12.9. The collection of vector fields ∂/∂x, ∂/∂y, ∂/∂z is a smooth frame
on R3.

Proposition 12.10 (Characterization of C∞ sections). Let π : E −→ M be a C∞
vector bundle and U an open subset of M . Suppose s1, . . . , sr is a C∞ frame for E
over U . Then a section s =∑

cj sj of E over U is C∞ if and only if the coefficients
cj are C∞ functions on U .

Proof. If the cj ’s are C∞ functions on U , then s =∑
cj sj is a C∞ section on U by

Proposition 12.8.
Conversely, fix a pointp ∈ U and choose a trivializing open setV forE containing

p, with C∞ trivialization φ : π−1(V ) −→ V × Rr . Since φ ◦ sj : V −→ V × Rr is
C∞, if

φ ◦ sj (q) = (q, a1
j (q), . . . , a

r
j (q)),

then a1
j , . . . , a

r
j are C∞ functions on V . Similarly, if

φ ◦ s(q) = (q, a1(q), . . . , ar (q)),

then a1, . . . , ar are C∞ functions on V .
Since s =∑

cj sj and φ is linear on fibers,

φ(s(q)) =
∑
j

cj (q)φ(sj (q)) =
⎛⎝q,∑

j

cj (q)a1
j (q), . . . ,

∑
j

cj (q)arj (q)

⎞⎠ .
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Thus,
ai =

∑
j

cj aij .

In matrix notation,

a =
⎡⎢⎣a

1

...

ar

⎤⎥⎦ = A

⎡⎢⎣c
1

...

cr

⎤⎥⎦ = Ac.

By Cramer’s rule, A−1 is a matrix of C∞ functions on V . Hence, c = A−1a is a
column vector of C∞ functions on V . This proves that c1, . . . , cr are C∞ functions
at p ∈ U . Since p is an arbitrary point of U , the coefficients cj are C∞ functions
on U . �	

Problems

12.1.* Hausdorff condition on the tangent bundle
Prove Proposition 12.4.

12.2. Transition functions for the total space of the tangent bundle
Let (U, φ) = (U, x1, . . . , xn) and (V ,ψ) = (V , y1, . . . , yn) be overlapping coordi-
nate charts on a manifold M . They induce coordinate charts (T U, φ̃) and (T V, ψ̃)
on the total space TM of the tangent bundle (see equation (12.1)), with transition
function ψ̃ ◦ φ̃−1:

(x1, . . . , xn, a1, . . . , an) �→ (y1, . . . , yn, b1, . . . , bn).

(a) Compute the Jacobian matrix of the transition function ψ̃ ◦ φ̃−1 at φ(p).
(b) Show that the Jacobian determinant of the transition function ψ̃ ◦ φ̃−1 at φ(p) is

(det[∂yi/∂xj ])2.
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Bump Functions and Partitions of Unity

The existence of a C∞ partition of unity is one of the most important technical tools
in the theory of C∞ manifolds. It is the single feature that makes the behavior of
C∞ manifolds so different from real-analytic or complex manifolds. In this chapter
we construct C∞ bump functions on any manifold and prove the existence of a C∞
partition of unity on a compact manifold. The proof of the existence of aC∞ partition
of unity on a general manifold is more technical and is postponed to Appendix C.

13.1 C∞ Bump Functions

The support of a C∞ function f on a manifold M is defined to be the closure of the
set on which f �= 0:

supp f = closure of {p ∈ M | f (p) �= 0}.
Let q be a point in M , and U a neighborhood of q. By a bump function at q

supported in U we mean any continuous function f that is 1 in a neighborhood of q
with supp f ⊂ U .

1 2−1−2

1

Fig. 13.1. A bump function at 0.

For example, Figure 13.1 is the graph of a bump function at 0 with support in
(−2, 2). The function is nonzero on the open interval (−1, 1) and is zero otherwise.
Its support is the closed interval [−1, 1].
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The only bump functions that interest us are C∞ bump functions. While the
continuity of a function can often be seen by inspection, the smoothness of a function
always requires a formula. Our goal in this section is to find a formula for a C∞
bump function as in Figure 13.1.

Example 13.1. The graph of y = x5/3 looks perfectly smooth (Figure 13.2), but it
is in fact not smooth at x = 0, since its second derivative y′′ = (10/9)x−1/3 is not
defined at x = 0.

1−1

1

−1

x

y

Fig. 13.2. The graph of y = x5/3.

In Example 1.3 we introduced the C∞ function

f (t) =
{
e−1/t for t > 0,

0 for t ≤ 0

with graph as in Figure 13.3.

1−1 t

1
f (t)

Fig. 13.3. The graph of f (t).

Define

g(t) = f (t)

f (t)+ f (1 − t) . (13.1)

We first show that the denominator f (t)+f (1− t) is never zero. For t > 0, f (t) > 0
and therefore
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f (t)+ f (1 − t) ≥ f (t) > 0.

For t ≤ 0, 1 − t ≥ 1 and therefore

f (t)+ f (1 − t) ≥ f (1 − t) > 0.

In either case, f (t)+ f (1− t) �= 0. This proves that g(t) is defined for all t . As the
quotient of two C∞ functions with the denominator never zero, g(t) is C∞ for all t .

Moreover, for t ≤ 0, f (t) = 0 and f (1 − t) > 0, so g(t) ≡ 0 for t ≤ 0. For
t ≥ 1, 1 − t ≤ 0 and f (1 − t) = 0, so g(t) ≡ 1 for t ≥ 1. Thus, g is a C∞ function
with graph as in Figure 13.4.

1

1
g(t)

t

g(t) =
{

0 for t ≤ 0,

1 for t ≥ 1.

Fig. 13.4. The graph of g(t).

Given two positive real numbers a < b, we make a linear change of variables to
map [a2, b2] to [0, 1]:

x �→ x − a2

b2 − a2
.

Let

h(x) = g

(
x − a2

b2 − a2

)
.

Then h : R −→ [0, 1] is a C∞ function such that

h(x) =
{

0 for x ≤ a2,

1 for x ≥ b2.

(See Figure 13.5.)

1 h(x)

x
a2 b2

Fig. 13.5. The graph of h(x).

Replace x by x2 to make the function symmetric in x: k(x) = h(x2) (Figure 13.6).
Finally, set
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1k(x)

xa b−a−b
Fig. 13.6. The graph of k(x).

ρ(x) = 1 − k(x) = 1 − g
(
x2 − a2

b2 − a2

)
.

This ρ(x) is a C∞ bump function at 0 in R (Figure 13.7). For any q ∈ R, ρ(x − q)
is a C∞ bump function at q.

ρ(x)

xa b−a−b

1

Fig. 13.7. A bump function at 0 on R.

It is easy to extend the construction of a bump function from R to Rn. To get
a bump function at 0 in Rn which is 1 on the closed ball B(0, a) and 0 outside the
closed ball B(0, b), set

σ(x) = ρ(|x|) = 1 − g
( |x|2 − a2

b2 − a2

)
. (13.2)

As a composition of C∞ functions, σ is C∞. To get a C∞ bump function at q in Rn,
take σ(x − q).
Exercise 13.2 (Bump function supported in an open set). Let q be a point and U any neigh-
borhood of q in a manifold. Construct a C∞ bump function at q supported in U .

Proposition 13.3 (C∞ extension of a function). Supposef is aC∞ function defined
on a neighborhood U of q in a manifold M . Then there is a C∞ function f̃ on M
which agrees with f in some possibly smaller neighborhood of q.

Proof. Choose a C∞ bump function ρ which is supported in U and is identically 1
in a neighborhood V of q (Figure 13.8). Define

f̃ (x) =
{
ρ(x)f (x) for x in U,

0 for x not in U.
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( )�

q

U| |

ρ

f

Fig. 13.8. Extending the domain of a function by multiplying by a bump function.

As the product of two C∞ functions onU , f̃ is C∞ onU . If x /∈ U , then x /∈ supp ρ,
and so there is an open set containing x on which f̃ is 0 since supp ρ is closed.
Therefore, f̃ is also C∞ at every point x /∈ U .

Finally, since ρ ≡ 1 on V , the function f̃ agrees with f on V . �	

13.2 Partitions of Unity

If {Ui}i∈I is a finite open cover of M , a C∞ partition of unity subordinate to {Ui} is
a collection of nonnegative C∞ functions {ρi}i∈I satisfying

(a)
∑
ρi = 1;

(b) supp ρi ⊂ Ui .

When I is an infinite set, for Condition (a) to make sense, we will need to impose
a locally finite condition. A collection {Aα} of subsets of a topological space S is
locally finite if every point q in S has a neighborhood that intersects only finitely
many of the Aα’s. (A neighborhood of a point q is an open set containing q.) In
particular, every q in S is contained in finitely many of the Aα’s.

Example 13.4 (An open cover that is not locally finite). Let Ur,n be the open interval
(r − (1/n), r + (1/n)) in the real line R. The open cover {Ur,n | r ∈ Q, n ∈ Z+} of
R is not locally finite.

Definition 13.5. AC∞ partition of unity on a manifold is a collection ofC∞ functions
{ρα}α∈A such that

(i) the collection of supports, {supp ρα}α∈A, is locally finite;
(ii)

∑
ρα = 1.

Given an open cover {Uα}α∈A of M , we say that a partition of unity {ρα}α∈A is
subordinate to the open cover {Uα} if supp ρα ⊂ Uα for every α ∈ A.
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Since the collection of supports, {supp ρα}, is locally finite (Condition (i)), every
point q lies in finitely many of the sets supp ρα . Hence ρα(q) �= 0 for only finitely
many α. It follows that the sum in (ii) is a finite sum at every point.

Example 13.6. Let U,V be the open intervals (−∞, 2), (−1,∞) in R, and let ρV be
a C∞ function with graph as in Figure 13.9, e.g., the function g(t) of (13.1). Define
ρU = 1 − ρV . Then supp ρV ⊂ V and supp ρU ⊂ U . Thus, {ρU , ρV } is a partition
of unity subordinate to the open cover {U,V }.

1 2−1−2

1 ρV

R
1

U

V

)

(

Fig. 13.9. A partition of unity {ρU , ρV } subordinate to an open cover {U,V }.

Remark 13.7. Suppose {fα}α∈A is a collection of C∞ functions on a manifold M
such that the collection of its supports, {supp fα}α∈A, is locally finite. Then every
point q inM has a neighborhoodWq that intersects supp fα for only finitely many α.
Thus, on Wq the sum

∑
α∈A fα is actually a finite sum. This shows that the function

f =∑
fα is well defined and C∞ on the manifold M . We call such a sum a locally

finite sum.

13.3 Existence of a Partition of Unity

Because the case of a compact manifold is somewhat easier and already has some of
the features of the general case, for pedagogical reasons we give a separate proof for
the compact case.

Lemma 13.8. If ρ1, . . . , ρm are real-valued functions on a manifold M , then

supp
(∑

ρi

)
⊂
⋃

supp ρi.

Proof. Problem 13.1. �	
Proposition 13.9. Let M be a compact manifold and {Uα}α∈A an open cover of M .
There exists a C∞ partition of unity {ρα}α∈A subordinate to {Uα}α∈A.
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Proof. For each q ∈ M , find an open set Uα containing q from the given cover
and let ψq be a C∞ bump function at q supported in Uα (Exercise 13.2). Because
ψq(q) > 0, there is a neighborhood Wq of q on which ψq > 0. By the compactness
of M , the open cover {Wq | q ∈ M} has a finite subcover, say {Wq1 , . . . ,Wqm}. Let
ψq1 , . . . , ψqm be the corresponding bump functions. Then ψ :=∑

ψqi is positive at
every point q in M because q ∈ Wqi for some i. Define

ϕi = ψqi

ψ
, i = 1, . . . , m.

Clearly,
∑
ϕi = 1. Moreover, since ψ > 0, ϕi(q) �= 0 if and only if ψqi (q) �= 0, so

suppϕi = suppψqi ⊂ Uα

for some α ∈ A. This shows that {ϕi} is a partition of unity for which for every i,
suppϕi ⊂ Uα for some α ∈ A.

The next step is to make the index set of the partition of unity the same as that of
the open cover. For each i = 1, . . . , m, choose τ(i) ∈ A to be an index such that

suppϕi ⊂ Uτ(i).

We group the collection of functions {ϕi} into subcollections according to τ(i) and
define for each α ∈ A

ρα =
∑
τ(i)=α

ϕi;

if there is no i for which τ(i) = α, define ρα = 0. Then∑
α∈A

ρα =
∑
α∈A

∑
τ(i)=α

ϕi =
m∑
i=1

ϕi = 1.

Moreover, by Lemma 13.8,

supp ρα ⊂
⋃

τ(i)=α
suppϕi ⊂ Uα.

So {ρα} is a partition of unity subordinate to {Uα}. �	
To generalize the proof of Proposition 13.9 to an arbitrary manifold, it will be

necessary to find an appropriate substitute for compactness. As the proof is rather
technical and is not necessary for the rest of the book, we put it in Appendix C. The
statement is as follows.

Theorem 13.10 (Existence of a C∞ partition of unity). Let {Uα}α∈A be an open
cover of a manifold M .

(i) Then there is aC∞ partition of unity {ϕk}∞k=1 with compact support such that for
each k, suppϕk ⊂ Uα for some α ∈ A.

(ii) If we do not require compact support, then there is a C∞ partition of unity {ρα}
subordinate to {Uα}.
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Problems

13.1.* Support of a finite sum
Prove Lemma 13.8.

13.2.* Locally finite family and compact set
Let {Aα} be a locally finite family of subsets of a topological space S. Show that
every compact setK in S has a neighborhoodW that intersects only finitely many of
the Aα .

13.3. Smooth Urysohn lemma
Let A and B be two disjoint closed sets in a manifold. Find a C∞ function f such
that f is identically 1 onA and identically 0 on B. (Hint: Consider a C∞ partition of
unity {ρM−A, ρM−B} subordinate to the open cover {M − A,M − B}. This lemma
is needed in Section 28.3.)

13.4.* Support of the pullback of a function
Let f : M −→ R be a C∞ function on a manifold M . If N is another manifold and
π : M ×N −→ M is the projection onto the first factor, prove that

supp(π∗f ) = (supp f )×N.
13.5. Pullback of a partition of unity
Suppose {ρα} is a partition of unity on a manifold M subordinate to an open cover
{Uα} of M and F : N −→ M is a C∞ map. Prove that

(a) the collection of supports {suppF ∗ρα} is locally finite;
(b) the collection of functions {F ∗ρα} is a partition of unity on N subordinate to the

open cover {F−1(Uα)} of N .

13.6.* Closure of a locally finite union
If {Aα} is a locally finite collection of subsets in a topological space, then⋃

Aα =
⋃
Aα, (13.3)

where A denotes the closure of the subset A.

Remark. For any collection of subset Aα , one always has⋃
Aα ⊂

⋃
Aα.

However, the reverse inclusion is in general not true. For example, supposeAn is the
closed interval [0, 1 − (1/n)] in R. Then

∞⋃
n=1

An = [0, 1) = [0, 1],

but ∞⋃
n=1

An =
∞⋃
n=1

[
0, 1 − 1

n

]
= [0, 1).

If {Aα} is a finite collection, the equality (13.3) is easily shown to be true.
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Vector Fields

In Section 12.4 we defined a vector field X on a manifold M as the assignment of a
tangent vector Xp ∈ TpM at each point p ∈ M . More formally a vector field on M
is a section of the tangent bundle TM −→ M , and a vector field is smooth if and only
if it is smooth as a section of the tangent bundle. In this chapter we give two more
characterizations of smooth vector fields (Section 14.1).

If X is a vector field on a manifold M , then through each point of M there is a
curve, called an integral curve of X, whose velocity vector field is given by X. The
collection of integral curves through the points of M may be thought of as a motion
of the manifold, called a local flow of the vector field.

After discussing local flows, we collect together a few facts about vector fields—
the Lie bracket, related vector fields, and the push-forward.

14.1 Smoothness of a Vector Field

Suppose X is a vector field on a manifold M . At a point p in a coordinate chart
(U, φ) = (U, x1, . . . , xn) forM , the value of the vector fieldX is a linear combination

Xp =
∑

ai(p)
∂

∂xi

∣∣∣∣
p

.

Using the chart (T U, φ̃) for TM (see Section 12.1),

φ̃(Xp) = (φ(p), a1(p), . . . , an(p)).

Thus, the vector field X =∑
ai ∂/∂xi is smooth on U if and only if the coefficients

ai are smooth functions onU . This gives a second characterization of a smooth vector
field on M: in any coordinate chart (U, x1, . . . , xn) in the atlas of the manifold, a
vector field X =∑

ai ∂/∂xi is smooth if and only if the coefficient functions ai are
C∞ on U .
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Just as in Section 2.5, a vector fieldX on a manifoldM gives rise to a linear map
on the algebra C∞(M) of C∞ functions onM: for f ∈ C∞(M), defineXf to be the
function

(Xf )(p) = Xpf, p ∈ M.
Finally there is still a third characterization of a smooth vector field, in terms of its
action as an operator on C∞ functions.

Proposition 14.1. A vector field X on M is smooth if and only if for every smooth
function f on M , the function Xf is smooth on M .

Proof.
(⇒) Suppose X is smooth, f ∈ C∞(M), and p ∈ M . Relative to a chart
(U, x1, . . . , xn) about p, X = ∑

ai ∂/∂xi , where by the second characterization
of a smooth vector field, the ai are C∞ functions on U . Then Xf =∑

ai ∂f/∂xi is
C∞ on U . Since p is arbitrary, Xf is C∞ on M .

(⇐) On the chart (U, x1, . . . , xn), X = ∑
ai ∂/∂xi . Let p ∈ U . By Proposi-

tion 13.3, each xi can be extended to a C∞ function x̃i onM that agrees with xi in a
neighborhood V of p. Therefore, on V ,

Xx̃k =
(∑

ai
∂

∂xi

)
x̃k =

(∑
ai

∂

∂xi

)
xk = ak.

This proves that ak is C∞ at p. Since p is an arbitrary point in U , the function ak is
C∞ on U . By the second characterization of a smooth vector field, X is smooth. �	

By Proposition 14.1, we may view a C∞ vector field X as a linear operator
X : C∞(M) −→ C∞(M) of the algebra ofC∞ functions onM . As in Proposition 2.6,
this linear operatorX : C∞(M) −→ C∞(M) is a derivation. In the following we think
of C∞ vector fields on M alternately as C∞ sections of the tangent bundle TM or
as derivations on the algebra C∞(M) of C∞ functions. In fact, it can be shown that
these two descriptions of C∞ vector fields are equivalent (Problem 19.11).

14.2 Integral Curves

In Example 12.7, it appears that through each point in the plane one can draw a circle
whose velocity at any point is the given vector field at that point. Such a curve is an
example of an integral curve of the vector field, which we now define.

Definition 14.2. LetX be aC∞ vector field on a manifoldM , andp ∈ M . An integral
curve of X starting at p is a curve c : (a, b) −→ M defined on an open interval (a, b)
containing 0 such that c(0) = p and c′(t) = Xc(t). To show its dependence on the
initial point p, we also write ct (p) instead of c(t).

Definition 14.3. An integral curve is maximal if its domain cannot be extended to a
larger interval.
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Example 14.4. Recall the vector fieldX(x,y) = 〈−y, x〉 on R2 (Figure 12.3). We will
find an integral curve c(t) of X starting at the point (1, 0) ∈ R2. The condition for
c(t) = (x(t), y(t)) to be an integral curve is c′(t) = Xc(t) or[

x′(t)
y′(t)

]
=
[−y(t)
x(t)

]
,

so we need to solve the system of first-order ordinary differential equations

x′ = −y, (14.1)

y′ = x, (14.2)

with initial condition (x(0), y(0)) = (1, 0). From (14.1), y = −x′. So y′ = −x′′.
Substituting into (14.2) gives

x′′ = −x.
It is well known that the solutions are

x = A cos t + B sin t,

y = −x′ = A sin t − B cos t.
(14.3)

The initial condition forces A = 1, B = 0, so the integral curve starting at (1, 0) is
c(t) = (cos t, sin t), which parametrizes the unit circle.

More generally, if the initial point of the integral curve, corresponding to t = 0,
is p = (x0, y0), then (14.3) gives

A = x0, B = −y0,

and the general solution is

x = x0 cos t − y0 sin t,

y = x0 sin t + y0 cos t, t ∈ R.

This can be written in matrix notation as

c(t) =
[
x(t)

y(t)

]
=
[

cos t − sin t
sin t cos t

] [
x0
y0

]
=
[

cos t − sin t
sin t cos t

]
p,

which shows that the integral curve ofX starting at p can be obtained by rotating the
point p counterclockwise about the origin through an angle t . Notice that

cs(ct (p)) = cs+t (p),

since a rotation through an angle t followed by a rotation through an angle s is the
same as a rotation through the angle s + t . For each t ∈ R, ct : M −→ M is a
diffeomorphism with inverse c−t .

Let Diff (M) be the group of diffeomorphisms of a manifold M . A homomorph-
ism c : R −→ Diff (M) is called a one-parameter group of diffeomorphisms of M . In
this example the integral curves of the vector field X(x,y) = 〈−y, x〉 on R2 give rise
to a one-parameter group of diffeomorphisms of R2.
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�� �

0 1

Fig. 14.1. The vector field d/dx on R− {0}.

Example 14.5. Let M be R− {0} and let X be the vector field d/dx on M . Find the
maximal integral curve starting at x = 1.

Solution. In column vector notation, the vector field X is simply 1. If x(t) is an
integral curve starting at 1, then

x ′(t) = Xx(t) = 1, x(0) = 1.

So x(t) = t + 1. Since 0 is not inM , the domain of the maximal integral curve is the
open interval (−1,∞). �	

From this example we see that it may not be possible to extend the domain of
definition of an integral curve to the entire real line.

14.3 Local Flows

The two examples in the preceding section illustrate the fact that finding an integral
curve of a vector field amounts to solving a system of first-order ordinary differential
equations with initial conditions. In general, if X is a smooth vector field on a
manifold M , to find an integral c(t) of X starting at p, we first choose a coordinate
chart (U, φ) = (U, x1, . . . , xn) about p. In terms of the local coordinates,

X =
∑

ai(x)
∂

∂xi
,

and by Proposition 8.15,

c′(t) =
∑

(ci)′(t) ∂

∂xi
,

where ci(t) = xi ◦ c(t) is the ith component of c(t) in the chart (U, φ). The condition
c′(t) = Xc(t) is thus equivalent to

(ci)′(t) = ai(c(t)) for i = 1, . . . , n. (14.4)

This is a system of ordinary differential equations (ODE); the initial condition c(0) =
p translates to (c1(0), . . . , cn(0)) = (p1, . . . , pn). By an existence and uniqueness
theorem from the theory of ODE, such a system always has a unique solution in the
following sense.
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Theorem 14.6. Let V be an open subset of Rn, p0 a point in V , and f : V −→ Rn a
C∞ function. Then the differential equation

dy/dt = f (y), y(0) = p0,

has a unique C∞ solution y : (a(p0), b(p0)) −→ V , where (a(p0), b(p0)) is the
maximal open interval containing 0 on which y is defined.

The uniqueness of the solution means that if z : (δ, ε) −→ V satisfies the same
differential equation

dz/dt = f (z), z(0) = p0,

then the domain of definition (δ, ε) of z is a subset of (a(p0), b(p0)) and z(t) = y(t)

on the interval (δ, ε).
For a vector field X on a chart U of a manifold and a point p ∈ U , this theorem

guarantees the existence and uniqueness of a maximal integral curve starting at p.
Next we would like to study the dependence of an integral curve on its initial

condition. Again we study the problem locally on Rn. The function y will now be
a function of two arguments t and q, and the condition for y to be an integral curve
starting at the point q is

∂y

∂t
(t, q) = f (y(t, q)), y(0, q) = q.

The following theorem from the theory of ODE guarantees the smooth dependence
of the solution on the initial condition.

Theorem 14.7. Let V be an open subset of Rn and f : V −→ Rn a C∞ function on
V . For each point p0 ∈ V , there is a neighborhood W of p0 in V , a number ε > 0,
and a C∞ function

y : (−ε, ε)×W −→ V

such that
∂y

∂t
(t, q) = f (y(t, q)), y(0, q) = q

for all (t, q) ∈ (−ε, ε)×W .

For a proof of these two theorems, see [4, Appendix C, pp. 359–366].
It follows from Theorem 14.7 that if X is any C∞ vector field on a chart U and

p ∈ U , then there are a neighborhood W of p in U , an ε > 0, and a C∞ map

F : (−ε, ε)×W −→ U (14.5)

such that for each q ∈ W , the function F(t, q) is an integral curve of X starting at q.
In particular, F(0, q) = q. We usually write Ft(q) for F(t, q).

Suppose s, t in the interval (−ε, ε) are such that both Ft(Fs(q)) and Ft+s(q) are
defined. Then both Ft(Fs(q)) and Ft+s(q) as functions of t are integral curves of X
with initial point Fs(q), which is the point corresponding to t = 0. By the uniqueness
of the integral curve,
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�

�

�

q

Fs(q)
Ft (Fs(q)) = Ft+s (q)

Fig. 14.2. The flow line through q of a local flow.

Ft(Fs(q)) = Ft+s(q). (14.6)

The map F in (14.5) is called a local flow generated by the vector field X. For each
q ∈ U , the function Ft(q) of t is called a flow line of the local flow. Each flow line
is an integral curve of X. If a local flow F is defined on (−∞,∞) ×M , then it is
called a global flow. Every smooth vector field has a local flow about any point, but
not necessarily a global flow. A vector field having a global flow is called a complete
vector field. If F is a global flow, then Ft : M −→ M is a diffeomorphism for every
t ∈ R, since it has inverseF−t . Thus, a global flow onM gives rise to a one-parameter
group of diffeomorphisms of M .

This discussion suggests the following definition.

Definition 14.8. A local flow about a point p in an open set U of a manifold is a C∞
function

F : (−ε, ε)×W −→ U,

where ε is a positive real number and W is a neighborhood of p in U , such that
writing Ft(q) = F(t, q), we have

(i) F0(q) = q for all q ∈ W ,
(ii) Ft(Fs(q)) = Ft+s(q) whenever both sides are defined.

If F(t, q) is a local flow of the vector field X on U , then

F(0, q) = q and
∂F

∂t
(0, q) = XF(0,q) = Xq.

Thus, one can recover the vector field from its flow.

Example 14.9. The function F : (−∞,∞)× R2 −→ R2,

F

(
t,

[
x

y

])
=
[

cos t − sin t
sin t cos t

] [
x

y

]
,

is the global flow on R2 generated by the vector field

X(x,y) = ∂F

∂t
(t, (x, y))

∣∣∣∣
t=0

=
[− sin t − cos t

cos t − sin t

] [
x

y

]∣∣∣∣
t=0

=
[

0 −1
1 0

] [
x

y

]
=
[−y
x

]
= −y ∂

∂x
+ x ∂

∂y
.

This is Example 12.7 again.
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14.4 The Lie Bracket

SupposeX andY are smooth vector fields on an open subsetU of a manifoldM , which
we view as derivations on C∞(U). For a C∞ function f on U , by Proposition 14.1
the function Yf is C∞ on U , and the function (XY)f := X(Yf ) is also C∞ on U .
Moreover, becauseX and Y are both R-linear maps fromC∞(U) toC∞(U), the map
XY : C∞(U) −→ C∞(U) is R-linear. However, XY does not satisfy the derivation
property: if f, g ∈ C∞(U), then

XY(fg) = X((Yf )g + f Yg)
= (XYf )g + (Yf )(Xg)+ (Xf )(Yg)+ f (XYg).

Looking more closely at this formula we see that the two extra terms (Yf )(Xg) and
(Xf )(Yg) that make XY not a derivation are symmetric in X and Y . Thus, if we
compute YX(fg) as well and subtract it fromXY(fg), the extra terms will disappear,
and XY − YX will be a derivation of C∞(U).

Given two smooth vector fields X and Y on U and p ∈ U , we define their Lie
bracket [X, Y ] at p to be

[X, Y ]pf = (XpY − YpX)f
for any germ f of a C∞ function at p. By the same calculation as above, but now
evaluated at p, it is easy to check that [X, Y ]p is a derivation of C∞p (U) and is a
tangent vector at p (Definition 8.1). As p varies over U , [X, Y ] becomes a vector
field on U .

Proposition 14.10. If X and Y are smooth vector fields on M , then the vector field
[X, Y ] is also smooth on M .

Proof. By Proposition 14.1 it suffices to check that if f is a C∞ function onM , then
so is [X, Y ]f . But

[X, Y ]f = (XY − YX)f,
which is clearly C∞ on M since both X and Y are as well. �	

Denoting the vector space of all smooth vector fields onM by X(M), we see that
the Lie bracket provides a product operation on X(M).

Clearly
[Y,X] = −[X, Y ].

Exercise 14.11 (Jacobi identity). Check the Jacobi identity:∑
cyclic

[X, [Y,Z]] = 0.

This notation means that one permutesX, Y,Z cyclically and one takes the sum of the resulting
terms. Written out,∑

cyclic

[X, [Y,Z]] = [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X, Y ]].
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Definition 14.12. A Lie algebra is a real vector space V together with a product,
called the bracket, [ , ] : V × V −→ V , satisfying the following properties: for all
a, b ∈ R and X, Y,Z ∈ V ,

(i) bilinearity:

[aX + bY,Z] = a[X,Z] + b[Y,Z],
[Z, aX + bY ] = a[Z,X] + b[Z, Y ],

(ii) anticommutativity: [Y,X] = −[X, Y ],
(iii) Jacobi identity:

∑
cyclic [X, [Y,Z]] = 0.

Example 14.13. If M is a manifold, then the vector space X(M) of C∞ vector fields
on M is a Lie algebra with the Lie bracket [ , ] as the bracket.

Example 14.14. Let Kn×n be the vector space of all n × n matrices over a field K .
Define for X, Y ∈ Kn×n,

[X, Y ] = XY − YX,
where XY is the matrix product of X and Y . With this bracket, Kn×n becomes a
Lie algebra. The bilinearity and anticommutativity of [ , ] are immediate, while the
Jacobi identity follows from the same computation as Exercise 14.11.

More generally, if A is any associative algebra, then the product

[x, y] = xy − yx, x, y ∈ A,

makes A into a Lie algebra.

Definition 14.15. A derivation of a Lie algebra V is a linear map D : V −→ V satis-
fying the product rule

D[Y,Z] = [DY,Z] + [Y,DZ].

Example 14.16. Let V be a Lie algebra. For each X in V , define adX : V −→ V by

adX(Y ) = [X, Y ].

We may rewrite the Jacobi identity in the form

[X, [Y,Z]] = [[X, Y ], Z] + [Y, [X,Z]]

or

adX[Y,Z] = [adX Y,Z] + [Y, adX Z],
which shows that adX : V −→ V is a derivation of V .
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14.5 Related Vector Fields

Definition 14.17. Let F : N −→ M be a smooth map of manifolds. A vector field X
on N is F -related to a vector field X̃ on M if for all p ∈ N ,

F∗,p(Xp) = X̃F(p). (14.7)

We may reformulate this condition as follows.

Proposition 14.18. A vector field X on N and a vector field X̃ onM are F -related if
and only if for all g ∈ C∞(M),

X(g ◦ F) = (X̃g) ◦ F.

Proof.
(⇒) Suppose X on N and X̃ on M are F -related. By (14.7), for any g ∈ C∞(M),

F∗,p(Xp)g = X̃F(p)g, (definition of F -related)

Xp(g ◦ F) = (X̃g)(F (p)), (definition of F∗ and X̃g)

(X(g ◦ F))(p) = (X̃g)(F (p)).

Since this is true for all p ∈ N ,

X(g ◦ F) = (X̃g) ◦ F.

(⇐) Reversing the set of equations above proves the converse. �	

Proposition 14.19. Let F : N −→M be a smooth map of manifolds. If the C∞ vector
fields X and Y on N are F -related to the C∞ vector fields X̃ and Ỹ , respectively, on
M , then [X, Y ] is F -related to [X̃, Ỹ ].

Proof. For any g ∈ C∞(M),

[X, Y ](g ◦ F) = XY(g ◦ F)− YX(g ◦ F) (definition of [X, Y ])
= X((Ỹ g) ◦ F)− Y ((X̃g) ◦ F) (Proposition 14.18)

= (X̃Ỹ g) ◦ F − (Ỹ X̃g) ◦ F (Proposition 14.18)

= ((X̃Ỹ − Ỹ X̃)g) ◦ F
= ([X̃, Ỹ ]g) ◦ F.

By Proposition 14.18 again, this proves that [X, Y ] on N and [X̃, Ỹ ] on M are F -
related. �	
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14.6 The Push-Forward of a Vector Field

Let F : N −→ M be a smooth map of manifolds and let F∗ : TpN −→ TF(p)M be its
differential at a point p in N . If Xp ∈ TpN , we call F∗(Xp) the push-forward of the
vector Xp at p. This notion does not extend in general to vector fields, since if X is
a vector field on N and z = F(p) = F(q) for two distinct points p, q ∈ N , then Xp
and Xq are both pushed forward to tangent vectors at z ∈ M , but there is no reason
why F∗(Xp) and F∗(Xq) should be equal.

p

q

z
�

�

�X

Fig. 14.3. The vector field X cannot be pushed forward..

In one important special case, the push-forward F∗X of any vector field X on
N always makes sense, namely, when F : N −→ M is a diffeomorphism. In this
case, since F is injective, there is no ambiguity about the meaning of (F∗X)F(p) =
F∗,p(Xp), and since F is surjective, F∗X is defined everywhere on M .

Problems

14.1. Equality of vector fields
Show that two C∞ vector fields X and Y on a manifold M are equal if and only if
for every C∞ function f on M , we have Xf = Yf .

14.2. Vector field on an odd sphere
Let x1, y1, . . . , xn, yn be the standard coordinates on R2n. The unit sphere S2n−1 in
R2n is defined by the equation

∑n
i=1(x

i)2 + (yi)2 = 1. Show that

X =
n∑
i=1

−yi ∂
∂xi

+ xi ∂
∂yi

is a nowhere-vanishing smooth vector field on S2n−1. Since all spheres of the same
dimension are diffeomorphic, this proves that on every odd-dimensional sphere there
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is a nowhere-vanishing smooth vector field. It is a classic theorem of differential
and algebraic topology that on an even-dimensional sphere every continuous vector
field must vanish somewhere (see [13, Section 5, p. 31] or [8, Theorem 16.5, p. 70]).
(Hint: Use Problem 11.1.)

14.3. Integral curves in the plane
Find the integral curves of the vector field

X(x,y) = x
∂

∂x
− y ∂

∂y
=
[
x

−y
]

on R2.

14.4. Maximal integral curve in the plane
Find the maximal integral curve c(t) starting at the point (a, b) ∈ R2 of the vector
field X(x,y) = 〈1, x〉 on R2.

14.5. Integral curve starting at a zero of a vector field
Suppose the smooth vector field X on M vanishes at a point p ∈ M . Show that the
integral curve of X with initial point p is the constant curve c(t) = p for all t ∈ R.

14.6. Maximal integral curve
Let X be the vector field x d/dx on R. Find the maximal integral curve c(t) with
c(0) = 2.

14.7. Maximal integral curve
Let X be the vector field x2 d/dx on the real line R. For each p > 0 in R, find the
maximal integral curve of X with initial point p.

14.8. Reparametrization of an integral curve
Suppose c : (a, b) −→ M is an integral curve of the smooth vector field X on M .
Show that for any real number s, the map

cs : (a + s, b + s) −→ M, cs(t) = c(t − s)
is also an integral curve of X.

14.9. Lie bracket in local coordinates
Consider the two vector fields X, Y on Rn:

X =
∑

ai
∂

∂xi
, Y =

∑
bj

∂

∂xj
,

where ai(x), bj (x) are C∞ functions on Rn. Since [X, Y ] is also a C∞ vector field
on Rn,

[X, Y ] =
∑

ck
∂

∂xk

for some C∞ functions ck . Find the formula for ck in terms of ai and bj .
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14.10. Lie bracket of vector fields
If f and g are C∞ functions and X and Y are C∞ vector fields on a manifold M ,
show that

[fX, gY ] = fg[X, Y ] + f (Xg)Y − g(Yf )X.
14.11. Lie bracket of vector fields on R2

Compute the Lie bracket [
−y ∂

∂x
+ x ∂

∂y
,
∂

∂x

]
on R2.

14.12. Vector field under a diffeomorphism
Let F : N −→ M be a C∞ diffeomorphism of manifolds. Prove that if g is a C∞
function and X a C∞ vector field on N , then

F∗(gX) = (g ◦ F−1)F∗X.

14.13. Lie bracket under a diffeomorphism
Let F : N −→ M be a C∞ diffeomorphism of manifolds. Prove that if X and Y are
C∞ vector fields on N , then

F∗[X, Y ] = [F∗X,F∗Y ].
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Lie Groups

Certain manifolds such as the circle have in addition to their C∞ structure also a
group structure; moreover, the group operations are C∞. Manifolds such as these are
called Lie groups. This chapter is a compendium of a few important examples of Lie
groups, the classical groups.

15.1 Examples of Lie Groups

We recall here the definition of a Lie group, which first appeared in Section 6.1.

Definition 15.1. A Lie group is a C∞ manifoldG which is also a group such that the
two group operations, multiplication

µ : G×G −→ G, µ(a, b) = ab

and inverse
ι : G −→ G, ι(a) = a−1

are C∞.

Notation. We use capital letters to denote matrices, but generally lower-case letters
to denote their entries. Thus, the (i, j)-entry of the matrixAB is (AB)ij =∑

aikbkj .

Example 15.2. In Example 5.14 we defined the general linear group

GL(n,R) = {A ∈ Rn×n | detA �= 0}.
As an open subset of Rn×n, it is a manifold. Matrix multiplication

(AB)ij =
n∑
k=1

aikbkj

is a polynomial in the coordinates of GL(n,R) and is clearly C∞.
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Recall that the (i, j)-minor of a matrix A is the determinant of the submatrix of
A obtained by deleting the ith row and the j th column of A. By Cramer’s rule, the
(i, j)-entry of A−1 is

(A−1)ij = 1

detA
· (−1)i+j ((j, i)-minor of A),

which is a C∞ function of the aij ’s provided detA �= 0. Therefore, the inverse map
ι : GL(n,R) −→ GL(n,R) is also C∞. This proves that GL(n,R) is a Lie group.

Example 15.3 (Special linear group). The special linear group SL(n,R) is the sub-
group of GL(n,R) consisting of matrices of determinant 1. By Example 9.16,
SL(n,R) is a regular submanifold of dimension n2 − 1 of GL(n,R). By Exam-
ple 11.21, the multiplication map

µ̄ : SL(n,R)× SL(n,R) −→ SL(n,R)

is C∞.
To see that the inverse map

ῑ : SL(n,R) −→ SL(n,R)

is C∞, let i : SL(n,R) −→ GL(n,R) be the inclusion map and ι : GL(n,R) −→
GL(n,R) the inverse map of GL(n,R). As the composite of two C∞ maps,

ι ◦ i : SL(n,R)
i−→ GL(n,R)

ι−→ GL(n,R)

is a C∞ map. Since its image is contained in the regular submanifold SL(n,R), the
induced map ῑ : SL(n,R) −→ SL(n,R) is C∞ by Theorem 11.20. Thus, SL(n,R) is
a Lie group.

Example 15.4 (Orthogonal group). Recall that the orthogonal groupO(n) is the sub-
group of GL(n,R) consisting of all matrices A satisfying ATA = I . Thus, O(n) is
the inverse image of I under the map f (A) = ATA.

In Example 11.3 we showed that f : GL(n,R) −→ GL(n,R) has constant rank
on GL(n,R). By the constant-rank level set theorem, O(n) is a regular submanifold
of GL(n,R). One drawback of this approach is that it does not tell us what the rank
of f is, and so the dimension of O(n) remains unknown.

In this example we will apply the regular level set theorem to prove thatO(n) is a
regular submanifold of GL(n,R). This will at the same time determine the dimension
ofO(n). To accomplish this, we must first redefine the target space of f . SinceATA
is a symmetric matrix, the image of f lies in Sn, the vector space of all n × n real
symmetric matrices. Note that Sn is a vector space of dimension (n2+n)/2. Consider
f : GL(n,R) −→ Sn.

The tangent space of Sn at any point is canonically isomorphic to Sn itself, because
Sn is a vector space. Thus, the image of the differential

f∗,A : TA(GL(n,R)) −→ TAT A(Sn) � Sn



15.1 Examples of Lie Groups 151

is a vector space of dimension at most (n2 + n)/2.
While it is true that f also maps GL(n,R) to GL(n,R) or Rn×n, if we had taken

GL(n,R) or Rn×n as the target space of f , the differential f∗,A would never be
surjective for any A ∈ GL(n,R) when n ≥ 2, since f∗,A factors through the proper
subspace Sn of Rn×n. This illustrates a general principle: for the differential f∗,A to
be surjective, the target space of f should be as small as possible.

To show that the differential of

f : GL(n,R) −→ Sn, f (A) = ATA,

is surjective, we compute explicitly the differential f∗,A. Since GL(n,R) is an open
subset of Rn×n, its tangent space at any A ∈ GL(n,R) is

TA(GL(n,R)) = TA(R
n×n) = Rn×n.

For any matrix X ∈ Rn×n, there is a curve c(t) in GL(n,R) with c(0) = A and
c′(0) = X (Proposition 8.16). By Proposition 8.17,

f∗,A(X) = d

dt
f (c(t))

∣∣∣∣
t=0

= d

dt
c(t)T c(t)

∣∣∣∣
t=0

= (c′(t)T c(t)+ c(t)T c′(t))|t=0

= XTA+ ATX.
The surjectivity of f∗,A becomes the following question: if A ∈ O(n) and B is

any symmetric matrix in Sn, does there exist an n× n matrix X such that

XTA+ ATX = B?

Note that since (XT A)T = ATX, it is enough to solve

ATX = 1

2
B, (15.1)

for then

XTA+ ATX = 1

2
BT + 1

2
B = B.

Equation (15.1) clearly has a solution: X = 1
2 (A

T )−1B. So f∗,A : TA GL(n,R)
−→ Sn is surjective for all A ∈ GL(n,R). By the regular level set theorem, O(n) is
a regular submanifold of GL(n,R) of dimension

dimO(n) = n2 − dim Sn = n2 − (n2 + n)/2 = (n2 − n)/2. (15.2)

Example 15.5. The complex general linear group GL(n,C) is defined to be the group
of nonsingular n × n complex matrices. Since an n × n matrix A is nonsingular if
and only if detA �= 0, GL(n,C) is an open subset of Cn×n, the vector space of n× n
complex matrices. For the same reason as in the real case, GL(n,C) is a Lie group
of dimension 2n2.
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15.2 Lie Subgroups

Definition 15.6. A Lie subgroup of a Lie groupG is (i) an abstract subgroupH which
is (ii) an immersed submanifold via the inclusion map so that (iii) the group operations
on H are C∞.

An abstract subgroup simply means a subgroup in the algebraic sense, in contrast
to a Lie subgroup. For an explanation of why a Lie subgroup is defined to be an
immersed submanifold instead of a regular submanifold, see Remark 16.13.

Because a Lie subgroup is an immersed submanifold, it need not have the relative
topology. In particular, the inclusion map i : H −→ G need not be continuous.

(0, 0)

(3, 2)

�

�

Fig. 15.1. An embedded Lie subgroup of the torus.

Example 15.7 (Lines with irrational slope in a torus). LetG be the torus R2/Z2 and
L a line through the origin in R2. The torus can also be represented by the unit square
with the opposite edges identified. The image H of L in R2/Z2 is a closed curve
if and only if the line L goes through another lattice point, say (m, n) ∈ Z2. This
is the case if and only if the slope of L is n/m, a rational number; then H consists
of finitely many lines segments on the unit square and is a regular submanifold of
R2/Z2 (Figure 15.1).

If the slope of L is irrational, then its image H on the torus will never close up.
Indeed, it can be shown that H is a dense subset of the torus [2, Example III.6.15,
p. 86]. Thus, H is an immersed submanifold but not a regular submanifold of the
torus R2/Z2.

Whatever the slope of L, its image H in R2/Z2 is an abstract subgroup of the
torus, an immersed submanifold, and a Lie group. Therefore,H is a Lie subgroup of
the torus.

Proposition 15.8. If H is an abstract subgroup and a regular submanifold of a Lie
group G, then it is a Lie subgroup of G.

Proof. Since a regular submanifold is the image of an embedding (Theorem 11.18),
it is also an immersed submanifold.

Let µ : G × G −→ G be the multiplication map on G. Since H is a regular
submanifold of G, the inclusion map H ↪→ G is C∞. Hence, the inclusion map
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H × H ↪→ G is C∞, and the composition µ ◦ i : H × H −→ G is C∞. By
Theorem 11.20, the induced map µ̄ : H × H −→ H is C∞, again because H is a
regular submanifold.

The smoothness of the inverse map ῑ : H −→ H can be deduced from the smooth-
ness of ι : G −→ G in the same way. �	

A subgroup H as in Proposition 15.8 is called an embedded Lie subgroup, be-
cause the inclusion map i : H −→ G of a regular submanifold is an embedding
(Theorem 11.18).

Example 15.9. We showed in Examples 15.3 and 15.4 that the subgroups SL(n,R)
and O(n) of GL(n,R) are both regular submanifolds. By Proposition 15.8 they are
embedded Lie subgroups.

We state without proof an important theorem about Lie subgroups. If G is a Lie
group, then an abstract subgroup that is a closed subset in the topology ofG is called
a closed subgroup.

Theorem 15.10 (Closed subgroup theorem). A closed subgroup of a Lie group is
an embedded Lie subgroup.

For a proof of the closed subgroup theorem, see [19, Theorem 3.42, p. 110].

Example 15.11.
(i) The lines with irrational slope in the torus R2/Z2 are not closed subgroups, since

they are not regular submanifolds.
(ii) The special linear group SL(n,R) and the orthogonal group O(n) are the zero

sets of polynomial equations on GL(n,R). As such, they are closed subsets of
GL(n,R). By the closed subgroup theorem, SL(n,R) and O(n) are embedded
Lie subgroups of GL(n,R).

15.3 The Matrix Exponential

Given an n × n matrix X, we define its exponential eX by the same formula as the
exponential of a real number:.

eX = I +X + 1

2!X
2 + 1

3!X
3 + · · · , (15.3)

where I is the n×n identity matrix. For this formula to make sense, we need to show
that the series on the right converges in the normed vector space Rn×n � Rn

2
, with

the Euclidean norm

‖A‖ =
(∑

a2
ij

) 1
2
.

By a standard theorem of real analysis (cf. [12, Proposition 2.7.4, p. 121]), the
convergence of a series of matrices is equivalent to the convergence of the (i, j)-
entry of the series as a series of real numbers for every (i, j); in this case, it is the
convergence of the series
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δij + xij + 1

2! (X
2)ij + 1

3! (X
3)ij + · · · . (15.4)

Let a = max1≤i,j≤n |xij |. Then

|(X2)ij | =
∣∣∣∣∣
n∑
k=1

xikxkj

∣∣∣∣∣ ≤∑
|xik||xkj | ≤

n∑
k=1

a2 = na2,

|(X3)ij | =
∣∣∣∑(X2)ikxkj

∣∣∣ ≤∑
|(X2)ik||xkj | ≤

∑
na2a = n2a3.

By induction, one shows that

|(X
)ij | =
∣∣∣∣∣
n∑
k=1

(X
−1)ikxkj

∣∣∣∣∣ ≤
n∑
k=1

n
−2a
−1a = n
−1a
 ≤ (na)
.

So the series (15.4) is bounded by

1 + (na)+ 1

2! (na)
2 + 1

3! (na)
3 + · · · = ena.

By the comparison test for series, the series (15.3) converges absolutely for any n×n
matrix X.

Notation. Following standard convention we use the letter e for the exponential
map and for the identity element of a general Lie group. The context should prevent
any confusion. We sometimes write exp(X) for eX.

Unlike the exponential of real numbers, when A and B are n × n matrices with
n > 1, it is not necessarily true that

eAeB = eA+B.

Exercise 15.12 (Exponentials of commuting matrices). Prove that ifA andB are commuting
n× n matrices, then

eAeB = eA+B.

Proposition 15.13. For X ∈ Rn×n,

d

dt
etX = XetX = etXX.

