Embedding obstructions in 4-space from the Goodwillie-Weiss calculus and Whitney disks

Slava Krushkal
(joint work with Greg Arone)

January 13, 2021

Outline:

- Background and history on embeddings of complexes into Euclidean spaces
- 2-complexes in \mathbb{R}^{4}
- New obstructions from intersections of Whitney disks
- From Whitney disks to maps of configuration spaces
- New obstructions from (mainly the bottom of) a (weaker version of) the Goodwillie-Weiss tower
- The two obstructions are equal!
- A cohomological obstruction
- Questions

Warm-up: some basic topological combinatorics

A non-planar graph, K_{5} :

$K_{5}=1$-skeleton of the 4-simplex

Note: K_{5} minus an edge is planar.

Moreover, for any embedding

$$
f:\left(K_{5} \text { minus edge }\right) \hookrightarrow \mathbb{R}^{2},
$$

$f\left(S^{0}\right)$ links $f\left(S^{1}\right)$ where $f\left(S^{0}\right)$ is the boundary of the missing edge.

Historical background:

By general position any n-complex embeds into $\mathbb{R}^{d}, d>2 n$.
A geometric description of the van Kampen obstruction (1929)

$$
o(K) \in H_{\mathbb{Z} / 2}^{2 n}(K \times K \backslash \Delta ; \mathbb{Z})
$$

to embeddability of an n-complex K into $\mathbb{R}^{2 n}$.
Here Δ is the "simplicial diagonal" consisting of all products of simplices $\sigma_{1} \times \sigma_{2}$ having a vertex in common.

A geometric description of the van Kampen obstruction (1929)

$$
o(K) \in H_{\mathbb{Z} / 2}^{2 n}(K \times K \backslash \Delta ; \mathbb{Z})
$$

Consider any general position map $f: K \longrightarrow \mathbb{R}^{2 n}$. Endow the n-cells of K with arbitrary orientations, and for any two n-cells σ_{1}, σ_{2} without vertices in common, consider the algebraic intersection number $f\left(\sigma_{1}\right) \cdot f\left(\sigma_{2}\right) \in \mathbb{Z}$. This gives an equivariant cochain

$$
o_{f}: C_{2 n}(K \times K \backslash \Delta) \longrightarrow \mathbb{Z}
$$

Since this is a top-dimensional cochain, it is a cocycle. Its cohomology class equals the van Kampen obstruction $o(K)$.

Consider any general position map $f: K \longrightarrow \mathbb{R}^{2 n}$. Endow the n-cells of K with arbitrary orientations, and for any two n-cells σ_{1}, σ_{2} without vertices in common, consider the algebraic intersection number $f\left(\sigma_{1}\right) \cdot f\left(\sigma_{2}\right) \in \mathbb{Z}$. This gives an equivariant cochain

$$
o_{f}: C_{2 n}(K \times K \backslash \Delta) \longrightarrow \mathbb{Z}
$$

Since this is a top-dimensional cochain, it is a cocycle. Its cohomology class is the van Kampen obstruction o(K).

The fact that this cohomology class is independent of a choice of f may be seen geometrically. Any two general position maps $f_{0}, f_{1}: K \longrightarrow \mathbb{R}^{2 n}$ are connected by a 1-parameter family of maps f_{t} where at a non-generic time t_{i} an n-cell σ intersects an ($n-1$)-cell ν. Topologically the map $f_{t_{i}-\epsilon}$ and $f_{t_{i}+\epsilon}$ differ by tubing σ into a small n-sphere linking ν in $\mathbb{R}^{2 n}$.

The effect of this elementary homotopy on the van Kampen cochain is precisely the addition of the elementary coboundary $\delta(\sigma \times \nu)$, where $\delta: C^{2 n-1}(K \times K \backslash \Delta) \longrightarrow C^{2 n}(K \times K \backslash \Delta)$.

If $f: K \hookrightarrow \mathbb{R}^{2 n}$ then there is a $\mathbb{Z} / 2$ - equivariant map

$$
f \times f: K \times K \backslash \Delta \longrightarrow \mathbb{R}^{2 n} \times \mathbb{R}^{2 n} \backslash \Delta .
$$

Algebraic characterization of the van Kampen obstruction:
$o(K) \in H_{\mathbb{Z} / 2}^{2 n}(K \times K \backslash \Delta ; \mathbb{Z})$ is an obstruction to the existence of a $\mathbb{Z} / 2$ - equivariant map $K \times K \backslash \Delta \longrightarrow\left(\mathbb{R}^{2 n} \times \mathbb{R}^{2 n}\right) \backslash \Delta$.

If $f: K \hookrightarrow \mathbb{R}^{2 n}$ then there is a $\mathbb{Z} / 2$ - equivariant map

$$
f \times f: K \times K \backslash \Delta \longrightarrow\left(\mathbb{R}^{2 n} \times \mathbb{R}^{2 n}\right) \backslash \Delta
$$

Algebraic characterization of the van Kampen obstruction:
$o(K) \in H_{\mathbb{Z} / 2}^{2 n}(K \times K \backslash \Delta ; \mathbb{Z})$ is an obstruction to the existence of a $\mathbb{Z} / 2$ - equivariant map $K \times K \backslash \Delta \longrightarrow \mathbb{R}^{2 n} \times \mathbb{R}^{2 n} \backslash \Delta$.

Example Let $K=$ the n-skeleton of the $2 n+2$-simplex. Then $o(K) \neq 0$.