Proof. Because each (i, j)-entry of the series for the exponential function etX is a
power series in t , it is possible to differentiate term by term [17, Theorem 8.1, p. 173].
Hence

d

dt
etX = d

dt

(
I + tX + 1

2! t
2X2 + 1

3! t
3X3 + · · ·

)
= X + tX2 + 1

2! t
2X3 + · · ·

= X

(
I + tX + 1

2! t
2X2 + · · ·

)
= XetX.
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In the second equality above, one could have factored outX as the second factor:

d

dt
etX = X + tX2 + 1

2! t
2X3 + · · ·

=
(
I + tX + 1

2! t
2X2 + · · ·

)
X = etXX. �	

The definition of the matrix exponential eX makes sense even if X is a complex
matrix. All the arguments so far carry over word for word; one merely has to interpret
|aij | not as absolute value, but as the modulus of a complex number aij .

15.4 The Trace of a Matrix

Define the trace of an n× n matrix X to be the sum of its diagonal entries:

tr(X) =
n∑
i=1

xii .

Lemma 15.14.
(i) For any two A,B ∈ Rn×n, tr(AB) = tr(BA).

(ii) For X ∈ Rn×n and A ∈ GL(n,R), tr(AXA−1) = tr(X).

Proof.
(i)

tr(AB) =
∑
i

(AB)ii =
∑
i

∑
k

aikbki,

tr(BA) =
∑
k

(BA)kk =
∑
k

∑
i

bkiaik.

(ii) Set B = XA−1 in (i). �	
The eigenvalues of an n × n matrix A are the roots of the polynomial equation

det(λI −A) = 0. Over the field of complex numbers, which is algebraically closed,
such an equation necessarily has n roots, counted with multiplicity. Thus, the advan-
tage of allowing complex numbers is that every n× n matrix, real or complex, has n
complex eigenvalues, counted with multiplicity, whereas a real matrix need not have
any real eigenvalue.

Example 15.15. The real matrix [
0 −1
1 0

]
has no real eigenvalues. It has two complex eigenvalues ±i.
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By a theorem from algebra, any complex matrix X can be triangularized; more
precisely, there exists a nonsingular complex matrix A so that AXA−1 is upper tri-
angular. Since the eigenvalues λ1, . . . , λn of X are the same as the eigenvalues of
AXA−1, the triangular matrix T must have the eigenvalues of X along its diagonal:⎡⎢⎣λ1 ∗

. . .

0 λn

⎤⎥⎦ .
Proposition 15.16. The trace of a matrix, real or complex, is equal to the sum of its
complex eigenvalues.

Proof. Suppose X has complex eigenvalues λ1, . . . , λn. Then there exists a nonsin-
gular matrix A ∈ GL(n,C) such that

AXA−1 =
⎡⎢⎣λ1 ∗

. . .

0 λn

⎤⎥⎦ .
By Lemma 15.14,

tr(X) = tr(AXA−1) =
∑

λi. �	

Proposition 15.17. For any X ∈ Rn×n, det(eX) = etrX.

Proof.
Case 1. Assume that X is upper triangular:

X =
⎡⎢⎣λ1 ∗

. . .

0 λn

⎤⎥⎦ .
Then

eX =
∑ 1

k!X
k =

∑ 1

k!

⎡⎢⎣λ
k
1 ∗
. . .

0 λkn

⎤⎥⎦ =
⎡⎢⎣e

λ1 ∗
. . .

0 eλn

⎤⎥⎦ .
Hence, det eX =∏

eλi = e
∑
λi = etrX.

Case 2. Given a general matrix X, with eigenvalues λ1, . . . , λn, we can find a
nonsingular complex matrix A so that

AXA−1 =
⎡⎢⎣λ1 ∗

. . .

0 λn

⎤⎥⎦ ,
an upper triangular matrix. Then
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eAXA
−1 = I + AXA−1 + 1

2! (AXA
−1)2 + 1

3! (AXA
−1)3 + · · ·

= I + AXA−1 + A
(

1

2!X
2
)
A−1 + A

(
1

3!X
3
)
A−1 + · · ·

= AeXA−1.

Hence

det eX = det(AeXA−1) = det(eAXA
−1
)

= etr(AXA−1) (by Case 1, since AXA−1 is upper triangular)

= etrX (by Lemma 15.14). �	
It follows from this proposition that the matrix exponential eX is always nonsingu-

lar because det(eX) = etrX is never 0. This is one reason why the matrix exponential
is so useful, for it allows us to write down explicitly a curve in GL(n,R)with a given
initial point and a given initial velocity. For example, c(t) = etX : R −→ GL(n,R)
is a curve in GL(n,R) with initial point I and initial velocity X, since

c(0) = e0X = e0 = I and c′(0) = d

dt
etX

∣∣∣∣
t=0

= XetX
∣∣∣
t=0

= X. (15.5)

15.5 The Differential of det at the Identity

Let det : GL(n,R) −→ R be the determinant map. The tangent space at I of GL(n,R)
is the vector space Rn×n and the tangent space to R at 1 is R. So

det∗,I : Rn×n −→ R.

Proposition 15.18. For any X ∈ Rn×n, det∗,I (X) = trX.

Proof. We use curves at I to compute the differential (Proposition 8.17). As a curve
c(t) with c(0) = I and c′(0) = X, we choose the matrix exponential c(t) = etX.
Then

det∗,I (X) = d

dt
det(etX)

∣∣∣∣
t=0

= d

dt
et trX

∣∣∣∣
t=0

= (trX)et trX
∣∣∣
t=0

= trX. �	

Problems

15.1. Product rule for matrix-valued functions
Let (a, b) be an open interval in R. Suppose that A : (a, b) −→ Rm×n and
B : (a, b) −→ Rn×p are differentiable maps. Prove that for t ∈ (a, b),
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d

dt
A(t)B(t) = A′(t)B(t)+ A(t)B ′(t),

where A′(t) = (dA/dt)(t).

15.2. Identity component of a Lie group
The identity component Ce of a Lie group G is the connected component of the
identity element e in G. Let µ and ι be the multiplication map and the inverse map
of G.

(a) For any x ∈ Ce, show that µ({x} × Ce) ⊂ Ce. (Hint: Apply Proposition A.44.)
(b) Show that ι(Ce) ⊂ Ce.
(c) Show that Ce is an open subset of G. (Hint: Apply Problem A.11.)
(d) Prove that Ce is itself a Lie group.

15.3.* Open subgroup of a connected Lie group
Prove that an open subgroup H of a connected Lie group G is equal to G.

15.4. Differential of the multiplication map
LetG be a Lie group with multiplication map µ : G×G −→ G, and let 
a : G −→ G

and rb : G −→ G be left and right multiplication by a and b ∈ G, respectively. Show
that the differential of µ at (a, b) ∈ G×G is

µ∗,(a,b)(Xa, Yb) = (rb)∗(Xa)+ (
a)∗(Yb) for Xa ∈ Ta(G), Yb ∈ Tb(G).

15.5. Differential of the inverse map
Let G be a Lie group with multiplication map µ : G × G −→ G, inverse map ι : G
−→ G, and identity element e. Show that the differential of the inverse map at a ∈ G,

ι∗,a : TaG −→ Ta−1G,

is given by

ι∗,a(Ya) = −(ra−1)∗(
a−1)∗Ya,

where (ra−1)∗ = (ra−1)∗,e and (
a−1)∗ = (
a−1)∗,a .

15.6.* Differential of the determinant map at A

Show that the differential of the determinant map det : GL(n,R) −→ R at A ∈
GL(n,R) is given by

det∗,A(AX) = (detA)(trX) for X ∈ Rn×n. (15.6)

15.7.* Special linear group
Use Problem 15.6 to show that 1 is a regular value of the determinant map. This
gives a quick proof that the special linear group SL(n,R) is a regular submanifold of
GL(n,R).
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15.8. General linear group
For r ∈ R× := R− {0}, let Mr be the n× n matrix

Mr =

⎡⎢⎢⎢⎣
r

1
. . .

1

⎤⎥⎥⎥⎦ = [re1 e2 · · · en],

where e1, . . . , en is the standard basis for Rn. Prove that the map

f : GL(n,R) −→ SL(n,R)× R×,
A �→ (AM1/ detA, detA),

is a diffeomorphism.

15.9. Orthogonal group
Show that the orthogonal groupO(n) is compact by proving the following two state-
ments.

(a) O(n) is a closed subset of Rn×n.
(b) O(n) is a bounded subset of Rn×n.

15.10. Special orthogonal group SO(2)

The special orthogonal group SO(n) is defined to be the subgroup ofO(n) consisting
of matrices of determinant 1. Show that every matrix A ∈ SO(2) can be written in
the form

A =
[
a c

b d

]
=
[

cos θ − sin θ
sin θ cos θ

]
for some real number θ . Then prove that SO(2) is diffeomorphic to the circle S1.

15.11. Unitary group
The unitary group U(n) is defined to be

U(n) = {A ∈ GL(n,C) | ĀT A = I },
where Ā denotes the complex conjugate of A, the matrix obtained from A by conju-
gating every entry of A: (Ā)ij = aij . Show that U(n) is a regular submanifold of
GL(n,C) and that dimU(n) = n2.

15.12. Special unitary group SU(2)

The special unitary group SU(n) is defined to be the subgroup of U(n) consisting of
matrices of determinant 1.

(a) Show that SU(2) can also be described as the set

SU(2) =
{[
a −b̄
b ā

]
∈ C2×2 | aā + bb̄ = 1

}
.

(Hint: Write out the condition A−1 = ĀT in terms of the entries of A.)
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(b) Show that SU(2) is diffeomorphic to the three-dimensional sphere

S3 = {(x1, x2, x3, x4) ∈ R4 | x2
1 + x2

2 + x2
3 + x2

4 = 1}.
15.13. A matrix exponential
Compute

exp

([
0 1
1 0

])
.

15.14. Complex symplectic group
Let J be the 2n× 2n matrix

J =
[

0 In
−In 0

]
,

where In denotes the n×n identity matrix. The complex symplectic group Sp(2n,C)
is defined to be

Sp(2n,C) = {A ∈ GL(2n,C) | AT JA = J }.
Show that Sp(2n,C) is a regular submanifold of GL(2n,C) and compute its dimen-
sion. (Hint: Mimic Example 15.4. It is crucial to choose a correct target space for
the map f (A) = AT JA.)

15.15. The compact symplectic group
The compact symplectic group Sp(n) is defined to be U(2n) ∩ Sp(2n,C). Let
f : U(2n) −→ U(2n) be the map f (A) = AT JA. Show that f has constant rank
on U(n) and prove that Sp(n) is a regular submanifold of U(2n). (Hint: Mimic
Example 11.3.)
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Lie Algebras

16.1 Tangent Space at the Identity of a Lie Group

Because of the existence of a multiplication, a Lie group is a very special kind of
manifold. Let 
g : G −→ G denote left multiplication by g ∈ G:


g(x) = gx.

Then 
g is a diffeomorphism with inverse 
g−1 . The diffeomorphism 
g takes the
identity e to the element g and induces an isomorphism of tangent spaces


g∗ = 
g∗,e : Te(G) −→ Tg(G).

Thus, if we can describe the tangent space Te(G) at the identity, then 
g∗Te(G) will
give a description of the tangent space Tg(G) at any point g ∈ G.

The tangent space TeG at the identity of a Lie group canonically has the structure
of a Lie algebra. This Lie algebra encodes in it much information about the Lie group.
The goal of this chapter is to define the Lie algebra structure on TeG and to identify
this Lie algebra for a few classical groups.

Example 16.1 (The tangent space to GL(n,R) at I ). Since GL(n,R) is an open
subset of Rn×n, the vector space of all n × n real matrices, the tangent space to
GL(n,R) at the identity I is Rn×n itself.

16.2 The Tangent Space to SL(n, R) at I

We begin by finding a condition that a tangent vectorX in TI (SL(n,R))must satisfy.
By Proposition 8.16 there is a curve c : (−ε, ε) −→ SL(n,R) with c(0) = I and
c′(0) = X. Being in SL(n,R), this curve satisfies

det c(t) = 1
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for all t in the domain (−ε, ε). We now differentiate both sides with respect to t and
evaluate at t = 0. On the left-hand side,

d

dt
det(c(t))

∣∣∣∣
t=0

= (det ◦ c)∗
(
d

dt

∣∣∣∣
0

)
= det∗,I

(
c∗
d

dt

∣∣∣∣
0

)
(by the chain rule)

= det∗,I (c′(0))
= det∗,I (X)
= tr(X) (by Proposition 15.18)

Thus,

tr(X) = d

dt
1

∣∣∣∣
t=0

= 0.

So the tangent space TI (SL(n,R)) is contained in the subspace V of Rn×n defined by

V = {X ∈ Rn×n | trX = 0}.
Since dim V = n2 − 1 = dim TI (SL(n,R)), the two spaces must be equal.

Proposition 16.2. The tangent space TI (SL(n,R)) is the subspace of Rn×n con-
sisting of all n× n matrices of trace 0.

16.3 The Tangent Space to O(n) at I

LetX be a tangent vector toO(n) at the identity I . Choose a curve c(t) inO(n)with
c(0) = I and c′(0) = X. Since c(t) is in O(n),

c(t)T c(t) = I.

Differentiating both sides with respect to t gives

c′(t)T c(t)+ c(t)T c′(t) = 0.

Evaluating at t = 0 gives
XT +X = 0.

Thus, X is a skew-symmetric matrix.
LetKn be the space of all n× n real skew-symmetric matrices. For example, for

n = 3, these are matrices of the form⎡⎣ 0 a b

−a 0 c

−b −c 0

⎤⎦ , where a, b, c,∈ R.
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The diagonal entries of such a matrix are all 0 and the entries below the diagonal are
determined by those above the diagonal. So

dimKn = n2 − # diagonal entries

2

= 1

2
(n2 − n).

We have shown that
TI (O(n)) ⊂ Kn. (16.1)

By an earlier computation (15.2),

dim TI (O(n)) = dimO(n) = n2 − n
2

.

Since the two vector spaces in (16.1) have the same dimension, equality holds
in (16.1).

16.4 Left-Invariant Vector Fields on a Lie Group

Let X be a vector field on a Lie group G. We do not assume X to be C∞. For
any g ∈ G, because left multiplication 
g : G −→ G is a diffeomorphism, the push-
forward 
g∗X is a well-defined vector field on G. We say that the vector field X is
left-invariant if


g∗X = X

for every g ∈ G; this means for any h ∈ G,


g∗(Xh) = Xgh.

In other words, a vector field X is left-invariant if and only if it is 
g-related to itself
for all g ∈ G.

Clearly, a left-invariant vector field X is completely determined by its value Xe
at the identity, since

Xg = 
g∗(Xe). (16.2)

Conversely, given a tangent vectorXe ∈ Te(G) we can define a vector fieldX on
G by (16.2). So defined, the vector field X is left-invariant, since


g∗(Xh) = 
g∗
h∗Xe
= (
g ◦ 
h)∗Xe (by the chain rule)

= (
gh)∗(Xe)
= Xgh.

Thus, there is a one-to-one correspondence
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Te(G)↔ L(G) := {left-invariant vector fields on G}, (16.3)

Xe ↔ X, with Xg = 
g∗(Xe).

IfXg = 
g∗(Xe) for all g ∈ G, we callX the left-invariant vector field onG generated
by Xe. The set L(G) of left-invariant vector fields on G is obviously a vector space
and the correspondence above is an isomorphism of vector spaces.

Example 16.3 (Left-invariant vector fields on R). On the Lie group R, the group
operation is addition and the identity element is 0. So “left multiplication’’ 
g is
actually addition:


g(x) = g + x.
Let us compute 
g∗(d/dx|0). Since 
g∗(d/dx|0) is a tangent vector at g, it is a scalar
multiple of d/dx|g:


g∗
(
d

dx

∣∣∣∣
0

)
= a

d

dx

∣∣∣∣
g

. (16.4)

To evaluate a, apply both sides of (16.4) to x:

a = a
d

dx

∣∣∣∣
g

x = 
g∗
(
d

dx

∣∣∣∣
0

)
x = d

dx

∣∣∣∣
0
x ◦ 
g = d

dx

∣∣∣∣
0
g + x = 1.

Thus,


g∗
(
d

dx

∣∣∣∣
0

)
= d

dx

∣∣∣∣
g

.

This shows that d/dx is a left-invariant vector field on R. Therefore, the left-invariant
vector fields on R are constant multiples of d/dx.

Example 16.4 (Left-invariant vector fields on GL(n,R)). Since GL(n,R) is an open
subset of Rn×n, at any g ∈ GL(n,R) there is a canonical identification of the tangent
space Tg(GL(n,R)) with Rn×n:

∑
aij

∂

∂xij

∣∣∣∣
g

↔ [aij ]. (16.5)

Let B = ∑
bij ∂/∂xij |I ∈ TI (GL(n,R)) and let B̃ be the left-invariant vector field

on GL(n,R) generated by B. By Example 8.18,

B̃g = (
g)∗B ↔ gB

under the identification (16.5). In terms of the standard basis ∂/∂xij |g ,

B̃g =
∑
i,j

(gB)ij
∂

∂xij

∣∣∣∣
g

=
∑
i,j

(∑
k

gikbkj

)
∂

∂xij

∣∣∣∣
g

.

Proposition 16.5. Any left-invariant vector field X on a Lie group G is C∞.
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Proof. By Proposition 14.1 it suffices to show that for any C∞ function f on G,
the function Xf is also C∞. Choose a C∞ curve c : R −→ G such that c(0) = e

and c′(0) = Xe. If g ∈ G, then gc(t) is a curve at g with initial vector Xg , for
gc(0) = ge = g and

(gc)′(0) = 
g∗c′(0) = 
g∗Xe = Xg.

By Proposition 8.17,

(Xf )(g) = Xgf = d

dt

∣∣∣∣
t=0

f (gc(t)).

Now the function f (gc(t)) is a composition of C∞ functions

G× R
1×c−−→ G×G µ−→ G

f−→ R,

(g, t) �→ (g, c(t)) �→ gc(t) �→ f (gc(t));
as such, it is C∞. Its derivative with respect to t ,

F(g, t) := d

dt
f (gc(t)),

is therefore also C∞. Since (Xf )(g) is the composition of C∞ functions,

G −→ G× R
F−→ R,

g �→ (g, 0) �→ F(g, 0) = d
dt

∣∣
t=0 f (gc(t)),

it is a C∞ function on G. This proves that X is a C∞ vector field on G. �	
It follows from this proposition that the vector spaceL(G) of left-invariant vector

fields on G is a subspace of the vector space X(G) of all C∞ vector fields on G.

Proposition 16.6. If X and Y are left-invariant vector fields on G, then so is [X, Y ].
Proof. For any g in G, X is 
g-related to X and Y is 
g-related to Y . By Proposi-
tion 14.19, [X, Y ] is 
g-related to [X, Y ]. �	

16.5 The Lie Algebra of a Lie Group

A Lie subalgebra of a Lie algebra g is a vector subspace h ⊂ g that is closed under
the bracket [ , ]. By Proposition 16.6, the space L(G) of left-invariant vector fields
on a Lie group G is closed under the Lie bracket [ , ] and thus is a Lie subalgebra of
the Lie algebra X(G), the Lie algebra of all C∞ vector fields on G.

Since the tangent space Te(G) is isomorphic to L(G) as a vector space, it inherits
a Lie bracket from L(G). For A ∈ TeG, denote by Ã the left-invariant vector field
generated by A:

Ãg = 
g∗(A) for any g ∈ G.
If A,B ∈ TeG, then their Lie bracket [A,B] ∈ TeG is defined to be

[A,B] = [Ã, B̃]e.
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Proposition 16.7. If A,B ∈ TeG and Ã, B̃ are the left-invariant vector fields they
generate, then

[Ã, B̃] = [A,B] .̃
Proof. By Proposition 16.6, [Ã, B̃] is a left-invariant vector field. Thus both [Ã, B̃]
and [A,B]˜are left-invariant vector fields whose value at e is [A,B]. Since a left-
invariant vector field is determined by its value at e, the two vector fields are equal.

�	
With the Lie bracket [ , ], the tangent space Te(G) becomes a Lie algebra, called

the Lie algebra of the Lie groupG. As a Lie algebra, Te(G) is usually denoted by g.

16.6 The Lie Bracket on gl(n, R)

For the general linear group GL(n,R), the tangent space at the identity I can be
identified with the vector space Rn×n of all n × n real matrices. We identified a
tangent vector in TI (GL(n,R)) with a matrix A ∈ Rn×n via

∑
aij

∂

∂xij

∣∣∣∣
I

←→ [aij ]. (16.6)

The tangent space TI GL(n,R)with its Lie algebra structure is denoted gl(n,R). Let
Ã be the left-invariant vector field on GL(n,R) generated by A. Then on the Lie
algebra gl(n,R) we have the Lie bracket [A,B] = [Ã, B̃]I coming from the Lie
bracket of left-invariant vector fields. In the next proposition, we identify the Lie
bracket in terms of matrices.

Proposition 16.8. Let

A =
∑

aij
∂

∂xij

∣∣∣∣
I

, B =
∑

bij
∂

∂xij

∣∣∣∣
I

∈ TI (GL(n,R)).

If

[A,B] = [Ã, B̃]I =
∑

cij
∂

∂xij

∣∣∣∣
I

, (16.7)

then
cij =

∑
k

aikbkj − bikakj .

Thus, if derivations are identified with matrices via (16.6), then

[A,B] = AB − BA.

Proof. Applying both sides of (16.7) to xij ,
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cij = [Ã, B̃]I xij
= ÃI B̃xij − B̃I Ãxij
= AB̃xij − BÃxij (because ÃI = A, B̃I = B).

So it is necessary to find a formula for the function B̃xij .
In Example 16.4 we found that the left-invariant vector field B̃ on GL(n,R) is

given by

B̃g =
∑
i,j

(gB)ij
∂

∂xij

∣∣∣∣
g

at g ∈ GL(n,R).

Hence,
B̃gxij = (gB)ij =

∑
k

gikbkj =
∑
k

bkj xik(g).

This gives the formula for B̃xij as

B̃xij =
∑
k

bkj xik.

It follows that

AB̃xij =
∑
p,q

apq
∂

∂xpq

∣∣∣∣
I

(∑
k

bkj xik

)
=

∑
p,q,k

apqbkj δipδkq

=
∑
k

aikbkj = (AB)ij .

Interchanging A and B gives

BÃxij =
∑
k

bikakj = (BA)ij .

Therefore,
cij =

∑
k

aikbkj − bikakj = (AB − BA)ij . �	

16.7 The Push-Forward of a Left-Invariant Vector Field

As we noted in Section 14.6, if F : N −→ M is a C∞ map of manifolds and X is a
C∞ vector field onN , the push-forward F∗X is in general not defined except when F
is a diffeomorphism. However, by the correspondence between left-invariant vector
fields on a Lie group and tangent vectors at the identity of the Lie group, one can
push forward a left-invariant vector field under a C∞ map of Lie groups. We show
this now.

Recall that ifH is a Lie group and h ∈ H , then 
h : H −→ H is left multiplication
by h. From Section 16.4, every left-invariant vector field on a Lie group H is of the
form Ã for some A ∈ TeH , with Ãh = (
h)∗A.
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Definition 16.9. Let F : H −→ G be a C∞ map of Lie groups. Define F∗ : L(H)
−→ L(G) by

F∗(Ã) = (F∗A)̃

for all A ∈ TeH .

Definition 16.10. A map F : H −→ G between two Lie groups H and G is a Lie
group homomorphism if it is a C∞ map and a group homomorphism.

The group homomorphism condition means that for all h, x ∈ H ,

F(hx) = F(h)F (x). (16.8)

This may be rewritten in functional notation as

F ◦ 
h = 
F(h) ◦ F for all h ∈ H. (16.9)

Let eH and eG be the identity elements ofH andG, respectively. Takingh and x in
(16.8) to be the identity eH , it follows that F(eH ) = eG. So a group homomorphism
always maps the identity to the identity.

Proposition 16.11. If F : H −→ G is a Lie group homomorphism and A ∈ TeH is a
tangent vector of H at the identity e of H , then the left-invariant vector field F∗Ã on
G is F -related to the left-invariant vector field Ã on H .

Proof. For h ∈ H ,

F∗(Ãh) = F∗(
h∗A) (definition of Ã)

= (F ◦ 
h)∗A (chain rule)

= (
F(h) ◦ F)∗A (F is a Lie group homomorphism)

= 
F(h)∗F∗A (chain rule again)

= ((F∗A)̃ )F(h) (definition of ( )̃ )

= (F∗Ã)F (h). �	

16.8 The Differential as a Lie Algebra Homomorphism

Proposition 16.12. If F : H −→ G is a Lie group homomorphism, then its differential
at the identity,

F∗ = F∗,e : TeH −→ TeG,

is a Lie algebra homomorphism, i.e., a linear map such that for all A,B ∈ TeH ,

F∗[A,B] = [F∗A,F∗B].
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Proof. By Proposition 16.11, the vector field F∗Ã on G is F -related to the vector
field Ã on H , and the vector field F∗B̃ is F -related to B̃ on H . Hence, the bracket
[F∗Ã, F∗B̃] on G is F -related to the bracket [Ã, B̃] on H (Proposition 14.19). This
means that

F∗
(
[Ã, B̃]e

)
= [F∗Ã, F∗B̃]F(e) = [F∗Ã, F∗B̃]e.

The left-hand side of this equality is F∗[A,B], while the right-hand side is

[F∗Ã, F∗B̃]e = [(F∗A)̃, (F∗B)̃ ]e (definition of F∗Ã)
= [F∗A,F∗B] (definition of [ , ] on TeG).

Equating the two sides gives

F∗[A,B] = [F∗A,F∗B]. �	

Suppose H is a Lie subgroup of a Lie group G, with inclusion map i : H −→ G.
Since i is an immersion, its differential

i∗ : TeH −→ TeG

is injective. By Proposition 16.12, for X, Y ∈ TeH ,

i∗([X, Y ]TeH ) = [i∗X, i∗Y ]TeG. (16.10)

This shows that if TeH is identified with a subspace of TeG via i∗, then the bracket
on TeH is the restriction of the bracket on TeG to TeH . Thus, the Lie algebra of a
Lie subgroup H may be identified with a Lie subalgebra of the Lie algebra of G.

In general, the Lie algebras of the classical groups are denoted by gothic letters.
For example, the Lie algebras of GL(n,R), SL(n,R), O(n), and U(n) are denoted
gl(n,R), sl(n,R), o(n), and u(n), respectively. By (16.10) and Proposition 16.8, the
Lie algebra structures on sl(n,R), o(n), and u(n) are given by

[A,B] = AB − BA, as on gl(n,R).

Remark 16.13. A fundamental theorem in Lie group theory asserts the existence of
a one-to-one correspondence between the connected Lie subgroups of a Lie group
G and the Lie subalgebras of its Lie algebra g [19, Theorem 3.19, Corollary (a),
p. 95]. For the torus R2/Z2, the Lie algebra g is R2 and the one-dimensional Lie
subalgebras are all the lines through the origin. According to the theorem, the one-
dimensional connected Lie subgroups of the torus are the images of all the lines
through the origin. It is because of this theorem that a Lie subgroup is defined to
be an immersed submanifold. In the example of the torus, the one-dimensional
embedded Lie subgroups correspond to only the lines with rational slope through the
origin in R2, not to all one-dimensional subalgebras of the Lie algebra.
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Problems

16.1. Skew-Hermitian matrices
A complex matrix X ∈ Cn×n is said to be skew-Hermitian if its transpose conjugate
X̄T = −X. Let V be the vector space of n× n skew-Hermitian matrices. Show that
dim V = n2.

16.2. Tangent space at I of a unitary group
Show that the tangent space at the identity I of the unitary group U(n) is the vector
space of n× n skew-Hermitian matrices.

16.3. Lie algebra of a complex symplectic group

(a) Show that the tangent space at the identity I of Sp(2n,C) ⊂ GL(2n,C) is the
vector space of all 2n× 2n complex matrices X such that JX is symmetric.

(b) Calculate the dimension of Sp(2n,C).

16.4. Lie algebra of a compact symplectic group
Refer to Problem 15.15 for the definition and notations concerning the compact sym-
plectic group Sp(n).

(a) Show that if X ∈ TI (Sp(n)), then X is skew-Hermitian and JX is symmetric.
(b) Let V be the vector space of n × n complex matrices X such that X is skew-

Hermitian and JX is symmetric. ForX ∈ V , prove that the curve c(t) = etX lies
in Sp(n).

(c) Prove that TI (Sp(n)) = V .
(d) Suppose a, b, c, d ∈ Cn×n and

X =
[
a b

c d

]
∈ C2n×2n.

Show that X ∈ V iff

X =
[
a b

−b̄ −a
]
,

with a skew-Hermitian and b symmetric.
(e) Compute the dimension of Sp(n) by computing dim V .

16.5. Left-invariant vector fields on Rn

Find the left-invariant vector fields on Rn.

16.6. Tangent spaces to GL(n, R)

Show that the tangent space to GL(n,R) at a point A is the left translate by A of the
Lie algebra gl(n,R).

16.7. Integral curves of a left-invariant vector field
Let A ∈ gl(n,R) and let Ã be the left-invariant vector field on GL(n,R) generated
by A. Show that c(t) = etA is the integral curve of Ã starting at A. Find the integral
curve of Ã starting at g ∈ GL(n,R).
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16.8. Parallelizable manifolds
A manifold whose tangent bundle is trivial is said to be parallelizable. If M is a
manifold of dimension n, show that parallelizability is equivalent to the existence of
a smooth frame X1, . . . , Xn on M .

16.9. Parallelizability of a Lie group
Show that every Lie group is parallelizable.

16.10. The adjoint representation
Let G be a Lie group of dimension n with Lie algebra g.

(a) For each a ∈ G, the differential at the identity of the conjugation map c(a) := 
a ◦
ra−1 : G −→ G is a linear isomorphism c(a)∗ : g −→ g. Hence, c(a)∗ ∈ GL(g).
Show that the map Ad : G −→ GL(g) defined by Ad(a) = c(a)∗, is a group
homomorphism. It is called the adjoint representation of the Lie group G.

(b) Show that Ad : G −→ GL(g) is C∞.
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Differential 1-Forms

Let M be a smooth manifold and p a point in M . The cotangent space of M at p,
denoted by T ∗p (M) or T ∗pM , is the dual space of the tangent space TpM . An element
of the cotangent space T ∗pM is called a covector at p. Thus, a covector ωp at p is a
linear function

ωp : TpM −→ R.

Acovector field , a differential 1-form, or more simply a 1-form onM , is a function
that assigns to each point p in M a covector at p. In this sense it is dual to a vector
field on M , which assigns to each point in M a tangent vector at p. The great utility
of differential forms in manifold theory arises from the fact that they can be pulled
back under a map. This is in contrast to vector fields, which in general cannot be
pushed forward under a map.

17.1 The Differential of a Function

Definition 17.1. If f is a C∞ function on a manifold M , its differential is defined to
be the 1-form df on M such that for any p ∈ M and Xp ∈ TpM ,

(df )p(Xp) = Xpf.

In Section 8.2 we encountered another notion of the differential, for a map between
manifolds. Let us compare the two notions of the differential.

Proposition 17.2. If f : M −→ R is a C∞ function, then for p ∈ M and Xp ∈ TpM ,

f∗(Xp) = (df )p(Xp)
∂

∂x

∣∣∣∣
f (p)

.

Proof. Since f∗(Xp) ∈ Tf (p)R, there is a real number a such that

f∗(Xp) = a
∂

∂x

∣∣∣∣
f (p)

. (17.1)
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To evaluate a, apply both sides of (17.1) to x:

a = f∗(Xp)(x) = Xp(x ◦ f ) = Xpf = (df )p(Xp). �	
This proposition shows that under the canonical identification of the tangent space

Tf (p)R with R via

a
∂

∂x

∣∣∣∣
f (p)

↔ a,

f∗ is the same as df . For this reason, we are justified in calling both of them the
differential of f .

17.2 Local Expression for a Differential 1-Form

Let (U, φ) = (U, x1, . . . , xn) be a coordinate chart on a manifold M . Then the
differentials dx1, . . . , dxn are 1-forms on U .

Proposition 17.3. At each point p ∈ U , the covectors (dx1)p, . . . , (dx
n)p form a

basis for the cotangent space T ∗pM dual to the basis (∂/∂x1)p, . . . , (∂/∂x
n)p for the

tangent space TpM .

Proof. The proof is just like the Euclidean case (Proposition 4.1):

(dxi)p

(
∂

∂xj

∣∣∣∣
p

)
= ∂

∂xj

∣∣∣∣
p

xi = δij . �	

Thus, every 1-form ω on U can be written as a linear combination

ω =
∑

ai dx
i,

where the coefficients ai are functions on U .
In particular, if f is a C∞ function on M , then the 1-form df , when restricted to

U , must be a linear combination

df =
∑

ai dx
i .

To find aj , we apply the usual trick of evaluating both sides on ∂/∂xj :

aj = df

(
∂

∂xj

)
= ∂f

∂xj
.

This gives the local expression for df :

df =
∑ ∂f

∂xi
dxi . (17.2)
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17.3 The Cotangent Bundle

The underlying set of the cotangent bundle T ∗M of a manifoldM is the disjoint union
of the cotangent spaces at all the points of M:

T ∗M :=
∐
p∈M

T ∗pM =
⋃
p∈M

{p} × T ∗pM.

Mimicking the construction of the tangent bundle, we can give T ∗M a topology as
follows. If (U, φ = (x1, . . . , xn)) is a chart on M and p ∈ U , then each ωp ∈ T ∗pM
can be written uniquely as a linear combination

ωp =
∑

ci(ωp) dx
i |p.

This gives rise to a bijection

φ̃ : T ∗U −→ φ(U)× Rn (17.3)

(p, ωp ∈ T ∗pM) �→ (φ(p), c1(ωp), . . . , cn(ωp)).

Using this bijection, we can transfer the topology of φ(U)× Rn to T ∗U .
Now let B be the collection of all open subsets of T ∗U , as U varies over all

charts in the maximal atlas of M . As in Section 12.1, B satisfies the conditions for a
collection of subsets of T ∗M to be a basis. We give T ∗M the topology generated by
the basis B. Just as for the tangent bundle, with the maps φ̃ of (17.3) as coordinate
maps, T ∗M becomes a C∞ manifold and in fact, a vector bundle of rank n over
M , justifying its name as the cotangent bundle. It has a natural projection π : T ∗M
−→ M mapping (p, ωp) to p.

In terms of the cotangent bundle, a 1-form onM is simply a section of the cotangent
bundle T ∗M , i.e., it is a map ω : M −→ T ∗M such that π ◦ ω = 1M , the identity map
on M . We say that a 1-form ω is C∞ if it is C∞ as a map: M −→ T ∗M .

17.4 Characterization of C∞ 1-Forms

By definition a 1-form ω on an open set U in a manifold M is C∞ if it is C∞ as a
section of the cotangent bundle T ∗M over U . The following two propositions give
alternate characterizations of a C∞ 1-form.

Proposition 17.4. A 1-form ω on a manifold M is C∞ if and only if either of the
following conditions holds:

(i) for every point p ∈ M , there is a chart (U, x1, . . . , xn) about p such that if
ω =∑

ai dx
i on U , then the functions ai are C∞ on U ;

(ii) for any chart (U, x1, . . . , xn) on M , if ω = ∑
ai dx

i on U , then the functions
ai are C∞ on U .
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Proof. A chart (U, φ) on M gives rise to a chart (T ∗U, φ̃) on the cotangent bundle
T ∗M where

φ̃ : T ∗U −→ φ(U)× Rn,

(q,
∑

ci (dx
i)q) �→ (φ(q), c1, . . . , cn).

In this chart,
(φ̃ ◦ ω)q = (φ(q), c1(ωq), . . . , cn(ωq)).

If ω =∑
ai dx

i , then ai(q) = ci(ωq). Note that the ci’s are function on T ∗U , while
the ai’s are functions onU . By the definition of aC∞ map, the sectionω : U −→ T ∗U
is C∞ if and only if the functions a1, . . . , an are C∞ on U . Now (i) follows from the
definition of a C∞ map (Definition 6.3), and (ii) follows from Problem 6.6. �	

As a corollary, if f is a C∞ function on M , then df is a C∞ 1-form, since the
coefficients ∂f/∂xi are all C∞.

Proposition 17.5. A 1-form ω on a manifold M is C∞ if and only if for every C∞
vector field X on M , the function ω(X) is C∞ on M .

Proof.
(⇒) Suppose ω is a C∞ 1-form and X is a C∞ vector field on M . For any p ∈ M ,
choose a coordinate neighborhood (U, x1, . . . , xn) about p. Then ω =∑

ai dx
i and

X =∑
bj ∂/∂xj for C∞ functions ai, bj on U . On U

ω(X) =
(∑

ai dx
i
)(∑

bj
∂

∂xj

)
=
∑

aib
i,

which isC∞ at p. Since p is an arbitrary point ofM , the function ω(X) isC∞ onM .

(⇐) Suppose ω is a 1-form on M such that the function ω(X) is C∞ for every C∞
vector fieldX onM . For p ∈ M , choose a coordinate neighborhood (U, x1, . . . , xn)

about p. Then ω =∑
ai dx

i on U .
Fix an integer j , 1 ≤ j ≤ n. We can extend the C∞ vector field ∂/∂xj on U to a

C∞ vector field X on M that agrees with ∂/∂xj in a neighborhood of p, as follows.
Let σ : M −→ R be a C∞ bump function which is identically 1 on a neighborhood V
of p and which has support contained in U . Define

Xq =

⎧⎪⎨⎪⎩σ(q)
∂

∂xj

∣∣∣∣
q

for q ∈ U,
0 for q /∈ U.

ThenX is C∞ onM and so by hypothesis, ω(X) is C∞ onM . Restricted to the open
set V ,

ω(X) =
(∑

ai dx
i
)( ∂

∂xj

)
= aj .

This proves that aj is C∞ on the coordinate chart (V , x1, . . . , xn). By Proposi-
tion 17.4, the 1-form ω is C∞ on M . �	
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17.5 Pullback of 1-forms

Just as the differential of a smooth map F : N −→ M pushes forward a tangent vector
at a point p ∈ N , so the codifferential (the dual of the differential)

F ∗ : T ∗F(p)M −→ T ∗pN

pulls back a covector at the point F(p).
However, while vector fields on N in general cannot be pushed forward to M ,

every covector field onM can be pulled back to N . If ω is a 1-form onM , we define
its pullback F ∗ω to be the 1-form on N given by

(F ∗ω)p(Xp) = ωF(p)(F∗Xp)

for any p ∈ N and Xp ∈ TpN .
Note that (F ∗ω)p is simply the image of the covector ωF(p) under the codiffer-

ential F ∗ : T ∗F(p)M −→ T ∗pN .

Problems

17.1. A 1-form on R2 − {(0, 0)}
Denote the standard coordinates on R2 by x, y, and let

X = x
∂

∂x
+ y ∂

∂y
and Y = −y ∂

∂x
+ x ∂

∂y

be vector fields on R2. Find a 1-form ω on R2 − {(0, 0)} such that ω(X) = 1 and
ω(Y ) = 0.

17.2. F-linearity of a 1-form
Let ω be a C∞ 1-form on a manifold M . Show that if f is a C∞ function and X a
C∞ vector field on M , then

ω(fX) = fω(X).

Thus, a 1-form is linear over the C∞ functions.

17.3. Transition formula for 1-forms
Suppose (U, x1, . . . , xn) and (V , y1, . . . , yn) are two charts on M with nonempty
overlap U ∩ V . Then a C∞ 1-form ω on U ∩ V has two different local expressions:

ω =
∑

aj dx
j =

∑
bi dy

i .

Find a formula for aj in terms of bi .
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Differential k-Forms

We now generalize the construction of 1-forms on a manifold to k-forms. Recall that
a k-tensor on a vector space V is a k-linear function

f : V × · · · × V −→ R.

The k-tensor f is alternating if for any permutation σ ∈ Sk ,
f (vσ(1), . . . , vσ(k)) = (sgn σ)f (v1, . . . , vk). (18.1)

When k = 1, the only element of the permutation group S1 is the identity permutation.
So for 1-tensors the condition (18.1) is vacuous and all 1-tensors are alternating (and
symmetric too). An alternating k-tensor on V is also called a k-covector on V.

Denote by Ak(V ) the vector space of alternating k-tensors on V . From Sec-
tion 3.10, if α1, . . . , αn is a basis for the 1-tensors on V , then a basis for Ak(V ) is

αi1 ∧ · · · ∧ αik , 1 ≤ i1 < · · · < ik ≤ n.
We apply this construction to the tangent space TpM of a manifoldM at a point p.

The vector spaceAk(TpM), usually denoted
∧k
(T ∗pM), is the space of all alternating

k-tensors on the tangent space TpM . A k-covector field , a differential k-form, or
simply a k-form on M is a function ω that assigns to each point p ∈ M a k-covector
ωp ∈∧k

(T ∗pM). An n-form on a manifold of dimension n is also called a top form.

Example 18.1. On Rn, at each point p there is a standard basis for the tangent space
Tp(R

n):
∂

∂r1

∣∣∣∣
p

, . . . ,
∂

∂rn

∣∣∣∣
p

.

Let (dr1)p, . . . , (dr
n)p be the dual basis; this means that

(dri)p

(
∂

∂rj

∣∣∣∣
p

)
= δij .
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As p varies over points in Rn, we get differential forms dr1, . . . , drn on Rn.
By Proposition 3.29 a basis for the alternating k-tensors in

∧k
(T ∗pRn) is

(dri1)p ∧ · · · ∧ (drik )p, 1 ≤ i1 < · · · < ik ≤ n.

If ω is a k-form on Rn, then at each point p ∈ Rn, ωp is a linear combination:

ωp =
∑

ai1···ik (p) (dri1)p ∧ · · · ∧ (drik )p.

Omitting the point p, we write

ω =
∑

ai1···ik dri1 ∧ · · · ∧ drik .

In this expression the coefficients ai1···ik are functions on Rn because they vary with
the point p. To simplify the notation, we introduce the multi-index I = (i1, . . . , ik)

and write

ω =
∑

aI dr
I , 1 ≤ i1 < · · · < ik ≤ n,

where drI stands for dri1 ∧ · · · ∧ drik .

18.1 Local Expression for a k-Form

Suppose (U, x1, . . . , xn) is a coordinate chart on a manifoldM . We have already de-
fined the 1-forms dx1, . . . , dxn onU . Since at each pointp ∈ U , (dx1)p, . . . , (dx

n)p

is a basis for T ∗pM , by Proposition 3.29 a basis for
∧k
(T ∗pM) is the set

(dxi1)p ∧ · · · ∧ (dxik )p, 1 ≤ i1 < · · · < ik ≤ n.

Thus, locally a k-form on U will be a linear combination ω = ∑
aI dx

I , where the
I are multi-indices and the aI are functions on U .

Exercise 18.2 (Transition formula for a 2-form). We suppose (U, x1, . . . , xn) and
(V , y1, . . . , yn) are two coordinate charts on M with U ∩ V �= ∅. Then a C∞ 2-form ω

on U ∩ V has two local expressions:

ω =
∑
i<j

aij dx
i ∧ dxj =

∑
k<


bk
 dy
k ∧ dy
.

Find the formula for aij in terms of bk
 and the coordinate functions x1, . . . , xn, y1, . . . , yn.
(Hint: If ω and τ are 1-forms and X and Y are vector fields, then by Example 3.20,
ω ∧ τ(X, Y ) = ω(X)τ(Y )− ω(Y )τ(X).)
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18.2 The Bundle Point of View

If V is a vector space, another common notation for the space Ak(V ) of alternating
k-linear functions on V is

∧k
(V ∗). Thus,∧0
(V ∗) = A0(V ) = R,∧1
(V ∗) = A1(V ) = V ∗,∧2
(V ∗) = A2(V ), and so on.

To better understand differential forms, we mimic the construction of the tangent
and cotangent bundles and form the set∧k

(T ∗M) =∐
p∈M

∧k
(T ∗pM) =

∐
p∈M Ak(TpM) =

⋃
p∈M{p} × Ak(TpM)

of all alternating k-tensors at all points ofM . This set is called the kth exterior power
of the cotangent bundle. If (U, φ) is a coordinate chart onM , then there is a bijection∧k

(T ∗U) =⋃
p∈U {p} ×

∧k
(T ∗pU) � φ(U)× R(

n
k),

(p, ωp) �→ (φ(p), {aI (ωp)}I ),

where ωp = ∑
aI (ωp) dx

I on U and I = (1 ≤ i1 < · · · < ik ≤ n). In this way
we can give

∧k
(T ∗U) and hence

∧k
(T ∗M) a topology and even a differentiable

structure. The details are just like the construction of the tangent bundle, so we omit
them. The upshot is that

π : ∧k
(T ∗M) −→ M

is a C∞ vector bundle of rank
(
n
k

)
, where n = dimM , and that a differential k-form

is simply a section of this bundle. Evidently, we define a k-form to be C∞ if it is C∞
as a section of the bundle

∧k
(T ∗M).

Notation. If E −→ M is a C∞ vector bundle, then the vector space of C∞ sections
of E is denoted �(E) or �(M,E). The vector space of all C∞ k-forms on M is
usually denoted �k(M). Thus,

�k(M) = �(
∧k
(T ∗M)) = �(M,

∧k
(T ∗M)).

18.3 C∞ k-Forms

There are several equivalent characterizations of C∞ k-forms.

Proposition 18.3. Let ω be a k-form on a manifoldM . The following are equivalent:

(i) The k-form ω is C∞ on M .
(ii) For any coordinate chart (U, x1, . . . , xn) on M , if ω = ∑

aI dx
I , then the

coefficients aI are all C∞ functions on U .
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(iii) For any k smooth vector fields X1, . . . , Xk on M , the function ω(X1, . . . , Xk)

is C∞ on M .

Since the proofs are similar to those for 1-forms, we omit them.

Example 18.4. We defined the 0-tensors and the 0-covectors to be the constants, that
is, L0(V ) = A0(V ) = R. Therefore, the bundle

∧0
(T ∗M) is simply M × R and

a 0-form on M is a function on M . A C∞ 0-form on M is thus the same as a C∞
function on M . In our new notations,

�0(M) = �
(∧0

(T ∗M)
) = �(M × R) = C∞(M).

18.4 Pullback of k-Forms

Just as one can pull back 1-forms under a smooth map F : N −→ M , so one can pull
back k-forms as well. For 0-forms, i.e., functions, the pullback F ∗ is defined to be
the composition:

N
F−→ M

f−→ R, F ∗(f ) = f ◦ F ∈ �0(N).

For a k-form ω on M , we define its pullback F ∗ω, a k-form on N , as follows: if
p ∈ N and v1, . . . , vk ∈ TpN , then

(F ∗ω)p(v1, . . . , vk) = ωF(p)(F∗v1, . . . , F∗vk).

In a sense this is also a composition:

TpN × · · · × TpN F∗−→ TF(p)M × · · · × TF(p)M ω−→ R.

Proposition 18.5 (Linearity of the pullback). Let F : N −→ M be a C∞ map. If
ω, τ are k-forms on M and a is a real number, then

(i) F ∗(ω + τ) = F ∗ω + F ∗τ ;
(ii) F ∗(aω) = aF ∗ω.

Proof. Problem 18.1. �	

18.5 The Wedge Product

We learned in Chapter 3 that if ω and τ are alternating tensors of degree k and 
,
respectively on a vector space V , then their wedge product ω ∧ τ is the alternating
(k + 
)-tensor on V defined by

ω ∧ τ(v1, . . . , vk+
) =
∑

(sgn σ)ω(vσ(1), . . . , vσ(k))τ (vσ(k+1), . . . , vσ(k+
)),
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where σ runs over all (k, 
)-shuffles of 1, . . . , k + 
 and all vi ∈ V . For example, if
ω and τ are 1-tensors, then

ω ∧ τ(v1, v2) = ω(v1)τ (v2)− ω(v2)τ (v1).

The wedge product extends pointwise to differential forms on a manifold: if ω is
a k-form and τ an 
-form on M , define ω ∧ τ to be the (k + 
)-form such that

(ω ∧ τ)p = ωp ∧ τp
at all p ∈ M .

Proposition 18.6. If ω and τ are C∞ forms on M , then ω ∧ τ is also C∞.

Proof. Let (U, x1, . . . , xn) be a chart on M . On U ,

ω =
∑

aI dx
I , τ =

∑
bJ dx

J

for C∞ function aI , bJ on U . Their wedge product is

ω ∧ τ =
(∑

aI dx
I
)
∧
(∑

bJ dx
J
)

=
∑

aI bJ dx
I ∧ dxJ .

In this sum, dxI ∧ dxJ = 0 if I and J have an index in common. If I and J are
disjoint, then dxI ∧ dxJ = dxK , where K = I ∪ J but reordered as an increasing
sequence. Thus,

ω ∧ τ =
∑
K

( ∑
I∪J=K

aI bJ

)
dxK.

Since the coefficient of dxK is C∞ on U , by Proposition 18.3, ω ∧ τ is C∞. �	
Proposition 18.7 (Pullback of a wedge product). If F : N −→ M is a C∞ map of
manifolds and ω and τ are differential forms on M , then

F ∗(ω ∧ τ) = (F ∗ω) ∧ (F ∗τ).
Proof. Problem 18.2. �	

We define the vector space �∗(M) of C∞ differential forms on a manifold M of
dimension n to be the direct sum

�∗(M) = ⊕nk=0�
k(M).

What this means is that each element of �∗(M) is uniquely a sum
∑r
i=1 ωki , where

ωki ∈ �ki (M). With the wedge product, the vector space �∗(M) becomes a
graded algebra, the grading being the degree of a differential form. By Proposi-
tions 18.5 and 18.7, if F : N −→ M is a C∞ map of manifolds, then the pullback map
F ∗ : �∗(M) −→ �∗(N) is a homomorphism of graded algebras.
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18.6 Invariant Forms on a Lie Group

Just as there are left-invariant vector fields on a Lie group G, so there are also left-
invariant differential forms. For g ∈ G, let 
g : G −→ G be left multiplication by g.
A k-form ω on G is said to be left-invariant if 
∗gω = ω for all g ∈ G. This means
for all g, x ∈ G,


∗g(ωgx) = ωx.

Thus, a left-invariant k-form is uniquely determined by its value at the identity, since
for any g ∈ G,

ωg = (
g−1)
∗ωe. (18.2)

We have the following analogue of Proposition 16.5.

Proposition 18.8. Every left-invariant k-form ω on a Lie group G is C∞.

Proof. By Proposition 18.3, it suffices to prove that for any k smooth vector fields
X1, . . . , Xk onG, the function ω(X1, . . . , Xk) is C∞ onG. Let (Y1)e, . . . , (Yn)e be
a basis for the tangent space TeG and Y1, . . . , Yn the left-invariant vector fields they
generate. Then Y1, . . . , Yn is aC∞ frame overG (Proposition 16.5). EachXj can be
written as a linear combination Xj = ∑

aijYi . By Proposition 12.10, the functions

aij are C∞. Hence, to prove that ω is C∞, it suffices to show that ω(Yi1 , . . . , Yik ) is
C∞ for left-invariant vector fields Yi1 , . . . , Yik . But

(ω(Yi1 , . . . , Yik ))(g) = ωg((Yi1)g, . . . , (Yik )g)

= ((
g−1)
∗ωe)((
g)∗(Yi1)e, . . . , (
g)∗(Yik )e)

= ωe((Yi1)e, . . . , (Yik )e),

which is a constant, independent of g. Being the constant function, ω(Yi1 , . . . , Yik )
is C∞ on G. �	

Similarly, a k-form ω onG is said to be right-invariant if r∗gω = ω for all g ∈ G.
The analogue of Proposition 18.8, that every right-invariant form on a Lie group is
C∞, is proved in the same way.

Let �k(G)G denote the vector space of left-invariant k-forms on G. The linear
map

�k(G)G
∼−→∧k

(g∗), ω �→ ωe,

has an inverse defined by (18.2) and is therefore an isomorphism. It follows that
dim�k(G)G = (

n
k

)
.

Problems

18.1. Linearity of the pullback
Prove Proposition 18.5.
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18.2. Pullback of a wedge product
Prove Proposition 18.7.

18.3.* Vertical plane
Let x, y, z be the standard coordinates on R3. A plane in R3 is vertical if it is defined
by ax + by = 0 for some a, b ∈ R. Prove that on a vertical plane, dx ∧ dy = 0.

18.4.* Support of a sum or product
Generalizing the support of a function, we define the support of a k-form ω ∈ �k(M)
to be

suppω = closure of {p ∈ M | ωp �= 0}.
Let ω and τ be differential forms on a manifold M . Prove that

(a) supp(ω + τ) ⊂ suppω ∪ supp τ .
(b) supp(ω ∧ τ) ⊂ suppω ∩ supp τ .

18.5.* Locally finite collection of supports
Let {ρα}α∈A be a collection of functions on M and ω a C∞ k-form with compact
support onM . If the collection of supports, {supp ρα}α∈A, is locally finite, prove that
ραω ≡ 0 for all but finitely many α.

18.6. Locally finite sums
We say that a sum

∑
ωα of differential k-forms on a manifold M is locally finite if

{ωα} is a collection of k-forms such that {suppωα} is a locally finite family. Suppose∑
ωα and

∑
τα are locally finite sums and f is a C∞ function on M .

(a) Show that every point p ∈ M has a neighborhood U on which
∑
ωα is a finite

sum.
(b) Show that

∑
ωα + τα is a locally finite sum and∑

ωα + τα =
∑

ωα +
∑

τα.

(c) Show that
∑
fωα is a locally finite sum and∑

fωα = f (
∑

ωα).

18.7.* Pullback by a surjective submersion
If π : M̃ −→ M is a surjective submersion, then the pullback map π∗ : �∗(M) −→
�∗(M̃) is an injective algebra homomorphism.

18.8. Bi-invariant top forms on a compact connected Lie group
Suppose G is a compact connected Lie group of dimension n. This exercise proves
that every left-invariant n-form on G is right-invariant.

(a) Let ω be a left-invariant n-form on G. For any a ∈ G, show that r∗aω is also
left-invariant, where ra : G −→ G is right multiplication by a.

(b) Since dim�n(G)G = dim
∧n
(g∗) = 1, r∗aω = f (a)ω for some nonzero real

constant f (a) depending on a ∈ G. Show that f : G −→ R× is a group homo-
morphism.
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(c) Show that f : G −→ R× is C∞. (Hint: Note that f (a)ωe = (r∗aω)e = r∗a (ωa) =
r∗a 
∗a−1(ωe). Thus, f (a) is induced by the adjoint representation Ad(a) : g −→ g.
See Problem 16.10.)

(d) As the continuous image of a compact connected set G, the set f (G) ⊂ R× is
compact connected. Prove that f (G) = 1. Hence, r∗aω = ω for all a ∈ G.
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The Exterior Derivative

In contrast to undergraduate calculus, where the basic objects of study are functions,
the basic objects in calculus on manifolds are differential forms. Our program now
is to learn how to integrate and differentiate differential forms.

Recall that an antiderivation on a graded algebra A = ⊕∞
k=0A

k is an R-linear
map D : A −→ A such that

D(ω · τ) = (Dω) · τ + (−1)kω ·Dτ.
for ω ∈ Ak and τ ∈ A
. In the graded algebra A, an element of Ak is called a
homogeneous element of degree k. The antiderivation is of degree m if

degDω = degω +m
for all homogeneous elements ω ∈ A.

LetM be a manifold and �∗(M) the graded algebra of C∞ differential forms on
M . The extraordinary usefulness of differential forms comes from the fact that on
the graded algebra�∗(M) there is a uniquely and intrinsically defined antiderivation
called the exterior derivative.

Definition 19.1. An exterior differentiation or exterior derivative on a manifold M
is an R-linear map

D : �∗(M) −→ �∗(M)
such that

(i) D is an antiderivation of degree 1;
(ii) D ◦ D = 0;

(iii) if f is a C∞ function and X a C∞ vector field on M , then (Df )(X) = Xf .

Condition (iii) says that on 0-forms an exterior derivative agrees with the differ-
ential df of a function f . Hence, by (17.2), in a coordinate chart (U, x1, . . . , xn),

Df =
∑ ∂f

∂xi
dxi .

In this chapter we prove the existence and uniqueness of exterior differentiation
on a manifold.
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19.1 Exterior Derivative on a Coordinate Chart

We showed in Section 4.4 the existence and uniqueness of exterior differentiation
on an open subset of Rn. The same proof carries over to any coordinate chart on a
manifold.

More precisely, suppose (U, x1, . . . , xn) is a coordinate chart on a manifold M .
Then any k-form ω on U is uniquely a linear combination

ω =
∑

aI dx
I , aI ∈ C∞(U).

If d is an exterior differentiation on U , then

dω =
∑

(daI ) ∧ dxI +
∑

aI d dx
I (by (i))

=
∑

(daI ) ∧ dxI (by (ii), d2 = 0)

=
∑
I

∑
j

∂aI

∂xj
dxj ∧ dxI (by (iii)). (19.1)

Hence, if an exterior differentiation d exists onU , then it is uniquely defined by (19.1).
To show existence, we define d by the formula (19.1). The proof that d satisfies

(i), (ii), and (iii) is the same as in Proposition 4.13.
Like the derivative of a function on Rn, an antiderivation D on �∗(M) has the

property that for a k-form ω, the value ofDω at a point p depends only on the values
ofω in a neighborhood ofp. To explain this, we make a digression on local operators.

19.2 Local Operators

An endomorphism of a vector spaceW is often called an operator onW . For example,
if W = C∞(R) is the vector space of C∞ functions on R, then the derivative d/dx
is an operator on W :

d

dx
f (x) = f ′(x).

The derivative has the property that the value of f ′(x) at a point p depends only on
the values of f in a small neighborhood of p. More precisely, if f = g on an open set
U in R, then f ′ = g′ on U . We say that the derivative is a local operator on C∞(R).

Definition 19.2. An operator D : �∗(M) −→ �∗(M) is said to be local if for all
k ≥ 0, whenever a k-form ω ∈ �k(M) restricts to 0 on an open set U , then Dω ≡ 0
on U .

Here by restricting to 0 on U , we mean that ωp = 0 at every point p in U , and
the symbol “≡ 0’’ means “identically zero’’: (Dω)p = 0 at every point p in U . An
equivalent definition of a local operator is that for all k ≥ 0, whenever two k-forms
ω, τ ∈ �k(M) agree on an open set U , then Dω ≡ Dτ on U .
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Example 19.3. Define the integral operator

I : C∞([a, b]) −→ C∞([a, b])

by

I (f ) =
∫ b

a

f (t)dt.

Here I (f ) is a number, which we view as a constant function on [a, b]. The integral
is not a local operator since the value of I (f ) at any point p depends on the values
of f over the entire interval [a, b].

Proposition 19.4. Any antiderivation D on �∗(M) is a local operator.

Proof. Suppose ω ∈ �k(M) and ω ≡ 0 on an open subset U . Let p be an arbitrary
point in U . It suffices to prove that (Dω)p = 0.

Choose a C∞ bump function f at p supported in U . In particular, f ≡ 1 in a
neighborhood of p in U . Then fω ≡ 0 onM , since if a point q is in U , then ωq = 0,
and if q is not in U , then f (q) = 0. Applying the antiderivation property of D to
fω, we get

0 = D(0) = D(fω) = (Df ) ∧ ω + (−1)0f ∧ (Dω).

We now evaluate the right-hand side at p, noting that ωp = 0 and f (p) = 1. This
gives 0 = (Dω)p. Since p is an arbitrary point of U , Dω ≡ 0 on U . �	

Remark 19.5. The same proof shows that a derivation on�∗(M) is also a local oper-
ator.

19.3 Extension of a Local Form to a Global Form

Sometimes we are given a differential form τ that is defined only on an open subset
U of a manifoldM . We can use a bump function to extend τ to a global form τ̃ onM
that agrees with τ near some point. (By a global form, we mean a differential form
defined at every point of M .)

Proposition 19.6. Suppose τ is aC∞ differential form on an open subsetU ofM . For
any p ∈ U , there is a C∞ global form τ̃ onM that agrees with τ on a neighborhood
of p in U .

The proof is almost identical to that of Proposition 13.3. We leave it as an exercise.
Of course, the extension τ̃ is not unique. In the proof it depends on p and on the

choice of a bump function at p.
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19.4 Existence of an Exterior Differentiation

To define an exterior derivative d : �∗(M) −→ �∗(M), let ω be a k-form on M and
p ∈ M . Choose a chart (U, x1, . . . , xn) about p. Suppose ω = ∑

aI dx
I on U .

Define
(dω)p =

(∑
daI ∧ dxI

)
p
. (19.2)

We now show that this definition is independent of the chart. If (V , y1, . . . , yn)

is another chart about p and ω =∑
bJ dy

J on V , then on U ∩ V ,∑
aI dx

I =
∑

bJ dy
J .

As shown in Section 19.1, on U ∩ V there is a unique exterior differentiation

dU∩V : �∗(U ∩ V ) −→ �∗(U ∩ V ).
By the properties of the exterior derivative,

dU∩V
(∑

aI dx
I
)
= dU∩V

(∑
bJ dy

J
)

=⇒
∑

daI ∧ dxI =
∑

dbJ ∧ dyJ

at all points of U ∩ V . In particular,(∑
daI ∧ dxI

)
p
=
(∑

dbJ ∧ dyJ
)
p
.

Thus, (dω)p is well defined, independent of the chart.
As p varies over all points of M , this defines an operator

d : �∗(M) −→ �∗(M).

To check properties (i), (ii), and (iii), it suffices to check them at each point p ∈ M .
Using the definition (19.2), the verification is the same as for the exterior derivative
on Rn (Proposition 4.14).

19.5 Uniqueness of Exterior Differentiation

Suppose D : �∗(M) −→ �∗(M) is an exterior differentiation. We will show that D
coincides with the exterior differentiation d defined in Section 19.4.

To this end, let ω ∈ �k(M) and p ∈ M . Choose a chart (U, x1, . . . , xn) about p
and suppose ω =∑

aI dx
I on U . Extend the functions aI , x1, . . . , xn on U to C∞

functions ãI , x̃1, . . . , x̃n on M that agree with aI , x1, . . . , xn on a neighborhood of
V of p (by Proposition 19.6). Define

ω̃ =
∑

ãI dx̃
I ∈ �k(M).
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Then
ω ≡ ω̃ on V.

Since D is a local operator,

Dω = Dω̃ on V.

Thus,

(Dω)p = (Dω̃)p = (D
∑

ãI dx̃
I )p =

(∑
dãI ∧ dx̃I

)
p

=
(∑

daI ∧ dxI
)
p

(since ãI = aI and x̃i = xi on V )

= (dω)p.

19.6 The Restriction of a k-Form to a Submanifold

If S is a regular submanifold of a manifold M and ω is a k-form on M , then the
restriction of ω to S is the k-form ω|S on S defined by

(ω|S)p(X1, . . . , Xk) = ωp(X1, . . . , Xk)

for X1, . . . , Xk ∈ TpS ⊂ TpM . Thus, (ω|S)p is obtained from ωp by restricting the
domain of ωp to TpS × · · · × TpS (k times).

A nonzero form on M may restrict to the zero form on a submanifold S. For
example, if S is a smooth curve in R2 defined by the nonconstant function f (x, y),
then df = (∂f/∂x) dx + (∂f/∂y) dy is a nonzero 1-form on R2, but since f is
identically zero (f ≡ 0) on S, the differential df is also identically zero on S. Thus,
(df )|S ≡ 0.

To avoid too cumbersome a notation, we sometimes write df to mean (df )|S ,
relying on the context to make clear that it is the restriction of df to S.

One should distinguish between a nonzero form and a nowhere-zero or nowhere-
vanishing form. For example, x dy is a nonzero form on R2, meaning that it is not
the identically zero form. However, it is not nowhere-zero, because it vanishes on
the y-axis. On the other hand, dx and dy are nowhere-zero 1-forms on R2.

19.7 A Nowhere-Vanishing 1-Form on the Circle

As an application of the exterior derivative, we will construct a nowhere-vanishing
1-form on the circle.

Example 19.7. Let S1 be the unit circle defined by x2 + y2 = 1 in R2. The 1-form
dx restricts from R2 to a 1-form on S1. When restricted to S1, at each point p ∈ S1

the domain of (dx)|S1,p is Tp(S1) instead of Tp(R2):
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(dx)|S1,p : Tp(S1) −→ R.

At p = (1, 0), a basis for the tangent space Tp(S1) is ∂/∂y (Figure 19.1). Since

(dx)p

(
∂

∂y

)
= 0,

we see that although dx is a nowhere-vanishing 1-form on R2, it vanishes at (1, 0)
when restricted to S1.

p�

∂
∂y

Fig. 19.1. The tangent space to S1 at p = (1, 0).

To find a nowhere-vanishing 1-form on S1, we take the exterior derivative of both
sides of the equation

x2 + y2 = 1.

Using the antiderivation property of d, we get

2x dx + 2y dy = 0. (19.3)

Let
Ux = {(x, y) ∈ S1 | x �= 0} and Uy = {(x, y) ∈ S1 | y �= 0}.

By (19.3), on Ux ∩ Uy ,
dy

x
= −dx

y
.

Define a 1-form ω on S1 by

ω =

⎧⎪⎨⎪⎩
dy

x
on Ux,

−dx
y

on Uy.

Since these two 1-forms agree onUx∩Uy ,ω is a well-defined 1-form onS1 = Ux∪Uy .
To show that ω is C∞ and nowhere-vanishing, we need charts. Let

U+
x = {(x, y) ∈ S1 | x > 0}.

We define similarly U−
x , U+

y , U−
y . On U+

x , y is a local coordinate and so dy is a

basis for the cotangent space T ∗p (S1) at each point p ∈ U+
x . Since ω = dy/x on U+

x ,
ω is C∞ and nowhere-zero on U+

x . A similar argument applies to dy/x on U−
x and

−dx/y on U+
y and U−

y . Hence, ω is C∞ and nowhere-vanishing on S1.
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x

y

U+xU−x

Fig. 19.2. Two charts on the unit circle.

19.8 Exterior Differentiation Under a Pullback

The pullback of differential forms commutes with the exterior derivative.

Theorem 19.8. Let F : N −→M be a smooth map of manifolds. If ω ∈ �k(M), then
dF ∗ω = F ∗dω.

Proof. We first check the case k = 0 when ω is a C∞ function h on M . For p ∈ N
and Xp ∈ TpN ,

(dF ∗h)p(Xp) = Xp(F
∗h) (property (iii) of d)

= Xp(h ◦ F) (definition of the pullback of a function)

and

(F ∗dh)p(Xp) = (dh)F(p)(F∗Xp) (definition of the pullback of a 1-form)

= (F∗Xp)h (definition of the differential dh)

= Xp(h ◦ F) (definition of F∗).

Now consider the general case of a C∞ k-form ω on M . It suffices to verify
dF ∗ω = F ∗dω at an arbitrary point p ∈ N . This reduces the proof to a local
computation. If (V , y1, . . . , ym) is a chart of M at F(p), then on V ,

ω =
∑

aI dy
i1 ∧ · · · ∧ dyik , I = (i1, . . . , ik),

for some C∞ functions aI on V and

F ∗ω =
∑

(F ∗aI )F ∗dyi1 ∧ · · · ∧ F ∗dyik (Proposition 18.7)

=
∑

(aI ◦ F) dF i1 ∧ · · · ∧ dF ik (F ∗dyi = dF ∗yi = d(yi ◦ F)
= dF i).

So
dF ∗ω =

∑
d(aI ◦ F) ∧ dF i1 ∧ · · · ∧ dF ik .

On the other hand,
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F ∗dω = F ∗(
∑

daI ∧ dyi1 ∧ · · · ∧ dyik )
=
∑

F ∗daI ∧ F ∗dyi1 ∧ · · · ∧ F ∗dyik
=
∑

d(F ∗aI ) ∧ dF i1 ∧ · · · ∧ dF ik (by the case k = 0)

=
∑

d(aI ◦ F) ∧ dF i1 ∧ · · · ∧ dF ik .
Therefore,

dF ∗ω = F ∗dω. �	
Example 19.9. Let U be the open set (0,∞)× (0, 2π) in the (r, θ)-plane R2. Define
F : U ⊂ R2 −→ R2 by

(x, y) = F(r, θ) = (r cos θ, r sin θ).

Compute the pullback F ∗(dx ∧ dy).
Solution. We first compute F ∗dx:

F ∗dx = dF ∗x (Theorem 19.8)

= d(x ◦ F) (definition of the pullback of a function)

= d(r cos θ)

= (cos θ) dr − r sin θ dθ.

Similarly,

F ∗dy = dF ∗y = d(r sin θ) = (sin θ) dr + r cos θ dθ.

Since the pullback commutes with the wedge product (Proposition 18.7),

F ∗(dx ∧ dy) = (F ∗dx) ∧ (F ∗dy)
= ((cos θ) dr − r sin θ dθ) ∧ ((sin θ) dr + r cos θ dθ)

= (r cos2 θ + r sin2 θ) dr ∧ dθ
= r dr ∧ dθ. �	

Problems

19.1.* Extension of a C∞ form
Prove Proposition 19.6.

19.2. Transition formula for an n-form
Let (U, x1, . . . , xn) be a chart on a manifold and f 1, . . . , f n smooth functions onU .
Prove that

df 1 ∧ · · · ∧ df n = det

[
∂f i

∂xj

]
dx1 ∧ · · · ∧ dxn.
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19.3. Pullback of a differential form
Let U be the open set (0,∞) × (0, π) × (0, 2π) in the (ρ, φ, θ)-space R3. Define
F : U −→ R2 by

(x, y, z) = F(ρ, φ, θ) = (ρ sin φ cos θ, ρ sin φ sin θ, ρ cosφ).

Show that F ∗(dx ∧ dy ∧ dz) = ρ2 sin φ dρ ∧ dφ ∧ dθ .

19.4. Pullback of a differential form
Let F : R2 −→ R2 be given by

F(x, y) = (u, v) = (x2 + y2, xy).

Compute F ∗(u du+ v dv).
19.5. Pullback of a differential form by a curve
Let ω be the 1-form ω = (−y dx + x dy)/(x2 + y2) on R2 − {0}. Define
c : R −→ R2 − {0} by c(t) = (cos t, sin t). Compute c∗ω.

19.6. Coordinate functions and differential forms
Let f 1, . . . , f n be C∞ functions on a neighborhood U of a point p in a manifold of
dimension n. Show that there is a neighborhood W of p on which f 1, . . . , f n form
a coordinate system if and only if (df 1 ∧ · · · ∧ df n)p �= 0.

19.7. Local operators
An operator L : �∗(M) −→ �∗(M) is support-decreasing if suppL(ω) ⊂ suppω for
every k-form ω ∈ �∗(M) for all k ≥ 0. Show that an operator on �∗(M) is local if
and only if it is support-decreasing.

19.8. Derivations of C∞ functions are local operators
Let M be a smooth manifold. The definition of a local operator D on C∞(M) is
similar to that of a local operator on �∗(M): D is local if whenever a function
f ∈ C∞(M) vanishes identically on an open subset U , then Df ≡ 0 on U . Prove
that a derivation of C∞(M) is a local operator on C∞(M).

19.9. Global formula for the exterior derivative of a 1-form
Prove that if ω is a C∞ 1-form and X and Y are C∞ vector fields on a manifold
M , then

dω(X, Y ) = Xω(Y )− Yω(X)− ω([X, Y ]).
19.10. A nowhere-vanishing form on a smooth hypersurface

(a) Let f (x, y) be a C∞ function on R2 and assume that 0 is a regular value of f .
By the regular level set theorem, the zero set M of f (x, y) is a one-dimensional
submanifold of R2. Construct a nowhere-vanishing 1-form on M .

(b) Let f (x, y, z) be a C∞ function on R3 and assume that 0 is a regular value of f .
By the regular level set theorem, the zero setM of f (x, y, z) is a two-dimensional
submanifold of R3. Let fx , fy , fz be the partial derivatives of f with respect to
x, y, z, respectively. Show that the equalities
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dx ∧ dy
fz

= dy ∧ dz
fx

= dz ∧ dx
fy

hold on M whenever they make sense, and therefore piece together to give a
nowhere-vanishing 2-form on M .

(c) Generalize this problem to a regular level set of f (x1, . . . , xn+1) in Rn+1.

19.11. Vector fields as derivations of C∞ functions
In Section 14.4 we showed that a C∞ vector field X on a manifold M gives rise
to a derivation of C∞(M). To distinguish the vector field from the derivation, we
will temporarily denote the derivation arising from X by ϕ(X). Thus, for any f ∈
C∞(M),

(ϕ(X)f )(p) = Xpf for all p ∈ M .

(a) Let F = C∞(M). Prove that ϕ : X(M) −→ Der(C∞(M)) is an F-linear map.
(b) Show that ϕ is injective.
(c) If D is a derivation of C∞(M) and p ∈ M , define Dp : C∞p (M) −→ C∞p (M) by

Dp[f ] = [Df̃ ] ∈ C∞p (M),
where [f ] is the germ of f at p and f̃ is a global extension of f given by
Proposition 19.6. Show thatDp[f ] is well defined. (Hint: Apply Problem 19.8.)

(d) Show that Dp is a derivation of C∞p (M).
(e) Prove that ϕ : X(M) −→ Der(C∞(M)) is an isomorphism of F-modules.

19.12. Twentieth-century formulation of Maxwell’s equations
In Maxwell’s theory of electricity and magnetism, developed in the late nineteenth
century, the electric field E = 〈E1, E2, E3〉 and the magnetic field B = 〈B1, B2, B3〉
in a vacuum R3 with no charge or current, satisfy the following equations:

∇ × E = −∂B
∂t
, ∇ × B = ∂E

∂t
,

div E = 0, div B = 0.

By the correspondence in Section 4.6, the 1-form E on R3 corresponding to the
vector field E is

E = E1 dx + E2 dy + E3 dz

and the 2-form B on R3 corresponding to the vector field B is

B = B1 dy ∧ dz+ B2 dz ∧ dx + B3 dx ∧ dy.
Let R4 be space-time with coordinates (x, y, z, t). Then both E and B can be

viewed as differential forms on R4. Define F to be the 2-form on space-time

F = E ∧ dt + B.
Decide which two of Maxwell’s equations are equivalent to the equation

dF = 0.

Prove your answer. (The other two are equivalent to d ∗ F = 0 for a star-operator ∗
defined in differential geometry. See [1, Section 19.1, p. 689].)
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Orientations

20.1 Orientations on a Vector Space

On R1 an orientation is one of two directions (Figure 20.1).

Fig. 20.1. Orientations on a line.

On R2 an orientation is either counterclockwise or clockwise (Figure 20.2).

Fig. 20.2. Orientations on a plane.

On R3 an orientation is either right-handed (Figure 20.3) or left-handed (Fig-
ure 20.4). The right-handed orientation on R3 is the choice of a Cartesian coordinate
system so that if you hold out your right hand with the index finger curling from the
x-axis to the y-axis, then your thumb points in the direction of the z-axis.

How should one define an orientation on R4? If we analyze the three examples
above, we see that an orientation can be specified by an ordered basis for Rn. Let
e1, . . . , en be the standard basis for Rn. For R1 an orientation could be given by either
e1 or −e1. For R2 the counterclockwise orientation is (e1, e2), while the clockwise
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e2

e3 = thumb

e1 = index finger

Fig. 20.3. Right-handed orientation (e1, e2, e3) on R
3.

e2 = index finger

e3 = thumb

e1

Fig. 20.4. Left-handed orientation (e1, e2, e3) on R
3.

orientation is (e2, e1). For R3 the right-handed orientation is (e1, e2, e3), and the
left-handed orientation is (e2, e1, e3).

For any two ordered bases (u1, u2)and (v1, v2) for R2, there is a unique nonsin-
gular 2 by 2 matrix A = [aij ] such that

uj =
2∑
i=1

viaij , j = 1, 2,

called the change of basis matrix from (v1, v2) to (u1, u2). In matrix notation, if we
write ordered basis as row vectors, for example, [u1 u2] for the basis (u1, u2), then

[u1 u2] = [v1 v2]A.
We say that two ordered bases are equivalent if the change of basis matrix A has
positive determinant. It is easy to check that this is indeed an equivalence relation
on the set of all ordered bases for R2. It therefore partitions the ordered bases into
two equivalence classes. Each equivalence class is called an orientation on R2.
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The equivalence class containing the ordered basis (e1, e2) is the counterclockwise
orientation and the equivalence class of (e2, e1) is the clockwise orientation.

The general case is similar. Two ordered bases u = [u1 · · · un] and v = [v1 · · · vn]
of a vector space V are said to be equivalent if u = vA for an n by n matrix A with
positive determinant. An orientation on V is an equivalence class of ordered bases.

The zero-dimensional vector space {0} is a special case because it does not have
a basis. We define an orientation on {0} to be one of the two numbers ±1.

20.2 Orientations and n-Covectors

Instead of using an ordered basis, we can also use an n-covector to specify an orien-
tation on an n-dimensional vector space V . This is based on the fact that the space∧n
(V ∗) of n-covectors on V is one dimensional.

Lemma 20.1. Let u1, . . . , un and v1, . . . , vn be vectors in a vector space V . Suppose

uj =
n∑
i=1

aij vi, j = 1, . . . , n,

for a matrix A = [aij ] of real numbers. If ω is an n-covector on V , then

ω(u1, . . . , un) = (detA)ω(v1, . . . , vn).

Proof. By hypothesis,

uj =
∑

aij vi .

Since ω is n-linear,

ω(u1, . . . , un) = ω
(∑

ai11vi1 , . . . ,
∑

ainnvin

)
=
∑

ai11 · · · ainn ω(vi1 , . . . , vin).

Forω(vi1 , . . . , vin) to be nonzero, i1, . . . , inmust all be distinct. This means i1, . . . , in
is a permutation of 1, . . . , n. Since ω is an alternating n-tensor,

ω(vi1 , . . . , vin) = (sgn i)ω(v1, . . . , vn).

Thus,

ω(u1, . . . , un) =
∑
i∈Sn

(sgn i)ai11 · · · ainn ω(v1, . . . , vn)

= (detA)ω(v1, . . . , vn). �	
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As a corollary,

sgnω(u1, . . . , un) = sgnω(v1, . . . , vn)

iff detA > 0

iff u1, . . . , un and v1, . . . , vn are equivalent ordered bases.

We say that the n-covector ω represents the orientation (v1, . . . , vn) if ω(v1,

. . . , vn) > 0. By the preceding corollary, this is a well-defined notion, independent
of the choice of ordered basis for the orientation. Moreover, two n-covectors ω and
ω′ on V represent the same orientation if and only if ω = aω′ for some positive real
number a.

An isomorphism
∧n
(V ∗) � R identifies the set of nonzero n-covectors on V

with R − {0}, which has two connected components. Two nonzero n-covectors ω
and ω′ on V are in the same component if and only if ω = aω′ for some real number
a > 0. Thus, each connected component of

∧n
(V ∗)− {0} represents an orientation

on V .

Example 20.2. Let e1, e2 be the standard basis for R2 and α1, α2 its dual basis. Then
the 2-covector α1 ∧ α2 represents the counterclockwise orientation on R2 since(

α1 ∧ α2
)
(e1, e2) = 1 > 0.

Example 20.3. Let ∂/∂x|p, ∂/∂y|p be the standard basis for the tangent spaceTp(R2),
and (dx)p, (dy)p its dual basis. Then (dx)p∧(dy)p represents the counterclockwise
orientation on Tp(R2).

We define an equivalence relation on the nonzeron-covectors on then-dimensional
vector space V as follows:

ω ∼ ω′ iff ω = aω′ for some a > 0.

Then an orientation on V is also given by an equivalence class of nonzero n-covectors
on V .

20.3 Orientations on a Manifold

Every vector space of dimension n has two orientations, corresponding to the two
equivalence classes of ordered bases or the two equivalence classes of nonzero n-
covectors. To orient a manifoldM , we orient the tangent space at each point p ∈ M .
This can be done by simply assigning a nonzero n-covector to each point of M , in
other words, by giving a nowhere-vanishing n-form on M . The assignment of an
orientation at each point must be done in a “coherent’’ way, so that the orientation
does not change abruptly in a neighborhood of a point. The simplest way to guarantee
this is to require that the n-form onM specifying the orientation at each point beC∞.
(It is enough to require that the n-form be continuous, but we prefer working with
C∞ forms in order to apply the methods of differential calculus.)
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Definition 20.4. A manifoldM of dimension n is orientable if it has a C∞ nowhere-
vanishing n-form.

If ω is a C∞ nowhere-vanishing n-form on M , then at each point p ∈ M the
n-covector ωp picks out an equivalence class of ordered bases for the tangent space
TpM .

Example 20.5. The Euclidean space Rn is orientable as a manifold, because it has the
nowhere-vanishing n-form dx1 ∧ · · · ∧ dxn.

If ω and ω′ are two C∞ nowhere-vanishing n-forms on a manifold M of dimen-
sion n, then ω = fω′ for aC∞ nowhere-vanishing function f onM . On a connected
manifold M , such a function f is either everywhere positive or everywhere nega-
tive. Thus, the C∞ nowhere-vanishing n-forms on a connected manifold M can be
partitioned into two equivalence classes:

ω ∼ ω′ iff ω = fω′ with f > 0.

We call either equivalence class an orientation on the connected manifold M . By
definition a connected manifold has exactly two orientations.

If a manifold is not connected, each connected component can have one of two
possible orientations. We call aC∞ nowhere-vanishingn-form onM that specifies the
orientation ofM an orientation form. An oriented manifold is a pair (M, [ω]), where
M is a manifold of dimension n and [ω] is an orientation on M , i.e., the equivalence
class of a nowhere-vanishing n-form ω on M . We sometimes write M , instead of
(M, [ω]), for an oriented manifold, if it is clear from the context what the orientation
is. For example, unless otherwise specified, Rn is oriented by dx1 ∧ · · · ∧ dxn.

Remark 20.6 (Orientations on a zero-dimensional manifold ). A zero-dimensional
manifold is a point. According to the definition above, a zero-dimensional manifold
is always orientable. Its two orientations are represented by the two numbers ±1.

A diffeomorphism F : (N, [ωN ]) −→ (M, [ωM ]) of oriented manifolds is said to
be orientation-preserving if [F ∗ωM ] = [ωN ]; it is orientation-reversing if [F ∗ωM ] =
[−ωN ].
Proposition 20.7. Let U and V be open subsets of Rn. A C∞ map F : U −→ V

is orientation-preserving if and only if the Jacobian determinant det[∂F i/∂xj ] is
everywhere positive on U .

Proof. Let x1, . . . , xn and y1, . . . , yn be the standard coordinates on U ⊂ Rn and
V ⊂ Rn. Then

F ∗(dy1 ∧ · · · ∧ dyn) = d(F ∗y1) ∧ · · · ∧ d(F ∗yn)
= d(y1 ◦ F) ∧ · · · ∧ d(yn ◦ F)
= dF 1 ∧ · · · ∧ dFn

= det

[
∂F i

∂xj

]
dx1 ∧ · · · dxn (by Problem 19.2).
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Thus, F is orientation-preserving if and only if det[∂F i/∂xj ] is everywhere positive
on U . �	

20.4 Orientations and Atlases

Definition 20.8. An atlas on M is said to be oriented if for any two overlapping
charts (U, x1, . . . , xn) and (V , y1, . . . , yn) of the atlas, the Jacobian determinant
det[∂yi/∂xj ] is everywhere positive on U ∩ V .

Proposition 20.9. A manifoldM of dimension n has aC∞ nowhere-vanishing n-form
ω if and only if it has an oriented atlas.

Proof.
(⇐) Given an oriented atlas {(Uα, x1

α, . . . , x
n
α)}α∈A, let {ρα} be a C∞ partition of

unity subordinate to {Uα}. Define

ω =
∑

ρα dx
1
α ∧ · · · ∧ dxnα. (20.1)

For any p ∈ M , there is an open neighborhood Up of p that intersects only finitely
many of the sets supp ρα . Thus (20.1) is a finite sum on Up. This shows that ω is
defined and C∞ at every point of M .

Let (U, x1, . . . , xn) be one of the charts about p in the oriented atlas. OnUα ∩U ,
by Problem 19.2,

dx1
α ∧ · · · ∧ dxnα = det

[
∂xiα

∂xj

]
dx1 ∧ · · · ∧ dxn,

where the determinant is positive because the atlas is oriented. Then

ω =
∑

ρα dx
1
α ∧ · · · ∧ dxnα =

(∑
ρα det

[
∂xiα

∂xj

])
dx1 ∧ · · · ∧ dxn.

In the last sum ρα ≥ 0 and det[∂xiα/∂xj ] > 0 at p for all α. Moreover, ρα(p) > 0
for at least one α. Hence,

ωp = (positive number)× (dx1 ∧ · · · ∧ dxn)p �= 0.

As p is an arbitrary point of M , the n-form ω is nowhere-vanishing on M .

(⇒) Suppose ω is a C∞ nowhere-vanishing n-form onM . Given an atlas forM , we
will use ω to modify the atlas so that it becomes oriented. Without loss of generality,
we may assume that all the open sets of the atlas are connected.

On a chart (U, x1, . . . , xn),

ω = f dx1 ∧ · · · ∧ dxn

for a C∞ function f . Since ω is nowhere-vanishing and f is continuous, f is either
everywhere positive or everywhere negative on U . If f > 0, we leave the chart
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alone; if f < 0, we replace the chart by (U,−x1, x2, . . . , xn). After all the charts
have been checked and replaced if necessary, we may assume that on every chart
(V , y1, . . . , yn),

ω = h dy1 ∧ · · · ∧ dyn
with h > 0. This is an oriented atlas, since if (U, x1, . . . , xn) and (V , y1, . . . , yn)

are two charts, then on U ∩ V
ω = f dx1 ∧ · · · ∧ dxn = h dy1 ∧ · · · ∧ dyn

with f, h > 0. By Problem 19.2, f/h = det[∂yi/∂xj ]. It follows that det[∂yi/∂xj ]
> 0 on U ∩ V . �	
Definition 20.10. Two oriented atlases {(Uα, φα)} and {(Vβ, ψβ)} on a manifold M
are said to be equivalent if the transition functions

φα ◦ ψ−1
β : ψβ(Uα ∩ Vβ) −→ φα(Uα ∩ Vβ)

have positive Jacobian determinant for all α, β.

It is not difficult to show that this is an equivalence relation on the set of oriented
atlases on M (Problem 20.1).

SupposeM is a connected orientable manifold. To each oriented atlas {(Uα, φα)}
and partition of unity {ρα} subordinate to {Uα}, we associate the nowhere-vanishing
n-form

ω =
∑

ρα dx
1
α ∧ · · · ∧ dxnα

on M as in (20.1). In this way, equivalent oriented atlases give rise to equiva-
lent nowhere-vanishing n-forms (Problem 20.2). Since there are two equivalence
classes of oriented atlases and two equivalence classes of nowhere-vanishing n-
forms on M , this construction is a map from {±1} to {±1}. If the oriented atlas
{(Uα, x1

α, x
2
α, . . . , x

n
α)} gives rise to the n-form ω, then by switching the sign of

just one coordinate, we get an oriented atlas, for example, {(Uα,−x1
α, x

2
α, . . . , x

n
α)},

that gives rise to the n-form −ω. Hence, the map: {±1} −→ {±1} is surjective
and therefore a bijection. This shows that an orientation on a connected M may
also be specified by an equivalence class of oriented atlases. By considering each
connected component in turn, we can extend to an arbitrary orientable n-manifold
the correspondence between eqivalence classes of oriented atlases and equivalence
classes of nowhere-vanishing n-forms. More formally, we say that an oriented atlas
{(Uα, φα)} = {(Uα, x1

α, . . . , x
n
α)} gives or specifies the orientation of an oriented n-

manifold (M, [σ ]) if for every α, there is an everywhere positive function fα on Uα
such that

σ = fα φ
∗
α(dr

1 ∧ · · · ∧ drn) = fα dx
1
α ∧ · · · ∧ dxnα.

Here r1, . . . , rn are the standard coordinates on the Euclidean space Rn.
If ω is a nowhere-vanishing n-form that orients a manifold M , then on any con-

nected chart (U, x1, . . . , xn), there is by continuity an everywhere positive or every-
where negative function f such that
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ω = f dx1 ∧ · · · ∧ dxn.
Thus, on an oriented manifold the orientation at one point of a connected chart deter-
mines the orientation at every point of the chart.

Example 20.11 (The open Möbius band ). Let R be the rectangle

R = {(x, y) ∈ R2 | 0 ≤ x ≤ 1, −1 < y < 1}
(see Figure 20.5). The open Möbius band M (Figure 20.5 and 20.6) is the quotient
of the rectangle R by the equivalence relation

(0, y) ∼ (1,−y). (20.2)

The interior of R is the open rectangle

U = {(x, y) ∈ R2 | 0 < x < 1, −1 < y < 1}.

� � � �

e1

e2

e1

e2

e1

e2

Fig. 20.5. Nonorientability of the Möbius band.

An orientation on M restricts to an orientation on U . To avoid confusion with
an ordered pair of numbers, in this example we write an ordered basis without the
parentheses. Without loss of generality we may assume the orientation on U to be
e1, e2. By continuity the orientation at the points (0, 0) and (1, 0) are also e1, e2.
But under the identification (20.2), the ordered basis e1, e2 at (1, 0) maps to e1,−e2
at (0, 0). Thus, at (0, 0) the orientation has to be both e1, e2 and e1,−e2. This
contradiction proves that the Möbius band is not orientable.

Example 20.12. By the regular level set theorem, if 0 is a regular value of a C∞
function f (x, y, z) on R3, then the set M = f−1(0) = Zero(f ) is a C∞ manifold.
In Problem 19.10 we constructed a nowhere-vanishing 2-form on M . Thus, M is
orientable. Combined with Example 20.11 it follows that an open Möbius band
cannot be realized as a regular level set of a C∞ function on R3.

Problems

20.1. Equivalence of oriented atlases
Show that the relation in Definition 20.10 is an equivalence relation.
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Fig. 20.6. Möbius band.

20.2.* Equivalent nowhere-vanishing n-forms
Show that equivalent oriented atlases give rise to equivalent nowhere-vanishing n-
forms.

20.3. Orientation-preserving diffeomorphisms
Let F : (N, ωN) −→ (M,ωM) be an orientation-preserving diffeomorphism. If
{(V ,ψ)} = {(V , y1, . . . , yn)} is an oriented atlas on M that specifies the orienta-
tion of M , show that {(F−1V, F ∗ψ)} = {(F−1V, F 1, . . . , F n)} is an oriented atlas
on N that specifies the orientation of N , where F i = yi ◦ F .

20.4. Orientability of a regular level set in Rn+1

Suppose f (x1, . . . , xn+1) is a C∞ function on Rn+1 with 0 as a regular value. Show
that the zero set of f is an orientable surface in Rn+1.

20.5. Orientability of a Lie group
Show that every Lie group G is orientable by constructing a nowhere-vanishing top
form on G.

20.6. Orientability of a parallelizable manifold Show that a parallelizable manifold
is orientable. (In particular, this shows again that every Lie group is orientable.)

20.7. Orientability of the total space of the tangent bundle
Let M be a smooth manifold and π : TM −→ M its tangent bundle. Show that if
{(U, φ)} is any atlas onM , then the atlas {(T U, φ̃)} on TM , with φ̃ defined in equation
(12.1), is oriented. This proves that the total space TM of the tangent bundle is always
orientable, regardless of whether or not M is orientable.
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Manifolds with Boundary

The prototype of a manifold with boundary is the closed upper half-space

Hn = {(x1, . . . , xn) ∈ Rn | xn ≥ 0},
with the subspace topology of Rn. The points (x1, . . . , xn) ∈ Hn with xn > 0 are
called the interior points of Hn, and the points with xn = 0 are called the boundary
points of Hn. These two sets are denoted int(Hn) and ∂(Hn), respectively (Fig-
ure 21.1).

xn

int(Hn)

∂(Hn)

Fig. 21.1. Upper half-space.

In the literature the upper half-space often means the open set

{(x1, . . . , xn) ∈ Rn | xn > 0}.
We require that Hn include the boundary in order for it to serve as a model for
manifolds with boundary.

21.1 Invariance of Domain

To discussC∞ functions on a manifold with boundary, we need to extend the domain
of definition of a C∞ function to nonopen subsets.
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Definition 21.1. Let S ⊂ Rn be an arbitrary subset. A function f : S −→ Rm is
smooth at a point p in S if there exist a neighborhood U of p in Rn and a C∞
function f̃ : U −→ Rm such that f̃ = f on U ∩ S. The function is smooth on S if it
is smooth at each point of S.

With this definition it now makes sense to speak of an arbitrary subset S ⊂ Rn

being diffeomorphic to an arbitrary subset T ⊂ Rm; this will be the case if and only
if there are smooth maps f : S −→ T and g : T −→ S that are inverse to each other.

Exercise 21.2 (Smooth functions on a nonopen set). Using a partition of unity, show that a
function f : S −→ R

m is C∞ on S if and only if there exists an open set U in R
n containing S

and a C∞ function f̃ : U −→ R
m such that f = f̃ |S .

Theorem 21.3 (C∞ invariance of domain). LetU ⊂ Rn be an open subset, S ⊂ Rn

an arbitrary subset, and f : U −→ S a diffeomorphism. Then S is open in Rn.

A diffeomorphism f : U −→ S takes an open set in U to an open set in S. Thus,
a priori we know only that f (U) is open in S, not that f (U) is open in Rn. Because
f is onto f (U) = S.

Proof. Let p ∈ U . Since f : U −→ S is a diffeomorphism, there is an open set V
containing S and a C∞ map g : V −→ Rn such that g|S = f−1. Thus,

U
f−→ V

g−→ Rn

satisfies
g ◦ f = 1U : U −→ U ⊂ Rn,

the identity map on U . By the chain rule,

g∗,f (p) ◦ f∗,p = 1TpU : TpU −→ TpU � Tp(R
n),

the identity map on the tangent space TpU . Hence, f∗,p is invertible. By the inverse
function theorem, f is locally invertible at p. This means there are open neigh-
borhoods Up of p in U and Vf (p) of f (p) in V such that f : Up −→ Vf (p) is a
diffeomorphism. It follows that

Vf (p) ⊂ f (U) = S.

Hence, S is open in Rn. �	
Proposition 21.4. Let U and V be open subsets of Hn and f : U −→ V a diffeo-
morphism. Then f maps interior points to interior points and boundary points to
boundary points.

Proof. Let p ∈ U be an interior point. Then p is contained in an open ball B, which
is actually open in Rn (not just in Hn). By the invariance of domain, f (B) is open in
Rn (again not just in Hn). Since
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f (p) ∈ f (B) ⊂ V ⊂ Hn,

f (p) is an interior point of Hn.
If p is a boundary point in U ∩ ∂Hn, then f−1(f (p)) = p is a boundary point.

Since f−1 : V −→ U is a diffeomorphism, by what has just been proved, f (p) cannot
be an interior point. Thus, f (p) is a boundary point. �	

21.2 Manifolds with Boundary

In the upper half-space Hn one may distinguish two kinds of open subsets, depending
on whether the set is disjoint from the boundary or intersects the boundary (Fig-
ure 21.2).

Fig. 21.2. Two types of open subsets of H
n.

Amanifold is locally homeomorphic to only the first kind of open sets. Amanifold
with boundary generalizes the definition of a manifold by allowing both kinds of open
sets.

We say that a topological space M is locally Hn if every point p ∈ M has a
neighborhood U homeomorphic to an open subset of Hn.

Definition 21.5. A topological n-manifold with boundary is a second countable Haus-
dorff topological space which is locally Hn.

For n ≥ 2, a chart on a topological n-manifold with boundary is defined to be a
pair (U, φ) consisting of an open set U in M and a homeomorphism

φ : U −→ φ(U) ⊂ Hn

of U with an open subset φ(U) of Hn. As Example 21.8 will show, a slight modifi-
cation is necessary when n = 1: we need to allow φ to be a homeomorphism of U
with an open subset φ(U) of H1 or of the left half-line

L1 := {x ∈ R | x ≤ 0}.
With this convention, if (U, x1, x2, . . . , xn) is a chart of an n-dimensional manifold
with boundary, then so is (U,−x1, x2, . . . , xn) for any n ≥ 1.
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A collection {(U, φ)} of charts is a C∞ atlas if for any two charts (U, φ) and
(V ,ψ),

ψ ◦ φ−1 : φ(U ∩ V ) −→ ψ(U ∩ V ) ⊂ Hn

is C∞. A C∞ manifold with boundary is a topological manifold M with boundary
together with a maximal C∞ atlas.

Apointp ofM is an interior point if in some chart (U, φ), φ(p) is an interior point
of Hn. Similarly, p is a boundary point ofM if φ(p) is a boundary point of Hn. These
concepts are well defined, independent of the charts, because if (V ,ψ) is another chart,
then the diffeomorphism ψ ◦ φ−1 maps φ(p) to ψ(p). By Proposition 21.4, φ(p)
and ψ(p) are either both interior points or both boundary points (Figure 21.3). The
set of boundary points of M is denoted ∂M .

� �

�φ ψ

p

Fig. 21.3. Boundary charts.

Most of the concepts that we introduced for a manifold extend to a manifold
with boundary in an obvious way. For example, a function f : M −→ R is C∞ at a
boundary point p ∈ ∂M if there is a chart (U, φ) about p such that f ◦ φ−1 is C∞ at
φ(p) ∈ Hn. This in turn means that f ◦ φ−1 has a C∞ extension to a neighborhood
of φ(p) in Rn.

Remark 21.6. In point-set topology there is another notion of boundary, defined for
a subset of a topological space S. If A ⊂ S, a point p in S is said to be a boundary
point of A if every neighborhood of p contains a point in A and a point not in A.
The set of all boundary points of A in S is denoted bd(A). We call this set the
topological boundary of A, to distinguish it from the manifold boundary ∂A in case
A is a manifold with boundary.

Example 21.7. Let A be the open unit disk in R2:

A = {x ∈ R2 | ‖x‖ < 1}.

Then its topological boundary bd(A) in R2 is the unit circle, while its manifold
boundary ∂A is the empty set.

If B is the closed unit disk in R2, then its topological boundary bd(B), the unit
circle, coincides with its manifold boundary ∂B.



21.4 Tangent Vectors, Differential Forms, and Orientations 215

21.3 The Boundary of a Manifold with Boundary

Let M be a manifold of dimension n with boundary ∂M . If (U, φ) is a chart for M ,
we denote by φ′ = φ|U∩∂M the restriction of the coordinate map φ to the boundary.
Since φ maps boundary points to boundary points,

φ′ : U ∩ ∂M −→ ∂Hn = Rn−1.

Moreover, if (U, φ) and (V ,ψ) are two charts for M , then

ψ ′ ◦ (φ′)−1 : φ′(U ∩ V ∩ ∂M) −→ ψ ′(U ∩ V ∩ ∂M)
is C∞. Thus, an atlas {(Uα, φα)} forM induces an atlas {(Uα ∩ ∂M, φα|Uα∩∂M)} for
∂M , making ∂M into a manifold of dimension n− 1 without boundary.

21.4 Tangent Vectors, Differential Forms, and Orientations

IfM is a manifold with boundary and p ∈ ∂M , we define the algebraC∞p = C∞p (M)
of germs of C∞ functions at p as in Section 2.2. Two C∞ functions f : U −→ R and
g : V −→ R defined on neighborhoods U and V of p in M are said to be equivalent
if they agree on some neighborhood W of p contained in U ∩ V . A germ of C∞
functions at p is an equivalence class of such functions. The tangent space TpM at
p is then defined to be the vector space of all derivations on C∞p .

For example, for p in the boundary of the upper half-plane H2, (∂/∂x)p and
(∂/∂y)p are both derivations on C∞p (H2). The tangent space Tp(H2) is represented
by a two-dimensional vector space with the origin at p. Since (∂/∂y)p is a tangent
vector to H2 at p, its negative −(∂/∂y)p is also a tangent vector at p (Figure 21.4),
although there is no curve through p in H2 with initial velocity −(∂/∂y)p.

�

p

− ∂
∂y

Fig. 21.4. A tangent vector at the boundary.

The cotangent space T ∗pM is defined to be the dual of the tangent space:

T ∗pM = Hom(TpM,R).

Differential k-forms onM are defined as before, as sections of the bundle
∧k
(T ∗M).

For example, dx ∧ dy is a 2-form on H2. An orientation on an n-manifold M with
boundary is given by a C∞ nowhere-vanishing n-form.
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According to Proposition 20.9, for a manifold without boundary the existence
of a nowhere-vanishing top form is equivalent to the existence of an oriented atlas.
The same proof goes through word for word for a manifold with boundary. At
some point in the proof it is necessary to replace the chart (U, x1, x2, . . . , xn) by
(U,−x1, x2 . . . , xn). This would not have been possible for n = 1 if we had not
allowed L1 as a local model in the definition of a chart for a one-dimensional manifold
with boundary.

Example 21.8. The closed interval [0, 1] is a C∞ manifold with boundary. It has
an atlas with two charts (U1, φ1) and (U2, φ2), where U1 = [0, 1), φ1(x) = x,
and U2 = (0, 1], φ2(x) = 1 − x. With dx as the orientation form, [0, 1] is an
oriented manifold with boundary. However, {(U1, φ1), (U2, φ2)} is not an oriented
atlas, because the transition function φ2 ◦ φ−1

1 (x) = 1 − x has negative Jacobian
determinant. If we change the sign of φ2, then {(U1, φ1), (U2,−φ2)} is an oriented
atlas. Note that−φ2(x) = x− 1 maps (0, 1] into the left half line L1 ⊂ R. If we had
allowed only H1 as a local model for a one-dimensional manifold with boundary, the
closed interval [0, 1] would not have an oriented atlas.

21.5 Boundary Orientation for Manifolds of Dimension Greater
than One

In this section we show that an orientation on a manifold M with boundary induces
in a natural way an orientation on the boundary ∂M . We first consider the case where
dimM ≥ 2.

Lemma 21.9. Assume n ≥ 2. Let (U, φ) and (V ,ψ) be two charts in an oriented
atlas of an orientable manifold M with boundary. Assume that U , V , and ∂M have
nonempty intersection. Then the restriction of the transition function to the boundary
B := φ(U ∩ V ) ∩ ∂Hn,

ψ ◦ φ−1|B : φ(U ∩ V ) ∩ ∂Hn −→ ψ(U ∩ V ) ∩ ∂Hn,

has positive Jacobian determinant.

Proof. Let φ = (x1, . . . , xn) on U and ψ = (y1, . . . , yn) on V . Since the transition
function

ψ ◦ φ−1 : φ(U ∩ V ) −→ ψ(U ∩ V ) ⊂ Hn

takes boundary points to boundary points and interior points to interior points,

(i) yn(x1, . . . , xn−1, 0) = 0, and
(ii) yn(x1, . . . , xn−1, xn) > 0 for xn > 0,

where (x1, x2, . . . , xn) ∈ φ(U ∩ V ).
Differentiating (i) gives

∂yn

∂xi
(x1, . . . , xn−1, 0) = 0 for i = 1, . . . , n− 1.
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From (i) and (ii),

∂yn

∂xn
(x1, . . . , xn−1, 0) = lim

t−→0+
yn(x1, . . . , xn−1, t)− yn(x1, . . . , xn−1, 0)

t

= lim
t−→0+

yn(x1, . . . , xn−1, t)

t
≥ 0,

since both t and yn(x1, . . . , xn−1, t) are positive.
The Jacobian matrix of ψ ◦ φ−1 at a boundary point (x1, . . . , xn−1, 0) therefore

has the form

J (ψ ◦ φ−1|B) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂y1

∂x1
· · · ∂y1

∂xn−1

∂y1

∂xn
...

...
...

∂yn−1

∂x1
· · · ∂y

n−1

∂xn−1

∂yn−1

∂xn

0 · · · 0
∂yn

∂xn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
J (ψ ◦ φ−1|B) ∗

0 · · · 0
∂yn

∂xn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

It follows that

det J (ψ ◦ φ−1) = det J (ψ ◦ φ−1|B) · ∂y
n

∂xn
.

Since det J (ψ ◦ φ−1) is positive everywhere by hypothesis, at (x1, . . . , xn−1, 0) we
have ∂yn/∂xn > 0 and therefore det J (ψ ◦ φ−1|B) > 0. �	

The following proposition is a direct consequence of the lemma.

Proposition 21.10. If {(Uα, φα)} is an oriented atlas for a manifoldM with boundary,
then the induced atlas {(Uα ∩ ∂M, φα|Uα∩∂M)} for ∂M is oriented.

If {(Uα, φα)} is an oriented atlas for a manifold M with boundary, by Proposi-
tion 21.10, it would seem most natural to define the boundary orientation on ∂M by
the oriented atlas {(Uα ∩ ∂M, φα|Uα∩∂M)}. This convention, unfortunately, would
lead to a sign in Stokes’ theorem. In order to have a sign-free Stokes’ theorem, we
adopt the following convention.

Definition 21.11. Suppose the oriented atlas {(Uα, φα)} gives the orientation on a
manifold M . If M is even dimensional, then the boundary orientation on ∂M is
given by the oriented atlas {(Uα ∩ ∂M, φα|Uα∩∂M)}. If M is odd dimensional, then
the boundary orientation on ∂M is given by the opposite of the oriented atlas {(Uα ∩
∂M, φα|Uα∩∂M)}.

It is clear from Lemma 21.9 that the definition of the boundary orientation is
independent of the oriented atlas for M . In Problems 21.4 and 21.5, we describe
two other ways of specifying the boundary orientation, in terms of a basis of tangent
vectors and in terms of an orientation form.
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Example 21.12 (The boundary orientation on ∂Hn). The standard orientation on the
upper half-space Hn is given by the oriented atlas with a single chart (Hn, x1, . . . , xn)

corresponding to the n-form dx1 ∧ · · · ∧ dxn. The boundary ∂Hn � Rn−1 has an
oriented atlas with a single chart (∂Hn, x1, . . . , xn−1), corresponding to the (n− 1)-
form dx1 ∧ · · · ∧ dxn−1. By Definition 21.11, the boundary orientation on ∂Hn is
given by the (n− 1)-form (−1)n dx1 ∧ · · · ∧ dxn−1 (Figures 21.5 and 21.6).

Fig. 21.5. Induced orientation on ∂H2 = R.

x

y

z

Fig. 21.6. Induced orientation on ∂H3 = R
2.

21.6 Boundary Orientation for One-Dimensional Manifolds

An orientation on a point is one of two numbers ±1. In accordance with Exam-
ple 21.12, we define the boundary orientation at the boundary point 0 of H1 = [0,∞)
to be −1.

Suppose C is a one-dimensional oriented manifold with boundary, and p is a
boundary point of C. If φ : U −→ H1 is an orientation-preserving chart about p
(Figure 21.7), then the boundary orientation at p is defined to be −1; if φ : U −→ H1

is an orientation-reversing chart about p, then the boundary orientation at p is defined
to be 1.
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)� �

p 0U φ
H

1

Fig. 21.7. Orientation-preserving chart.

Example 21.13. The closed interval [a, b] in the real line with coordinate x has a
standard orientation given by the 1-form dx. A chart centered at a is ([a, b), φ),
where φ : [a, b) −→ H is given by φ(x) = x − a. Since φ is orientation-preserving,
the boundary orientation at a is −1. Similarly, a chart centered at b is ((a, b], ψ),
where ψ : (a, b] −→ H is given by ψ(x) = b − x. Since ψ is orientation-reversing,
the boundary orientation at b is −(−1) = +1.

Example 21.14. Suppose c : [a, b] −→ M is a C∞ map whose image is a one-
dimensional manifold C. An orientation on [a, b] induces an orientation on C via
the differential c∗ : Tp([a, b]) −→ TpC at each point p ∈ [a, b]. In a situation like
this, we give C the orientation induced from the standard orientation on [a, b]. The
boundary orientation on the boundary of C is +1 at the endpoint c(b) and −1 at the
initial point c(a).

Problems

21.1. Topological boundary versus manifold boundary
LetM be the subset [0, 1)∪{2} of the real line. Find its topological boundary bd(M)
and its manifold boundary ∂M .

21.2.* Boundary orientation of the left half-space
Let M be the left half-space

{(y1, . . . , yn) ∈ Rn | y1 ≤ 0},
with orientation form dy1∧· · ·∧dyn. Show that an orientation form for the boundary
orientation on ∂M = {(0, y2, · · · , yn) ∈ Rn} is dy2 ∧ · · · ∧ dyn.

This exercise shows that if we had used the left half-space as the model of a
manifold with boundary, then there would not be a sign in the induced boundary
orientation. In fact, certain authors adopt this convention, e.g., [4].

21.3.* Inward-pointing vectors at the boundary
Let M be a manifold with boundary and p ∈ ∂M . We say that a tangent vector
Xp ∈ Tp(M) is inward-pointing if Xp /∈ Tp(∂M) and there are a positive real
number ε and a curve c : [0, ε) −→ M such that c(0) = p, c((0, ε)) ⊂ int(M), and
c′(0) = Xp. A vector Xp ∈ Tp(M) is outward-pointing if −Xp is inward-pointing.
For example, on the upper half-plane H2, (∂/∂y)p is inward-pointing and −(∂/∂y)p
is outward-pointing at a point p in the x-axis. Show that Xp ∈ Tp(M) is inward-
pointing iff in any coordinate chart (U, x1, . . . , xn) centered at p, the coefficient of
(∂/∂xn)p in Xp is positive.



220 21 Manifolds with Boundary

21.4.* Boundary orientation in terms of tangent vectors
Let M be a manifold with boundary and p ∈ ∂M . Show that an ordered ba-
sis (v1, . . . , vn−1) for the tangent space Tp(∂M) gives the boundary orientation
on ∂M at p iff for any outward-pointing vector Xp ∈ Tp(M), the ordered basis
(Xp, v1, . . . , vn−1) for Tp(M) gives the orientation on M at p.

21.5.* Orientation form of the boundary orientation
SupposeM is an oriented manifold with boundary with orientation form ω. A vector
field along ∂M assigns to each point p ∈ ∂M a vector in the tangent space TpM (as
opposed to Tp(∂M)). Let X be an outward-pointing vector field along ∂M . Show
that the contraction ιXω is a boundary orientation for ∂M . (The contraction is defined
in Problem 4.7.)

21.6. Boundary orientation for a cylinder
LetM be the cylinder S1×[0, 1]with the counterclockwise orientation when viewed
from the exterior (Figure 21.8). Describe the boundary orientation on C0 = S1 ×{0}
and C1 = S1 × {1}.

C1

C0

Fig. 21.8. Oriented cylinder.
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Integration on a Manifold

On a manifold, one integrates not functions as in calculus on Rn but differential
forms. There are actually two theories of integration on a manifold: one where the
integration is over a submanifold and the other where the integration is over what is
called a singular chain. Singular chains allow one to integrate over an object such as
a closed rectangle in R2:

[a, b] × [c, d] := {(x, y) ∈ R2 | a ≤ x ≤ b, c ≤ y ≤ d},
which is not a submanifold of R2 because of its corners.

For simplicity we will discuss only integration over a submanifold. For the
more general theory of integration over singular chains, the reader may consult the
many excellent references in the bibliography, for example, [4, Section 8.2] or [11,
Chapter 14].

22.1 The Riemann Integral of a Function on Rn

We assume that the reader is familiar with the theory of Riemann integration in Rn, as
in [12] or [17]. What follows is a brief synopsis of the Riemann integral of a bounded
function over a bounded set in Rn.

A closed rectangle in Rn is a Cartesian product R = [a1, b1] × · · · × [an, bn]
of closed intervals in R, where ai, bi ∈ R. Let f : R −→ R be a bounded function
defined on a closed rectangle R. A partition of the closed interval [a, b] is a set of
real numbers {p0, . . . , pn} such that

a = p0 < p1 < · · · < pn = b.

A partition of the rectangleR is a collection P = {P1, . . . , Pn}where Pi is a partition
of [ai, bi]. The partition P divides the rectangle R into closed subrectangles, which
we denote by Rj (Figure 22.1).

We define the lower sum and the upper sum of f with respect to the partition P
to be
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a1 b1

a2

b2

Fig. 22.1. A partition of a closed rectangle.

L(f, P ) =
∑

(inf
Rj
f ) vol(Rj ), U(f, P ) =

∑
(sup
Rj

f ) vol(Rj ),

where each sum runs over all subrectangles of the partition P . For any partition P ,
clearly L(f, P ) ≤ U(f, P ). In fact, more is true: for any two partitions P and P ′ of
the rectangle R,

L(f, P ) ≤ U(f, P ′),
which we show next.

A partition P ′ = {P ′
1, . . . , P

′
n} is a refinement of the partition P = {P1, . . . , Pn}

if Pi ⊂ P ′
i for all i = 1, . . . , n. If P ′ is a refinement of P , then each subrectangle Rj

of P is subdivided into subrectangles R′jk of P ′, and it is easily seen that

L(f, P ) ≤ L(f, P ′), (22.1)

because if R′jk ⊂ Rj , then infRj f ≤ infR′jk f . Similarly, if P ′ is a refinement of

P , then
U(f, P ′) ≤ U(f, P ). (22.2)

Any two partitions P and P ′ of the rectangle R have a common refinement
Q = {Q1, . . . ,Qn} with Qi = Pi ∪ P ′

i . By (22.1) and (22.2),

L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ′).

It follows that the supremum of the lower sum L(f, P ) over all partitions P of R is
less than or equal to the infimum of the upper sum U(f, P ) over all partitions P of
R. We define these two numbers to be the lower integral

∫
R
f and the upper integral∫

R
f , respectively:∫

R

f = sup
P

L(f, P ),

∫
R

f = inf
P
L(f, P ).

Definition 22.1. Let R be a closed rectangle in Rn. A bounded function f : R −→ R

is said to be Riemann integrable if
∫
R
f = ∫

R
f ; in this case, the Riemann integral

of f is this common value, denoted
∫
R
f (x) |dx1 · · · dxn|, where x1, . . . , xn are the

coordinates on Rn.
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Remark. When we speak of a rectangle [a1, b1] × · · · × [an, bn] in Rn, we have
already tacitly chosen n coordinates axes, with coordinates x1, . . . , xn. Thus, the
definition of the Riemann integrable depends on the coordinates x1, . . . , xn. The two
vertical bars in the integral serve to emphasize that it is merely a notation for the
Riemann integral, not a differential form.

If f : A ⊂ Rn −→ R, then the extension of f by zero is the function f̃ : Rn −→ R

such that

f̃ (x) =
{
f (x) for x ∈ A,
0 for x /∈ A.

Now suppose f : A −→ R is a bounded function on a bounded set A in Rn. Enclose
A in a closed rectangle and define the Riemann integral of f over A to be∫

A

f (x) |dx1 · · · dxn| =
∫
R

f̃ (x) |dx1 · · · dxn|

if the right-hand side exists. In this way we can deal with the integral of a bounded
function whose domain is an arbitrary bounded set in Rn.

The volume v(A) of a subset A ⊂ Rn is defined to be the integral
∫
A

1 if the
integral exists. For a closed rectangle R = [a1, b1] × · · · × [an, bn], the volume is

v(R) =
n∏
i=1

(bi − ai).

22.2 Integrability Conditions

In this section we describe some conditions under which a function defined on an
open subset of Rn is Riemann integrable.

Definition 22.2. A set A ⊂ Rn is said to have measure zero if for every ε > 0, there
is a countable cover {Ri}∞i=1 of A by closed rectangles Ri such that

∑∞
i=1 v(Ri) < ε.

The most useful integrability criterion is the following theorem of Lebesgue [12,
Theorem 8.3.1, p. 455].

Theorem 22.3 (Lebesgue’s theorem). A bounded function f : A −→ R on a bounded
subset A ⊂ Rn is Riemann integrable iff the set Dist(f̃ ) of discontinuities of the
extended function f̃ has measure zero.

Proposition 22.4. If a continuous function f : U −→ R defined on an open subset U
of Rn has compact support, then f is Riemann integrable on U .

Proof. Being continuous on a compact set, the function f is bounded. Being com-
pact, the set supp f is closed and bounded in Rn. We claim that the extension f̃ is
continuous.
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Since f̃ agrees with f on U , the extended function f̃ is continuous on U . If
p /∈ U , then p /∈ supp f . As supp f is a closed subset of Rn, there is an open ball
B containing p and disjoint from supp f . Hence, f̃ ≡ 0 on B, which proves that f̃
is continuous at p /∈ U . Thus, f̃ is continuous on Rn. By Lebesgue’s theorem, f is
Riemann integable on U . �	
Proposition 22.5. A bounded continuous function f : U −→ R defined on an open set
U of finite volume is Riemann integrable.

Proof. Since U has finite volume, the integral
∫
U

1 exists, where 1 : U −→ R is the

constant function 1 on U . The set of discontinuities of the extended function 1̃ is the
boundary bd(U) of U . By Lebesgue’s theorem, bd(U) is a set of measure zero.

Clearly, the set Dist(f̃ ) of discontinuities of f̃ is a subset of bd(U); hence, Dist(f̃ )
is also a set of measure zero. By Lebesgue’s theorem again, f is Riemann integrable
over U . �	

22.3 The Integral of an n-Form on Rn

Once a set of coordinates x1, . . . , xn has been fixed on Rn, n-forms on Rn can
be identified with functions on Rn, since every n-form on Rn can be written as
ω = f (x) dx1 ∧ · · · ∧ dxn for a unique function f (x) on Rn. In this way the theory
of Riemann integration of functions on Rn carries over to n-forms on Rn.

Definition 22.6. Let ω = f (x) dx1 ∧ · · · ∧ dxn be a C∞ n-form on an open subset
U ⊂ Rn, with standard coordinates x1, . . . , xn. Its integral over U is defined to be
the Riemann integral of f (x):∫

U

ω =
∫
U

f (x) dx1 ∧ · · · ∧ dxn =
∫
U

f (x) |dx1 · · · dxn|,

if the Riemann integral exists.

In this definition the n-form must be written in the order dx1 ∧ · · · ∧ dxn. To
integrate for example τ = f (x) dx2 ∧ dx1 over U ⊂ R2, one would write∫

U

τ =
∫
U

−f (x) dx1 ∧ dx2 = −
∫
U

f (x) |dx1 dx2|.

Let us see how the integral of an n-form on Rn transforms under a change of
variables. A change of variables on U is a diffeomorphism T : V ⊂ Rn −→ U ⊂ Rn,

x = (x1, . . . , xn) = T (y1, . . . , yn) = T (y) = (T 1(y), . . . , T n(y)).

Denote by J (T ) the Jacobian matrix [∂T i/∂yj ]. By Problem 19.2,

dT 1 ∧ · · · ∧ dT n = det(J (T )) dy1 ∧ · · · ∧ dyn.
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Hence, ∫
V

T ∗ω =
∫
V

T ∗(f (x)) T ∗dx1 ∧ · · · ∧ T ∗dxn

=
∫
V

f (T (y)) dT 1 ∧ · · · ∧ dT n

=
∫
V

f (T (y)) det(J (T )) dy1 ∧ · · · ∧ dyn

=
∫
V

f (T (y)) det(J (T )) |dy1 · · · dyn|. (22.3)

On the other hand, the change of variables formula from advanced calculus gives∫
U

ω =
∫
U

f (x) |dx1 · · · dxn| =
∫
V

f (T (y))| det(J (T ))| |dy1 · · · dyn|, (22.4)

with an absolute-value sign around the Jacobian determinant. Equations (22.3) and
(22.4) differ by the sign of det(J (T )). Hence,∫

V

T ∗ω = ±
∫
U

ω, (22.5)

depending on whether the Jacobian determinant det(J (T )) is positive or negative.
By Proposition 20.7 a diffeomorphism T : V ⊂ Rn −→ U ⊂ Rn is orientation-

preserving if and only if its Jacobian determinant det(J (T )) is everywhere positive
on V . Equation (22.5) shows that the integral of a differential form is not invariant
under all diffeomorphisms of V with U , but only under the orientation-preserving
diffeomorphisms.

22.4 The Integral of a Differential Form on a Manifold

The integral of an n-form on Rn is not so different from the integral of a function. Our
approach to integration over a general manifold has several distinguishing features:

(i) The manifold must be oriented (in fact, Rn has a standard orientation).
(ii) On a manifold of dimension n, one can integrate only n-forms, not functions.

(iii) The n-forms must have compact support.

LetM be an oriented manifold of dimension n, with an oriented atlas {(Uα, φα)}
giving the orientation of M . Suppose {(U, φ)} is a chart of this atlas. If ω ∈ �nc (U)
is an n-form with compact support on U , then because φ : U −→ φ(U) is a dif-
feomorphism, (φ−1)∗ω is also an n-form with compact support on the open subset
φ(U) ⊂ Rn. We define the integral of ω on U as∫

U

ω :=
∫
φ(U)

(φ−1)∗ω.
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If (U,ψ) is another chart with the same U , then φ ◦ ψ−1 : ψ(U) −→ φ(U) is an
orientation-preserving diffeomorphism, and so∫

φ(U)

(φ−1)∗ω =
∫
ψ(U)

(φ ◦ ψ−1)∗(φ−1)∗ω =
∫
ψ(U)

(ψ−1)∗ω.

Thus, the integral
∫
U
ω on a chart U of the atlas is well defined, independent of

the choice of coordinates on U . By the linearity of the integral on Rn, if ω, τ ∈
�nc (U), then ∫

U

ω + τ =
∫
U

ω +
∫
U

τ.

Now let ω ∈ �nc (M). Choose a partition of unity {ρα} subordinate to the open
cover {Uα}. Because ω has compact support and a partition of unity has locally
finite supports, all except finitely many ραω are identically zero by Problem 18.5. In
particular,

ω =
∑
α

ραω

is a finite sum. Since by Problem 18.4(b),

supp(ραω) ⊂ supp ρα ∩ suppω,

supp(ραω) is a closed subset of the compact set suppω. Hence, supp(ραω) is compact.
As ραω is an n-form with compact support in the chart Uα , its integral

∫
Uα
ραω is

defined. Therefore, we can define the integral of ω over M to be the finite sum∫
M

ω =
∑
α

∫
Uα

ραω. (22.6)

For this integral to be well defined, we must show that it is independent of the
choice of the oriented atlas and of the partition of unity. Let {Vβ} be another oriented
atlas ofM specifying the orientation ofM and {χβ} a partition of unity subordinate to
{Vβ}. Then {(Uα∩Vβ, φα)} and {(Uα∩Vβ,ψβ)} are two new atlases ofM specifying
the orientation of M , and∑

α

∫
Uα

ραω =
∑
α

∫
Uα

ρα
∑
β

χβω (because
∑
β

χβ = 1)

=
∑
α

∑
β

∫
Uα

ραχβω (these are finite sums)

=
∑
α

∑
β

∫
Uα∩Vβ

ραχβω,

where the last line follows from the fact that the support of ραχβ is contained in
Uα ∩ Vβ . By symmetry,

∑
β

∫
Vβ
χβω is equal to the same sum. Hence,
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α

∫
Uα

ραω =
∑
β

∫
Vβ

χβω,

proving that the integral (22.6) is well defined.
For an oriented manifold M , we indicate by −M the same manifold but with

the opposite orientation. If {U, φ)} = {(U, x1, x2, . . . , xn)} is an oriented atlas
specifying the orientation of M , then an oriented atlas specifying the orientation of
−M is {U, φ̃)} = {(U,−x1, x2, . . . , xn)}. Clearly, on n-forms the pullback φ̃∗ =
−φ∗ and therefore (φ̃−1)∗ = −(φ−1)∗. This shows that for ω ∈ �nc (M) and any
chart (U, φ),

∫
−U ω = − ∫

U
ω and therefore

∫
−M ω = − ∫

M
ω. Thus, reversing the

orientation of M reverses the sign of an integral over M .
The discussion of integration presented above can be extended almost word for

word to manifolds with boundary. It has the virtue of simplicity and is of great
utility in proving theorems. However, it is not practical for actual computation of
integrals; an n-form multiplied by a partition of unity can rarely be integrated as a
closed expression. To calculate explicitly integrals over a manifold M , it is best to
consider integrals over a parametrized set, i.e., a C∞ map from an open subset of Rn

to the manifold M of dimension n. If α : U ⊂ Rn −→ M is a parametrized set and
ω is an n-form on M , not necessarily with compact support, then

∫
α(U)

ω is defined
to be

∫
U
α∗ω, provided this last integral exists. The integral of a C∞ n-form over

U exists, for example, if U has compact closure and the topological boundary of U
is a set of measure zero. We will not delve into this theory of integration (see [16,
Theorem 25.4, p. 213] or [11, Proposition 14.7, p. 356]), but will content ourselves
with an example.

Example 22.7. In spherical coordinates, ρ is the distance
√
x2 + y2 + z2 of the point

(x, y, z) ∈ R3 to the origin, φ is the angle that the vector 〈x, y, z〉 makes with the
positive z-axis, and θ is the angle that the vector 〈x, y〉 in the (x, y)-plane makes with
the positive x-axis. Let

U = {(x, y, z) ∈ S2 | 0 < φ < π, 0 < θ < 2π}.

Then (U, φ, θ) is a chart on the unit sphere S2. Calculate
∫
U

sin φ dφ ∧ dθ .

Solution. Let α = (φ, θ) be the coordinate map onU . Note that φ and θ are functions
on U ⊂ S2. Let

u = (α−1)∗φ = φ ◦ α−1, v = (α−1)∗θ = θ ◦ α−1

be the corresponding functions on the open set

α(U) = {(u, v) ∈ R2 | 0 < u < π, 0 < v < 2π}.

By the definition of an integral over U ,
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U

sin φ dφ ∧ dθ =
∫
α(U)

(α−1)∗(sin φ dφ ∧ dθ)

=
∫
α(U)

sin(φ ◦ α−1) d(α−1)∗φ ∧ d(α−1)∗θ

(because d commutes with (α−1)∗)

=
∫
α(U)

sin u du ∧ dv

=
∫ 2π

0

∫ π

0
sin u du dv

= 2π
[

cos u
]π

0 = 4π. �	

Integration over a zero-dimensional manifold

The discussion of integration so far assumes implicitly that the manifold M has
dimension n ≥ 1. We now treat integration over a zero-dimensional manifold. A
compact oriented manifold M of dimension 0 is a finite collection of points, each
point oriented by +1 or −1. We write this as M = ∑

pi −∑
qj . An integral of a

0-form f : M −→ R is defined to be the sum∫
M

f =
∑

f (pi)−
∑

f (qj ).

22.5 Stokes’ Theorem

Let M be an oriented manifold of dimension n with boundary ∂M . We give ∂M the
boundary orientation.

Theorem 22.8 (Stokes’ theorem). For any (n− 1)-form ω with compact support on
the oriented n-dimensional manifold M ,∫

M

dω =
∫
∂M

ω.

Proof. Choose an atlas {(Uα, φα)} forM in which eachUα is diffeomorphic to either
Rn or Hn via an orientation-preserving diffeomorphism. This is possible since any
open disk is diffeomorphic to Rn (see Problem 1.4). Let {ρα} be a C∞ partition of
unity subordinate to {Uα}. As we showed in the preceding section, the (n− 1)-form
ραω has compact support in Uα .

Suppose Stokes’ theorem holds for Rn and for Hn. Then it holds for all the charts
Uα in our atlas, which are diffeomorphic to Rn or Hn. Also, note that

(∂M) ∩ Uα = ∂Uα.

Therefore,
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∂M

ω =
∫
∂M

∑
α

ραω

(∑
α

ρα = 1

)

=
∑
α

∫
∂M

ραω

(∑
α

ραω is a finite sum by Problem 18.5

)

=
∑
α

∫
∂Uα

ραω (supp ραω is contained in Uα)

=
∑
α

∫
Uα

d(ραω) (Stokes’ theorem for Uα)

=
∑
α

∫
M

d(ραω) (supp d(ραω) ⊂ Uα)

=
∫
M

d(
∑

ραω) (ραω ≡ 0 for all but finitely many α)

=
∫
M

dω.

Thus, it suffices to prove Stokes’ theorem for Rn and for Hn. We will give a proof
only for H2, as the general case is similar.

Proof of Stokes’ theorem for the upper half-plane H2. Let x, y be the coordinates on
H2. Then the standard orientation on H2 is given by dx ∧ dy, and the boundary
orientation on ∂H2 is given by dx.

The form ω is a linear combination

ω = f (x, y) dx + g(x, y) dy (22.7)

for C∞ functions f , g with compact support in H2. Since the supports of f and g
are compact, we may choose a real number a > 0 large enough so that the supports
of f and g are contained in the interior of the square [−a, a] × [−a, a]. We will
use the notation fx, fy to denote the partial derivatives of f with respect to x and y,
respectively. Then

dω =
(
∂g

∂x
− ∂f

∂y

)
dx ∧ dy = (gx − fy) dx ∧ dy,

and ∫
H2
dω =

∫
H2
gx |dx dy| −

∫
H2
fy |dx dy|

=
∫ ∞

0

∫ ∞

−∞
gx |dx dy| −

∫ ∞

−∞

∫ ∞

0
fy |dy dx|

=
∫ a

0

∫ a

−a
gx |dx dy| −

∫ a

−a

∫ a

0
fy |dy dx|. (22.8)

In this expression,
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−a
gx(x, y) dx = g(x, y)

]a
x=−a = 0

because supp g lies in the interior of [−a, a] × [−a, a]. Similarly,∫ a

0
fy(x, y) dy = f (x, y)

]a
y=0 = −f (x, 0)

because f (x, a) = 0. Thus, (22.8) becomes∫
H2
dω =

∫ a

−a
f (x, 0) dx.

On the other hand, ∂H2 is the x-axis and dy = 0 on ∂H2. It follows from (22.7)
that ω = f (x, 0) dx when restricted to ∂H2 and∫

∂H2
ω =

∫ a

−a
f (x, 0) dx.

This proves Stokes’ theorem for the upper half-plane. �	

22.6 Line Integrals and Green’s Theorem

We will now show how Stokes’ theorem for a manifold unifies some of the theorems
of vector calculus on R2 and R3.

Theorem 22.9 (Fundamental theorem for line integrals). Let C be a curve in R3,
parametrized by r(t) = (x(t), y(t), z(t)), a ≤ t ≤ b, and let F be a vector field on
R3. If F = gradf for some scalar function f , then∫

C

F · dr = f (r(b))− f (r(a)).

Theorem 22.10 (Green’s theorem in the plane). IfD is a plane region with boundary
∂D, and P and Q are C∞ functions on D, then∫

∂D

P dx +Qdy =
∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA.

In this statement, dA is the usual calculus notation for |dx dy|.
Suppose in Stokes’ theorem we takeM to be a curve C with parametrization r(t),

a ≤ t ≤ b, and ω to be the function f on C. Then∫
C

dω =
∫
C

df =
∫
C

∂f

∂x
dx + ∂f

∂y
dy + ∂f

∂z
dz

=
∫
C

gradf · dr
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and ∫
∂C

ω = f
]
∂C

= f (r(b))− f (r(a)).
In this case Stokes’ theorem specializes to the fundamental theorem for line integrals.

To obtain Green’s theorem, let M be a plane region D with boundary ∂D and let
ω be the 1-form P dx +Qdy on D. Then∫

∂D

ω =
∫
∂D

P dx +Qdy

and ∫
D

dω =
∫
D

Py dy ∧ dx +Qx dx ∧ dy =
∫
D

(Qx − Py) dx ∧ dy

=
∫
D

(Qx − Py) |dx dy| =
∫
D

(Qx − Py) dA.

In this case Stokes’ theorem is Green’s theorem in the plane.

Problems

22.1. Orientation-preserving or orientation-reversing diffeomorphisms
Let U be the open set (0,∞) × (0, 2π) in the (r, θ)-plane R2. We define
F : U ⊂ R2 −→ R2 by

F(r, θ) = (r cos θ, r sin θ).

Decide if F is orientation-preserving or orientation-reversing as a diffeomorphism
onto its image.

22.2.* Integral under a diffeomorphism
Suppose N and M are connected oriented n-manifolds and F : N −→ M is a diffeo-
morphism. Prove that for any ω ∈ �kc(M),∫

N

F ∗ω = ±
∫
M

ω,

where the sign depends on whether F is orientation-preserving or orientation-
reversing.

22.3.* Stokes’ theorem
Prove Stokes’ theorem for Rn and for Hn.
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De Rham Cohomology

In vector calculus one often needs to know if a vector field on an open setD in R3 is
the gradient of a function or is the curl of another vector field. By the correspondence
of Section 4.6 between vector fields and differential forms, this translates into the
question of whether a differential form ω on D is exact. Of course, a necessary
condition is that the form ω should be closed. It turns out that whether every closed
form on a manifold is exact depends on the topology of the manifold. For example,
on R2 every closed k-form is exact for k > 0, but on R2 − {(0, 0)} there are closed
1-forms that are not exact. The extent to which a closed form is not exact is measured
by de Rham cohomology, possibly the most important diffeomorphism invariant of
a manifold.

In this chapter we define de Rham cohomology, prove some of its basic properties,
and compute two elementary examples, the de Rham cohomology of the real line and
the unit circle.

23.1 De Rham Cohomology

Suppose F(x, y) = 〈P(x, y),Q(x, y)〉 is a smooth vector field representing a force
on an open subset U of R2, and C is a parametrized curve c(t) = (x(t), y(t)) in U
from a point A to a point B, with a ≤ t ≤ b. Then the work done by the force in
moving a particle from A to B along C is given by the line integral

∫
C
P dx +Qdy.

Such a line integral is easy to compute if the vector field F is the gradient of a
scalar function f (x, y):

F = gradf = 〈fx, fy〉,
where fx = ∂f/∂x and fy = ∂f/∂y. By Stokes’ theorem, the line integral is simply∫

C

fx dx + fy dy =
∫
C

df = f (B)− f (A).

A necessary condition for the vector field F = 〈P,Q〉 to be a gradient is that
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Py = fxy = fyx = Qx.

The question is now the following: if Py −Qx = 0, is the vector field F = 〈P,Q〉
on U the gradient of some scalar function f (x, y) on U?

In Section 4.6 we established a one-to-one correspondence between vector fields
and differential 1-forms on an open subset of R3. There is a similar correspondence
on an open subset of any Rn. For R2, it assumes the following form:

X(U)↔ �1(U),

F = 〈P,Q〉 ↔ ω = P dx +Qdy,
gradf = 〈fx, fy〉 ↔ df = fx dx + fy dy,

Qx − Py = 0 ↔ dω = (Qx − Py) dx ∧ dy = 0.

In terms of differential forms the question above becomes: if the 1-form ω = P dx+
Qdy is closed on U , is it exact? The answer to this question is sometimes yes and
sometimes no, depending on the topology of U .

Just as for an open subset of Rn, a differential form ω on a manifold M is said to
be closed if dω = 0, and exact if ω = dτ for some form τ of degree one less. Since
d2 = 0, every exact form is closed. In general, not every closed form is exact.

Let Zk(M) be the vector space of all closed k-forms and Bk(M) the vector space
of all exact k-forms on the manifoldM . Because every exact form is closed, Bk(M)
is a subspace of Zk(M). The quotient vector space Hk(M) := Zk(M)/Bk(M)

measures the extent to which closed k-forms fail to be exact, and is called the de Rham
cohomology ofM in degree k. As explained in Appendix D, the quotient vector space
construction introduces an equivalence relation on Zk(M):

ω′ ∼ ω in Zk(M) iff ω′ − ω ∈ Bk(M).
The equivalence class of a closed form ω is called its cohomology class and denoted
by [ω]. Two closed forms ω and ω′ determine the same cohomology class if and only
if they differ by an exact form:

ω′ = ω + dτ.
In this case we say that the two closed forms ω and ω′ are cohomologous.

Proposition 23.1. If the manifold M has r connected components, then its de Rham
cohomology in degree 0 is H 0(M) = Rr .

Proof. Since there are no exact 0-forms other than 0,

H 0(M) = Z0(M) = {closed 0-forms}.
Supposed f is a closed 0-form on M , i.e., f is a C∞ function on M such that

df = 0. On any chart (U, x1, . . . , xn),

df =
∑ ∂f

∂xi
dxi .
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Thus, df = 0 on U if and only if all the partial derivatives ∂f/∂xi vanish identically
on U . This in turn is equivalent to f being locally constant on U . Hence, the closed
0-forms onM are precisely the locally constant functions onM . Such a function must
be constant on each connected component of M . If M has r connected components,
then a locally constant function on M is simply an ordered set of r real numbers.
Thus, Z0(M) = Rr . �	
Proposition 23.2. On a manifold M of dimension n, the de Rham cohomology
Hk(M) = 0 for k > n.

Proof. At any point p ∈ M , the tangent space TpM is a vector space of dimension
n. If ω is a k-form on M , then ωp ∈ Ak(TpM), the space of alternating k-linear
functions on TpM . By Corollary 3.31, if k > n, then Ak(TpM) = 0. Hence, for
k > n, the only k-form on M is the zero form. �	

23.2 Examples of de Rham Cohomology

Example 23.3 (The de Rham cohomology of the real line). Since R is connected, by
Proposition 23.1,

H 0(R) = R.

For dimension reasons, on R there are no nonzero 2-forms. This implies that
every 1-form on R is closed. A 1-form f (x) dx on R is exact if and only if there is a
C∞ function g(x) on R such that

f (x) dx = dg = g′(x) dx.

Such a function g(x) is simply an antiderivative of f (x), for example,

g(x) =
∫ x

0
f (t) dt.

This proves that every 1-form on R is exact. In summary,

Hk(R) =
{

R for k = 0;
0 for k ≥ 1.

Example 23.4 (The de Rham cohomology of a circle). Let S1 be the unit circle in the
xy-plane. As in the example of R, because S1 is connected,

H 0(S1) = R,

and because S1 is one dimensional,

Hk(S1) = 0

for all k ≥ 2. It remains to compute H 1(S1).
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In Section 19.7 we found a nowhere-vanishing 1-form on S1:

ω(x,y) =

⎧⎪⎨⎪⎩
dy

x
if (x, y) ∈ S1 and x �= 0,

−dx
y

if (x, y) ∈ S1 and y �= 0.
(23.1)

Since ω is nowhere-vanishing, it cannot be exact, for an exact 1-form df must vanish
at the maximum and minimum of f , and we know that a continuous function on
a compact set such as S1 necessarily has a maximum and a minimum. Thus, the
existence of the nowhere-vanishing 1-form ω implies immediately thatH 1(S1) �= 0.

θ

Fig. 23.1. The angle θ on the circle.

On the circle the angle θ relative to the x-axis is defined only up to an integral
multiple of 2π ; in other words, θ is not a real-valued function on S1, but a function
from S1 to R/(2πZ) (Figure 23.1).

However, one can make sense of a well-defined 1-form dθ on S1 in the following
way. The projection ρ : R −→ R/2πZ is a covering space. A branch of θ : S1

−→ R/2πZ over an open interval I of the circle is a lift of θ |I to R, i.e., a function
f : I −→ R such that ρ ◦ f = θ |I . Any two C∞ lifts f1 : I1 −→ R and f2 : I2 −→ R

differ by a locally constant function on I1∩ I2, since f1−f2 is a continuous function
from I1 ∩ I2 into the discrete set 2πZ. Hence, df1 = df2 on I1 ∩ I2. By covering
the circle with overlapping intervals, we obtain a well-defined 1-form on the circle,
which we denote by dθ . In short, on any open interval of the circle, dθ is the exterior
derivative of any C∞ branch of θ .

Exercise 23.5 (A nowhere-vanishing 1-form on the circle). Show that dθ is precisely the
nowhere-vanishing 1-form ω in (23.1).

Remark 23.6. It spite of the notation, it should be noted that dθ is not an exact form
on the circle, because θ is not a C∞ function on S1.

A function on the circle may be identified with a periodic function on the real
line of period 2π . Since dθ is nowhere-vanishing, every 1-form α on the circle is a
multiple of dθ :

α = f (θ) dθ,

where f (θ) is a periodic function on R of period 2π .
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Since the circle has dimension 1, all 1-forms on S1 are closed, so �1(S1) =
Z1(S1). The integration of 1-forms on S1 defines a linear map

ϕ : Z1(S1) = �1(S1) −→ R, ϕ(α) =
∫
S1
α.

To compute the integral
∫
S1 dθ , note that removing a finite set of points from the

domain of integration does not change the value of the integral. If we remove the
point 1 from the unit circle, then θ : S1 −{1} −→ (0, 2π) is a well-defined coordinate
function, and θ = θ∗t , where t is the coordinate on the real line. Hence,∫

S1
dθ =

∫
S1−{1}

dθ =
∫
S1−{1}

θ∗dt =
∫ 2π

0
dt = 2π.

This shows that the linear map ϕ : �1(S1) −→ R is onto.
By Stokes’ theorem, the exact 1-forms are in ker ϕ. Conversely, suppose f (θ) dθ

is in ker ϕ. Then ∫ 2π

0
f (θ) dθ = 0.

Define

g(θ) =
∫ θ

0
f (t) dt.

Since f (t) is periodic of period 2π :

g(θ + 2π) =
∫ 2π

0
f (t) dt +

∫ 2π+θ

2π
f (t) dt

=
∫ 2π+θ

2π
f (t) dt =

∫ θ

0
f (t) dt = g(θ).

Hence, g(θ) is also periodic of period 2π on R and is therefore a function on S1.
Moreover,

dg = g′(θ) dθ = f (θ) dθ,

which proves that the kernel of ϕ consists of exact forms. Therefore, integration
induces an isomorphism

H 1(S1) � R.

In the next chapter we will develop a tool, the Mayer–Vietoris sequence, using
which the computation of the cohomology of the circle becomes more or less routine.

23.3 Diffeomorphism Invariance

For any smooth map F : N −→ M of manifolds, there is a pullback map F ∗ : �∗(M)
−→ �∗(N) of differential forms. Moreover, the pullback F ∗ commutes with the
exterior derivative d (Theorem 19.8).
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Lemma 23.7. The pullback map F ∗ sends closed forms to closed forms, and sends
exact forms to exact forms.

Proof. Suppose ω is closed. By the commutativity of F ∗ with d ,

dF ∗ω = F ∗dω = 0.

Hence, F ∗ω is also closed.
Next suppose ω = dτ is exact. Then

F ∗ω = F ∗dτ = dF ∗τ.

Hence, F ∗ω is exact. �	
It follows that F ∗ induces a linear map of quotient spaces, denoted F #:

F # : Z
k(M)

Bk(M)
−→ Zk(N)

Bk(N)
, F #([ω]) = [F ∗(ω)].

This is a map in cohomology

F # : Hk(M) −→ Hk(N),

called the pullback map in cohomology.

Remark 23.8. The functorial properties of the pullback map F ∗ on differential forms
easily yield the same functorial properties for the induced map in cohomology:

(i) If 1M : M −→ M is the identity map, then 1#
M : Hk(M) −→ Hk(M) is also the

identity map.
(ii) If F : N −→ M and G : M −→ P are smooth maps, then

(G ◦ F)# = F # ◦ G#.

It follows from (i) and (ii) that (Hk( ), F #) is a contravariant functor from the
category of C∞ manifolds and C∞ maps to the category of vector spaces and linear
maps. By Proposition 10.9, if F : N −→ M is a diffeomorphism of manifolds, then
F # : Hk(M) −→ Hk(N) is an isomorphism of vector spaces.

In fact, the usual notation for the induced map in cohomology is F ∗, the same as
the pullback map on differential forms. Henceforth, we will follow this convention.
It is usually clear from the context whether F ∗ is a map in cohomology or on forms.

23.4 The Ring Structure on de Rham Cohomology

The wedge product of differential forms on a manifold M gives the vector space
�∗(M) of differential forms a product structure. This product structure induces a
product structure in cohomology: if [ω] ∈ Hk(M) and [τ ] ∈ H
(M), define

[ω] ∧ [τ ] = [ω ∧ τ ] ∈ Hk+
(M). (23.2)

For the product to be well defined, we need to check three things about closed forms
ω and τ :
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(i) The wedge product ω ∧ τ is a closed form.
(ii) The class [ω ∧ τ ] is independent of the choice of representative for [τ ]. In

other words, if τ is replaced by a cohomologous form τ ′ = τ + dσ , then in the
equation

ω ∧ τ ′ = ω ∧ τ + ω ∧ dσ,
we need to show that ω ∧ dσ is exact.

(iii) The class [ω ∧ τ ] is independent of the choice of representative for [ω].
These all follow from the antiderivation property of d . For example, in (i), since

ω and τ are closed,

d(ω ∧ τ) = (dω) ∧ τ + (−1)kω ∧ dτ = 0.

In (ii),

d(ω ∧ σ) = (dω) ∧ σ + (−1)kω ∧ dσ
= (−1)kω ∧ dσ (since dω = 0),

which shows that ω ∧ dσ is exact. Item (iii) is analogous to Item (ii), with the roles
of ω and τ reversed.

If M is a manifold of dimension n, we set

H ∗(M) = ⊕nk=0H
k(M).

What this means is that an element α ofH ∗(M) is a finite sum of cohomology classes
in Hk(M) for various k’s:

α = α0 + · · · + αn, αk ∈ Hk(M).

Elements ofH ∗(M) can be added and multiplied in the same way that one would add
or multiply polynomials, except here multiplication is the wedge product. It is easy
to check that under addition and multiplication, H ∗(M) satisfies all the properties of
a ring, called the cohomology ring of M . This ring is not commutative, because the
wedge product of differential forms is not commutative. However, the ring H ∗(M)
has a natural grading by the degree of a closed form. In general, a ring A is graded
if it can be written as a direct sum A = ⊕∞

k=0A
k so that ring multiplication sends

Ak × A
 to Ak×
. A graded ring A = ⊕∞
k=0A

k is said to be anticommutative if for
all a ∈ Ak and b ∈ A
,

a · b = (−1)k
b · a.
In this terminology, H ∗(M) is an anticommutative graded ring.

Suppose F : N −→ M is a C∞ map of manifolds. Because F ∗(ω ∧ τ) =
F ∗ω ∧ F ∗τ for differential forms ω and τ on M (Proposition 18.7), the pullback
map F ∗ : H ∗(M) −→ H ∗(N) is a ring homomorphism. By Remark 23.8, if F : N
−→ M is a diffeomorphism, then F ∗ : H ∗(M) −→ H ∗(N) is a ring isomorphism.

To sum up, de Rham cohomology gives a contravariant functor from the cate-
gory of C∞ manifolds to the category of anticommutative graded rings. If M and N
are diffeomorphic manifolds, then H ∗(M) and H ∗(N) are isomorphic as anticom-
mutative graded rings. In this way the de Rham cohomology becomes a powerful
diffeomorphism invariant of C∞ manifolds.
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Problems

23.1.* Locally constant map on a connected space
A map f : S −→ Y between two topological spaces is locally constant if for every
p ∈ S there is a neighborhoodU ofp such that f is constant onU . Show that a locally
constant map f : S −→ Y on a nonempty connected space S is constant. (Hint: Show
that for every y ∈ Y , the inverse image f−1(y) is open. Then S = ⋃

y∈Y f−1(y)

exhibits S as a disjoint union of open subsets.)
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The Long Exact Sequence in Cohomology

Acochain complex C is a collection of vector spaces {Ck}k∈Z together with a sequence
of linear maps dk : Ck −→ Ck+1

. . . −→ C−1 d−1−→ C0 d0−→ C1 d1−→ C2 d2−→ . . .

such that
dk ◦ dk−1 = 0 (24.1)

for all k. We will call the collection of linear maps {dk} the differential of the cochain
complex C.

The vector space�∗(M) of differential forms on a manifoldM together with the
exterior d is a cochain complex, the de Rham complex of M:

0 −→ �0(M)
d−→ �1(M)

d−→ �2(M)
d−→ · · · , d ◦ d = 0.

It turns out that many of the results on the de Rham cohomology of a manifold depend
not on the topological properties of the manifold, but on the algebraic properties of
the de Rham complex. To better understand de Rham cohomology, it is useful to
isolate these algebraic properties. In this chapter we investigate the properties of a
cochain complex that constitute the beginning of a subject known as homological
algebra.

24.1 Exact Sequences

Definition 24.1. A sequence of homomorphisms of vector spaces

A
f−→ B

g−→ C

is said to be exact at B if im f = ker g. A sequence of homomorphisms

A0
f0−→ A1

f1−→ A2
f2−→ · · · fn−1−→ An
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that is exact at every term except the first and the last is said simply to be an exact
sequence. A five-term exact sequence of the form

0 −→ A −→ B −→ C −→ 0

is said to be short exact.

The same definition applies to homomorphisms of groups or modules, but we are
mainly concerned with vector spaces.

Remark 24.2.
(i) When A = 0, the sequence

0
f−→ B

g−→ C

is exact if and only if
ker g = im f = 0,

i.e., g is injective.
(ii) Similarly, when C = 0, the sequence

A
f−→ B

g−→ 0

is exact if and only if
im f = ker g = B,

i.e., f is surjective.

The following two propositions are very useful when dealing with exact se-
quences.

Proposition 24.3 (A three-term exact sequence). Suppose

A
f−→ B

g−→ C

is an exact sequence. Then

(i) the map f is surjective if and only if g is the zero map;
(ii) the map g is injective if and only if f is the zero map.

Proof. Problem 24.1. �	
Proposition 24.4 (A four-term exact sequence).

(i) The four-term sequence of vector spaces 0 −→ A
f−→ B −→ 0 is exact if and only

if f : A −→ B is an isomorphism.
(ii) If

A
f−→ B −→ C −→ 0

is an exact sequence of vector spaces, then

C � coker f = B

im f
.

Proof. Problem 24.2. �	
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24.2 Cohomology of Cochain Complexes

If C is a cochain complex, then by (24.1),

im dk−1 ⊂ ker dk.

We can therefore form the quotient space

Hk(C) := ker dk
im dk−1

,

which is called the kth cohomology vector space of the cochain complex C. It is
a measure of the extent to which the cochain complex C fails to be exact at Ck .
An element of ker dk is called a k-cocycle and an element of im dk−1 is called a k-
coboundary. The equivalence class [c] ∈ Hk(C) of a k-cocycle c ∈ ker dk is called
its cohomology class.

Example 24.5. In the de Rham complex, a cocycle is a closed form and a coboundary
is an exact form.

To simplify the notation we will usually omit the subscript from dk , and write
d ◦ d = 0 instead of dk ◦ dk−1 = 0.

If A and B are two cochain complexes with differentials d and d ′, respectively, a
cochain map ϕ : A −→ B is a collection of linear maps ϕk : Ak −→ Bk , one for each
k, that commute with d and d ′:

d ′ ◦ ϕk = ϕk+1 ◦ d.

In other words, the following diagram is commutative:

· · · Bk−1�

· · · Ak−1�

�
ϕk−1

Bk�
d ′

Ak�d

�
ϕk

Bk+1�
d ′

Ak+1�d

�
ϕk+1

· · ·�

· · ·�

We will usually omit the subscript k in ϕk .
A cochain map ϕ : A −→ B naturally induces a linear map in cohomology

ϕ∗ : Hk(A) −→ Hk(B)

by
ϕ∗[a] = [ϕ(a)].

To show that this is well defined, we need to check that a cochain takes cocycles to
cocycles, and coboundaries to coboundaries:

(i) for a ∈ Zk(A), d ′(ϕ(a)) = ϕ(da) = 0.
(ii) for a′ ∈ Ak−1, ϕ(d(a′)) = d ′(ϕ(a′)).
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24.3 The Connecting Homomorphism

A sequence of cochain complexes

0 −→ A
i−→ B

j−→ C −→ 0

is short exact if i and j are cochain maps and for each k

0 −→ Ak
ik−→ Bk

jk−→ Ck −→ 0

is a short exact sequence of vector spaces. To simplify the notation, we usually omit
the subscript k from ik and jk .

Given a short exact sequence as above, we can construct a linear map d∗ : Hk(C)

−→ Hk+1(A), called the connecting homomorphism, as follows. Consider the short
exact sequences in dimensions k and k + 1:

.

To keep the notation simple, we use the same symbol d to denote the a priori distinct
differentials dA, dB , dC of the three cochain complexes. Start with [c] ∈ Hk(C).
Since j : Bk −→ Ck is onto, there is an element b ∈ Bk such that j (b) = c. Then
db ∈ Bk+1 is in ker j because

jdb = djb (by the commutativity of the diagram)

= dc

= 0 (because c is a cocycle).

By the exactness of the sequence in dimension k + 1, ker j = im i. This implies
that db = i(a) for some a in Ak+1. Once b is chosen, this a is unique because i is
injective. The injectivity of i also implies that da = 0, since

i(da) = d(ia) = ddb = 0.

Therefore, a is a cocycle and defines a cohomology class [a]. We set

d∗[c] = [a] ∈ Hk+1(A).

In defining d∗[c] we made two choices: a cocycle c to represent the cohomology
class [c] ∈ Hk(C) and then an element b ∈ Bk that maps to c under j . For d∗ to
be well defined, one must show that the cohomology class [a] ∈ Hk+1(A) does not
depend on these choices.

Exercise 24.6 (Connecting homomorphism). Show that the connecting homomorphism

d∗ : Hk(C) −→ Hk+1(A)

is a well-defined linear map.
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24.4 The Long Exact Sequence in Cohomology

Theorem 24.7. A short exact sequence of cochain complexes

0 −→ A
i−→ B

j−→ C −→ 0

gives rise to a long exact sequence in cohomology:

· · · j
∗
−→ Hk−1(C)

d∗−→ Hk(A)
i∗−→ Hk(B)

j∗−→ Hk(C)
d∗−→ Hk+1(A)

i∗−→ · · · , (24.2)

where i∗ and j∗ are the maps in cohomology induced from the cochain maps i and
j , and d∗ is the connecting homomorphism.

To prove the theorem one needs to check exactness atHk(A),Hk(B), andHk(C)

for each k. The proof is a sequence of trivialities involving what is commonly called
diagram-chasing. As an example, we prove exactness at Hk(C).

Claim. im j∗ ⊂ ker d∗.

Proof. Let [b] ∈ Hk(B). Then

d∗j∗[b] = d∗[j (b)].
In the recipe above for d∗, we can choose the element in Bk that maps to j (b) to be
b and take db ∈ Bk+1.

Because b is a cocycle, db = 0. Following the zig-zag diagram, we see that
d∗[j (b)] = [0]. So j∗[b] ∈ ker d∗. �	
Claim. ker d∗ ⊂ im j∗.

Proof. Suppose d∗[c] = [a] = 0, where [c] ∈ Hk(C). This means a = d(a′) for
some a′ ∈ Ak . The calculation of d∗[c] can be represented by the following zig-zag
diagram:

,

where b is any element in Bk with j (b) = c. Then b − i(a′) is a cocycle in Bk that
maps to c under j :

d(b − i(a′)) = db − di(a′) = db − id(a′) = db − ia = 0,

j (b − i(a′)) = j (b)− ji(a′) = j (b) = c.
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Therefore,
j∗[b − i(a′)] = [c].

So [c] ∈ im j∗. �	
These two claims together imply the exactness of (24.2) at Hk(C). As for the

exactness of the cohomology sequence (24.2) atHk(A) and atHk(B), we will leave
it to an exercise (Problem 24.3).

Problems

24.1. A three-term exact sequence
Prove Proposition 24.1.

24.2. A four-term exact sequence
Prove Proposition 24.2.

24.3. Long exact cohomology sequence
Prove the exactness of the cohomology sequence (24.2) at Hk(A) and Hk(B).
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The Mayer–Vietoris Sequence

As the example of H 1(R) illustrates, calculating the de Rham cohomology of a
manifold amounts to solving a canonically given system of differential equations on
the manifold and in case it is not solvable, to finding the obstructions to its solvability.
This is usually quite difficult to do directly. We introduce in this chapter one of the
most useful tools in the calculation of de Rham cohomology, the Mayer–Vietoris
sequence. Another tool, the homotopy axiom, will come in the next chapter.

25.1 The Mayer–Vietoris Sequence

Let {U,V } be an open cover of a manifold M , and let iU : U −→ M , iU (p) = p, be
the inclusion map. Then the pullback

i∗U : �k(M) −→ �k(U)

is the restriction map that restricts the domain of a k-form on M to U . In fact, there
are four inclusion maps that form a commutative diagram:

U ∩ V M

V

U

↪→

↪→

↪→

↪→iUjU

jV iV

By restricting to U and to V , we get a homomorphism of vector spaces

i : �k(M) −→ �k(U)⊕�k(V ),
σ �→ (i∗Uσ, i∗V σ).

To keep the notation simple, we will often write σ to mean its restriction to an open
subset.

Define the difference map
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j : �k(U)⊕�k(V ) −→ �k(U ∩ V )
by

j (ω, τ) = τ − ω,
where the right-hand side really means j∗V τ − j∗Uω. If U ∩ V is empty, we define
�k(U ∩ V ) = 0. In this case, j is simply the zero map.

Proposition 25.1. For each integer k ≥ 0, the sequence

0 −→ �k(M)
i−→ �k(U)⊕�k(V ) j−→ �k(U ∩ V ) −→ 0 (25.1)

is exact.

Proof. Exactness at the first two terms�k(M) and�k(U)⊕�k(V ) is straightforward.
We leave it as an exercise. We will prove exactness at �k(U ∩ V ).

To prove the surjectivity of the difference map

j : �k(U)⊕�k(V ) −→ �k(U ∩ V ),
it is best to consider first the case of functions on M = R1. Let f be a C∞ function
on U ∩ V as in Figure 25.1. We have to write f as the difference of a C∞ function
on V and a C∞ function on U .

( )

(

)

ρU

ρV
U

V

fρUf

Fig. 25.1. Writing f as the difference of a C∞ function on V and a C∞ function on U .

Let {ρU , ρV } be a partition of unity subordinate to the open cover {U,V }. Define
fV : V −→ R by

fV (x) =
{
ρU(x)f (x) for x ∈ U ∩ V ,
0 for x ∈ V − (U ∩ V ).
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Exercise 25.2 (Smooth extension of a function). Prove that fV is a C∞ function on V .

The function fV is the extension by zero of ρUf from U ∩V to V . Similarly, we
define fU to be the extension by zero of ρV f from U ∩ V to U . Since

j (−fU , fV ) = j∗V fV + j∗UfU = ρUf + ρV f = f on U ∩ V,
j is surjective.

For differential k-forms on a general manifold M , the formula is similar. For
ω ∈ �k(U ∩ V ), define ωU to be the extension by zero of ρV ω from U ∩ V to U ,
and ωV to be the extension by zero of ρUω from U ∩V to V . On U ∩V , (−ωU,ωV )
restricts to (−ρV ω, ρUω). Hence, j maps (−ωU,ωV ) ∈ �k(U)⊕�k(V ) to

ρV ω − (−ρUω) = ω ∈ �k(U ∩ V ).
This shows that j is surjective and the sequence (25.1) is exact at �k(U ∩ V ). �	

It follows from Proposition 25.1 that the sequence of cochain complexes

0 −→ �∗(M) i−→ �∗(U)⊕�∗(V ) j−→ �∗(U ∩ V ) −→ 0

is short exact. By Theorem 24.7, this short exact sequence of cochain complexes gives
rise to a long exact sequence in cohomology, called the Mayer–Vietoris sequence:

· · · −→ Hk−1(U ∩ V ) d∗−→ Hk(M)
i∗−→ Hk(U)⊕Hk(V )

j∗−→ Hk(U ∩ V )
d∗−→ Hk+1(M) −→ · · · .

In this sequence i∗ and j∗ are induced from i and j :

i∗[σ ] = [i(σ )] = ([i∗Uσ ], [i∗V σ ]) ∈ Hk(U)⊕Hk(V ),

j∗([ω], [τ ]) = [j (ω, τ)] = [j∗V τ − j∗Uω] ∈ Hk(U ∩ V ).

The connecting homomorphism d∗ : Hk(U∩V ) −→ Hk+1(M) is obtained as follows.

(1) Starting with a closed k-form ζ ∈ �k(U ∩ V ) and using a partition of unity
{ρU , ρV } subordinate to {U,V }, one can extend ρUζ from U ∩ V to a k-form
ζV on V and extend ρV ζ from U ∩ V to a k-form ζU on U (see the proof of
Proposition 25.1). Then

j (−ζU , ζV ) = ζV + ζU = (ρU + ρV )ζ = ζ.

(2) By the commutativity dj = jd , the pair (−dζU , dζV ) maps to 0 under j . This
means the (k + 1)-forms −dζU on U and dζV on V agree on U ∩ V .

(3) Therefore, −dζU on U and dζV patch together to give a global (k + 1)-form α

onM . Diagram-chasing shows that α is closed. By Section 24.3, d∗[ζ ] = [α] ∈
Hk+1(M). See the two diagrams below:
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�k+1(M)
i−−−−→ �k+1(U)⊕�k+1(V )

d

5⏐⏐
�k(U)⊕�k(V ) j−−−−→ �k(U ∩ V )

α
i−−−−→
(3)

(−dζU , dζV ) −−−−→ 0

d

5⏐⏐(2) 5⏐⏐
(−ζU , ζV ) j−−−−→

(1)
ζ

Because �k(M) = 0 for k ≤ −1, the Mayer–Vietoris sequence starts with

0 −→ H 0(M) −→ H 0(U)⊕H 0(V ) −→ H 0(U ∩ V ) −→ . . . .

Proposition 25.3. In the Mayer–Vietoris sequence if U , V , and U ∩ V are con-
nected, then

(i) M is connected and

0 −→ H 0(M) −→ H 0(U)⊕H 0(V ) −→ H 0(U ∩ V ) −→ 0

is exact;
(ii) we may start the Mayer–Vietoris sequence with

0 −→ H 1(M)
i∗−→ H 1(U)⊕H 1(V )

j∗−→ H 1(U ∩ V ) −→ · · · .
Proof.
(i) The connectedness of M follows from a lemma in point-set topology (Prob-
lem A.45). It is also a consequence of the Mayer–Vietoris sequence. On a connected
open set the de Rham cohomology in dimension 0 is simply the vector space of
constant functions (Proposition 23.1). So the map

j∗ : H 0(U)⊕H 0(V ) −→ H 0(U ∩ V )
is given by

(b, c) �→ c − b, b, c ∈ R.

This map is clearly surjective. The surjectivity of j∗ implies that

im j∗ = H 0(U ∩ V ) = ker d∗,

from which we conclude that d∗ : H 0(U ∩ V ) −→ H 1(M) is the zero map. Thus the
Mayer–Vietoris sequence starts with

0 −→ H 0(M)
i∗−→ R⊕ R

j∗−→ R
d∗−→ 0. (25.2)

This short exact sequence shows that
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H 0(M) � im i∗ = ker j∗.

Since
(R⊕ R)/ ker j∗ � im j∗ = R,

ker j∗ must be one dimensional. SoH 0(M) = R, which proves thatM is connected.

(ii) From (i) we know that d∗ : H 0(U ∩ V ) −→ H 1(M) is the zero map. Thus, in the
Mayer–Vietoris sequence, the sequence of two maps

H 0(U ∩ V ) d∗−→ H 1(M)
i∗−→ H 1(U)⊕H 1(V )

may be replaced by

0 −→ H 1(M)
i∗−→ H 1(U)⊕H 1(V )

without affecting the exactness of the sequence. �	

25.2 The Cohomology of the Circle

In Example 23.4 we showed that the integration of 1-forms induces an isomorphism
from H 1(S1) to R. In this section we apply the Mayer–Vietoris sequence to give an
alternative computation of the cohomology of the circle.

U V

)(

)(

A

B

Fig. 25.2. An open cover of the circle.

Cover the circle with two open arcs U and V as in Figure 25.2. The intersection
U ∩ V is the disjoint union of two open arcs, which we call A and B. Since an open
arc is diffeomorphic to an open interval and hence to the real line R, the cohomology
rings of U and V are isomorphic to that of R, and the cohomology ring of U ∩ V to
that of the disjoint union R � R. They fit into the Mayer–Vietoris sequence, which
we arrange in tabular form:
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S1 U � V U ∩ V
H 2 −→ 0 −→ 0 −→ 0

H 1 d∗−→ −→ 0 −→ 0

H 0 0 −→ R
i∗−→ R⊕ R

j∗−→ R⊕ R

From the exact sequence

0 −→ R
i∗−→ R⊕ R

j∗−→ R⊕ R
d∗−→ H 1(S1) −→ 0

and Problem 25.2, we conclude that dimH 1(S1) = 1. Hence, the cohomology of the
circle is given by

Hk(S1) =
{

R for k = 0, 1;
0 otherwise.

By analyzing the maps in the Mayer–Vietoris sequence, it is possible to write
down an explicit generator for H 1(S1). In the Mayer–Vietoris sequence, the map
j∗ : H 0(U)⊕H 0(V ) −→ H 0(U ∩ V ) is given by

j∗(b, c) = (c − b, c − b),
where b and c are real numbers. Thus, the image of j∗ is the diagonal � in R2:

� = {(x, y) ∈ R2 | y = x}.
Since H 1(S1) � R, a generator of H 1(S1) is simply a nonzero element. As
d∗ : H 0(U ∩ V ) −→ H 1(S1) is surjective, such a nonzero element is the image
of an element (x, y) ∈ H 0(U ∩ V ) � R2 for which y �= x.

So we may start with (1, 0) ∈ H 0(U ∩V ). This corresponds to a function f with
value 1 onA and 0 on B. Let {ρU , ρV } be a partition of unity subordinate to the open
cover {U,V }, and let fU , fV be the extensions by zero of ρV f, ρUf fromU ∩V toU
and to V , respectively. By the proof of Proposition 25.1, j (−fU , fV ) = f onU ∩V .
From Section 24.3, d∗(1, 0) is represented by a 1-form on S1 whose restriction to
U is −dfU and whose restriction to V is dfV . Now fV is the function on V which
is ρU on A and 0 on V − A, so dfV is a 1-form on V whose support is contained
entirely in A. A similar analysis shows that −dfU restricts to the same 1-form on A,
because ρU + ρV = 1. The extension of either dfV or −dfU by zero to a 1-form on
S1 represents a generator of H 1(S1). It is a bump 1-form on S1 supported in A.

25.3 The Euler Characteristic

If the cohomology vector space Hk(M) of an n-manifold is finite-dimensional for
every k, we define its Euler characterisitc to be the alternating sum
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χ(M) =
n∑
k=0

(−1)k dimHk(M).

As a corollary of the Mayer–Vietoris sequence, the Euler characteristic ofM with an
open cover {U,V } is always computable from those of U , V , and U ∩V , as follows.

Exercise 25.4 (Euler characteristics in terms of an open cover). Suppose all the spaces M ,
U , V , and U ∩ V in the Mayer–Vietoris sequence have finite-dimensional cohomology. By
applying Problem 25.2 to the Mayer–Vietoris sequence, prove that if M = U ∪ V , then

χ(M)− (χ(U)+ χ(V ))+ χ(U ∩ V ) = 0.

Problems

25.1. Short exact Mayer–Vietoris sequence
Prove the exactness of (25.1) at �k(M) and at �k(U)⊕�k(V ).
25.2. Alternating sum of dimensions
Let

0 −→ A0 d0−→ A1 d1−→ A2 d2−→ · · · −→ Am −→ 0

be an exact sequence of finite-dimensional vector spaces. Show that

m∑
k=0

(−1)k dimAk = 0.
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Homotopy Invariance

The homotopy axiom is a powerful tool for computing de Rham cohomology. Homo-
topy is normally defined in the continuous category. However, since we are primarily
interested in manifolds and smooth maps, our notion of homotopy will be smooth
homotopy, which differs from the usual homotopy in topology only in that all our
maps are assumed to be smooth. In this chapter we define smooth homotopy, state
the homotopy axiom for de Rham cohomology, and compute a few examples. We
postpone the proof of the homotopy axiom to Chapter 28.

26.1 Smooth Homotopy

LetM andN be manifolds. Two C∞ maps f, g : M −→ N are (smoothly) homotopic
if there is a C∞ map

F : M × R −→ N

such that
F(x, 0) = f (x), F (x, 1) = g(x)

for all x ∈ M; the map F is called a homotopy from f to g. A homotopy F from f to
g can also be viewed as a smoothly varying family of maps {ft : M −→ N | t ∈ R},
where

ft (x) = F(x, t), x ∈ M,
such that f0 = f and f1 = g. We can think of the parameter t as time and a homotopy
as an evolution through time of the map f0 : M −→ N . If f and g are homotopic, we
write

f ∼ g.

Since any open interval is diffeomorphic to R (Problem 1.3), in the definition of
homotopy we could have used any open interval containing 0 and 1, instead of R. The
advantage of an open interval over the closed interval [0, 1] is that an open interval
is a manifold with no boundary.



258 26 Homotopy Invariance

Example 26.1 (The straight-line homotopy). Let f and g be C∞ maps from a man-
ifold M to Rn. Define F : M × R −→ Rn by

F(x, t) = f (x)+ t (g(x)− f (x))
= (1 − t)f (x)+ tg(x).

Then F is a homotopy from f to g, called the straight-line homotopy from f to g
(Figure 26.1).

�

�

f (x)

g(x)

Fig. 26.1. The straight-line homotopy.

In fact, the straight-line homotopy can be defined for any two maps

f, g : M −→ S ⊂ Rn,

into a subspace S of Rn as long as for every x ∈ M , the line segment joining f (x)
and g(x) lies entirely in S. This is true if, for example, S is a convex subset of Rn.

Exercise 26.2 (Homotopy). Let M and N be manifolds. Prove that being homotopic is an
equivalence relation on the set of all C∞ maps from M to N .

26.2 Homotopy Type

In the following, we write 1M to denote the identity map on a manifold M .

Definition 26.3. A map f : M −→ N is a homotopy equivalence if it has a homotopy
inverse, i.e., a map g : N −→ M such that g ◦ f is homotopic to the identity 1M on
M and f ◦ g is homotopic to the identity 1N on N :

g ◦ f ∼ 1M, f ◦ g ∼ 1N.

In this case we say that M is homotopy equivalent to N , or that M and N have the
same homotopy type.

Example 26.4. A diffeomorphism is a homotopy equivalence.
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��

Fig. 26.2. The punctured plane retracts to the unit circle..

Example 26.5 (The homotopy type of the punctured plane R2 − {0}). Let i : S1

−→ R2 − {0} be the inclusion map and let r : R2 − {0} −→ S1 be given by

r(x) = x

|x| .

Then r ◦ i is the identity map on S1.
We claim that

i ◦ r : R2 − {0} −→ R2 − {0}
is homotopic to the identity map. Indeed, the straight-line homotopy

F : (R2 − {0})× R −→ R2 − {0},
F (x, t) = (1 − t)x + t x|x|

provides a homotopy between the identity map on R2 − {0} and i ◦ r (Figure 26.2).
Therefore, r and i are homotopy inverse to each other, and R2 − {0} and S1 have the
same homotopy type.

Definition 26.6. A manifold is contractible if it has the homotopy type of a point.

In this definition, by “the homotopy type of a point’’ we mean the homotopy type
of a set {p} whose single element is a point. Such a set is called a singleton set.

Example 26.7 (The Euclidean space Rn is contractible). Letp be a point in Rn, i : {p}
−→ Rn the inclusion map, and r : Rn −→ {p} the constant map. Then r ◦ i = 1{p},
the identity map on {p}. The straight-line homotopy provides a homotopy between
the constant map i ◦ r : Rn −→ Rn and the identity map on Rn:

F(x, t) = (1 − t)x + t r(x) = (1 − t)x + tp.
Hence, the Euclidean space Rn and the set {p} have the same homotopy type.
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26.3 Deformation Retractions

Let S be a submanifold of a manifold M , with i : S −→ M the inclusion map.

Definition 26.8. A retraction from M to S is a map r : M −→ S that restricts to the
identity map on S; in other words, r ◦ i = 1S . If there is a retraction from M to S,
we say that S is a retract of M .

Definition 26.9. A deformation retraction from M to S is a map F : M × R −→ M

such that for all x ∈ M ,

(i) F(x, 0) = x;
(ii) there is a retraction r : M −→ S such that F(x, 1) = r(x);

(iii) for all s ∈ S and t ∈ R, F(s, t) = s.

If there is a deformation retraction fromM to S, we say that S is a deformation retract
of M .

Setting ft (x) = F(x, t), we can think of a deformation retraction F : M × R

−→ M as a family of maps ft : M −→ M such that

(i) f0 is the identity map on M;
(ii) f1(x) = r(x) for some retraction r : M −→ S;

(iii) for every t the map ft : M −→ M leaves S pointwise fixed.

We may rephrase Condition (ii) in the definition as follows: there is a retraction r : M
−→ S such that f1 = i ◦ r . Thus, a deformation retraction is a homotopy between
the identity map 1M and i ◦ r for a retraction r : M −→ S and this homotopy leaves
S fixed for all time t .

Example 26.10. Any pointp in a manifoldM is a retract ofM; simply take a retraction
to be the constant map r : M −→ {p}.
Example 26.11. The map F in Example 26.5 is a deformation retraction from the
punctured plane R2 − {0} to the unit circle S1.

Generalizing Example 26.5, we prove the following theorem.

Proposition 26.12. If S ⊂ M is a deformation retract of M , then S and M have the
same homotopy type.

Proof. Let F : M × R −→ M be a deformation retraction and let r(x) = f1(x) =
F(x, 1) be the retraction. Because r is a retraction, the composite

S
i−→ M

r−→ S, r ◦ i = 1S,

is the identity map on S. By the definition of a deformation retraction, the composite

M
r−→ S

i−→ M

is f1 and the deformation retraction provides a homotopy

f1 = i ◦ r ∼ f0 = 1M.

Therefore, r : M −→ S is a homotopy equivalence, with homotopy inverse
i : S −→ M . �	
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26.4 The Homotopy Axiom for de Rham Cohomology

We state here the homotopy axiom and derive a few consequences. The proof will be
given in Chapter 28.

Theorem 26.13 (Homotopy axiom for de Rham cohomology). Homotopic maps
f0, f1 : M −→ N induce the same map f ∗0 = f ∗1 : H ∗(N) −→ H ∗(M) in cohomology.

Corollary 26.14. If f : M −→ N is a homotopy equivalence, then the induced map in
cohomology

f ∗ : H ∗(N) −→ H ∗(M)
is an isomorphism.

Proof (of Corollary). Let g : N −→ M be a homotopy inverse to f . Then

g ◦ f ∼ 1M, f ◦ g ∼ 1N.

By the homotopy axiom,

(g ◦ f )∗ = 1∗M, (f ◦ g)∗ = 1∗N.

By functoriality,

f ∗ ◦ g∗ = 1H ∗(M), g∗ ◦ f ∗ = 1H ∗(N).

Therefore, f ∗ is an isomorphism in cohomology. �	
Corollary 26.15. Suppose S is a submanifold of a manifoldM andF is a deformation
retraction from M to S. Let r : M −→ S be the retraction r(x) = F(x, 1). Then r
induces an isomorphism in cohomology

r∗ : H ∗(S) ∼−→ H ∗(M).

Corollary 26.16 (Poincaré lemma). Since Rn has the homotopy type of a point, the
cohomology of Rn is

Hk(Rn) =
{

R for k = 0,

0 for k > 0.

More generally, any contractible manifold will have the same cohomology as a
point.

Example 26.17 (Cohomology of a punctured plane). For any p ∈ R2, the map x �→
x − p is a diffeomorphism of R2 − {p} with R2 − {0}. Because the punctured plane
R2 − {0} and the circle S1 have the same homotopy type (Example 26.5), they have
isomorphic cohomology. Hence, Hk(R2 − {p}) � Hk(S1) for all k ≥ 0.

Example 26.18. The central circle of an open Möbius bandM is a deformation retract
of M (Figure 26.3). Thus, the open Möbius band has the homotopy type of a circle.
By the homotopy axiom,

Hk(M) = Hk(S1) =
{

R for k = 0, 1,

0 for k > 1.
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Fig. 26.3. The Möbius band deformation retracts to its central circle..

Problems

26.1. Contractibility and path-connectedness
Show that a contractible manifold is path-connected.

26.2. Contractibility and deformation retraction
Prove that M is contractible if and only if for any p ∈ M , there is a deformation
retraction from M to p.

26.3. Deformation retraction from Rn to a point
Write down a deformation retraction from Rn to {0}.
26.4. Deformation retraction from a cylinder to a circle
Show that the circle S1 × {0} is a deformation retract of the cylinder S1 × R.
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Computation of de Rham Cohomology

With the tools developed so far, we can compute the cohomology of many manifolds.
This chapter is a compendium of some examples.

27.1 Cohomology Vector Space of a Torus

Cover a torus M with two open subsets U and V as shown in Figure 27.1.

A B

M U � V
U ∩ V

∼ S1 � S1

Fig. 27.1. An open cover {U,V } of a torus.

Both U and V are diffeomorphic to a cylinder and therefore have the homotopy
type of a circle (Problem 26.4). Similarly, the intersectionU ∩V is the disjoint union
of two cylindersA andB and has the homotopy type of a disjoint union of two circles.
Our knowledge of the cohomology of a circle allows us to fill in many terms in the
Mayer–Vietoris sequence:
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M U � V U ∩ V
H 2

d∗1−→ H 2(M) −→ 0

H 1
d∗0−→ H 1(M)

γ−→ R⊕ R
β−→ R⊕ R

H 0 0 −→ R −→ R⊕ R
α−→ R⊕ R

(27.1)

Let jU : U ∩ V −→ U and jV : U ∩ V −→ V be the inclusion maps. If a is the
constant function with value a on U , then j∗Ua is the constant function with the value
a on each component of U ∩ V , that is,

j∗Ua = (a, a).

Therefore, for (a, b) ∈ H 0(U)⊕H 0(V ),

α(a, b) = j∗V b − j∗Ua
= (b, b)− (a, a)
= (b − a, b − a).

Similarly, let us now describe the map

β : H 1(U)⊕H 1(V ) −→ H 1(U ∩ V ) = H 1(A)⊕H 1(B).

Since A is a deformation retract of U , the restriction H ∗(U) −→ H ∗(A) is an iso-
morphism. If ωU generates H 1(U), then j∗UωU is a generator of H 1 on A and on B.
IdentifyingH 1(U ∩V ) with R⊕R, we write j∗UωU = (1, 1). Let ωV be a generator
of H 1(V ). The pair of real numbers

(a, b) ∈ H 1(U)⊕H 1(V ) � R⊕ R

stands for (aωU , bωV ). Then,

β(a, b) = j∗V (bωV )− j∗U(aωU)
= (b, b)− (a, a)
= (b − a, b − a).

By the exactness of the Mayer–Vietoris sequence,

H 2(M) = im d∗1 (because H 2(U)⊕H 2(V ) = 0)

� H 1(U ∩ V )/ ker d∗1 (by the first isomorphism theorem)

� (R⊕ R)/ im β

� (R⊕ R)/R � R.

Applying Problem 25.2 to the Mayer–Vietoris sequence (27.1), we get

1 − 2 + 2 − dimH 1(M)+ 2 − 2 + dimH 2(M) = 0.
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Since dimH 2(M) = 1, this gives dimH 1(M) = 2.
As a check, we can also computeH 1(M) from the Mayer–Vietoris sequence using

our knowledge of the maps α and β:

H 1(M) � ker γ ⊕ im γ (by the first isomorphism theorem)

� im d∗0 ⊕ ker β (exactness of the M–V sequence)

� (H 0(U ∩ V )/ ker d∗0 )⊕ ker β (first isomorphism theorem for d∗0 )
� ((R⊕ R)/ im α)⊕ R

� R⊕ R.

27.2 The Cohomology Ring of a Torus

A torus is diffeomorphic to the quotient of R2 by the integer lattice � = Z2. The
quotient map

π : R2 −→ R2/�

induces a pullback map on differential forms,

π∗ : �∗(R2/�) −→ �∗(R2).

Since π : R2 −→ R2/� is a local diffeomorphism, it is a submersion at each point.
By Problem 18.7, π∗ : �∗(R2/�) −→ �∗(R2) is an inclusion.

For λ ∈ �, define 
λ : R2 −→ R2 to be translation by λ,


λ(p) = p + λ, p ∈ R2.

A differential form ω̄ on R2 is said to be invariant under translation by λ ∈ � if

∗λω̄ = ω̄.

Proposition 27.1. The image of the inclusion map π∗ : �∗(R2/�) −→ �∗(R2) is the
subspace of differential forms on R2 invariant under translations by elements of �.

Proof. For all p ∈ R2,

(π ◦ 
λ)(p) = π(p + λ) = π(p).

Hence, π ◦ 
λ = π . By the functoriality of the pullback,

π∗ = 
∗λ ◦ π∗.

Thus, for any ω ∈ �k(R2/�), π∗ω = 
∗λπ∗ω. This proves that π∗ω is invariant
under translations 
λ for all λ ∈ �.

Conversely, suppose ω̄ ∈ �k(R2) is invariant under translations 
λ for all λ ∈ �.
For p ∈ R2/� and v1, . . . , vk ∈ Tp(R2/�), define

ωp(v1, . . . , vk) = ω̄p̄(v̄1, . . . , v̄k) (27.2)
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for any p̄ ∈ π−1({p}) and v̄1, . . . , v̄k ∈ Tp̄R2 such that π∗v̄i = vi . Any other point
in π−1({p}) may be written as p̄ + λ for some λ ∈ �. By invariance,

ω̄p̄ = (
∗λω̄)p̄ = 
∗λ(ω̄p̄+λ).

So

ω̄p̄(v̄1, . . . , v̄k) = 
∗λ(ω̄p̄+λ)(v̄1, . . . , v̄k)

= ω̄p̄+λ(
λ∗v̄1, . . . , 
λ∗v̄k),

which shows that ωp is well defined, independent of the choice of p̄. Thus, ω ∈
�k(R2/�). Moreover, by (27.2), for any p̄ ∈ R2 and v̄1, . . . , v̄k ∈ Tp̄(R2),

ω̄p̄(v̄1, . . . , v̄k) = ωπ(p̄)(π∗v̄1, . . . , π∗v̄k)
= (π∗ω)p̄(v̄1, . . . , v̄k).

Hence, ω̄ = π∗ω. �	
Let (x, y) be the coordinates on R2. Since for any λ ∈ �,


∗λ(dx) = d(
∗λx) = d(x + λ) = dx,

by Proposition 27.1 the 1-form dx on R2 is π∗ of a 1-form on the torus R2/�.
Similarly, dy is also π∗ of a 1-form on the torus. We denote these 1-forms on the
torus by the same symbols dx and dy.

Proposition 27.2. Let M be the torus R2/Z2. A basis for the cohomology vector
space H ∗(M) is 1, dx, dy, dx ∧ dy.

Proof. Since
∫
M
dx ∧ dy = 1, the closed 2-form dx ∧ dy defines a nonzero coho-

mology class. By the computation of Section 27.1, H 2(M) = R. So dx ∧ dy is a
basis for H 2(M).

It remains to show that the set of closed 1-forms dx, dy on M is a basis for
H 1(M). Define two closed curves C1, C2 in M = R2/Z2 as the images of the maps

ci : [0, 1] −→ M,

c1(t) = [(t, 0)], c2(t) = [(0, t)],
(see Figure 27.2). Denote by p the point [(0, 0)] in M . Since removing a point does
not change the value of an integral and c1 is a diffeomorphism of the open interval
(0, 1) onto C1 − {p},∫

C1

dx =
∫
C1−{p}

dx =
∫
(0,1)

c∗1 dx =
∫ 1

0
dt = 1.

In the same way, because c∗1dy = 0,∫
C1

dy =
∫
C1−{p}

dy =
∫ 1

0
c∗1 dy = 0.
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C1

C2 C1

C2

Fig. 27.2. Two closed curves on a torus.

Similarly, ∫
C2

dx = 0,
∫
C2

dy = 1.

As x is not a function on the torus M , dx is not necessarily exact on M . In fact,
if dx = df for some C∞ function f on M , then∫

C1

dx =
∫
C1

df =
∫
∂C1

f = 0

by Stokes’ theorem and the fact that ∂C1 = ∅. This contradicts the fact that
∫
C1
dx =

1. Thus, dx is not exact on M . By the same reasoning, dy is also not exact on M .
Furthermore, the cohomology classes [dx] and [dy] are linearly independent, since if
[dx] were a multiple of [dy], then

∫
C1
dx would have to be a multiple of

∫
C1
dy = 0.

By Section 27.1, H 1(M) is two dimensional. Hence, dx, dy is a basis for H 1(M).
�	

The ring structure ofH ∗(M) is transparent from this proposition. Abstractly it is
the algebra∧

(a, b) := R[a, b]/(a2, b2, ab + ba), deg a = 1, deg b = 1,

called the exterior algebra on two generators a and b of degree 1.

27.3 The Cohomology of a Surface of Genus g

Using the Mayer–Vietoris sequence to compute the cohomology of a manifold often
leads to ambiguities, because there may be several unknown terms in the sequence.
We can resolve these ambiguities if we can describe explicitly the maps occurring in
the Mayer–Vietoris sequence. Here is an example of how this might be done.

Lemma 27.3. Suppose p is a point in a compact oriented surfaceM without bound-
ary, and i : C −→ M − {p} is the inclusion of a small circle around the puncture
(Figure 27.3). Then the restriction map

i∗ : H 1(M − {p}) −→ H 1(C)

is the zero map.
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p

C

M

Fig. 27.3. Punctured surface.

Proof. An element [ω] ∈ H 1(M − {p}) is represented by a closed 1-form ω on
M − {p}. Because the linear isomorphism H 1(C) � H 1(S1) � R is given by
integration over C, to identify i∗[ω] in H 1(C), it suffices to compute the integral∫
C
i∗ω.
If D is the open disk in M bounded by the curve C, then M − D is a compact

oriented surface with boundary C. By Stokes’ theorem,∫
C

i∗ω =
∫
∂(M−D)

i∗ω =
∫
M−D

dω = 0

because dω = 0. Hence, i∗ : H 1(M − {p}) −→ H 1(C) is the zero map. �	
Proposition 27.4. Let M be a torus, p a point in M , and A the punctured torus
M − {p}. The cohomology of A is

Hk(A) =

⎧⎪⎨⎪⎩
R for k = 0,

R2 for k = 1,

0 for k > 1.

Proof. Cover M with two open sets, A and a disk U containing p. Since A, U ,
and A ∩ U are all connected, we may start the Mayer–Vietoris sequence with the
H 1(M) term (Proposition 25.3(ii)). With H ∗(M) known from Section 27.1, the
Mayer–Vietoris sequence becomes

M U � A U ∩ A ∼ S1

H 2
d∗1−→ R −→ H 2(A) −→ 0

H 1 0 −→ R⊕ R
β−→ H 1(A)

α−→ H 1(S1)

Because H 1(U) = 0, the map α : H 1(A) −→ H 1(S1) is simply the restriction
map i∗. By Lemma 27.3, α = i∗ = 0. Hence,

H 1(A) = ker α = im β � H 1(M) � R⊕ R

and there is an exact sequence of linear maps

0 −→ H 1(S1)
d∗1−→ R −→ H 2(A) −→ 0.

Since H 1(S1) � R, it follows that H 2(A) = 0. �	
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Proposition 27.5. The cohomology of a compact orientable surface �2 of genus 2 is

Hk(�2) =

⎧⎪⎨⎪⎩
R for k = 0, 2,

R4 for k = 1,

0 for k > 2.

�2 U � V
U ∩ V
∼ S1

Fig. 27.4. An open cover {U,V } of a surface of genus 2.

Proof. Cover�2 with two open sets U and V as in Figure 27.4. The Mayer–Vietoris
sequence gives

M U � V U ∩ V ∼ S1

H 2 −→ H 2(�2) −→ 0

H 1 0 −→ H 1(�2) −→ R2 ⊕ R2 α−→ R

The map α : H 1(U)⊕H 1(V ) −→ H 1(S1) is the difference map

α(ωU , ωV ) = j∗V ωV − j∗UωU,
where jU and jV are inclusions of an S1 in U ∩ V into U and V , respectively. By
Lemma 27.3, j∗U = j∗V = 0, so α = 0. It then follows from the exactness of the
Mayer–Vietoris sequence that

H 1(�2) � H 1(U)⊕H 1(V ) � R4

and
H 2(�2) � H 1(S1) � R. �	

A genus 2 surface�2 can be obtained as the quotient space of an octagon with its
edges identified following the scheme of Figure 27.5.

To see this, first cut �2 along the circle e as in Figure 27.6. Then the two halves
A and B are each a torus minus an open disk (Figure 27.7), so that each half can be
represented as a pentagon (Figure 27.8).

When A and B are glued together along e, we obtain the octagon in Figure 27.5.
By Lemma 27.3, if p ∈ �2 and i : C −→ �2 − {p} is a small circle around p in

�2, then the restriction map
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a

b

c

d

c

d
a

b

Fig. 27.5. A surface of genus 2 as a quotient space of an octagon.

A B

e

Fig. 27.6. A surface of genus 2 cut along a curve e.

d b

c a

d b

c a
e e

Fig. 27.7. Two halves of a surface of genus 2.
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d

c

d

e

A

a

b

a

b

e

B

Fig. 27.8. Two halves of a surface of genus 2.
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i∗ : H 1(�2 − {p}) −→ H 1(C)

is the zero map. This allows us to compute inductively the cohomology of a compact
orientable surface �g of genus g.

Exercise 27.6 (Cohomology of a surface). Compute the cohomology vector space of a
compact orientable surface �g of genus g.

Problems

27.1. Real projective plane
Compute the cohomology of the real projective plane (Figure 27.9).

��

a

a

Fig. 27.9. The real projective plane.

27.2. The n-sphere
Compute the cohomology of the sphere Sn.

27.3. Cohomology of a multiply punctured plane

(a) Let p, q be distinct points in R2. Compute the de Rham cohomology of R2 −
{p, q}.

(b) Let p1, . . . , pn be distinct points in R2. Compute the de Rham cohomology of
R2 − {p1, . . . , pn}.
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Proof of Homotopy Invariance

In this chapter we prove the homotopy invariance of de Rham cohomology.
If f : M −→ N is a C∞ map, the pullback maps on differential forms and on

cohomology classes are normally both denoted f ∗. Since this might cause confu-
sion in the proof of homotopy invariance, in this chapter we denote the pullback of
forms by

f ∗ : �k(N) −→ �k(M).

and the induced map in cohomology by

f # : Hk(N) −→ Hk(M).

The relation between these two maps is

f #[ω] = [f ∗ω]

for [ω] ∈ Hk(N).

Theorem 28.1 (Homotopy axiom for de Rham cohomology). Two smoothly homo-
topic maps f, g : M −→ N of manifolds induce the same map in cohomology:

f # = g# : Hk(N) −→ Hk(M).

We first reduce the problem to two special maps i0 and i1 : M −→ M ×R, which
are the 0-section and the 1-section, respectively, of the product line bundle M × R

−→ M:

i0(x) = (x, 0), i1(x) = (x, 1).

Then we introduce the all important technique of cochain homotopy. By finding a
cochain homotopy between i∗0 and i∗1 , we prove that they induce the same map in
cohomology.
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28.1 Reduction to Two Sections

Suppose f and g : M −→ N are smoothly homotopic maps. Let F : M ×R −→ N be
a homotopy from f to g. This means

F(x, 0) = f (x), F (x, 1) = g(x), (28.1)

for all x ∈ M . For each t ∈ R, define it : M −→ M×R to be the section it (x) = (x, t).
We can restate (28.1) as

F ◦ i0 = f, F ◦ i1 = g.

By the functoriality of the pullback (Remark 23.8),

f # = i#0 ◦ F #, g# = i#1 ◦ F #.

This reduces the proof of homotopy invariance to the special case

i#0 = i#1 .

The two maps i0, i1 : M −→ M × R are obviously homotopic via the identity map

1M×R : M × R −→ M × R.

28.2 Cochain Homotopies

The usual method for showing that two cochain maps

f ∗, g∗ : �∗(N) −→ �∗(M)

induce the same map in cohomology is to find a map

K : �∗(N) −→ �∗−1(M)

of degree −1 such that
g∗ − f ∗ = dK ±Kd.

Such a map K is called a cochain homotopy from f to g. If ω is any closed form on
N , then

g∗ω − f ∗ω = dKω ±Kdω = dKω,

so
f #[ω] = g#[ω].

Thus, the existence of a cochain homotopy between f ∗ and g∗ implies f # = g#.

Remark 28.2. If one could find a mapK : �∗(N) −→ �∗−1(M) such that g∗ − f ∗ =
dK on �∗(N), then f # = g# on H ∗(N). However, such a map almost never exists;
it is necessary to have the term Kd as well. The cylinder construction in homology
theory [15, p. 65] shows why it is natural to consider dK ±Kd.
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28.3 Differential Forms on M × R

Recall that a sum
∑
α ωα ofC∞ differential forms on a manifoldM is called a locally

finite sum if the collection of supports, {suppωα}, is locally finite. This means every
point p inM has a neighborhood Vp such that Vp intersects only finitely many of the
sets suppωα . If suppωα is disjoint from Vp, then ωα ≡ 0 on Vp. Thus, on Vp the
locally finite sum

∑
α ωα is actually a finite sum. By definition, a partition of unity∑

ρα is a locally finite sum.
Let π : M × R −→ M be the projection to the first factor. In this section we will

show that everyC∞ differential form onM×R is a locally finite sum of the following
two types of forms:

(I) f (x, t) π∗φ,
(II) f (x, t) dt ∧ π∗φ,

where f (x, t) is a C∞ function on M × R and φ is a C∞ form on M .
In general, a decomposition of a differential form on M × R into a locally finite

sum of Type I and Type II forms is far from unique. However, we will show that there
is an unambiguous procedure to produce uniquely such a locally finite sum, once we
fix an atlas {(Uα, x1

α, . . . , x
n
α)} on M , a partition of unity {ρα} subordinate to {Uα},

and a collection of C∞ functions gα on M such that

gα ≡ 1 on supp ρα and supp gα ⊂ Uα.

The existence of such functions gα follows from the smooth Urysohn lemma (Prob-
lem 13.3).

Fix Uα, ρα , and gα as above. Then {π−1Uα} is an open cover of M × R, and
{π∗ρα} is a partition of unity subordinate to {π−1Uα} (Problem 13.5). On π−1Uα we
have coordinates π∗x1

α, . . . π
∗xnα, t . For the sake of simplicity, we sometimes write

xiα instead of π∗xiα .
Let ω be any C∞ k-form on M × R. Since

∑
π∗ρα = 1,

ω =
∑

(π∗ρα)ω. (28.2)

Write ωα for (π∗ρα)ω. Then

suppωα ⊂ suppπ∗ρα ⊂ π−1Uα.

On π−1Uα the k-form ωα may be written uniquely as a linear combination

ωα =
∑

aαI dx
I
α +

∑
bαJ dt ∧ dxJα , (28.3)

where aαI and bαJ are C∞ functions on π−1Uα with support in suppπ∗ρα . The sum
in (28.3) shows that ωα is a sum of Type I and Type II forms on π−1Uα . In this
sum aαI and bαJ can be extended by zero to C∞ functions on M ×R, since they have
support in π−1Uα . Unfortunately, dxIα and dxJα make sense only on Uα and cannot
be extended to M , at least not directly.
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To extend the decomposition (28.3) to M × R, note that since suppωα ⊂
suppπ∗ρα and π∗gα ≡ 1 on suppπ∗ρα ,

ωα = (π∗gα)ωα =
∑

aαI (π
∗gα) dxIα +

∑
bαJ dt ∧ (π∗gα) dxJα ,

=
∑

aαI (π
∗gα dxIα)+

∑
bαJ dt ∧ (π∗gα dxJα ). (28.4)

Since supp gα ⊂ Uα , gα dxIα can be extended by zero to M . Equations (28.2) and
(28.4) prove that ω is a locally finite sum of Type I and Type II forms on M × R.
Moreover, we see that given Uα, ρα , and gα , the decomposition in (28.4) is unique.

28.4 A Cochain Homotopy Between i∗
0 and i∗

1

Using the decomposition (28.4), define

K : �∗(M × R) −→ �∗−1(M)

by the following rules:

(i) on Type I forms,
K(fπ∗ω) = 0,

(ii) on Type II forms,

K(f dt ∧ π∗ω) =
(∫ 1

0
f (x, t) dt

)
ω,

and extend by linearity.

28.5 Verification of Cochain Homotopy

We now check that
dK +Kd = i∗1 − i∗0 .

It suffices to check this equality on any coordinate open set. So fix a coordinate open
set (U × R, π∗x1, . . . , π∗xn, t) on M × R. On Type I forms,

Kd(f π∗ω) = K

(
∂f

∂t
dt ∧ π∗ω +

∑
i

∂f

∂xi
π∗dxi ∧ π∗ω + fπ∗dω

)
.

In the sum on the right-hand side, the second and third terms are Type I forms; they
map to 0 under K . Thus,
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Kd(f π∗ω) = K

(
∂f

∂t
dt ∧ π∗ω

)
=
(∫ 1

0

∂f

∂t
dt

)
ω

= (f (x, 1)− f (x, 0))ω

= (i∗1 − i∗0 )(f (x, t)π∗ω).
Since dK(f π∗ω) = d(0) = 0, on Type I forms

dK +Kd = i∗1 − i∗0 .
On Type II forms, because d is an antiderivation,

dK(f dt ∧ π∗ω) = d

((∫ 1

0
f (x, t) dt

)
ω

)

=
∑(

∂

∂xi

∫ 1

0
f (x, t) dt

)
dxi ∧ ω +

(∫ 1

0
f (x, t) dt

)
dω,

and

Kd(f dt ∧ π∗ω) = K(d(f dt) ∧ π∗ω − (f dt) ∧ dπ∗ω)

= K

(∑
i

∂f

∂xi
π∗dxi ∧ dt ∧ π∗ω

)
−K(f dt ∧ π∗dω)

= −
∑
i

(∫ 1

0

∂f

∂xi
dt

)
dxi ∧ ω −

(∫ 1

0
f (x, t) dt

)
dω.

Since f (x, t) is C∞, we can differentiate under the integral sign
∫ 1

0 . Thus, on
Type II forms,

dK +Kd = 0.

On the other hand,
i∗1 (f (x, t) dt ∧ π∗ω) = 0

because i∗1 dt = di∗1 t = d(1) = 0. Similarly, i∗0 also vanishes on Type II forms.
Therefore,

dK +Kd = 0 = i∗1 − i∗0
on Type II forms.

This completes the proof that K is a cochain homotopy between i∗0 and i∗1 . The
existence of the cochain homotopy K proves that the induced maps in cohomology
i#0 and i#1 are equal. Therefore,

f # = i#0 ◦ F # = i#1 ◦ F # = g#.
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Appendices



A

Point-Set Topology

A.1 Topological Spaces

The prototype of a topological space is the Euclidean space Rn. However, the Eu-
clidean space comes with many additional structures, such as a metric, coordinates,
an inner product, and an orientation, that are extraneous to its topology. The idea be-
hind the definition of a topological space is to discard all those properties of Rn that
have nothing to do with continuous maps, thereby distilling the notion of continuity
to its very essence.

In advanced calculus one learns several characterizations of a continuous map,
among which is the following: a map f from an open subset of Rn to Rm is continuous
if and only if the inverse image f−1(V ) of any open set V in Rm is open in Rn. This
shows that continuity can be defined solely in terms of open sets.

To define open sets axiomatically, we look at the properties of open sets in Rn.
Recall that in Rn the distance between two points p and q is given by

d(p, q) =
[

n∑
i=1

(pi − qi)2
]1/2

,

and the open ball B(p, r) with center p ∈ Rn and radius r > 0 is the set

B(p, r) = {x ∈ Rn | d(x, p) < r}.
A set U in Rn is said to be open if for every p in U , there is an open ball B(p, r)with
center p and radius r such that B(p, r) ⊂ U . It is clear that the union of an arbitrary
collection {Uα} of open sets is open, but the same is not true of the intersection of
infinitely many open sets.

Example A.1. The intervals (−1/n, 1/n), n = 1, 2, 3, . . . , are all open in R1, but
their intersection

⋂∞
n=1(−1/n, 1/n) is the singleton set {0}, which is not open.

What is true is that the intersection of a finite collection of open sets in Rn is open.
This leads to the definition of a topology on a set.
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Definition A.2. A topology on a set S is a collection T of subsets containing both
the empty set ∅ and the set S such that T is closed under arbitrary union and finite
intersection, i.e., if Uα ∈ T for all α in an index set A, then

⋃
α∈A Uα ∈ T and if

{U1, . . . , Un} ∈ T, then
⋂n
i=1 Ui ∈ T.

The elements of T are called open sets and the pair (S,T)is called a topological
space. To simplify the notation, by a “topological space S’’ we mean a set S together
with a topologyT onS. Aneighborhood of a pointp inS is an open setU containingp.

Example A.3. The open subsets of Rn as we understand them in advanced calculus
form a topology on Rn, the standard topology of Rn. In this topology a set U is open
in Rn if and only if for every p ∈ U , there is an open ball B(p, ε) with center p and
radius ε which is contained in U . Unless stated otherwise, Rn will always have its
standard topology.

Example A.4. For any set S, the collection T = {∅, S} consisting of the empty set ∅

and the entire set S is a topology on S.

Example A.5. For any set S, let T be the collection of all subsets of S. Then T is
a topology on S, called the discrete topology. The discrete topology can also be
characterized as the topology in which every point is open.

The complement of an open set is called a closed set. By de Morgan’s laws
from set theory, arbitrary intersections and finite unions of closed sets are closed
(Problem A.3). One may also specify a topology by describing all the closed sets.

Remark A.6. When we say that a topology is closed under arbitrary union and finite
intersection, the word “closed’’has a different meaning from that of a “closed subset.’’

Example A.7 (Finite-complement topology on R1). Let T be the collection of subsets
of R1 consisting of the empty set ∅, the line R1 itself, and the complements of finite
sets. Then T is closed under arbitrary union and finite intersection and so defines a
topology on R1 called the finite-complement topology.

Example A.8. A famous topology in mathematics is the Zariski topology in algebraic
geometry. LetK be a field and let S be the vector spaceKn. Define a subset ofKn to
be closed if it is the zero set Z(f1, . . . , fr ) of finitely many polynomials f1, . . . , fr
on Kn. To show that these are indeed the closed subsets of a topology, we need to
check that they are closed under arbitrary intersection and finite union.

Let I be the ideal generated by f1, . . . , fr in the polynomial ring K[x1, . . . , xn].
Then Z(f1, . . . , fr ) = Z(I), the zero set of all the polynomials in the ideal I .
Conversely, by the Hilbert basis theorem, any ideal in K[x1, . . . , xn] has a finite set
of generators. Hence, the zero set of finitely many polynomials is the same as the
zero set of an ideal in K[x1, . . . , xn].
Exercise A.9 (Intersection and union of zero sets). Show that

(i)
⋂
α

Z(Iα) = Z

(∑
α

Iα

)
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and

(ii) Z({fi}i ) ∪ Z({gj }j ) = Z({figj }i,j ),
where

∑
α Iα is the smallest ideal in K[x1, . . . , xn] containing all the ideals Iα and i and j

run over some finite index sets.

It follows that the complements of the Z(I)’s form a topology on Kn, called the
Zariski topology on Kn. Since the zero set of a polynomial on R is a finite set, the
Zariski topology on R is precisely the finite-complement topology of Example A.7.

A.2 Subspace Topology

Let (S,T) be a topological space and A a subset of S. Define TA to be the collection
of subsets

TA = {U ∩ A | U ∈ T}.
By the distributive property of union and intersection,

⋃
α

(Uα ∩ A) =
(⋃

α

Uα

)
∩ A

and

⋂
i

(Ui ∩ A) =
(⋂

i

Ui

)
∩ A,

which shows that TA is closed under arbitrary union and finite intersection. Moreover,
∅, A ∈ TA. So TA is a topology on A, called the subspace topology or the relative
topology of A in S.

Example A.10. Consider the subset A = [0, 1] of R. In the subspace topology, the
half-open interval [0, 1/2) is an open subset of A, because

[0, 1
2 ) = (− 1

2 ,
1
2 ) ∩ A.

(See Figure A.1.)

( [ ) ]
0 1

2
1

Fig. A.1. An open subset of [0, 1).
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A.3 Bases

It is generally difficult to describe directly all the open sets in a topology T. What one
can usually do is to describe a subcollection B of T so that any open set is expressible
as a union of open sets in B. For example, we define open sets in Rn in terms of open
balls.

Definition A.11. A subcollection B of a topology T is a basis for T if given any open
set U and a point p in U , there is an open set B ∈ B such that p ∈ B ⊂ U . An
element of the basis B is called a basic open set.

Example A.12. The collection of all open ballsB(p, r) in Rn, withp ∈ Rn and r ∈ R,
is a basis for the standard topology of Rn.

Proposition A.13. A collection B of open sets of S is a basis if and only if every open
set in S is a union of sets in B.

Proof.
(⇒) Suppose B is a basis andU is an open set in S. For every p ∈ U , there is a basic
open set Bp ∈ B such that p ∈ Bp ⊂ U . Therefore, U =⋃

p∈U Bp.

(⇐) Suppose every open set in S is a union of open sets in B. Given an open set U
and a point p in U , since U =⋃

Bα∈B Bα , there is a Bα ∈ B such that p ∈ Bα ⊂ U .
Hence, B is a basis. �	

The following proposition gives a useful criterion for deciding if a collection B

of subsets is a basis for some topology.

Proposition A.14. A collection B of subsets of a set S is a basis for some topology T

on S if and only if

(i) S is the union of all the sets in B, and
(ii) given any two sets B1 and B2 ∈ B and p ∈ B1 ∩ B2, there is a set B ∈ B such

that p ∈ B ⊂ B1 ∩ B2.

Proof.
(⇒) (i) follows from Proposition A.13.

(ii) If B is a basis, then B1 and B2 are open sets and hence so is B1 ∩ B2. By the
definition of a basis, there is a B ∈ B such that p ∈ B ⊂ B1 ∩ B2.

(⇐) Define T to be the collection consisting of all sets that are unions of sets in B.
Then the empty set ∅ and the set S are in T and T is clearly closed under arbitrary
union. To show that T is closed under finite intersection, let U = ⋃

µ Bµ and
V =⋃

ν Bν be in T, where Bµ,Bν ∈ B. Then

U ∩ V =
(⋃
µ

Bµ

)
∩
(⋃

ν

Bν

)
=
⋃
µ,ν

(Bµ ∩ Bν).
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Thus, any p in U ∩ V is in Bµ ∩ Bν for some µ, ν. By (ii) there is a set Bp in B

such that p ∈ Bp ⊂ Bµ ∩ Bν . Then

U ∩ V =
⋃

p∈U∩V
Bp ∈ T. �	

The topology T defined in the proof of Proposition A.14 is called the topology
generated by the collection B.

Proposition A.15. Let B = {Bα} be a basis for a topological space S, and A a
subspace of S. Then {Bα ∩ A} is a basis for A.

Proof. Let U ′ be any open set in A and p ∈ U ′. By the definition of subspace
topology, U ′ = U ∩ A for some open set U in S. Since p ∈ U ∩ A ⊂ U , there is a
basic open set Bα such that p ∈ Bα ⊂ U . Then

p ∈ Bα ∩ A ⊂ U ∩ A = U ′,

which proves that the collection {Bα ∩ A | Bα ∈ B} is a basis for A. �	

A.4 Second Countability

We say that a point in Rn is rational if all of its coordinates are rational numbers. Let
Q be the set of rational numbers and Q+ the set of positive rational numbers.

Proposition A.16. The collection Brat of all open balls in Rn with rational centers
and rational radii is a basis for Rn.

� �

p q

Fig. A.2. A ball with rational center q and rational radius r/2.

Proof. Given any open set U and p in U , there is an open ball B(p, r) with r ∈ Q

such that p ∈ B(p, r) ⊂ U . Now choose a rational point q in the smaller ball
B(p, r/2). We claim that

p ∈ B
(
q,
r

2

)
⊂ B(p, r). (A.1)
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(See Figure A.2.) Since d(p, q) < r/2, we have p ∈ B(q, r/2). Next if x ∈
B(q, r/2), then

d(x, p) ≤ d(x, q)+ d(q, p) < r

2
+ r

2
= r.

So x ∈ B(p, r). This proves the claim (A.1) and shows that the collection Brat of
open balls with rational centers and rational radii is a basis for Rn. �	

Both of the sets Q and Q+ are countable. Since the centers of the balls in Brat
are indexed by Qn, a countable set, and the radii are indexed by Q+, also a countable
set, the collection Brat is countable.

Definition A.17. A topological space is said to be second countable if it has a count-
able basis. (See Definition A.58 for first countability.)

Example A.18. Proposition A.16 shows that Rn is second countable.

Proposition A.19. A subspace A of a second countable space S is second countable.

Proof. By Proposition A.15, if B = {Bi} is a countable basis for S, then BA :=
{Bi ∩ A} is a countable basis for A. �	

A.5 Separation Axioms

There are various separation axioms for a topological space. The only ones we will
need are the Hausdorff condition and normality.

Definition A.20. A topological space S is Hausdorff if given any two distinct points
x, y in S, there exist disjoint open setsU,V such that x ∈ U and y ∈ V . A Hausdorff
space is normal if given any two disjoint closed sets F,G in S, there exist disjoint
open sets U,V such that F ⊂ U and G ⊂ V (Figure A.3).

� �

x y
U V F

G

U V

Fig. A.3. The Hausdorff condition and normality.

Proposition A.21. Every singleton set (a one-point set) in a Hausdorff space S is
closed.
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Proof. Let x ∈ S. By the Hausdorff condition, for any y �= x, there exists an open
set U  x and an open set V  y such that U and V are disjoint. In particular,

y ∈ V ⊂ S − U ⊂ S − {x}.
This proves that S − {x} is open. Therefore, {x} is closed. �	
Example A.22. The Euclidean space Rn is Hausdorff, for given distinct points x, y
in Rn, if ε = 1

2d(x, y), then the open balls B(x, ε) and B(y, ε) will be disjoint
(Figure A.4).

�

�

x

y

Fig. A.4. Two disjoint neighborhoods in R
n.

Proposition A.23. Any subspace A of a Hausdorff space S is Hausdorff.

Proof. Let x and y be distinct points in A. Since S is Hausdorff, there exist disjoint
neighborhoods U and V of x and y, respectively, in S. Then U ∩ A and V ∩ A are
disjoint neighborhoods of x and y in A. �	

A.6 The Product Topology

The Cartesian product of two sets A and B is the set A × B of all ordered pairs
(a, b) with a ∈ A and b ∈ B. Given two topological spaces X and Y , consider the
collection B of subsets of X × Y of the form U × V , with U open in X and V open
in Y . If U1 × V1 and U2 × V2 are in B, then

(U1 × V1) ∩ (U2 × V2) = (U1 ∩ U2)× (V1 ∩ V2),

which is also in B (Figure A.5). From this, it follows easily that B satisfies the
conditions of Proposition A.14 for a basis and generates a topology on X× Y , called
the product topology. Unless noted otherwise, this will always be the topology on
the product of two topological spaces.

Proposition A.24. Let {Ui} and {Vj } be bases for the topological spaces X and Y ,
respectively. Then {Ui × Vj } is a basis for X × Y .
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U1

U2

V1

V2

| |
| |

−

−

−

−

X

Y

Fig. A.5. Intersection of two basic open subsets in X × Y .

Proof. Given any open set W in X × Y and a point (x, y) ∈ W , we can find a basic
open set U × V in X× Y such that (x, y) ∈ U × V ⊂ W . Since U is open in X and
{Ui} is a basis for X,

x ∈ Ui ⊂ U

for some Ui . similarly,

y ∈ Vj ⊂ V

for some Vj . Therefore,

(x, y) ∈ Ui × Vj ⊂ U × V.

By the definition of a basis, {Ui × Vj } is a basis for X × Y . �	

Corollary A.25. The product of two second countable spaces is second countable.

Proposition A.26. The product of two Hausdorff spaces X and Y is Hausdorff.

Proof. Given two distinct points (x1, y1), (x2, y2) inX×Y , without loss of generality
we may assume that x1 �= x2. Since X is Hausdorff, there exist disjoint open sets
U1, U2 in X such that x1 ∈ U1 and x2 ∈ U2. Then U1 × Y and U2 × Y are disjoint
neighborhoods of (x1, y1) and (x2, y2) (Figure A.6). So X × Y is Hausdorff. �	

The product topology can be generalized to the product of an arbitrary collection
{Xα}α∈A of topological spaces. By definition, the product topology on the Cartesian
product

∏
α∈A Xα is the topology with basis consisting of sets of the form

∏
α∈A Uα ,

where Uα is open in Xα and Uα = Xα for all but finitely many α ∈ A.
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(x1, y1)

(x2, y2)

x1 x2 X

Y

U1 U2| | | |

Fig. A.6. Two disjoint neighborhoods in X × Y .

A.7 Continuity

Let f : X −→ Y be a function of topological spaces. Mimicking the definition from
advanced calculus, we say that f is continuous at a point p in X if for every neigh-
borhood V of f (p) in Y , there is a neighborhood U of p in X such that f (U) ⊂ V .
We say that f is continuous on X if it is continuous at every point of X.

Proposition A.27. A function f : X −→ Y is continuous if and only if the inverse
image of any open set is open.

Proof.
(⇒) Suppose V is open in Y . To show that f−1(V ) is open in X, let p ∈ f−1(V ).
Then f (p) ∈ V . so there is a neighborhood U of p such that f (U) ⊂ V . Therefore,
p ∈ U ⊂ f−1(V ), which proves that f−1(V ) is open in X.

(⇐) Let p ∈ X, and V a neighborhood of f (p) in Y . By hypothesis, f−1(V ) is
open in X. Since f (p) ∈ V , p ∈ f−1(V ). So there is an open set U in X such that
p ∈ U ⊂ f−1(V ). This means f (U) ⊂ V . (In fact, one may take U = f−1(V ).)

�	
Example A.28. If A is a subspace of X, then the inclusion map

i : A −→ X,

i(a) = a,

is continuous.

Proof. If U is open in X, then i−1(U) = U ∩ A, which is open in the subspace
topology of A. �	
Example A.29. The projection π : X × Y −→ X, π(x, y) = x, is continuous.

Proof. Let U be open in X. Then π−1(U) = U × Y , which is open in the product
topology of X × Y . �	
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If A is a subspace of X and f : X −→ Y is a function, the restriction of f to A,

f |A : A −→ Y,

is defined by
(f |A)(a) = f (a).

Proposition A.30. The restriction f |A of a continuous function f : X −→ Y to a
subspace A is continuous.

Proof. Let V be open in Y . Then

(f |A)−1(V ) = {a ∈ A | f (a) ∈ V } = f−1(V ) ∩ A.
Since f is continuous, f−1(V ) is open in X. Hence, f−1(V ) ∩ A is open in A. By
Proposition A.27, f |A : A −→ Y is continuous. �	

Continuity may also be phrased in terms of closed sets.

Proposition A.31 (Continuity in terms of closed sets). A function f : X −→ Y is
continuous if and only if the inverse image of any closed set is closed.

Proof. Problem A.6. �	

A.8 Compactness

Definition A.32. Let A be a subset of a topological space S. An open cover of A in S
is a collection {Uα} of open sets in S such that A ⊂ ⋃

α Uα . A subcover of an open
cover is a subcollection whose union still contains A. The subset A is compact in S
if every open cover of A in S has a finite subcover.

A

Fig. A.7. An open cover of A.

The subset A ⊂ S with its subspace topology is a topological space. An open
cover ofA inA is a collection of sets of the formUα∩A, withUα open in S, such that

A ⊂
⋃
α

(Uα ∩ A).

Thus, we can speak of A being compact in S or in A. The next proposition shows
that the two notions of compactness are equivalent.
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Proposition A.33. A subspace A of a topological space S is compact in S if and only
if it is compact in A, i.e., in the relative topology on A.

Proof.
(⇒) Let {Vα} be an open cover of A by open subsets of A. For each α, since Vα is
open in A, there exists an open subset Uα of S such that Vα = Uα ∩ A. Because

A ⊂
⋃
α

Vα ⊂
⋃
α

Uα,

{Uα} is an open cover of A in S. By hypothesis, there is a finite subcollection {Uαi }
such that A ⊂⋃

i Uαi . Then

A ⊂
(⋃

i

Uαi

)
∩ A =

⋃
i

(Uαi ∩ A) =
⋃
i

Vαi .

So {Vαi } is a finite subcover of {Vα} that covers A. This proves that A is compact
in A.

(⇐) Let {Uα} be an open cover of A in S. Then {Uα ∩ A} is an open cover of A in
A. By the compactness of A in A, there is a finite subcover {Uαi ∩ A}. Then

A ⊂
⋃
i

(Uαi ∩ A) =
⋃
i

Uαi .

Hence, {Uαi } is a finite subcover of A in S. This proves that A is compact in S. �	
Proposition A.34. A closed subset F of a compact topological space S is compact.

Proof. Let {Uα} be an open cover of F in S. The collection {Uα, S − F } is then an
open cover of S. By the compactness of S, there is a finite subcover {Uαi , S − F }
that covers S. So F ⊂⋃

i Uαi . This proves that F is compact. �	
Proposition A.35. In a Hausdorff space S, it is possible to separate a compact subset
K and a point p not in K by disjoint open sets, i.e., there exist an open set U ⊃ K

and an open set V  p such that U ∩ V = ∅.

Proof. By the Hausdorff property, for every x ∈ K , there are disjoint open sets
Ux  x and Vx  p. The collection {Ux}x∈K is a cover of K by open subsets of S.
Since K is compact, it has a finite subcover {Uxi }.

Let U = ⋃
i Uxi and V = ⋂

i Vxi . Then U is an open set of S containing K .
Being the intersection of finitely many open sets containing p, V is an open set
containing p. Moreover, the set

U ∩ V =
⋃
i

(Uxi ∩ V )

is empty since each Uxi ∩ V ⊂ Uxi ∩ Vxi , which is empty. �	
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Proposition A.36. Every compact subset K of a Hausdorff space S is closed.

Proof. By the preceding proposition, for every point p in S−K , there is an open set
V such that p ∈ V ⊂ S−K . This proves that S−K is open. Hence,K is closed. �	
Exercise A.37 (Compact Hausdorff space). Prove that a compact Hausdorff space is normal.
(Normality was defined in Definition A.20.)

Proposition A.38. The image of a compact set under a continuous map is compact.

Proof. Let f : X −→ Y be a continuous map and K a compact subset of X. Suppose
{Uα} is a cover of f (K) by open subsets of Y . Since f is continuous, the inverse
images f−1(Uα) are all open. Moreover,

K ⊂ f−1(f (K)) ⊂ f−1

(⋃
α

Uα

)
=
⋃
α

f−1(Uα).

So {f−1(Uα)} is an open cover ofK inX. By the compactness ofK , there is a finite
subcollection {f−1(Uαi )} such that

K ⊂
⋃
i

f−1(Uαi ) = f−1

(⋃
i

Uαi

)
.

Then f (K) ⊂⋃
i Uαi . Thus, f (K) is compact. �	

Recall that a map f : X −→ Y is said to be open if the image of every open set
in X is open in Y ; similarly, f : X −→ Y is said to be closed if the image of every
closed set in X is closed in Y .

Proposition A.39. A continuous bijection f : X −→ Y from a compact space X to a
Hausdorff space Y is a homeomorphism.

Proof. It suffices to show that f−1 : Y −→ X is continuous. By Proposition A.31, this
is equivalent to f = (f−1)−1 : X −→ Y being a closed map. Let F be a closed subset
of X. Since X is compact, F is compact (Proposition A.34). By Proposition A.38,
f (F ) is compact in Y . Since Y is Hausdorff, f (F ) is closed (Proposition A.36). This
proves that f−1 is continuous. �	
Exercise A.40 (Finite union of compact sets). Prove that a finite union of compact subsets of
a topological space is compact.

We mention without proof an important result. For a proof, see [14, Theorem 26.7,
p. 167, and Theorem 37.3, p. 234].

Theorem A.41 (The Tychonoff theorem). The product of any collection of compact
spaces is compact in the product topology.
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A.9 Connectedness

Definition A.42. A topological space S is disconnected if it is the union of two dis-
joint nonempty open subsets S = U ∪ V (Figure A.8). It is connected if it is not
disconnected. A subset A of S is disconnected, if it is disconnected in its subspace
topology.

U V

Fig. A.8. A disconnected space.

Proposition A.43. A subset A of a topological space S is disconnected if and only if
there are two open subsets U and V in S such that

(i) U ∩ A �= ∅, V ∩ A �= ∅,
(ii) U ∩ V ∩ A = ∅,

(iii) A ⊂ U ∪ V .

A pair of open sets in S with these properties is called a separation ofA (Figure A.9).

U V

A

Fig. A.9. A separation of A.

Proof. Problem A.10. �	
Proposition A.44. The image of a connected spaceX under a continuous map f : X
−→ Y is connected.

Proof. Since f : X −→ Y is continuous if and only if f : X −→ f (X) is continuous,
we may assume that f : X −→ Y is surjective. Now suppose Y = f (X) is not
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connected. Then f (X) = U ∪ V for disjoint nonempty open subsets U and V . It
follows that

X = f−1(U ∪ V ) = f−1(U) ∪ f−1(V ).

By the continuity of f , f−1(U) and f−1(V ) are open. They are clearly nonempty and
disjoint, contradicting the connectedness ofX. Hence, f (X)must be connected. �	
Proposition A.45. In a topological space S the union of a collection of connected
subsets Aα having a point p in common is connected.

Proof. Suppose
⋃
α Aα = U ∪ V , where U and V are disjoint nonempty subsets

of
⋃
α Aα . The point p belongs to either U or V . Assume without loss of generality

that p ∈ U .
For each α,

Aα = Aα ∩ (U ∪ V ) = (Aα ∩ U) ∪ (Aα ∩ V ).
The two open sets Aα ∩U and Aα ∩V ofAα are clearly disjoint. Since p ∈ Aα ∩U ,
Aα ∩U is nonempty. By the connectedness of Aα , Aα ∩ V must be empty for all α.
Hence,

V =
(⋃

α

Aα

)
∩ V =

⋃
α

(Aα ∩ V )

is empty, a contradiction. So
⋃
α Aα must be connected. �	

A.10 Connected Components

Definition A.46. In a topological space S, the connected component Cx of a point x
is the largest connected subset of S containing x.

By Proposition A.45, the connected component of x is the union of all the con-
nected subsets of S containing x.

Remark A.47. For any two points x, y ∈ S, the connected componentsCx andCy are
either disjoint or they coincide, for if Cx and Cy have a point p in common, then by
Proposition A.45, their union Cx ∪ Cy would be a connected set containing both x
and y. Hence, Cx ∪ Cy ⊂ Cx , from which it follows that Cx = Cx ∪ Cy . Similarly,
Cy = Cx ∪ Cy .

A connected component of S is the connected component of a point in S. By the
remark above, the connected components of S partition S into a disjoint subsets.

Proposition A.48. Suppose C is a connected component of a topological space S.
Then a connected subsetA of S is either disjoint from C or is contained entirely in C.

Proof. If A and C have a point p in common, then C is the connected component
Cp of p and A ⊂ Cp. �	



A.11 Closure 295

A.11 Closure

Let S be a topological space and A a subset of S.

Definition A.49. The closure of A in S, denoted A or cl(A), is defined to be the
intersection of all the closed sets containing A.

As an intersection of closed sets, A is a closed set. It is the smallest closed set
containing A in the sense that any closed set containing A contains A.

Definition A.50. A point p in S is an accumulation point of A if every neighborhood
of p in S contains a point of A other than p. The set of all accumulation points of A
is denoted ac(A).

If U is a neighborhood of p in S, we call U − {p} a deleted neighborhood of p.
An equivalent condition for p to be an accumulation point ofA is to require that every
deleted neighborhood of p in S contain a point ofA. In some books an accumulation
point is called a limit point.

Example A.51. If A = [0, 1) ∪ {2} in R, then the set of accumulation points of A is
the closed interval [0, 1].
Proposition A.52. Let A be a subset of a topological space S. Then

cl(A) = A ∪ ac(A).

Proof.
(⊃) Suppose p /∈ cl(A). Then p /∈ some closed set F containing A. So S − F is a
neighborhood of p that contains no points of A. Hence, p /∈ ac(A). This proves that
ac(A) ⊂ cl(A). By definition, A ⊂ cl(A). Therefore, A ∪ ac(A) ⊂ cl(A).

(⊂) Suppose p /∈ A ∪ ac(A). Then p /∈ A and p /∈ ac(A). Since p /∈ ac(A), it has
a neighborhood U that contains no points of A other than p. Since p /∈ A, in fact U
contains no points of A. Therefore, F := S − U is a closed set containing A. Since
p /∈ F , p /∈ cl(A). This proves that cl(A) ⊂ A ∪ ac(A). �	
Proposition A.53. A set A is closed if and only if A = A.

Proof.
(⇐) If A = A, then A is closed because A is closed.

(⇒) Suppose A is closed. Then A is a closed set containing A so that A ⊂ A.
Because A ⊂ A, equality holds. �	
Proposition A.54. If A ⊂ B in a topological space S, then A ⊂ B.

Proof. Since B contains B, it also contains A. As a closed subset of S containing A,
it contains A by definition. �	
Exercise A.55 (Closure of a finite union or finite intersection). Let A and B be subsets of
a topological space S. Prove the following:

(a) A ∪ B = A ∪ B.
(b) A ∩ B ⊂ A ∩ B.

The example A = (−∞, 0) and B = (0,∞) in the real line shows that A ∩ B �= A ∩ B.
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A.12 Convergence

Let S be a topological space. A sequence in S is a map from the set Z+ of positive
integers to S. We write a sequence as

〈xi〉 or x1, x2, x3, . . . .

Definition A.56. The sequence 〈xi〉 converges to p if for every neighborhood U of
p, there is a positive integer N such that for all i ≥ N , xi ∈ U . In this case we say
that p is a limit of the sequence 〈xi〉 and write xi −→ p or limi−→∞ xi = p.

Proposition A.57 (Uniqueness of the limit). In a Hausdorff space S, if a sequence
〈xi〉 converges to p and to q, then p = q.

Proof. Problem A.14. �	
Thus, in a Hausdorff space we may speak of the limit of a convergent sequence.

Definition A.58. Let S be a topological space and p a point in S. A basis of neigh-
borhoods at p is a collection B = {Bα} of neighborhoods of p such that for any
neighborhood U of p, there is a Bα ∈ B such that p ∈ Bα ⊂ U . A topological space
S is first countable if it has a countable basis of neighborhoods at every point p ∈ S.

Example A.59. For p ∈ Rn, let B(p, 1/n) be the open ball of center p and radius
1/n in Rn. Then {B(p, 1/n)}∞n=1 is a basis at p. Thus, Rn is first countable.

Example A.60. An uncountable discrete space is first countable but not second count-
able.

Proposition A.61 (The sequence lemma). Let S be a topological space and A a
subset of S. If there is a sequence 〈ai〉 in A that converges to p, then p ∈ A. The
converse is true if S is first countable.

Proof.
(⇒) Suppose ai −→ p. If p ∈ A, then p ∈ A and there is nothing to prove. So
suppose p /∈ A. By the definition of convergence, every neighborhood U of p
contains all but finitely many of the points ai . In particular, U contains one point of
A and this point is not p, since p /∈ A. Therefore, p is an accumulation point of A.
By Proposition A.52, p ∈ ac(A) ⊂ A.

(⇐) Suppose p ∈ A. If p ∈ A, then the constant sequence p, p, p, . . . is a sequence
in A that converges to p. So we may assume that p /∈ A. By Proposition A.52, p is
an accumulation point of A. Since S is first countable, we can find a countable basis
of neighborhoods {Un} at p such that

U1 ⊃ U2 ⊃ . . . .

In each Ui , choose a point ai ∈ A. We claim that the sequence 〈ai〉 converges to
p. If U is any neighborhood of p, then by the definition of a basis of neighborhoods
at p, there is a UN such that UN ⊂ U . For all i ≥ N , we then have
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Ui ⊂ UN ⊂ U,

Therefore, for all i ≥ N ,
ai ∈ Ui ⊂ U.

This proves that 〈ai〉 converges to p. �	

Problems

A.1. Set theory
If U1 and U2 are subsets of a set X, and V1 and V2 are subsets of a set Y , prove that

(U1 × V1) ∩ (U2 × V2) = (U1 ∩ U2)× (V1 ∩ V2).

A.2. Union and intersection
Suppose Ui and Vi are disjoint for i = 1, 2. Show that the intersection U1 ∩ U2 is
disjoint from the unionV1∪V2. (Hint: Use the distributive property of an intersection
over a union.)

A.3. Closed sets
Let S be a topological space. Prove:

(a) If {Fi}ni=1 is a finite collection of closed sets in S, then
⋃n
i=1 Fi is closed.

(b) if {Fα}α∈A is an arbitrary collection of closed sets in S, then
⋂
α Fα is closed.

A.4. Projection
A map f : S −→ T of topological spaces is said to be open if for every open set V in
S, the subset f (V ) is open in T . Prove that if X and Y are topological spaces, then
the projection π : X × Y −→ X,

π(x, y) = x,

is an open map.

A.5. Closed map
A map f : S −→ T of topological spaces is said to be closed if for every closed set
A in S, the subset f (A) is open in T . Prove that a continuous map from a compact
space to a Hausdorff space is closed.

A.6. Continuity in terms of closed sets
Prove Proposition A.31.

A.7. Homeomorphism
Prove that if a continuous bijection f : S −→ T is a closed map, then it is a homeo-
morphism.

A.8.* The Lindelöf condition
Show that if a topological space is second countable, then it is Lindelöf, i.e., every
open cover has a countable subcover.
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A.9. Compactness
Prove that a finite union of compact sets in a topological space S is compact.

A.10.* Disconnected subset in terms of a separation
Prove Proposition A.43.

A.11. Local connectedness
Atopological spaceS is said to be locally connected atp ∈ S if for every neighborhood
U of p, there is a connected neighborhood V of p such that V ⊂ U . The space S is
locally connected if it is locally connected at every point. Prove that if S is locally
connected, then the connected components of S are open.

A.12. Closure
Let U be an open subset and A an arbitrary subset of a topological space S. Prove
that U ∩ Ā �= ∅ iff U ∩ A �= ∅.

A.13. Countability
Prove that every second countable space is first countable.

A.14.* Uniqueness of the limit
Prove Proposition A.57.

A.15.* Closure in a product
Let S, Y be topological spaces and A ⊂ S. Prove that

cl(A× Y ) = cl(A)× Y
in the product space S × Y .



B

The Inverse Function Theorem on Rn and Related
Results

This appendix reviews three logically equivalent theorems from real analysis, the in-
verse function theorem, the implicit function theorem, and the constant rank theorem,
which describe the local behavior of a C∞ map from Rn to Rm. We will assume the
inverse function theorem and deduce the other two, in the simplest cases, from the
inverse function theorem. In Chapter 11 these theorems are applied to manifolds in
order to clarify the local behavior of a C∞ map when the rank of the map is maximal
at a point or constant in a neighborhood.

B.1 The Inverse Function Theorem

AC∞ map f : U −→ Rn defined on an open subset U of Rn is locally invertible or a
local diffeomorphism at a point p in U if f has a C∞ inverse in some neighborhood
of p. The inverse function theorem gives a criterion for a map to be locally invertible.
We call the matrix Jf = [∂f i/∂xj ] of partial derivatives of f the Jacobian matrix
of f and its determinant det[∂f i/∂xj ] the Jacobian determinant of f .

Theorem B.1 (Inverse function theorem). Let f : U −→ Rn be a C∞ map de-
fined on an open subset U of Rn. At any point p in U , the map f is invertible in
some neighborhood of p if and only if the Jacobian determinant det[∂f i/∂xj (p)] is
not zero.

This theorem is usually proved in an undergraduate course in real analysis (see,
for example, [12, Chapter 7, p. 422]). Although it apparently reduces the invertibility
of f on an open set to a single number at p, because the Jacobian determinant is a
continuous function, the nonvanishing of the Jacobian determinant at p is equivalent
to its nonvanishing in a neighborhood of p.

Since the linear map represented by the Jacobian matrix Jf (p) is the best linear
approximation to f at p, it is plausible that f is invertible in a neighborhood of p if
and only if Jf (p) is also, i.e., if an only if det(Jf (p)) �= 0.
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B.2 The Implicit Function Theorem

In an equation such as f (x, y) = 0, it is often impossible to solve explicitly for
one of the variables in terms of the other. The implicit function theorem provides
a sufficient condition on a system of equations f i(x1, . . . , xn) = 0, i = 1, . . . , m,
under which locally a set of variables can be solved implicitly as C∞ functions of
the other variables.

Example B.2. Consider the equation

f (x, y) = x2 + y2 − 1 = 0.

The solution set is the unit circle in the xy-plane.

x

y

1−1

Fig. B.1. The unit circle.

From the picture we see that in a neighborhood of any point other than (±1, 0),
y is a function of x. Indeed,

y = ±
√

1 − x2,

and either function is C∞ as long as x �= ±1. At (±1, 0), there is no neighborhood
on which y is a function of x.

We will deduce the implicit function theorem from the inverse function theorem
for the special case of a C∞ function f on an open subset of R2.

Theorem B.3 (Implicit function theorem for R2). Let f : U ⊂ R2 −→ R be a C∞
function on an open subset U of R2. At a point (a, b) ∈ U where f (a, b) = 0 and
∂f/∂y (a, b) �= 0, there are a neighborhood A × B of (a, b) in U and a unique
function h : A −→ B such that in A× B,

f (x, y) = 0 iff y = h(x).

Moreover, h is C∞.
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x

y

�

(a, b)

U1

f (x, y) = 0

F = (x, f )

u

v

V1

�

(a, 0)

Fig. B.2. F−1 maps the u-axis to the zero set of f .

Proof. Define F : U −→ R2 by (u, v) = F(x, y) = (x, f (x, y)). The Jacobian
matrix of F is

JF =
[

1 0
∂f/∂x ∂f/∂y

]
.

At (a, b),

det JF(a, b) = ∂f

∂y
(a, b) �= 0.

By the inverse function theorem, there are neighborhoods U1 of (a, b) and V1 of
F(a, b) = (a, 0) in R2 such that F : U1 −→ V1 is a diffeomorphism, withC∞ inverse
F−1. Since F : U1 −→ V1 is defined by

u = x,

v = f (x, y),

the inverse map F−1 : V1 −→ U1 must be of the form

x = u,

y = g(u, v)

for some C∞ function g : V1 −→ R.
The two compositions F−1 ◦ F and F ◦ F−1 give

y = g(x, f (x, y)) for all (x, y) ∈ U1; (B.1)

v = f (u, g(u, v)) for all (u, v) ∈ V1. (B.2)

For (u, 0) ∈ V1 ∩ u-axis, define

h(u) = g(u, 0).

Claim. For (x, y) ∈ U1 and (x, 0) ∈ V1,

f (x, y) = 0 iff y = h(x).
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Proof (of claim).
(⇒) From (B.1), if f (x, y) = 0, then

y = g(x, f (x, y)) = g(x, 0) = h(x). (B.3)

(⇐) If y = h(x) and in (B.2) we set (u, v) = (x, 0), then

0 = f (x, g(x, 0)) = f (x, h(x)) = f (x, y). �	
Since (a, b) ∈ U1 and f (a, b) = 0, we have

F(a, b) = (a, f (a, b)) = (a, 0) ∈ V1.

By the claim, in some neighborhood of (a, b) ∈ U1, the zero set of f (x, y) is
precisely the graph of h. To find a product neighborhood of (a, b) as in the statement
of the theorem, let A1 × B be a neighborhood of (a, b) contained in U1. Since
h is continuous, there is a neighborhood A of a such that A ⊂ h−1(B) ∩ A1 and
A× {0} ⊂ V1. Then h(A) ⊂ B,

A× B ⊂ A1 × B ⊂ U1, and A× {0} ⊂ V1.

By the claim, in A× B,

f (x, y) = 0 iff y = h(x).

Equation (B.3) proves the uniqueness of h. Because g is C∞, so is h. �	
Replacing a partial derivative such as ∂f/∂y with a Jacobian matrix [∂f i/∂yj ],

we can prove the general case of the implicit function theorem in exactly the same way.

Theorem B.4 (Implicit function theorem). Let U be an open set in Rn × Rm and
f : U −→ Rm a C∞ function. Write (x, y) = (x1, . . . , xn, y1, . . . , ym) for a point
in U . Suppose [∂f i/∂yj (a, b)] is nonsingular at a point (a, b) in the zero set of f
in U . Then a neighborhood A× B of (a, b) in U and a unique function h : A −→ B

exist such that in A× B ⊂ U ⊂ Rn × Rm,

f (x, y) = 0 iff y = h(x).

Moreover, h is C∞.

Of course, y1, . . . , ym need not be the last m coordinates in Rn+m; they can be
any set of m coordinates in Rn+m.

Theorem B.5. The implicit function theorem is equivalent to the inverse function
theorem.

Proof (for m = 2 and n = 2). We have already shown, for one typical case, that the
inverse function theorem implies the implicit function theorem. We now prove the
reverse implication, again for one typical case.
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So assume the implicit function theorem, and suppose that f : U −→ R2 is a C∞
function defined on an open subset U of R2, a = (a1, a2) ∈ U , and the Jacobian
determinant det[∂f i/∂xj ] is nonzero at a. Let

z = (z1, z2) = (f 1(x1, x2), f 2(x1, x2)) = f (x).

Consider the C∞ function F : U × R2 −→ R2

F(x, z) = f (x)− z.
Note that [∂F i/∂xj (a, f (a))] = [∂f i/∂xj (a)] is nonsingular. By the implicit func-
tion theorem, there is a neighborhood V ×W of (a, f (a)) inU×Rn so that in V ×W ,
F(x, z) = 0 implies that x is aC∞ function of z. This says precisely that the function
z = f (x) is invertible for x ∈ V and z ∈ W . �	

B.3 Constant Rank Theorem

Every C∞ map f : U −→ Rm on an open set U of Rn has a rank at each point p in
U , namely the rank of its Jacobian matrix [∂f i/∂xj (p)].
Theorem B.6 (Constant rank theorem). If f : U ⊂ Rn −→ Rm has constant rank
k in a neighborhood of a point p ∈ U , then after a change of coordinates near p in
U and f (p) in Rm, the map f assumes the form

(x1, . . . , xn) �→ (x1, . . . , xk, 0, . . . , 0).

More precisely, there are diffeomorphisms G of a neighborhood of p in U and F of
a neighborhood of f (p) in Rm such that

F ◦ f ◦ G−1(x1, . . . , xn) = (x1, . . . , xk, 0, . . . , 0).

Proof (for n = m = 2, k = 1). Suppose f = (f 1, f 2) : U ⊂ R2 −→ R2 has
constant rank 1 in a neighborhood of p ∈ U . By reordering the functions f 1, f 2 or
the variables x, y, we may assume that ∂f 1/∂x(p) �= 0. (Here we are using the fact
that f has rank ≥ 1 at p.) Define G : U −→ R2 by

(u, v) = G(x, y) = (f 1(x, y), y).

The Jacobian matrix of G is

JG =
[
∂f 1/∂x ∂f 1/∂y

0 1

]
.

Since det JG(p) = ∂f 1/∂x(p) �= 0, by the inverse function theorem there are
neighborhoods U1 of p ∈ R2 and V1 of G(p) ∈ R2 such that G : U1 −→ V1 is a
diffeomorphism. By making U1 a sufficiently small neighborhood of p, we may
assume that f has constant rank 1 on U1.



304 B The Inverse Function Theorem on R
n and Related Results

On V1,

(u, v) = G ◦ G−1(u, v) = (f 1 ◦ G−1, y ◦ G−1)(u, v).

Comparing the first components gives u = f 1 ◦ G−1(u, v). Hence,

f ◦ G−1(u, v) = (f 1 ◦ G−1, f 2 ◦ G−1)(u, v)

= (u, f 2 ◦ G−1(u, v))

= (u, h(u, v)),

where we set h = f 2 ◦ G−1. Because G−1 is a diffeomorphism and f has constant
rank on V1, the composite f ◦ G−1 has constant rank 1 on V1. Its Jacobian matrix is

J (f ◦ G−1) =
[

1 0
∂h/∂u ∂h/∂v

]
.

For this matrix to have constant rank 1, ∂h/∂v must be identically zero on V1. (Here
we are using the fact that f has rank ≤ 1 in a neighborhood of p). Thus, h is a
function of u alone and we may write

f ◦ G−1(u, v) = (u, h(u)).

Finally, let F : R2 −→ R2 be the change of coordinates F(x, y) = (x, y − h(x)).
Then

(F ◦ f ◦ G−1)(u, v) = F(u, h(u)) = (u, h(u)− h(u)) = (u, 0). �	

Problems

B.1.* The rank of a matrix
The rank of a matrixA, denoted rkA, is defined to be the number of linearly indepen-
dent columns of A. By a theorem in linear algebra, it is also the number of linearly
independent rows of A. Prove the following lemma.

Let A be an m × n matrix (not necessarily square), and k a positive integer.
Then rkA ≥ k if and only if A has a nonsingular k × k submatrix. Equivalently,
rkA ≤ k − 1 if and only if all k × k minors of A vanish. (A k × k minor of a matrix
A is the determinant of a k × k submatrix of A.)

B.2.* Matrices of rank at most r

For an integer r ≥ 0, defineDr to be the subset of Rm×n consisting of all m× n real
matrices of rank at most r . Show that Dr is a closed subset of Rm×n. (Hint: Use
Problem B.1.)

B.3.* Maximal rank
We say that the rank of an m× n matrix A is maximal if rkA = min(m, n). Define
Dmax to be the subset of Rm×n consisting of all m × n matrices of maximal rank
r := min(m, n). Show thatDmax is an open subset of Rm×n. (Hint: Suppose n ≤ m.
Then Dmax = Rm×n −Dn−1. Apply Problem B.2.)
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B.4.* Degeneracy loci and maximal rank locus of a map
Let F : S −→ Rm×n be a continuous map from a topological space S to the space
Rm×n. The degeneracy locus of rank r of F is defined to be

Dr(F ) := {x ∈ S | rk F(x) ≤ r}.
(a) Show that the degeneracy locus Dr(F ) is a closed subset of S. (Hint: Dr(F ) =
F−1(Dr), where Dr was defined in Problem B.2.)

(b) Show that the maximal rank locus of F ,

Dmax(F ) := {x ∈ S | rk F(x) is maximal},
is an open subset of S.

B.5. Rank of a composition of linear maps
Suppose V , W , V ′, W ′ are finite-dimensional vector spaces.

(a) Prove that if the linear map L : V −→ W is surjective, then for any linear map
f : W −→ W ′, rk(f ◦ L) = rk f .

(b) Prove that if the linear map L : V −→ W is injective, then for any linear map
g : V ′ −→ V , rk(L ◦ g) = rk g.

B.6. Constant rank theorem
Prove that the constant rank theorem (Theorem B.6) implies the inverse function
theorem (Theorem B.1). Hence, the two theorems are equivalent.



C

Existence of a Partition of Unity in General

This appendix contains a proof of Theorem 13.10 on the existence of a C∞ partition
of unity on a general manifold.

Lemma C.1. Every manifold M has a countable basis all of whose elements have
compact closure.

Remark. Recall that a collection of open sets B = {Bα} in a topological spaceX is a
basis if, given any open set U in X and any x ∈ U , there is an open set Bα ∈ B with
x ∈ Bα ⊂ U .

Notation. If A is a subset of a topological space X, the notation A denotes the
closure of A in X.

Proof (of Lemma C.1). Start with a countable basis B for M and consider the sub-
collection S of open sets of B that have compact closure. We claim that S is again a
basis. Given any open set U in M and any point p ∈ U , choose a neighborhood V
of p such that V ⊂ U and V has compact closure. This is always possible since M
is locally Euclidean.

Since B is a basis, there is an open set B ∈ B such that

p ∈ B ⊂ V ⊂ U.

ThenB ⊂ V . Because V is compact, so is the closed subsetB. Hence, B ∈ S. Given
any open set U and any p ∈ U , we have found a set B ∈ S such that p ∈ B ⊂ U .
This proves that S is a basis. �	

Proposition C.2. Every manifold M has a countable sequence of subsets

V1 ⊂ V1 ⊂ V2 ⊂ V2 ⊂ . . . ,

with each Vi open and Vi compact, such thatM is the union of the Vi’s (Figure C.1).
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Proof. By Lemma C.1, M has a countable basis {Bi}∞i=1 with each Bi compact. Set
V1 = B1, and define i1 to be the smallest integer ≥ 2 such that

V1 ⊂ B1 ∪ B2 ∪ · · · ∪ Bi1 .

Suppose V1, . . . , Vm have been defined. If im is the smallest integer≥ m+ 1 and
≥ im−1 such that

Vm ⊂ B1 ∪ B2 ∪ · · · ∪ Bim,
then we set

Vm+1 = B1 ∪ B2 ∪ · · · ∪ Bim.
Since a finite union of compact sets is compact and

Vm+1 ⊂ B1 ∪ B2 ∪ · · · ∪ Bim
is a closed subset of a compact set, Vm+1 is compact. Since im ≥ m + 1, Bm+1 ⊂
Vm+1. Thus,

M = ∪Bi ⊂ ∪Vi ⊂ M.

This proves that M = ∪∞i=1Vi . �	

) ) ) ) ) ) )
V1 V2 V3 Vi−1 Vi Vi+1 Vi+2. . .

[ ]

( )

compact

open

Fig. C.1. A nested open cover.

Define V0 to be the empty set. For each i ≥ 1, because Vi+1 − Vi is a closed
subset of the compact Vi+1, it is compact. Moreover, it is contained in the open set
Vi+2 − Vi−1.

Theorem 13.10 (Existence of a C∞ partition of unity). Let {Uα}α∈A be an open
cover of a manifold M .

(i) Then there is a C∞ partition of unity {ϕk}∞k=1 with compact support such that for
each k, suppϕk ⊂ Uα for some α ∈ A.

(ii) If we do not require compact support, then there is a C∞ partition of unity {ρα}
subordinate to {Uα}.
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Proof.
(i) Let {Vi}∞i=0 be an open cover ofM as in Proposition C.2, with V0 being the empty
set. Fix an integer i ≥ 1. For each p ∈ Vi+1 −Vi , choose an open set Uα containing
p from the open cover {Uα}. Then p is in the open set

Uα ∩ (Vi+2 − Vi−1).

Let ψp be a C∞ bump function on M that is positive on a neighborhood Wp of
p and has support in Uα ∩ (Vi+2 − Vi−1). Since suppψp is a closed set contained in
the compact set Vi+2, it is compact.

The collection {Wp | p ∈ Vi+1 − Vi} is an open cover of the compact set
Vi+1 − Vi and so there is a finite subcover {Wp1 , . . . ,Wpm}, with associated bump
functions ψp1 , . . . , ψpm . Since m, Wpj , and ψpj all depend on i, we relabel them as
m(i), Wi

1, . . . ,W
i
m(i) and ψi1, . . . , ψ

i
m(i).

In summary, for each i ≥ 1, we have found finitely many open setsWi
1, . . . ,W

i
m(i)

and finitely many C∞ bump functions ψi1, . . . , ψ
i
m(i) such that

(1) ψij > 0 on Wi
j for j = 1, . . . , m(i);

(2) Wi
1, . . . ,W

i
m(i) cover Vi+1 − Vi ;

(3) suppψij ⊂ Uαij ∩ (Vi+2 − Vi−1) for some αij ∈ A;

(4) suppψij is compact.

As i runs from 1 to ∞, we obtain countably many bump functions {ψij }. The

collection of their supports, {suppψij } is locally finite, since only finitely many of
these sets intersect any Vi . Indeed, since

suppψ
j ⊂ V
+2 − V
−1

for all 
, as soon as 
 ≥ i + 1,

(suppψ
j ) ∩ Vi = ∅, the empty set.

Any point p ∈ M is contained in Vi+1 −Vi for some i and therefore, p ∈ Wi
j for

some j . For this (i, j), ψij (p) > 0. Hence, the sum ψ := ∑
i,j ψ

i
j is locally finite

and everywhere positive. To simplify the notation, we now relabel the countable set
{ψij } as {ψ1, ψ2, ψ3, . . . }. Define

ϕk = ψk

ψ
.

Then
∑
ϕk = 1 and

suppϕk = suppψk ⊂ Uα

for some α ∈ A. So {ϕk} is a partition of unity with compact support such that for
each k, suppϕk ⊂ Uα for some α ∈ A.



310 C Existence of a Partition of Unity in General

(ii) For each k = 1, 2, . . . , let τ(k) be an index in A such that

suppϕk ⊂ Uτ(k)

as in the preceding paragraph. Group the collection {ϕk} according to τ(k) and define

ρα =
∑
τ(k)=α

ϕk

if there is a k with τ(k) = α; otherwise, set ρα = 0. Then

∑
α∈A

ρα =
∑
α∈A

∑
τ(k)=α

ϕk =
∞∑
k=1

ϕk = 1.

By Problem 13.6,
supp ρα ⊂

⋃
τ(k)=α

suppϕk ⊂ Uα.

Hence, {ρα} is a partition of unity subordinate to {Uα}. �	
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Linear Algebra

This appendix collects a few facts from linear algebra that are used throughout the
book, especially in Chapters 23 and 24.

D.1 Linear Transformations

Let V and W be vector spaces over R. A map f : V −→ W is called a linear
transformation, a vector space homomorphism, a linear operator, or a linear map
over R if for all u, v ∈ V and r ∈ R,

f (u+ v) = f (u)+ f (v),
f (ru) = rf (u).

The kernel of f is
ker f = {v ∈ V | f (v) = 0}

and the image of f is
im f = {f (v) ∈ W | v ∈ V }.

The kernel of f is a subspace of V and the image of f is a subspace of W . Hence,
one can form the quotient spaces V/ ker f and W/ im f . This latter space W/ im f ,
denoted coker f , is called the cokernel of the linear map f : V −→ W .

For now, denote by K the kernel of f . The linear map f : V −→ W induces a
linear map f̄ : V/K −→ im f , by

f̄ (v +K) = f (v).

It is easy to check that f̄ is bijective. This gives the following fundamental result of
linear algebra.

Theorem D.1 (The first isomorphism theorem). Let f : V −→ W be a homomor-
phism of vector spaces. Then f induces an isomorphism

f̄ : V

ker f
∼−→ im f.
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It follows from the first isomorphism theorem that

dim V − dim ker f = dim im f.

Since the dimension is the only isomorphism invariant of a real vector space, we
therefore have the following corollary.

Corollary D.2. Under the hypotheses of the first isomorphism theorem,

V � ker f ⊕ im f.

(The right-hand side is an external direct sum because ker f and im f are not sub-
spaces of the same vector space.)

D.2 Quotient Vector Spaces

If V is a vector space and W is a subspace of V , a coset of W in V is a subset of
the form

v +W = {v + w | w ∈ W }
for some v ∈ V .

Two cosets v + W and v′ + W are equal if and only if v′ = v + w for some
w ∈ W , or equivalently, if and only if v′ − v ∈ W . This introduces an equivalence
relation on V :

v ∼ v′ iff v′ − v ∈ W iff v +W = v′ +W.
A coset ofW in V is simply an equivalence class under this equivalence relation. Any
element of v +W is called a representative of the coset v +W .

The set V/W of all cosets of W in V is again a vector space, with addition and
scalar multiplication defined by

(u+W)+ (v +W) = (u+ v)+W,
λ(v +W) = λv +W

for u, v ∈ V and λ ∈ R. We call V/W the quotient vector space or the quotient
space of V by W .

Example D.3. For V = R2 and W a line through the origin in R2, a coset of W in
R2 is a line in R2 parallel to W . (For the purpose of this discussion, two lines are
parallel if and only if the nonzero vectors they contain are scalar multiples of one
another. Accordingly, a line is parallel to itself.) The quotient space R2/W is this
collection of parallel lines (Figure D.1).

IfL is a line through the origin not parallel toW , thenLwill intersect each parallel
line ∈ R2/W in one and only one point. This one-to-one correspondence
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�v

v +W

W
L

Fig. D.1. Quotient vector space of R
2 by W .

L −→ R2/W

v �→ v +W
preserves addition and scalar multiplication, and so is an isomorphism of vector
spaces. Thus in this example the quotient space R2/W can be identified with the
line L.

The sum of two subspaces A and B of a vector space V is the subspace

A+ B = {a + b ∈ V | a ∈ A, b ∈ B}.
This sum is called an internal direct sum and written A ⊕ B if A ∩ B = {0}. In an
internal direct sum A⊕ B, every element has a representation as a + b for a unique
a ∈ A and a unique b ∈ B. Indeed, if a + b = a′ + b′ ∈ A⊕ B, then

a − a′ = b′ − b ∈ A ∩ B = {0}.
Hence, a = a′ and b = b′.

If V = A ⊕ B, then A is called complementary subspace to B in V . In the
example above, the line L is a complementary subspace to W , and we may identify
the quotient vector space R2/W with any complementary subspace to W .

In general, if W is a subspace of a vector space V and W ′ is a complementary
subspace to W , then there is a linear map

ϕ : W ′ −→ V/W

w′ �→ w′ +W.
Exercise D.4. Show that ϕ : W ′ −→ V/W is an isomorphism of vector spaces.

Thus, the quotient space V/W may be identified with any complementary sub-
space to W in V . This identification is not canonical, for there are many comple-
mentary subspaces to a given subspace W and there is no reason to single out any
one of them. However, when V has an inner product, one can single out a canonical
complementary subspace, the orthogonal complement of W :

W⊥ = {v ∈ V | 〈v,w〉 = 0 for all w ∈ W }.
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Exercise D.5. Check that W⊥ is a complementary subspace to W .

In this case, there is a canonical identification W⊥ ∼−→ V/W .

Remark D.6. IfA and B are two vector spaces, not necessarily subspaces of the same
vector space, then their direct product A× B is the set of all ordered pairs (a, b):

A× B = {(a, b) | a ∈ A, b ∈ B},
with the obvious addition and scalar multiplication: for (a, b), (a′, b′) ∈ A× B and
λ ∈ R,

(a, b)+ (a′, b′) = (a + a′, b + b′),
λ(a, b) = (λa, λb).

The direct product A× B is also called the external direct sum and written A⊕ B.
This means that whenA andB are subspaces of the same vector space, the notation

A⊕ B is ambiguous; it could be either the internal direct sum or the external direct
sum. Fortunately, in this case, there is an isomorphism between the internal direct
sum A ⊕ B and the direct product A × B, so that the confusion of notations is not
serious.

Exercise D.7 (Direct sums). Assume A and B are subspaces of a vector space V . For now,
let A⊕ B denote the internal direct sum. Show that the map

ϕ : A× B −→ A⊕ B
(a, b) �→ a + b

is a linear isomorphism of vector spaces.
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3.14 The symmetrizing operator
A k-linear function h : V −→ R is symmetric iff τh = h for all τ ∈ Sk . Now

τ(Sf ) = τ
∑
σ∈Sk

σf =
∑
σ∈Sk

(τσ )f.

As σ runs over all elements of the permutation groups Sk , so does τσ . Hence,∑
σ∈Sk

(τσ )f =
∑
τσ∈Sk

(τσ )f = Sf.

This proves that τ(Sf ) = Sf . ��

3.16 The alternating operator
f (v1, v2, v3) − f (v1, v3, v2) + f (v2, v3, v1) − f (v2, v1, v3) + f (v3, v1, v2) −
f (v3, v2, v1). ��

3.21 Wedge product of two 2-covectors

(f ∧ g)(v1, v2, v3, v4)

= f (v1, v2)g(v3, v4)− f (v1, v3)g(v2, v4)+ f (v1, v4)g(v2, v3)

+ f (v2, v3)g(v1, v4)− f (v2, v4)g(v1, v3)+ f (v3, v4)g(v1, v2). ��

3.23 The sign of a permutation
We can achieve the permutation τ from the initial configuration 1, 2, . . . , k + 
 in
k steps.

(1) First, move the element k to the very end across the 
 elements k+ 1, . . . , k+ 
.
This requires 
 transpositions.

(2) Next, move the element k − 1 across the 
 elements k + 1, . . . , k + 
.
(3) Then move the element k − 2 across the same 
 elements, and so on.
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Each of the k steps requires 
 transpositions. In the end we achieve τ from the identity
using 
k transpositions.

Alternatively, one can count the number of inversions in the permutation τ . There
are k inversions starting with k + 1, namely, (k + 1, 1), . . . , (k + 1, k). Indeed, for
each i = 1, . . . , 
, there are k inversions starting with k+ i. Hence, the total number
of inversions in τ is k
. By Proposition 3.6, sgn(τ ) = (−1)k
. ��

4.6 A basis for 3-covectors
By Proposition 3.29, a basis for A3(Tp(R

4)) is dx1 ∧ dx2 ∧ dx3, dx1 ∧ dx2 ∧ dx4,
dx1 ∧ dx3 ∧ dx4, dx2 ∧ dx3 ∧ dx4. ��

4.7 Wedge product of a 2-form with a 1-form
The (2, 1)-shuffles are (1 < 2, 3), (1 < 3, 2), (2 < 3, 1), with respective signs +, −,
+. By Equation (3.3),

(ω ∧ τ)(X, Y,Z) = ω(X, Y )τ(Z)− ω(X,Z)τ(Y )+ ω(Y,Z)τ(X). ��

7.11 Projective space as a quotient of a sphere
Define f̄ : RPn −→ Sn/∼ by f̄ ([x]) = [ x|x| ] ∈ Sn/∼. This map is well defined

because f̄ ([tx]) = [ tx|tx| ] = [± x
|x| ] = [ x|x| ]. Note that if π1 : Rn+1 − {0} −→ RPn

and π2 : Sn −→ Sn/∼ are the projection maps, then there is a commutative diagram

RPn Sn/∼.�
f̄

Rn − {0} Sn�f

�

π1

�

π2

By Proposition 7.1, f̄ is continuous because π2 ◦ f is continuous.
Next define g : Sn −→ Rn+1−{0} by g(x) = x. This map induces a map ḡ : Sn/∼

−→ RPn, ḡ([x]) = [x]. By the same argument as above, ḡ is well defined and
continuous. Moreover,

ḡ ◦ f̄ ([x]) =
[
x

|x|
]
= [x],

f̄ ◦ ḡ([x]) = [x],

so f̄ and ḡ are inverses to each other. ��

13.2 Let (V , φ) be a chart centered at q so that V is diffeomorphic to an open ball
B(0, r). Choose real numbers a and b so that

B(0, a) ⊂ B(0, b) ⊂ B(0, b) ⊂ B(0, r).

With the σ given in (13.2), the function σ ◦ φ, extended by zero to U , is a desired
bump function.
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18.2 Transition functions for a 2-form

aij = ω(∂/∂xi, ∂/∂xj ) =
∑
k,


bk
dy
k ∧ dy
(∂/∂xi, ∂/∂xj )

=
∑
k,


(dyk(∂/∂xi)dy
(∂/∂xj )− dyk(∂/∂xj )dy
(∂/∂xi

=
∑
k,


bk


(
∂yk

∂xi

∂y


∂xj
− ∂yk

∂xj

∂y


∂xi

)
. ��

21.2 Smooth functions on a nonopen set
By definition, for each p in S there is an ope set Up in Rn and a C∞ function f̃p : Up
−→ Rn such that f = f̃p on Up ∩ S. Let U =⋃

p∈S Up. Choose a partition of unity
{σp}p∈S on U subordinate to the open cover {Up}p∈S of U and form the function
f̃ : U −→ Rm by

f̃ =
∑
p∈S

σpf̃p. (∗)

Since this is a locally finite sum, f̃ is well defined and C∞ for the usual reason.
(Every point q ∈ U has a neighborhood Wq that intersects finitely many of supp σp.
Hence, the sum (∗) is a finite sum on Wq .)

If q ∈ S ∩ Up, then f̃p(q) = f (q). Thus, for q ∈ S,

f̃ (q) =
∑
p∈S

σp(q)f̃p(q) =
∑
p∈S

σp(q)fp(q) = f (q). ��

23.5 A nowhere-vanishing 1-form on the circle
Although θ is a multi-valued function on the circle, cos θ and sin θ are well-defined
single-valued functions, since any two branches of θ differ by a multiple of 2π . The
notation cos θ means the function obtained by taking cos of any branch of θ on any
open interval of the circle. Thus, on the circle, x = cos θ and y = sin θ . On the open
set Ux = {x �= 0},

dy

x
= d(sin θ)

cos θ
= dθ.

Similarly, on the open set Uy = {y �= 0},

−dx
y
= −d(cos θ)

sin θ
= dθ.

Hence, ω = dθ everywhere on the circle. ��

24.6 Connecting homomorphism
Suppose b, b′ ∈ Bk both map to c under j . Then j (b− b′) = jb− jb′ = c− c = 0.
By the exactness at Bk , b − b′ = i(a′′) for some a′′ ∈ Ak .

With the choice of b, the element d∗[c] is represented by a cocycle a ∈ Ak+1 such
that i(a) = db. Similarly, with the choice of b′ the element d∗[c] is represented by a
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cocycle a′ ∈ Ak+1 such that i(a′) = d(b′). Then i(a − a′) = d(b− b′) = di(a′′) =
id(a′′). Since i is injective, a − a′ = d(a′′), and thus [a] = [a′]. This proves that
d∗[c] is independent of the choice of b. We summarize the proof by the commutative
diagram

d(a′′) = a − a′ i−−−−→ db − d(b′)
d

5⏐⏐ 5⏐⏐d
a′′ −−−−→

i
b − b′ −−−−→ 0.

Next suppose [c] = [c′] ∈ Hk(C). Then c − c′ = d(c′′) for some c′′ ∈ Ck−1.
By the surjectivity of j : Bk−1 −→ Ck−1, there is a b′′ ∈ Bk−1 such that j (b′′) = c′′.
Choose b ∈ Bk such that j (b) = c and choose b′ ∈ Bk such that b − b′ = d(b′′).
Then j (b′) = j (b)− jd(b′′) = c− dj (b′′) = c− d(c′′) = c′. With the choice of b,
the element d∗[c] is represented by a cocycle a ∈ Ak+1 such that i(a) = db. With
the choice of b′, the element d∗[c] is represented by a cocycle a′ ∈ Ak+1 such that
i(a′) = d(b′). Then

i(a − a′) = d(b − b′) = dd(b′′) = 0.

By the injectivity of i, a = a′ and [a] = [a′]. This shows that d∗[c] is independent
of the choice of c in the cohomology class [c]. See the commutative diagram below:

a − a′ −−−−→ db − d(b′) = 0

d

5⏐⏐
b − b′ j−−−−→ c − c′

d

5⏐⏐ 5⏐⏐d
b′′ −−−−→

j
c′′ −−−−→ 0. ��

A.37 Compact Hausdorff space
Let S be a compact Hausdorff space, and A, B two closed subsets of S. By Proposi-
tionA.34,A andB are compact. By PropositionA.35, for any a ∈ A there are disjoint
open sets Ua  a and Va ⊃ B. Since A is compact, the open cover {Ua}a∈A for A
has a finite subcover {Uai }ni=1. Let U =⋃n

i=1 Uai and V =⋂n
i=1 Vai . Then A ⊂ U

and B ⊂ V . The open sets U and V are disjoint because if x ∈ U ∩ V , then x ∈ Uai
for some i and x ∈ Vai for the same i, contradicting the fact that Uai ∩Vai = ∅. ��



Hints and Solutions to Selected End-of-Chapter
Problems

Problems with complete solutions are starred (*). Equations are numbered consecu-
tively within each problem.

1.1 Let h(x) = ∫ x
0 g(t) dt , where g : R −→ R is the function in Example 1.2.

1.2* A C∞ function very flat at 0
(a) Assume x > 0. For k = 1, f ′(x) = (1/x2) e−1/x . With p2(y) = y2, this verifies
the claim. Now suppose f (k)(x) = p2k(1/x) e−1/x . By the product rule and the
chain rule,

f (k+1)(x) = p2k−1

(
1

x

)
·
(
− 1

x2

)
e−

1
x + p2k

(
1

x

)
· 1

x2
e−

1
x

=
(
q2k+1

(
1

x

)
+ q2k+2

(
1

x

))
e−

1
x

= p2k+2

(
1

x

)
e−

1
x ,

where qn(y) and pn(y) are polynomials of degree n in y. By induction, the claim is
true for all k ≥ 1. It is trivially true for k = 0 also.

(b) For x > 0, the formula in (a) shows that f (x) is C∞. For x < 0, f (x) ≡ 0,
which is trivially C∞. It remains to show that f (k)(x) is defined and continuous at
x = 0 for all k.

Suppose f (k)(0) = 0. By the definition of the derivative,

f (k+1)(0) = lim
x−→0

f (k)(x)− f (k)(0)
x

= lim
x−→0

f (k)(x)

x
.

The limit from the left is clearly 0. So it suffices to compute the limit from the right:
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lim
x−→0+

f (k)(x)

x
= lim
x−→0+

p2k

(
1
x

)
e− 1

x

x
= lim
x−→0+

p2k+1

(
1

x

)
e−

1
x (1.2.1)

= lim
y−→∞

p2k+1(y)

ey

(
replacing

1

x
by y

)
.

Applying l’Hôpital’s rule 2k+1 times, we reduce this limit to 0. Hence, f (k+1)(0) =
0. By induction, f (k)(0) = 0 for all k ≥ 0.

A similar computation as (1.2.1) for limx−→0 f
(k)(x) = 0 proves that f (k)(x) is

continuous at x = 0. ��

1.3 (b) h(t) = (π/(b − a))(t − a)− (π/2).
1.4
(a) Let f (x) be the function of Example 1.3. Then h(x) = f (x)g(x). Since

both f (x) and g(x) = sec x are strictly increasing on [0, π/2) and C∞ on
(−π/2, π/2), so is their product. We have already established that the deriva-
tives f (k)(0) = 0 for all k ≥ 0. By the product rule,

h(k)(0) =
k∑
i=0

(
k

i

)
f (i)(0)g(k−i)(0) = 0.

(b) The inverse map to F is G : Rn −→ B(0, π/2),

G(y) =
⎧⎨⎩h

−1(|y|) y|y| for y �= 0,

0 for y = 0.

1.5* Taylor’s theorem with remainder to order 2
To simplify the notation, we write 0 for (0, 0). By Taylor’s theorem with remainder,
there exist C∞ functions g1, g2 such that

f (x, y) = f (0)+ xg1(x, y)+ yg2(x, y). (1.5.1)

Applying the theorem again, but to g1 and g2, we obtain

g1(x, y) = g1(0)+ xg11(x, y)+ yg12(x, y), (1.5.2)

g2(x, y) = g2(0)+ xg21(x, y)+ yg22(x, y). (1.5.3)

Since g1(0) = ∂f/∂x(0) and g2(0) = ∂f/∂y(0), substituting (1.5.2) and (1.5.3) into
(1.5.1) gives the result. ��

1.6* A function with a removable singularity
In Problem 1.5, set x = t and y = tu. We obtain

f (t, tu)=f (0)+ t ∂f
∂x
(0)+ tu∂f

∂y
(0)+ t2(· · · ),

where
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(· · · ) = f11(t, tu)+ uf12(t, tu)+ u2f22(t, tu)

is a C∞ function of t and u. Since f (0) = 0,

f (t, tu)

t
= ∂f

∂x
(0)+ u∂f

∂y
(0)+ t (· · · ),

which is clearly C∞. ��

3.1 f =∑
gijα

i ⊗ αj .

3.2
(a) Use the formula dim ker f + dim im f = dim V .
(b) Choose a basis e1, . . . , en−1 for ker f , and extend it to a basis e1, . . . , en−1, en

for V . Let α1, . . . , αn be the dual basis for V ∗. Write both f and g in terms of
this dual basis.

3.3 We write temporarily αI for αi1 ⊗ · · · ⊗ αik and eJ for (ej1 , . . . , ejk ).

(a) Prove that f = ∑
f (eI )α

I by showing that both sides agree on all (eJ ). This
proves that the set {αI } spans.

(b) Suppose
∑
cIα

I = 0. Applying both sides to eJ gives cJ = ∑
cIα

I (eJ ) = 0.
This proves that the set {αI } is linearly independent.

3.9* Linear independence of covectors
(⇒) If α1, . . . , αk are linearly dependent, then one of them is a linear combination
of the others. Without loss of generality, we may assume that

αk =
k−1∑
i=1

ciα
i .

In the wedge product α1 ∧ · · · ∧ αk−1 ∧ (∑k−1
i=1 ciα

i), every term has a repeated αi .
Hence, α1 ∧ · · · ∧ αk = 0.

(⇐) Suppose α1, . . . , αk are linearly independent. Then they can be extended to
a basis α1, . . . , αk, . . . , αn for V ∗. Let v1, . . . , vn be the dual basis for V . By
Proposition 3.28,

(α1 ∧ · · · ∧ αk)(v1, . . . , vk) = det[αi(vj )] = det[δij ] = 1.

Hence, α1 ∧ · · · ∧ αk �= 0. ��

3.10* Exterior multiplication
(⇐) Clear because α ∧ α = 0.

(⇒) Suppose α∧ω = 0. Extend α to a basis α1, . . . , αn for V ∗, with α1 = α. Write
ω = ∑

cJ α
J . In the sum α ∧ ω = ∑

cJ α ∧ αJ , all the terms α ∧ αJ with j1 = 1
vanish since α = α1. Hence,

0 = α ∧ ω =
∑
j1 �=1

cJ α ∧ αJ .
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Since {α ∧ αJ }j1 �=1 is a subset of a basis for Ak+1(V ), it is linearly independent and
so all cJ = 0 if j1 �= 1. Thus,

ω =
∑
j1=1

cJ α
J = α ∧

⎛⎝∑
j1=1

cJ α
j2 ∧ · · · ∧ αjk

⎞⎠ . ��

3.11 Let e1, . . . , en be a basis for V and α1, . . . , αn the dual basis for V ∗. Then a
basis for An(V ) is α1 ∧ · · · ∧ αn and L∗(α1 ∧ · · · ∧ αn) = cα1 ∧ · · · ∧ αn for some
constant c. Suppose L(ej ) =∑

i a
i
j ei . Compute c in terms of aij .

4.1 ω(X) = yz, dω = −dx ∧ dz.
4.2 ωp = p3 dx1 ∧ dx2.

4.3 dx = cos θ dr − r sin θ dθ , dy = sin θ, dr + r cos θ dθ , dx ∧ dy = r dr ∧ dθ .

4.4 dx ∧ dy ∧ dz = ρ2 sin φ dρ ∧ dφ ∧ dθ .

4.5 α ∧ β = (a1b1 − a2b2 + a3b3) dx
1 ∧ dx2 ∧ dx3.

4.7* Interior multiplication

(ιv(α
1 ∧ · · · ∧ αk))(v2, . . . , vk)

= α1 ∧ · · · ∧ αk(v, v2, . . . , vk)

= det

⎡⎢⎢⎢⎣
α1(v) α1(v2) · · · α1(vk)

α2(v) α2(v2) · · · α2(vk)
...

...
...

αk(v) αk(v2) · · · αk(vk)

⎤⎥⎥⎥⎦ (Proposition 3.28)

=
k∑
i=1

(−1)i+1αi(v) det[α
(vj )]1≤
≤k,
�=i
2≤j≤k

(expansion along first column)

=
k∑
i=1

(−1)i+1αi(v)α1 ∧ · · · ∧ α̂i ∧ · · · ∧ αk(v2, . . . , vk). ��

4.8* Interior multiplication

(a) By the definition of interior multiplication,

(ιv ◦ ιvω)(v3, . . . , vk) = (ιvω)(v, v3, . . . , vk)

= ω(v, v, v3, . . . , vk) = 0,

because of the repeated variable v.
(b) Since both sides of the equation are linear inω and linear in τ , we may assume that

ω = α1 ∧ · · · ∧ αk, τ = αk+1 ∧ · · · ∧ αk+
,
where the αi are all 1-covectors. By Problem 4.7,
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ιv(ω ∧ τ) = ιv(α
1 ∧ · · · ∧ αk+
)

=
(

k∑
i=1

(−1)i+1αi(v)α1 ∧ · · · ∧ α̂i ∧ · · · ∧ αk
)

∧ αk+1 ∧ · · · ∧ αk+
 + (−1)kα1 ∧ · · · ∧ αk

∧
k∑
i=1

(−1)i+1αk+i (v)αk+1 ∧ · · · ∧ α̂k+i ∧ · · · ∧ αk+


= (ιvω) ∧ τ + (−1)kω ∧ ιvτ. ��

5.3 The image φ4(U14) = {(x, z) | −1 < z < 1, 0 < x <
√

1 − z2}.
The transition functionφ1 ◦ φ−1

4 (x, z) = φ1(x, y, z) = (y, z) = (−√1 − x2 − z2, z)

is a C∞ function of x, z.

6.4* Coordinate maps are C∞
For any p ∈ U , choose the charts (U, φ) about p and (Rn, 1Rn) about φ(p). Since
1Rn ◦ φ ◦ φ−1 : φ(U) −→ Rn is C∞ at φ(p), φ is C∞ at p. ��

6.7 See Example 15.2.

7.1* Quotient space by a group
Let U be an open subset of S. For each g ∈ G, since left multiplication by g is a
homeomorphism: S −→ S, the set gU is open. But

π−1(π(U)) = ∪g∈G gU,
which is a union of open sets, hence is open. By the definition of the quotient topology,
π(U) is open. ��

7.3* The real projective space
By Exercise 7.11 there is a continuous surjective map π : Sn −→ RPn. Since the
sphere Sn is compact, and the continuous image of a compact set is compact (Propo-
sition A.38), RPn is compact. ��

8.1* Differential of a map
To determine the coefficient a in F∗(∂/∂x) = a ∂/∂u+ b ∂/∂v + c ∂/∂w, we apply
both sides to u to get

F∗
(
∂

∂x

)
u =

(
a
∂

∂u
+ b ∂

∂v
+ c ∂

∂w

)
u = a.

Hence,

a = F∗
(
∂

∂x

)
u = ∂

∂x
(u ◦ F) = ∂

∂x
(x) = 1.

Similarly,

b = F∗
(
∂

∂x

)
v = ∂

∂x
(v ◦ F) = ∂

∂x
(y) = 0
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and

c = F∗
(
∂

∂x

)
w = ∂

∂x
(w ◦ F) = ∂

∂x
(xy) = y.

So F∗(∂/∂x) = ∂/∂u+ y ∂/∂w. ��

8.4* Velocity of a curve in local coordinates
We know that c′(t) =∑

aj ∂/∂xj . To compute ai , evaluate both sides on xi :

ai =
(∑

aj
∂

∂xj

)
xi = c′(t)xi = c∗

(
d

dt

)
xi = d

dt
(xi ◦ c) = d

dt
ci = (ci)′(t).

��

8.7* Tangent space to a product
If (U, x1, . . . , xm) and (V , y1, . . . , yn) are charts centered at p in M and q in N ,
respectively, then by Proposition 5.17, (U × V, x1, . . . , xm, y1, . . . , yn) is a chart
centered at (p, q) in M ×N . In local coordinates the projection maps are

π1(x
1, . . . , xm, y1, . . . , yn) = (x1, . . . , xm)

π2(x
1, . . . , xm, y1, . . . , yn) = (y1, . . . , yn).

If π1∗
(
∂/∂xj

) =∑
aij ∂/∂x

i , then

aij = π1∗
(
∂

∂xj

)
(xi) = ∂

∂xj

(
xi ◦ π1

)
= ∂

∂xj
xi = δij .

Hence,

π1∗
(
∂

∂xj

)
=
∑
i

δij
∂

∂xi
= ∂

∂xj
.

This really means that

π1∗

(
∂

∂xj

∣∣∣∣
(p,q)

)
= ∂

∂xj

∣∣∣∣
p

. (8.7.1)

Similarly,

π1∗
(
∂

∂yj

)
= 0, π2∗

(
∂

∂xj

)
= 0, π2∗

(
∂

∂yj

)
= ∂

∂yj
. (8.7.2)

A basis for T(p,q)(M ×N) is

∂

∂x1

∣∣∣∣
(p,q)

, . . . ,
∂

∂xm

∣∣∣∣
(p,q)

,
∂

∂y1

∣∣∣∣
(p,q)

, . . . ,
∂

∂yn

∣∣∣∣
(p,q)

.

A basis for TpM × TqN is(
∂

∂x1

∣∣∣∣
(p,q)

, 0

)
, . . . ,

(
∂

∂xm

∣∣∣∣
(p,q)

, 0

)
,

(
0,

∂

∂y1

∣∣∣∣
(p,q)

)
, . . . ,

(
0,

∂

∂yn

∣∣∣∣
(p,q)

)
.
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It follows from (8.7.1) and (8.7.2) that the linear map π1∗ × π2∗ maps a basis of
T(p,q)(M ×N) to a basis of TpM × TqN and is therefore an isomorphism. ��

8.8 (a) Let c(t) be a curve starting at e inGwith c′(0) = Xe. Then α(t) = (c(t), e) is
a curve starting at (e, e) inG×Gwith α′(0) = (Xe, 0). Computeµ∗,(e,e) using α(t).

8.9* Transforming vectors to coordinate vectors
Let (V , y1, . . . , yn) be a chart about p. Suppose (Xj )p = ∑

i a
i
j ∂/∂y

i |p. Since

(X1)p, . . . , (Xn)p are linearly independent, the matrix A = [aij ] is nonsingular.

Define a new coordinate system x1, . . . , xn by

yi =
n∑
j=1

aij x
j for i = 1, . . . , n. (8.9.1)

By the chain rule,
∂

∂xj
=
∑
i

∂yi

∂xj

∂

∂yi
=
∑

aij
∂

∂yi
.

At the point p,
∂

∂xj

∣∣∣∣
p

=
∑

aij
∂

∂yi

∣∣∣∣
p

= (Xi)p.

In matrix notation, [y1 · · · yn] = [x1 · · · xn]A, so [x1 · · · xn] = [y1 · · · yn]A−1. This

means that (8.9.1) is equivalent to xj =∑n
i=1

(
A−1

)j
i
yi . ��

9.1 c ∈ R− {0,−108}.
9.2 Yes, because it is a regular level set of the function f (x, y, z, w) = x5 + y5 +
z5 + w5.

9.3 Yes, see Example 9.15.

9.4* Regular submanifolds
Let p ∈ S. By hypothesis there is an open set U in R2 so that on U ∩ S one of the
coordinates is a C∞ function of the other. Without loss of generality, we assume that
y = f (x) for someC∞ function f : A ⊂ R −→ B ⊂ R, whereA andB are open sets
in R and V := A×B ⊂ U . Let F : V −→ R2 be given by F(x, y) = (x, y − f (x)).
Since F is a diffeomorphism onto its image, it can be used as a coordinate map. In the
chart (V , x, y−f (x)), V ∩S is defined by the vanishing of the coordinate y−f (x).
This proves that S is a regular submanifold of R2. ��

9.5 (R3, x, y, z− f (x, y)) is an adapted chart for R3 relative to �(f ).

9.6 Differentiate (9.3) with respect to t .

9.9* The transversality theorem

(a) f−1(U) ∩ f−1(S) = f−1(U ∩ S) = f−1(g−1(0)) = (g ◦ f )−1(0).
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(b) Let p ∈ f−1(U) ∩ f−1(S) = f−1(U ∩ S). Then f (p) ∈ U ∩ S. Because
S is a fiber of g, the pushforward g∗(Tf (p)S) = 0. Because g : U −→ Rk is a
projection, g∗(Tf (p)M) = T0(R

k). Applying g∗ to the transversality equation
(9.4), we get

g∗f∗(TpN) = g∗(Tf (p)M) = T0(R
k).

Hence, g ◦ f : f−1(U) −→ Rk is a submersion at p. Since p is an arbitrary point
of f−1(U) ∩ f−1(S) = (g ◦ f )−1(0), this set is a regular level set of g ◦ f .

(c) By the regular level set theorem, f−1(U) ∩ f−1(S) is a regular submanifold of
f−1(U) ⊂ N . Thus every point p ∈ f−1(S) has an adapted chart relative to
f−1(S) in N . ��

11.1 Let c(t) = (x1(t), . . . , xn+1(t)) be a curve in Sn with c(0) = p and c′(0) = Xp.
Differentiate

∑
i (x

i)2(t) = 1 with respect to t .

11.2* Critical points of a smooth map on a compact manifold
If f : N −→ Rm has no critical points, then the differential f∗,p would be surjective
for every p ∈ N . In other words, f would be a submersion. Since a submersion
is an open map (Corollary 11.9), the image f (N) would be open in Rm. But the
continuous image of a compact set is compact and a compact subset of Rn is closed
and bounded. Hence, f (N) is a nonempty proper closed subset of Rm. This is a
contradiction, because being connected, Rm cannot have a nonempty proper subset
that is both open and closed. ��

11.3 At p = (a, b, c), i∗(∂/∂u|p) = ∂/∂x − (a/c)∂/∂z, and i∗(∂/∂v|p) = ∂/∂y −
(b/c)∂/∂z.

11.4 Use Problem A.5 to show that f is a closed map. Then apply Problem A.7 and
Theorem 11.17.

12.1* The Hausdorff condition on the tangent bundle
Let (p,X) and (q, Y ) be distinct points of the tangent bundle TM .

Case 1: p �= q. BecauseM is Hausdorff, p and q can be separated by disjoint neigh-
borhoods U and V . Then T U and T V are disjoint open subsets of TM containing
(p,X) and (q, Y ), respectively.

Case 2: p = q. Let U be a coordinate neighborhood of p. Then (p,X) and (p, Y )
are distinct points in the open set T U � U ×Rn, which is Hausdorff. So (p,X) and
(p, Y ) can be separated with open sets in T U . ��

13.1* Support of a finite sum
Let A be the set where

∑
ρi is not zero and Ai the set where ρi is not zero:

A =
{
x ∈ M |

∑
ρi(x) �= 0

}
, Ai = {x ∈ M | ρi(x) �= 0}.

If
∑
ρi(x) �= 0, then at least one ρi(x)must be nonzero. This implies thatA ⊂ ∪Ai .

Taking closure of both sides gives A ⊂ ∪Ai . For a finite union, ∪Ai = ∪Ai
(Exercise A.55). Hence,



Hints and Solutions to Selected End-of-Chapter Problems 327

supp
(∑

ρi

)
= A ⊂ ∪Ai = ∪Ai = ∪ supp ρi. ��

13.2* Locally finite family and compact set
For each p ∈ K , let Wp be a neighborhood of p that intersects only finitely many of
the sets Aα . The collection {Wp}p∈K is an open cover ofK . By compactness,K has
a finite subcover {Wpi }ri=1. Since each Wpi intersects only finitely many of the Aα ,
the finite union W := ∪ri=1Wpi intersects only finitely many of the Aα . ��

13.3 Take f = ρM−B .

13.4* Support of the pullback of a function
Let A = {p ∈ M | f (p) �= 0}. Then supp f = cl(A). Remark that

(π∗f )(p, q) �= 0 iff f (p) �= 0 iff p ∈ A.
Hence,

{(p, q) ∈ M ×N | (π∗f )(p, q) �= 0} = A×N.
So

supp(π∗f ) = cl(A×N) = cl(A)×N = (supp f )×N
by Problem A.15. ��

13.6* Closure of a locally finite union
(⊃) Since Aα ⊂ ∪Aα , taking the closure of both sides gives

Aα ⊂ ∪Aα.
Hence, ∪Aα ⊂ ∪Aα .

(⊂) Let p ∈ ∪Aα . By local finiteness, p has a neighborhood W that intersects
only finitely many of the Aα’s, say Aα1 , . . . , Aαm . Suppose p �∈ ∪Aα . A fortiori,
p �∈ ∪mi=1Aαi . Since ∪mi=1Aαi is closed, there is a neighborhood V of p in W such
that V ⊂ W − ∪mi=1Aαi (see the figure below).

�

W

V

Aα2

Aα1

Aα3

p

Since W is disjoint from Aα for all α �= αi , V is disjoint from Aα for all α. This
proves that p �∈ ∪Aα , a contradiction. Hence, p ∈ ∪Aα . ��
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14.1* Equality of vector fields
The implication in the direction (⇒) is obvious. For the converse, let p ∈ M . To
show that Xp = Yp, it suffices to show that Xp[h] = Yp[h] for any germ [h] of C∞
functions in C∞p (M). Suppose h : U −→ R is a C∞ function that represents the germ

[h]. We can extend it to a C∞ function h̃ : M −→ R by multiplying it by a C∞ bump
function supported in U that is identically 1 in a neighborhood of p. By hypothesis,
Xh̃ = Y h̃. Hence,

Xph̃ = (Xh̃)p = (Y h̃)p = Yph̃. (14.1.1)

Because h̃ = h in a neighborhood of p, we have Xph = Xph̃ and Yph = Yph̃. It
follows from (14.1.1) thatXph = Yph. Thus,Xp = Yp. Since p is an arbitrary point
of M , the two vector fields X and Y are equal. ��

14.7 c(t) = 1/((1/p)− t) on (−∞, 1/p).

14.9 ck =∑
i

(
ai
∂bk

∂xi
− bi ∂a

k

∂xi

)
.

14.10 Show that both sides applied to a C∞ function h on M are equal. Then use
Problem 14.1.

15.2
(a) Apply Proposition A.44.
(b) Apply Proposition A.44.
(c) Apply Problem A.11.
(d) By (a) and (b), the subsetCe is a subgroup ofG. By (c), it is an open submanifold.

15.3* Open subgroup of a connected Lie group
For any g ∈ G, left multiplication 
g : G −→ G by g maps the subgroupH to the left
coset gH . SinceH is open and 
g is a homeomorphism, the coset gH is open. Thus,
the set of cosets gH , g ∈ G, partitionsG into a disjoint union of open subsets. Since
G is connected, there can be only one coset. Therefore, H = G. ��

15.4 Let c(t) be a curve in G with c(0) = a, c′(0) = Xa . Then (c(t), b) is a curve
through (a, b)with initial velocity (Xa, 0). Computeµ∗,(a,b)(Xa, 0) using this curve
(Proposition 8.17). Compute similarly µ∗,(a,b)(0, Yb).

15.6* Differential of the determinant map
Let c(t) = AetX. Then c(0) = A and c′(0) = AX. Using the curve c(t) to calculate
the differential,

detA,∗(AX) = d

dt

∣∣∣∣
t=0

det(c(t)) = d

dt

∣∣∣∣
t=0

(detA) det etX

= (detA)
d

dt

∣∣∣∣
t=0

et trX = (detA) trX. ��

15.7* Special linear group
If detA = 1, then Exercise 15.6 gives
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det∗,A(AX) = trX.

Since trX can assume any real value, det∗,A : TAGL(n,R) −→ R is surjective for all
A ∈ det−1(1). Hence, 1 is a regular value of det. ��

15.9
(a) O(n) is defined by polynomial equations.
(b) If A ∈ O(n), then each column of A has length 1.

15.10 Write out the conditions ATA = I , detA = 1. If a2 + b2 = 1, then (a, b) is
a point on the unit circle, and so a = cos θ , b = sin θ for some θ ∈ [0, 2π ].
15.13 [

cosh 1 sinh 1
sinh 1 cosh 1

]
,

where cosh t = (et + e−t )/2 and cosh t = (et − e−t )/2 are hyperbolic cosine and
sine, respectively.

15.14 The correct target space for f is the vector space K2n(C) of 2n × 2n skew-
symmetric complex matrices.

16.3 Let c(t) be a curve in Sp(n) with c(0) = I and c′(0) = X. Differentiate
c(t)T J c(t) = J with respect to t .

16.4
(a) Use Problems 16.2 and 16.3.
(b) Show that the derivative of ϕ(t) = etX

T
J etX is identically zero and hence ϕ(t)

is a constant function.
(e) Let u(n) be the vector space of n × n skew-Hermitian matrices and Sn(C) the

vector space ofn×n complex symmetric matrices. Then dim Sp(n) = dim u(n)+
dim Sn(C) = n2 + (n2 + n) = 2n2 + n.

16.5 Mimic Example 16.3. The left-invariant vector fields on Rn are the constant
vector fields

∑n
i=1 a

i ∂/∂xi , where ai ∈ R.

16.9 A basis X1,e, . . . , Xn,e for the tangent space Te(G) at the identity gives rise to
a frame consisting of left-invariant vector fields X1, . . . , Xn.

16.10 (b) Let (U, x1, . . . , xn) be a chart about e in G. Relative to this chart, the
differential c(a)∗ at e is represented by the Jacobian matrix [∂(xi ◦ c(a))/∂xj |e].
Since c(a)(x) = axa−1 is a C∞ function of x and a, all the partial derivatives
∂(xi ◦ c(a))/∂xj |e are C∞ and therefore Ad(a) is a C∞ function of a.

17.1 ω = (x dx + y dy)/(x2 + y2).

17.3 aj =∑
i bi ∂y

i/∂xj .

18.3* Vertical plane
Since ax + by is the zero function on the vertical plane, its differential is identi-
cally zero:

adx + bdy = 0.
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Thus, at each point of the plane, dx is a multiple of dy or vice versa. In either case,
dx ∧ dy = 0. ��

18.4* Support of a sum or product
(a) If (ω + τ)(p) �= 0, then ω(p) �= 0 and τ(p) �= 0. Hence,

{p | (ω + τ)p �= 0} ⊂ {p | ωp �= 0} ∪ {p | τp �= 0}.
Taking the closure of both sides gives

supp(ω + τ) ⊂ suppω ∪ supp τ.

(b) Suppose (ω ∧ τ)p �= 0. Then ωp �= 0 and τp �= 0. Hence,

{p | (ω ∧ τ)p �= 0} ⊂ {p | ωp �= 0} ∩ {p | τp �= 0}.
Taking the closure of both sides and remembering that A ∩ B ⊂ A ∩ B, we get

supp(ω ∧ τ) ⊂ {p | ωp �= 0} ∩ {p | τp �= 0} ⊂ suppω ∩ supp τ. ��

18.5* Locally finite supports
Let p ∈ suppω. Since {supp ρα} is locally finite, there is a neighborhood Wp

of p in M that intersects only finitely many of the sets supp ρα . The collection
{Wp | p ∈ suppω} covers suppω. By the compactness of suppω, there is a finite
subcover {Wp1 , . . . ,Wpm}. Since each Wpi intersects only finitely many supp ρα ,
suppω intersects only finitely many supp ρα .

By Problem 18.4,

supp(ραω) ⊂ supp ρα ∩ suppω.

Thus, for all but finitely many α, supp(ραω) is empty, i.e., ραω ≡ 0. ��

18.7* Pullback by a surjective submersion
The fact that π∗ : �∗(M) −→ �∗(M̃) is an algebra homomorphism follows from
Propositions 18.5 and 18.7.

Suppose ω ∈ �k(M) is a k-form on M for which π∗ω = 0 in �k(M̃). To
show that ω = 0, pick an arbitrary point p = π(p̃) ∈ M , and arbitrary vectors
v1, . . . , vk ∈ TpM . Since π is a submersion, there exist ṽ1, . . . , ṽk ∈ Tp̃M̃ such that
π∗,p̃ ṽi = vi . Then

0 = (π∗ω)p̃(ṽ1, . . . , ṽk) (because π∗ω = 0)

= ωπ(p̃)(π∗ṽ1, . . . , π∗ṽk) (definition of π∗ω)
= ωp(v1, . . . , vk).

Since p ∈ M and v1, . . . , vk ∈ TpM are arbitrary, this proves that ω = 0. Therefore,
π∗ : �∗(M) −→ �∗(M̃) is injective. ��

18.8 (c) Because f (a) is induced by Ad(a), we have f (a) = det(Ad(a)) by Prob-
lem 3.11. According to Problem 16.10, Ad(a) is a C∞ function of a.
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19.1* Extension of a C∞ form
Choose a C∞ bump function ρ at p supported in U . For any q ∈ M , define

τ̃ (q) =
{
ρ(q)τ(q) for q ∈ U ;
0 for q /∈ U.

On U , the form τ̃ is clearly C∞, since it is the product of two C∞ forms ρ and τ .
Suppose q /∈ U . Since τ is supported in U , q /∈ supp τ . Because supp τ is a closed
set, there is an open neighborhood Uq of q such that Uq ∩ supp τ = φ. Thus, τ̃ ≡ 0
on Uq and is trivially C∞ at q. ��

19.3 F ∗(dx ∧ dy ∧ dz) = d(x ◦ F) ∧ d(y ◦ F) ∧ d(z ◦ F). Apply Problem 19.2.

19.4 F ∗(u du+ v dv) = (2x3 + 3xy2)dx + (3x2y + 2y3)dy.

19.5 c∗ω = dt .

19.6* Coordinates and differential forms
Let (V , x1, . . . , xn) be a chart about p. By Problem 19.2,

df 1 ∧ · · · ∧ df n = det

[
∂f i

∂xj

]
dx1 ∧ · · · ∧ dxn.

So (df 1 ∧ · · · ∧ df n)p �= 0 if and only if det[∂f i/∂xj (p)] �= 0. By the inverse
function theorem, this condition is equivalent to the existence of a neighborhood W
on which the map F := (f 1, . . . , f n) : W −→ Rn is a C∞ diffeomorphism unto its
image. In other words, (W, f 1, . . . , f n) is a chart. ��

19.8 Mimic the proof of Proposition 19.4.

19.9 It is enough to check the formula in a chart (U, x1, . . . , xn), so we may assume
ω = ∑

ai dx
i . Since both sides of the equation are R-linear in ω, we may further

assume that ω = f dh, where f, h ∈ C∞(U).
19.10
(a) Mimic Example 19.7.
(b) On M , df = fx dx + fy dy + fz dz ≡ 0.

19.12 ∇ × E = −∂B/∂t and div B = 0.

20.2* Equivalent nowhere-vanishing n-forms
Suppose U = {(Uα, x1

α, . . . , x
n
α)} and V = {(Vβ, y1

β, . . . , y
n
β)} are equivalent oriented

atlases. Let {ρα} be a partition of unity subordinate to {Uα}, and {σβ} a partition of
unity subordinate to {Vβ}. Define

ωα =
∑

ραdx
1
α ∧ · · · ∧ dxnα and τ =

∑
σβdy

1
β ∧ · · · ∧ dynβ.

Being both nowhere-vanishing n-forms, τ = hω for a nowhere-vanishing function
h. It suffices to show that h is everywhere positive.



332 Hints and Solutions to Selected End-of-Chapter Problems

Let p ∈ M . In the proof of Proposition 20.9, it is shown that for any chart
(U, x1, . . . , xn) containing p in U,

ω = fU dx
1 ∧ · · · ∧ dxn for some function fU > 0.

Similarly, for any chart (V , y1, . . . , yn) containing p in V,

τ = gV dy
1 ∧ · · · ∧ dyn for some function gV > 0.

On U ∩ V ,

τ = gV det

[
∂yi

∂xj

]
dx1 ∧ · · · ∧ dxn

= gV

fU
det

[
∂yi

∂xj

]
fU dx

1 ∧ · · · ∧ dxn

= gV

fU
det

[
∂yi

∂xj

]
ω.

Since U and V are equivalent oriented atlases, det[∂yi/∂xj ] > 0. Hence,

τp = (positive number) · ωp.
Asp is an arbitrary point ofM , the functionh is positive everywhere onM . Therefore,
ω and τ are equivalent nowhere-vanishing n-forms on M . ��

20.4 Use Problem 19.10(c).

20.7 See Problem 12.2.

21.1 bd(M) = {0, 1, 2}. ∂M = {0}.
21.2* Boundary orientation of the left half-space
We map M to the upper half-space Hn by the coordinate map:

x1 = y2, . . . , xn−1 = yn, xn = −y1.

Then the orientation form on M is

dy1 ∧ · · · ∧ dyn = −dxn ∧ dx1 ∧ · · · ∧ dxn−1

= (−1)ndx1 ∧ · · · dn−1
X dxn.

Hence, the orientation form on ∂M is

(−1)n(−1)ndx1 ∧ · · · ∧ dxn−1 = dx1 ∧ · · · ∧ dxn−1

= dy2 ∧ · · · ∧ dyn. ��

21.3* Inward-pointing vectors at the boundary
(⇐) Suppose (U, φ = (x1, . . . , xn)) is a chart for M centered at p such that Xp =∑
ai∂/∂xi |p with an > 0. Then the curve c(t) = φ−1(a1t, . . . , ant) in M satisfies
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c(0) = p, c((0, ε)) ⊂
∫
(M), and c′(0) = Xp. (21.3.1)

So Xp is inward-pointing.

(⇒) Suppose Xp is inward-pointing. Then Xp /∈ Tp(∂M) and there is a curve
c : [0, ε) −→ M such that (21.3.1) holds. Let (U, φ = (x1, . . . , xn)) be a chart
centered at p such that U ∩M is defined by xn ≥ 0. If φ ◦ c(t) = (c1(t), . . . , cn(t)),
then cn(0) = 0 and cn(t) > 0 for t > 0. Therefore,

(cn)′(0) = lim t −→ 0+ c
n(t)− cn(0)

t
≥ 0.

Since Xp = ∑n
i=1(c

i)′(0)∂/∂xi |p, the coefficient of ∂/∂xi |p in Xp is (cn)′(0). In
fact, (cn)′(0) > 0 because if (cn)′(0) = 0, then Xp ∈ Tp(∂M). ��

21.4* Boundary orientation in terms of tangent vectors
Let (U, φ = (x1, . . . , xn)) be a chart centered at p such that U ∩M is defined by
xn ≥ 0. Then an orientation form on U ∩M is dx1 ∧ · · · ∧ dxn and an orientation
form on U ∩ ∂M is (−1)ndx1 ∧ · · · ∧ dxn−1. Note that

dx1 ∧ · · · ∧ dxn(Xp, v1, . . . , vn−1)

= (−1)n−1dxn ∧ dx1 ∧ · · · ∧ dxn−1(Xp, v1, . . . , vn−1)

= (−1)n−1dxn(Xp)(dx
1 · · · dxn−1)(v1, . . . , vn−1)

(dxn(vi) = 0 for all i = 1, . . . , n− 1,
because v1, . . . , vn−1 are contained in the
subspace of Tp(M) generated by
∂/∂x1, . . . , ∂/∂xn−1)

= (−1)n(positive number)× dx1 ∧ · · · ∧ dxn−1(v1, . . . , vn−1),

where in the last equality, dxn(Xp) < 0 because Xp is outward-pointing.
Thus, the ordered basis (Xp, v1, . . . , vn−1) gives the orientation on Tp(M) if and

only if the ordered basis (v1, . . . , vn−1) for Tp(∂M) gives the boundary orientation
on Tp(∂M). ��

21.5* Orientation form of the boundary orientation
Letp ∈ ∂M and let v1, . . . , vn−1 be a basis for Tp(∂M) that gives the boundary orien-
tation on ∂M . By Problem 21.4, the basis Xp, v1, . . . , vn−1 specifies the orientation
of TpM . Thus,

ω(Xp, v1, . . . , vn−1) > 0.

But
ιXpω(v1, . . . , vn−1) = ω(Xp, v1, . . . , vn−1) > 0.

Hence, ιXpω is an orientation form for ∂M . ��

21.6 Viewed from the top, C1 is clockwise and C2 is counterclockwise.

22.1 The map F is orientation-preserving.
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22.2* Integral under a diffeomorphism
Let {(Uα, φα)} be an oriented atlas for M that specifies the orientation of M , and
{ρα} a partition of unity on M subordinate to the open cover {Uα}. Assume that
F : N −→ M is orientation-preserving. By Problem 20.3, {(F−1(Uα), φα ◦ F)} is an
oriented atlas for N that specifies the orientation of N . By Problem 13.5, {F ∗ρα} is
a partition of unity on N subordinate to the open cover {F−1(Uα)}.

By the definition of the integral,∫
N

F ∗ω =
∑
α

∫
F−1(Uα)

(F ∗ρα) (F ∗ω)

=
∑
α

∫
F−1(Uα)

F ∗(ραω)

=
∑
α

∫
(φα◦F)(F−1(Uα))

(φα ◦ F)−1∗F ∗(ραω)

=
∑
α

∫
φα(Uα)

(φ−1
α )∗(ραω)

=
∑∫

Uα

ραω =
∫
M

ω.

If F : N −→ M is orientation-reversing, then {(F−1(Uα), φα ◦ F)} is an oriented
atlas for N that gives the opposite orientation of N . Using this atlas to calculate the
integral as above gives − ∫

N
F ∗ω. Hence in this case

∫
M
ω = − ∫

N
F ∗ω. ��

22.3* Stokes’ theorem for Rn and for Hn

An (n− 1)-form ω with compact support on Rn or Hn is a linear combination

ω =
n∑
i=1

fi dx
1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn. (22.3.1)

Since both sides of Stokes’ theorem are R-linear in ω, it suffices to check the theorem
for just one term of the sum (22.3.1). So we may assume

ω = f dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn,

where f is a C∞ function with compact support in Rn or Hn. Then

dω = ∂f

∂xi
dxi ∧ dx1 ∧ · · · ∧ dxi−1 ∧ d̂xi ∧ · · · ∧ dxn

= (−1)i−1 ∂f

∂xi
dx1 ∧ · · · ∧ dxi ∧ · · · ∧ dxn.

Since f has compact support in Rn or Hn, we may choose a > 0 large enough so
that supp f lies in the interior of the cube [−a, a]n.
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Stokes’ theorem for Rn

By Fubini’s theorem, one can first integrate with respect to xi :∫
Rn
dω =

∫
Rn
(−1)i−1 ∂f

∂xi
|dx1 · · · dxn|

= (−1)i−1
∫

Rn−1

∫ ∞

−∞
∂f

∂xi
|dxi | |dx1 · · · d̂xi · · · dxn|

= (−1)i−1
∫

Rn−1

∫ a

−a
∂f

∂xi
|dxi | |dx1 · · · d̂xi · · · dxn|.

But ∫ a

−a
∂f

∂xi
|dxi | = f (. . . , xi−1, a, xi+1, . . . )− f (. . . , xi−1,−a, xi+1, . . . )

= 0 − 0 = 0,

because the support of f lies in the interior of [−a, a]n. Hence,
∫
Rn
dω = 0.

The right-hand side of Stokes’ theorem is
∫
∂Rn

ω = ∫
∅
ω = 0, because Rn has

empty boundary. This checks Stokes’ theorem for Rn.

Stokes’ theorem for Hn

Case 1: i �= n.∫
Hn

dω = (−1)i−1
∫

Hn

∂f

∂xi
|dx1 · · · dxn|

= (−1)i−1
∫

Hn−1

∫ ∞

−∞
∂f

∂xi
|dxi | |dx1 · · · d̂xi · · · dxn|

= (−1)i−1
∫

Hn−1

∫ a

−a
∂f

∂xi
|dxi | |dx1 · · · d̂xi · · · dxn|

= 0 for the same reason as the case of Rn.

As for
∫
∂Hn ω, note that ∂Hn is defined by the equation xn = 0. Hence, on ∂Hn, the

1-form dxn ≡ 0. Since i �= n, ω = f dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn ≡ 0 on ∂Hn, so∫
∂Hn ω = 0. Thus Stokes’ theorem holds in this case.

Case 2: i = n.∫
Hn

dω = (−1)n−1
∫

Hn

∂f

∂xn
|dx1 · · · dxn|

= (−1)n−1
∫

Rn−1

∫ ∞

0

∂f

∂xn
|dxn| |dx1 · · · dxn−1|.

In this integral∫ ∞

0

∂f

∂xn
|dxn| =

∫ a

0

∂f

∂xn
|dxn|

= f (x1, . . . , xn−1, a)− f (x1, . . . , xn−1, 0)

= −f (x1, . . . , xn−1, 0).
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Hence,∫
Hn

dω = (−1)n
∫

Rn−1
f (x1, . . . , xn−1, 0) |dx1 · · · dxn−1| =

∫
∂Hn

ω

because (−1)nRn−1 is precisely ∂Hn with its boundary orientation. So Stokes’ the-
orem also holds in this case. ��

23.1* Locally constant map on a connected space
We first show that for every y ∈ Y , the inverse f−1(y) is an open set. Suppose
p ∈ f−1(y). Then f (p) = y. Since f is locally constant, there is a neighborhood
U of p such that f (U) = {y}. Thus, U ⊂ f−1(y). This proves that f−1(y) is open.

The equality S =⋃
y∈Y f−1(y) exhibits S as a disjoint union of open sets. Since

S is connected, this is possible only if there is just one such open set S = f−1(y0).
Hence, f assumes the constant value y0 on S. ��

25.2 The given exact sequence is equivalent to a collection of short exact sequences

0 −→ im dk−1 −→ Ak
dk−→ im dk −→ 0

for all k = 0, . . . , m− 1. (Define d−1 = 0.) By the first isomorphism theorem,

dimAk = dim im dk−1 + dim im dk.

When we compute the alternating sum of the left-hand side, the right-hand side will
cancel to 0. ��

27.1 LetU be the punctured projective plane RP 2−{p} andV a small disk containing
p. BecauseU can be deformation retracted to the boundary circle, it has the homotopy
type of S1. Apply the Mayer–Vietoris sequence. The answer is H 0(RP 2) = R,
Hk(RP 2) = 0 for k > 0.

27.2 Hk(Sn) = R for k = 0, n, and Hk(Sn) = 0 otherwise.

27.3 One way is to apply the Mayer–Vietoris sequence to U = R2 − {p}, V =
R2 − {q}.
A.8* The Lindelöf condition
Let {Bi}i∈I be a countable basis and {Uα}α∈A an open cover of the topological space
S. For every p ∈ Uα , there exists a Bi such that

p ∈ Bi ⊂ Uα.

Since this Bi depends on p and α, we write i = i(p, α). Thus,

p ∈ Bi(p,α) ⊂ Uα.

Now let J be the set of all indices j ∈ J such that j = i(p, α) for some p and some
α. Then

⋃
j∈J Bj = M because every p in M is contained in some Bi(p,α) = Bj .
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For each j ∈ J , choose an α(j) such that Bj ⊂ Uα(j). Then M = ⋃
j Bj ⊂

Uα(j). So {Uα(j)}j∈J is a countable subcover of {Uα}α∈A. ��

A.10* Disconnected subset in terms of a separation
(⇒) By (iii),

A = (U ∩ V ) ∩ A = (U ∩ A) ∪ (V ∩ A).
By (i) and (ii), U ∩A and V ∩A are disjoint nonempty open subsets of A. Hence, A
is disconnected.

(⇐) Suppose A is disconnected in the subspace topology. Then A = U ′ ∪V ′, where
U ′ and V ′ are two disjoint nonempty open subsets of A. By the definition of the
subspace topology, U ′ = U ∩ A and V ′ = V ∩ A for some open sets U,V in S.

(i) holds because U ′ and V ′ are nonempty.
(ii) holds because U ′ and V ′ are disjoint.

(iii) holds because A = U ′ ∪ V ′ ⊂ U ∪ V . ��

A.14* Uniqueness of the limit
Suppose p �= q. Since S is Hausdorff, there exist disjoint open sets Up and Uq such
that p ∈ Up and q ∈ Uq . By the definition of convergence, there are integers Np
and Nq such that for all i ≥ Np, xi ∈ Up, and for all i ≥ Nq , xi ∈ Uq . This is a
contradiction since Up ∩ Uq is the empty set. ��

A.15* Closure in a product
(⊂) Because cl(A)×Y is a closed set containing A×Y , by the definition of closure,
cl(A× Y ) ⊂ cl(A)× Y .

(⊃) Conversely, suppose (p, y) ∈ cl(A) × Y . If p ∈ A, then (p, y) ∈ A × N ⊂
cl(A × Y ). Suppose p /∈ A. By Proposition A.52, p is an accumulation of A. Let
U×V be any basis open set in S×Y containing (p, y). Because p ∈ ac(A), the open
setU contains a point a ∈ Awith a �= p. SoU×V contains the point (a, y) ∈ A×Y
with (a, y) �= (p, y). This proves that (p, y) is an accumulation point of A × Y .
By Proposition A.52 again, (p, y) ∈ ac(A × Y ) ⊂ cl(A × Y ). This proves that
cl(A)× Y ⊂ cl(A× Y ). ��

B.1* The rank of a matrix
(⇒) Suppose rkA ≥ k. Then one can find k linearly independent columns, which
we call a1, . . . , ak . Since the m × k matrix [a1 · · · ak] has rank k, it has k linearly
independent rows b1, . . . , bk . The matrix B whose rows are b1, . . . , bk is a k × k

submatrix of A, and rkB = k. In other words, B is nonsingular k × k submatrix
of A.

(⇐) Suppose A has a nonsingular k× k submatrix B. Let a1, . . . , ak be the columns
of A such that the submatrix [a1 · · · ak] contains B. Since [a1 · · · ak] has k linearly
independent rows, it also has k linearly independent columns. Thus, rkA ≥ k. ��

B.2* Matrices of rank at most r

Let A be anm× nmatrix. By Problem B.1, rkA ≤ r iff all (r + 1)× (r + 1)minors
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m1(A), . . . , ms(A) of A vanish. As the common zero set of a finite collection of
continuous functions, Dr is closed in Rm×n. ��

B.3* Maximal rank
For definiteness, suppose n ≤ m. Then the maximal rank is n and every matrix
A ∈ Rm×n has rank ≤ n. Thus,

Dmax = {A ∈ Rm×n | rkA = n} = Rm×n −Dn−1.

Since Dn−1 is a closed subset of Rm×n (Problem B.2), Dmax is open in Rm×n. ��

B.4* Degeneracy loci and maximal rank locus of a map

(a) Let Dr be the subset of Rm×n consisting of matrices of rank at most r . The
degeneracy locus of rank r of the map F : S −→ Rm×n may be described as

Dr(F ) = {x ∈ S | F(x) ∈ Dr} = F−1(Dr).

SinceDr is a closed subset of Rm×n (Problem B.2) andF is continuous,F−1(Dr)

is a closed subset of S.
(b) LetDmax be the subset of Rm×n consisting of all matrices of maximal rank. Then

Dmax(F ) = F−1(Dmax). Since Dmax is open in Rm×n (Problem B.3) and F is
continuous, F−1(Dmax) is open in S. ��
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e identity element of a Lie group (p. 161)
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o(n) Lie algebra of O(n,R) (p. 169)
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(T ∗M) kth exterior power of the cotangent bundle (p. 183)

�k(M) vector space of C∞ k-forms on M (p. 183)

�∗(M) the direct sum ⊕nk=0�
k(M) (p. 185)
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dω exterior derivative of a differential form ω (p. 192)

ω|S restriction of a differential from ω to a submanifold S
(p. 193)

(v1, . . . , vn) ordered basis (p. 202)

[v1, . . . , vn] ordered basis as a matrix (p. 202)

(M, [ω]) oriented manifold with orientation [ω] (p. 205)

Hn closed upper half-space (p. 211)

int(Hn) interior of Hn (p. 211)

∂(Hn) boundary of Hn (p. 211)

L1 left half-line (p. 213)

∂M boundary of a manifold (p. 214)

bd(A) topological boundary of a set A (p. 214)

H1 = [0,∞) half-open interval in R (p. 218)

{p0, . . . , pn} partition of a closed interval (p. 221)

P = {P1, . . . , Pn} partition of a closed rectangle (p. 221)
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L(f, P ) lower sum of f with respect to a partition P (p. 221)

U(f, P ) upper sum of f with respect to a partition P (p. 221)∫
R
f upper integral of f over a closed rectangle R (p. 222)∫

R
f lower integral of f over a closed rectangle R (p. 222)∫

R
f (x) |dx1 · · · dxn| Riemann integral of f over a closed rectangle R (p. 222)∫

U
ω Riemann integral of a differential form ω overU (p. 224)

v(A) volume of a subset A of Rn (p. 223)

Dist(f ) set of discontinuities of a function f (p. 223)

�kc(U) vector space of C∞ k-forms with compact support on U
(p. 225)

−M the oriented manifold having the opposite orientation as
M (p. 227)

Zk(M) vector space of closed k-forms on M (p. 236)

Bk(M) vector space of exact k-forms on M (p. 236)

Hk(M) de Rham cohomology of M in degree k (p. 236)

[ω] cohomology class of ω (p. 236)

F # or F ∗ induced map in cohomology (p. 240)

H ∗(M) the cohomology ring ⊕nk=0H
k(M) (p. 241)

C = ({Ck}k∈Z, d) cochain complex (p. 243)

(�∗(M), d) de Rham complex (p. 243)

Hk(C) kth cohomology of C (p. 245)

d∗ : Hk(C) −→ Hk+1(A) connecting homomorphism (p. 246)

iU : U −→ M inclusion map of U in M (p. 249)

jU : U ∩ V −→ U inclusion map of U ∩ V in U (p. 249)

χ(M) Euler characteristic of M (p. 254)

f ∼ g f is homotopic to g (p. 257)

�g compact orientable surface of genus g (p. 271)

d(p, q) distance between p and q (p. 281)

(a, b) open interval (p. 281)

(S,T) a set S with a topology T (p. 282)
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Z(f1, . . . , fr ) zero set of f1, . . . , fr (p. 282)

Z(I) zero set of all the polynomials in an ideal I (p. 282)

Q the set of rational numbers (p. 285)

Q+ the set of positive rational numbers (p. 285)

A× B Cartesian product of two sets A and B (p. 287)

Cx connected component of a point x (p. 294)

ac(A) the set of accumulation points of A (p. 295)

Z+ the set of positive integers (p. 296)

Dr the set of matrices of rank ≤ r in Rm×n (p. 304)

Dmax the set of matrices of maximal rank in Rm×n (p. 304)

Dr(F ) degeneracy locus of rank r of a map F : S −→ Rm×n
(p. 305)

ker f kernel of a homomorphism f (p. 311)

im f image of a map f (p. 311)

coker f cokernel of a homomorphism f (p. 311)

v +W coset of a subspace W (p. 312)

V/W quotient vector space of V by W (p. 312)

A+ B sum of two vector subspaces (p. 313)

A⊕ B internal direct sum, external direct sum (pp. 313, 314)

W⊥ W “perp,’’ orthogonal complement of W (p. 314)

A× B direct product, external direct sum (p. 314)
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1-form
a nowhere-vanishing 1-form on the circle,

193
linearity over C∞ functions, 179
smoothness characterizations, 177
transition formula, 179

2-form
transition formula, 182

accumulation point, 295
action, 23

of the permutation group on k-linear
functions, 23

adapted chart, 91
adjoint representation, 171
Af , 24
algebra, 13

graded, 37
alternating k-linear function, 22
alternating k-tensor, 22
alternating operator, 24
analytic, 6
anticommutative, 241
antiderivation, 37, 189

degree of, 37, 189
is a local operator, 191

associative axiom
in a category, 101

associativity
of the tensor product, 25
of the wedge product, 28

atlas, 49
equivalent oriented atlases, 207
for a regular submanifold, 93

maximal, 50
oriented, 206

base space
of a vector bundle, 122

basic open set, 284
basis, 284

for Ak(V ), 30
for k-tensors, 31
for the cotangent space, 33, 176
for the dual space, 20
for the product topology, 287
for the tangent space, 80
of neighborhoods at a point, 296

bi-invariant top form
on a compact connected Lie group, 187

bilinear, 22
boundary

manifold boundary, 214
of an n-manifold with boundary is an
n− 1-manifold without boundary, 215

topological boundary, 214
boundary orientation, 217

for one-dimensional manifolds, 218
in terms of tangent vectors, 220
on ∂Hn, 218
orientation form of, 220

boundary point, 214
of H

n, 211
bracket

of a Lie algebra, 142
bump function, 127
bundle map, 122
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C∞ extension
of a function, 130

C∞ function
need not be analytic, 6
on R

n, 5
on a manifold, 57

C∞ invariance of domain, 212
C∞ manifold, 50
C∞ manifold with boundary, 214
C∞ map

between manifolds, 58
C∞-compatible charts, 48
Ck function

on R
n, 5

Cartesian product, 287
category, 101
chain rule

for maps of manifolds, 79
in calculus notation, 82

change of basis matrix, 202
change of variable formula, 225
characterization

of smooth sections, 125
chart, 47

adapted, 91
C∞-compatible, 48
centered at a point, 47
compatible with an atlas, 49
on a manifold with boundary, 213

circle
a nowhere-vanishing 1-form, 193
cohomology of, 253
is a manifold, 52
same homotopy type as the punctured

plane, 259
closed form, 39, 236
closed map, 292
closed set, 282
closed subgroup, 153
closed subgroup theorem, 153
closure, 295

of a finite union or finite intersection, 295
of a locally finite union, 134

coboundary, 245
cochain complex, 39, 243
cochain homotopy, 274
cochain map, 245
cocycle, 245
codimension, 92

cohomologous closed forms, 236
cohomology, see de Rham cohomology
cohomology class, 236, 245
cohomology ring, 241

of a torus, 265
cohomology vector space, 245

of a torus, 263
cokernel, 311
commutator

of superderivations, 44
compact, 290

closed subset of a compact space is
compact, 291

compact subset of a Hausdorff space is
close, 292

continous bijection from a compact
space to a Hausdorff space is a
homeomorphism, 292

continuous image of a compact set is
compact, 292

finite union of compact sets is compact,
292

product of compact spaces is compact, 292
compact symplectic group, 160

Lie algebra of, 170
compatible charts, 48
complementary subspace, 313
complete vector field, 140
complex general linear group, 151
complex symplectic group, 160

Lie algebra of, 170
component, 294
composite

in a category, 101
of smooth maps is smooth, 59

connected, 293
continuous image of a connected set is

connected, 293
connected component, 294

of a point, 294
connected space

a locally constant map on a connected
space is constant, 242

connectedness
union of connected sets having a point in

common is connected, 294
connecting homomorphism, 246
constant rank theorem, 106, 303
constant-rank level set theorem, 106
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continuity
of a map on a quotient space, 64

continuous
at a point, 289
continuous bijection from a compact

space to a Hausdorff space is a
homeomorphism, 292

continuous image of a compact set is
compact, 292

continuous image of a connected set is
connected, 293

iff the inverse image of any closed set is
closed, 290

iff the inverse image of any open set is
open, 289

on a set, 289
the projection is continuous, 289

continuous category, 101
contractible, 259

Euclidean space is, 259
contraction, 43
contravariant functor, 103
convention

on subscripts and superscripts, 42
convergence, 296
coordinate map, 47
coordinate neighborhood, 47
coordinate system, 47
coordinates on a projective space

homogeneous, 68
coset, 312
coset representative, 312
cotangent bundle, 177

topology on, 177
cotangent space, 33, 175

basis for, 33, 176
of a manifold with boundary, 215

covariant functor, 102
covector, 19, 22

at a point of a manifold, 175
covector field, 33, 175
covectors

on a vector space, 22
critical point

of a map of manifolds, 86
of a smooth map from a compact manifold

to R
n, 116

critical value
of a map of manifolds, 86

cross
is not locally Euclidean, 48

cross product
relation to wedge product, 43

curl, 39
curve

existence with a given initial vector, 84
in a manifold, 83
starting at a point, 83

cuspidal cupic, 110
cycle

of length r , 20
cyclic permutation, 20

deformation retract, 260
implies the same homotopy type, 260

deformation retraction, 260
degeneracy locus, 305
degree

of a differential form, 35
of a tensor, 22
of an antiderivation, 37, 189

deleted neighborhood, 295
derivation

at a point, 14, 78
of a constant function is zero, 14

of a Lie algebra, 142
of an algebra, 17

derivation of C∞ functions
is a local operator, 197

derivative
of a matrix exponential, 154

determinant
differential of, 158

de Rham cohomology, 42, 236
homotopy invariance, 273
in degree 0, 236
in degree greater than the dimension of the

manifold, 237
of a circle, 237, 253
of a Möbius band, 261
of a multiply punctured plane, 271
of a punctured plane, 261
of a punctured torus, 268
of a sphere, 271
of a surface of genus g, 271
of a surface of genus 2, 269
of the real line, 237
of the real projective plane, 271
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ring structure, 240
de Rham complex, 39, 243
diagram-chasing, 247
diffeomorphism, 59

of an open ball with R
n, 10

of an open interval with R, 9
of open subsets of R

n, 9
orientation-preserving, 205
orientation-reversing, 205

differentiable structure, 50
differential, 243

agrees with exterior derivative on 0-forms,
189

compute using curves, 85
matrix of, 79
of a map, 78
of det, 157
of left multiplication, 85
of the determinant, 157, 158
of the inverse map, 104
of the inverse map in a Lie group, 88, 158
of the multiplication map in a Lie group,

88, 158
differential 1-form, 175

local expression, 176
differential complex, 39
differential form, 35, 181

as a multilinear function on vector fields,
36

closed, 236
degree of, 35
exact, 236
local expression, 182
on M × R, 275
on a manifold with boundary, 215
pullback, 184
smoothness characterizations, 183
support of, 187
transition formula, 196
Type I, 275
Type II, 275
wedge product of differential forms, 184
with compact support, 187

differential of a function, 33, 175
in terms of coordinates, 34
relation with differential of a map, 175

differential of a map
local expression, 82

dimension

invariance of, 80
of Ak(V ), 30
of the orthogonal group, 151

direct product, 314
direct sum

external, 314
internal, 313

directional derivative, 12
disconnected, 293
discrete topology, 282
distance

in R
n, 281

div, 39
divergence, 39
dual

functorial properties, 103
of a linear map, 103

dual basis, 20
dual map

matrix of, 104
dual space, 19, 103

basis, 20
has the same dimension as the vector

space, 20

embedded submanifold, 113
embedding, 111

image is a regular submanifold, 112
equivalence class, 63
equivalence of functions, 13
equivalence relation, 13

open, 66
equivalent ordered bases, 202
equivalent oriented atlas, 207
Euclidean inner product

as a tensor product of covectors, 25
Euclidean space

is contractible, 259
is Hausdorff, 287
is second countable, 286

Euler characteristic, 254
Euler’s formula, 99
even permutation, 21
even superderivation, 44
exact form, 39, 236
exact sequence, 243

long, 247
short, 244, 246

exponential
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of a matrix, 153
extension

of a functon by zero, 223
to a global form, 191

exterior algebra, 267
exterior derivative, 36, 189

characterization, 38
on a coordinate chart, 190

exterior differentiation, 189
existence, 192
uniqueness, 192

exterior power
of the cotangent bundle, 183

external direct sum, 314

fiber
of a map, 122
of a vector bundle, 122

finite-complement topology, 282
first countable, 296
first isomorphism theorem, 311
flow

global, 140
local, 140

flow line, 140
form, see differential form

1-form on an open set, 33
a basis for the space of k-covectors, 30
closed, 39
dimension of the space of k-forms, 30
exact, 39

frame, 125
functor

contravariant, 103
covariant, 102

functorial properties
of the pullback map in cohomology, 240

fundamental theorem
for line integrals, 230

general linear group, 51
bracket on the Lie algebra of, 166
is a Lie group, 150
tangent space at I , 161

germ, 13
of a function on a manifold, 77

global flow, 140
global form, 191
grad, 39

graded algebra, 37
graded ring, 241
gradient, 39
graph

of a smooth function, 99
of a smooth function is a manifold, 51
of an equivalence relation, 66

Grassmannian, 73
Green’s theorem in the plane, 230

half-space, 211
Hausdorff, 286

compact subset of a Hausdorff space is
close, 292

continuous bijection from a compact
space to a Hausdorff space is a
homeomorphism, 292

product of two two Hausdorff spaces is
Hausdorff, 288

singleton subset of a Hausdorff space is
closed, 286

subspace of a Hausdorff space is
Hausdorff, 287

Hausdorff quotient
necessary and sufficient condition, 67
necessary condition, 66

Hom, 19
homogeneous coordinates, 68
homogeneous element, 189
homological algebra, 243
homomorphism

of Lie groups, 168
homotopic maps, 257

induce the same map in cohomology, 261,
273

homotopy
from one map to another, 257
straight-line homotopy, 258

homotopy axiom
for de Rham cohomology, 261

homotopy equivalence, 258
homotopy invariance

of de Rham cohomology, 273
homotopy inverse, 258
homotopy type, 258
hypersurface, 97, 99

nowhere-vanishing form on a smooth
hypersurface, 197

orientability, 209
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identification, 63
of a subspace to a point, 65

identity axiom
in a category, 101

identity component
of a Lie group is a Lie group, 158

image
of a linear map, 311
of a smooth map, 109

immersed submanifold, 111
immersion, 105, 107
immersion theorem, 109
implicit function theorem, 300, 302
integrable, 222
integral

of a form on a manifold, 225
invariant under orientation-preserving

diffeomorphisms, 225
of an n form on R

n, 224
over a parametrized set, 227
over a zero-dimensional manifold, 228
under a diffeomorphism, 231
under reversal of orientation, 227

integral curve, 136
maximal, 136
of a left-invariant vector field, 170

interior multiplication, 43
interior point, 214

of H
n, 211

internal direct sum, 313
invariance

of dimension, 80
invariance of domain, 212
invariant under translation, 265
inverse function theorem, 302

for a manifold, 61
for R

n, 61, 299
inversion, 21
invertible

locally, 61
inward-pointing vector, 219
isomorphism

of objects in a category, 102

Jacobi identity, 141
Jacobian determinant, 61, 299
Jacobian matrix, 61, 299

k-covector field, 181

k-form
on an open set, 35

k-linear function, 22
alternating, 22
symmetric, 22

k-tensors
a basis for, 31

kernel
of a linear map, 311

Lebesgue’s theorem, 223
left action, 23
left half-line, 213
left multiplication

differential of, 85
left-invariant form

on a compact connected Lie group is
right-invariant, 187

on a Lie group, 186
is C∞, 186

left-invariant vector field, 163
bracket of left-invariant vector fields is

left-invariant, 165
generated by a vector at e, 164
integral curves, 170
is C∞, 164
on R, 164
on GL(n,R), 164
on R

n, 170
Leibniz rule

for a vector field, 17
length

of a cycle, 20
level set, 94

regular, 94
Lie algebra, 142

of a compact symplectic group, 170
of a complex symplectic group, 170
of a Lie group, 166
of a unitary group, 170

Lie bracket, 141
Jacobi identity, 141
on gl(n,R), 166

Lie group, 59, 149
adjoint representation, 171
differential of the inverse map, 158
differential of the multiplication map, 158
is orientable, 209
parallelizability, 171
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Lie group homomorphism, 168
differential is a Lie algebra homomor-

phism, 168
Lie subalgebra, 165
Lie subgroup, 152
limit

of a sequence, 296
unique in a Hausdorff space, 296

Lindelöf condition, 297
line integrals

fundamental theorem, 230
linear algebra, 311
linear functinal, 103
linear map, 14, 311
linear operator, 14, 311
linear transformation, 311
lines

with irrational slope in a torus, 152
local diffeomorphism, 299
local expression

for a 1-form, 176
for a k-form, 182
for a differential, 82

local flow, 140
generated by a vector field, 140

local operator, 190, 197
is support-decreasing, 197
on C∞(M), 197

local trivialization, 122
locally connected, 298

at a point, 298
locally constant map

on a connected space, 242
locally Euclidean, 47
locally finite, 131

collection of supports, 187
sum, 132, 187
union

closure of, 134
locally H

n, 213
locally invertible, 61, 299
locally trivial, 122
long exact sequence in cohomology, 247
lower integral, 222
lower sum, 221

manifold
has a countable basis consisting of

coordinate open sets, 120

open subset is a manifold, 51
open subset is a regular submanifold, 92
orientable, 205
orientation, 205
pointed, 102
smooth, 50

manifold boundary, 214
manifold with boundary
C∞, 214
cotangent space of, 215
differential forms, 215
orientation, 215
tangent space, 215
topological, 213

map
closed, 292
open, 292

matrix exponential, 153
derivative of, 154

matrix of a differential, 79
Maxell’s equations, 198
maximal atlas, 50
maximal integral curve, 136, 145
maximal rank

open condition, 108
maximal rank locus, 305
Mayer–Vietoris sequence, 249
measure zero, 223
minor
(i, j)-minor of a matrix, 98, 150
k × k minor of a matrix, 304

Möbius band, 208
has the homotopy type of a circle, 261
not orientable, 208

module, 16
morphism

in a category, 101
multi-index, 182
multicovector, 22
multilinear function, 22

alternating, 22
symmetric, 22

near a point, 61
neighborhood, 47, 131, 282
normal, 286

object
in a category, 101
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odd permutation, 21
odd superderivation, 44
one-parameter group

of diffeomorphisms, 137
open ball, 281
open condition, 108
open cover, 47, 290
open equivalence relation, 66
open map, 66, 292
open set, 282

in quotient topology, 63
in R

n, 281
open subgroup

of a connected Lie group is the Lie group,
158

open subset
of a manifold is a regular submanifold, 92
of a manifolds is a manifold, 51

operator, 190
is local iff support-decreasing, 197
linear, 14
local, 190

ordered bases
equivalent, 202

orientable manifold, 205
orientation

boundary orientation, 217
on a manifold, 205

specified by an oriented atlas, 207
on a manifold with boundary, 215
on a vector space, 203
representation by an top form, 204

orientation form, 205
of the boundary orientation, 220

orientation-preserving diffeomorphism, 205
iff Jacobian determinant always positive,

205
orientation-reversing diffeomorphism, 205
oriented atlas, 206

and nowhere-vanishing top form, 206
equivalent oriented atlases, 207
specifying an orientation, 207

oriented manifold, 205
orthogonal complement, 313
orthogonal group, 107, 150

dimension, 151
tangent space at I , 162

outward-pointing vector, 219

parallelizable manifold, 171
is orientable, 209

parametrized set, 227
partial derivative

on a manifold, 60
partition, 221
partition of unity, 127, 131, 226, 250

existence in general, 133–310
existence on a compact manifold, 132
pullback of, 134
subordinate to an open cover, 131
under a pullback, 134

permutation, 20
cyclic, 20
even, 21
is even iff it has an even number of

inversions, 21
odd, 21
product of permutations, 20
sign of, 21

permutation action
on k-linear functions, 23

Poincaré lemma, 42, 261
point-derivation

of C∞p , 14
of C∞p (M), 78

pointed manifold, 102
product

of compact spaces is compact, 292
of permutations, 20
of two Hausdorff spaces is Hausdorff, 288
of two second countable spaces is second

countable, 288
product bundle, 122
product manifold, 52

atlas, 52
product rule

for matrix-valued functions, 157
product topology, 287

basis, 287
projection map, 63

is continuous, 289
projective line

real, 69
projective plane

real, 69
projective space

as a quotient of a sphere, 68
real, 68
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projective variety, 99
pullback

by a surjective submersion, 187
commutes with the exterior derivative,

195
in cohomology, 240
linearity, 184
of k-covectors, 32
of a 1-form, 179
of a differential form, 184, 239
of a function, 58

support of, 134
of a partition of unity, 134
of a wedge product, 185

punctured plane
same homotopy type as the circle, 259

punctured torus
cohomology of, 268

push-forward
of a left-invariant vector field, 167
of a vector, 144

quotient construction, 63
quotient space, 64

basis, 67
necessary and sufficient condition to be

Hausdorff, 67
second countable, 68

quotient topology, 64
open set, 63

quotient vector space, 312

rank
of a composition of linear maps, 305
of a linear transformation, 86
of a matrix, 73, 304
of a smooth map, 86, 105, 303

rational point, 285
real line

with two origins is locally Euclidean,
second countable, but not Hausdroff,
53

real projective line, 69
real projective plane, 69

cohomology of, 271
real projective space, 68

as a quotient of a sphere, 68
Hausdorff, 71
is compact, 74

locally Euclidean, 72
second countable, 71
standard atlas, 72

real-analytic, 6
rectangle, 221
refinement, 222
reflexive relation, 13
regular level set, 94
regular level set theorem

for a map between manifolds, 96
for a map to R

n, 95
regular point

of a map of manifolds, 86
regular submanifold, 91, 112

atlas, 93
is itself a manifold, 93

regular value
of a map of manifolds, 86

related vector fields, 143
relation, 13

equivalence, 13
relative topology, 283
restriction

of a form to a submanifold, 193
retract, 260
retraction, 260
Riemann integrable, 222
right action, 23
right-invariant form

on a Lie group, 186

second countability, 47, 286
a subspace of a second countable space is

second countable, 286
of a quotient space, 68
product of two second countable spaces is

second countable, 288
section

of a vector bundle, 123
smooth, 123

separation, 293
separation axioms, 286
sequence, 296
sequence lemma, 296
Sf , 24
short exact sequence

of cochain complexes, 246
of vector spaces, 244

shuffle, 26
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sign of a permutation, 21
singleton set, 259

in a Hausdorff space is closed, 286
singular chain, 221
smooth, 5
smooth category, 102
smooth differential form, 183
smooth function

on a manifold, 57
on an arbitrary subset of R

n, 212
on R

n, 5
smooth homotopy, 257
smooth manifold, 50
smooth map

between manifolds, 58
from a compact manifold to R

n has a
critical point, 116

into a submanifold, 113
rank of, 86

smooth section, 123
characterization of, 125

smooth vector field, 123
on an open set in R

n, 15
smoothness of a vector field

as a smooth section of the tangent bundle,
135

in terms of smooth functions, 136
smooth coefficients relative a coordinate

vector fields, 135
solution set

of two equations, 98
special linear group, 97, 150

is a Lie group, 150
is a manifold, 97
tangent space at I , 161

special orthogonal group, 159
special unitary group, 159
sphere

charts on, 54
cohomology of, 271
tangent plane, 116

standard topology of R
n, 282

star-shaped, 7
Stokes’ theorem, 228

specializes to Green’s theorem in the
plane, 231

specializes to the fundamental theorem for
line integrals, 231

straight-line homotopy, 258

subalgebra, 165
subcover, 290
submanifold

embedded, 113
immersed, 111
regular, 91, 112

submersion, 105, 107, 187
is an open map, 109

submersion theorem, 109
subordinate to an open cover, 131
subscripts

convention, 42
subspace

of a Hausdorff space is Hausdorff, 287
of a second countable space is second

countable, 286
subspace topology, 283
sum of two subspaces, 313
superderivation, 44

even, 44
odd, 44

superscripts
convention, 42

support
of a differential form, 187
of a function, 127
of a product, 187
of a sum, 187
of the pullback of a function, 134

support-decreasing, 197
surface of genus g

cohomology of, 271
surface of genus 2

as the quotient of an octagon, 269
cohomology of, 269

symmetric k-linear function, 22
symmetric relation, 13
symmetrizing operator, 24
symplectic group

compact, 160
complex, 160

tangent bundle, 119
manifold structure, 121
topology of, 119
total space is orientable, 209

tangent plane to a sphere, 116
tangent space, 215

at a point of a manifold, 78
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basis, 80
of a manifold with boundary, 215
to R

n, 12
to an open subset, 78
to the general linear group, 161
to the orthogonal group, 162
to the special linear group, 161

tangent space at I
of a unitary group, 170

tangent vector
at a boundary point, 215, 219
in R

n, 12
on a manifold, 78
on a manifold with boundary, 215

tangent vectors
on R

n, 11
Taylor’s theorem

with remainder, 7
with remainder to order 2, 10

tensor, 22
degree of, 22
on a vector space, 181

tensor product
is associative, 25
of multilinear functions, 25

top form, 181
topological boundary, 214
topological group, 59
topological manifold, 47

with boundary, 213
topological space, 282
topologist’s sine curve, 92
topology, 282

discrete, 282
finite-complement, 282
generated by a collection, 285
relative, 283
standard topology of R

n, 282
subspace, 283
Zariski, 282

torus
cohomology ring, 265
cohomology vector space, 263
lines with irrational slope, 152

total space
of a vector bundle, 122

trace
of a matrix, 155

transition formula

for a 2-form, 182
for an n-form, 196

transition function, 48
transition matrix

for coordinate vectors, 81
transitive relation, 13
transposition, 20
transversal map

to a submanifold, 99
transversality theorem, 100
trilinear, 22
trivial bundle, 123
trivializing open cover, 122
trivializing open set

for a vector bundle, 122
Tychonoff theorem, 292
Type I forms, 275
Type II forms, 275

uniqueness of the limit in a Hausdorff space,
296

unitary group, 159
tangent space at the identity, 170

upper half-space, 211
upper integral, 222
upper sum, 221
Urysohn lemma, 134

vector bundle, 121, 122
locally trivial, 122
product bundle, 122
trivial bundle, 123

vector field, 15
F -related vector fields, 143
along a submanifold, 220
as a derivation of the algebra of C∞

functions, 17, 198
complete, 140
integral curve, 136
left-invariant, 163
Leibniz rule, 17
on a manifold, 123
smoothness condition in R

n, 15
smoothness condition on a manifold, 123

vector space
orientation, 203

vector space homomorphism, 311
velocity of a curve

in local coordinates, 84
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velocity vector, 83
vertical, 187
volume

of a subset of R
n, 223

wedge product
is anticommutative, 27
is associative, 28
of differential forms, 184

of forms on a vector space, 25
relation to cross product, 43
under a pullback, 185

Zariski topology, 282
zero set, 94

intersection and union of zero sets, 282
of two equations, 97

zig-zag diagram, 247
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