$K_{5}=1$-skeleton of the 4-simplex

Theorem (van Kampen, Shapiro, Wu) Let $n>2$. An n-complex K embeds into $\mathbb{R}^{2 n}$ if and only if the van Kampen obstruction $o(K) \in H_{\mathbb{Z} / 2}^{2 n}(K \times K \backslash \Delta ; \mathbb{Z})$ is trivial.

Idea of the proof: If the cohomology class $o(K)$ is trivial, there is a an immersion $f: K \longrightarrow \mathbb{R}^{2 n}$ where non-adjacent simplices have zero algebraic intersection number. Use the Whitney trick (for intersections and self-intersections) to find an embedding.

Theorem (van Kampen, Shapiro, Wu) Let $n>2$. An n-complex K embeds into $\mathbb{R}^{2 n}$ if and only if the van Kampen obstruction $o(K) \in H_{\mathbb{Z} / 2}^{2 n}(K \times K \backslash \Delta ; \mathbb{Z})$ is trivial.

Building on work of Haefliger, Weber extended the embeddability result to the "metastable range" of dimensions:

Given an m-dimensional simplicial complex K and a $\mathbb{Z} / 2$-equivariant map $f_{2}: C(K, 2) \longrightarrow C\left(\mathbb{R}^{d}, 2\right)$ with

$$
2 d \geq 3(m+1)
$$

there exists a PL embedding $f: K \longrightarrow \mathbb{R}^{m}$ such that the induced $\operatorname{map} f_{\Delta}^{2}$ is $\mathbb{Z} / 2$-equivariantly homotopic to f_{2}.

Theorem (van Kampen, Shapiro, Wu) Let $n>2$. An n-complex K embeds into $\mathbb{R}^{2 n}$ if and only if the van Kampen obstruction $o(K) \in H_{\mathbb{Z} / 2}^{2 n}(K \times K \backslash \Delta ; \mathbb{Z})$ is trivial.

Idea of the proof: If the cohomology class $o(K)$ is trivial, there is a an immersion $f: K \longrightarrow \mathbb{R}^{2 n}$ where non-adjacent simplices have zero algebraic intersection number. Use the Whitney trick to find an embedding.

Theorem (Freedman - K. - Teichner, 1994) There exist 2-complexes K which do not embed into \mathbb{R}^{4} but the van Kampen obstruction $o(K)$ is trivial.

Theorem (Freedman - K. - Teichner, 1994) There exist 2-complexes K which do not embed into \mathbb{R}^{4} but the van Kampen obstruction $o(K)$ is trivial.

Idea of the proof: Let $K=$ the 2 -skeleton of the 6 -simplex. Then $o(K) \neq 0$, so K does not embed into \mathbb{R}^{4}.

Lemma Let K^{\prime} be K with a single 2-cell removed. Then K^{\prime} embeds into \mathbb{R}^{4}, and moreover for any embedding $f: K^{\prime} \hookrightarrow \mathbb{R}^{4}$, the mod 2 linking number of $f\left(S^{1}\right), f\left(S^{2}\right)$ is non-zero. Here S^{1} is the boundary of the missing 2 -cell.

Sketch of the proof, continued

Take the wedge sum of two copies of K^{\prime} and consider the 2-complex L is obtained by attaching a 2-cell along the commutator $[a, b]$.

Claims:

1. $o(L)=0$
2. L does not embed into \mathbb{R}^{4}.

Claim: L does not embed into \mathbb{R}^{4}.
Use Stallings' theorem: Suppose $f: X \longrightarrow Y$ induces an isomorphism on H_{1} and an epimorphism on H_{2}. Then for all k, f induces an isomorphism

$$
\pi_{1}(X) / \pi_{1}^{k}(X) \cong \pi_{1}(Y) / \pi_{1}^{k}(Y)
$$

where π^{k} is the k-th term of the lower central series, $\pi^{2}=[\pi, \pi], \pi^{k}=\left[\pi^{k-1}, \pi\right]$.
Take $X=S^{1} \vee S^{1}, Y=\mathbb{R}^{4} \backslash\left(S^{2} \sqcup S^{2}\right)$. It follows that $\pi_{1}\left(\mathbb{R}^{4} \backslash\left(S^{2} \sqcup S^{2}\right)\right)$ is like the free group modulo any term of the I.c.s., so $[a, b] \neq 1$, a contradiction.

Theorem (Freedman - K. - Teichner, 1994) There exist 2-complexes K which do not embed into \mathbb{R}^{4} but the van Kampen obstruction $o(K)$ is trivial.

Non-planarity of graphs is characterized by the Kuratowski theorem: a graph G is non-planar if and only if it contains K_{5} or $K_{3,3}$ as a minor.

Question Is there a collection of "minors" characterizing none-embeddability of 2-complexes into \mathbb{R}^{4} ?

Question Is there a set of geometric moves relating any two maps of 2-complexes $f: K \longrightarrow \mathbb{R}^{4}$ with trivial van Kampen cochain?

New work (joint with Greg Arone): a higher obstruction theory

In dimensions $n>2$ the vanishing of the van Kampen class is necessary and sufficient for embeddability of an n-complex K into $\mathbb{R}^{2 n}$.

For $n=2$ the obstruction is incomplete, due to the failure of the Whitney trick in 4 dimensions. The goal is to introduce higher obstructions, measuring the failure of the Whitney trick.

Whitney trick with embedded Whitney disk:

The generic case in dim 4: the Whitney disk W intersects another surface:

The Whitney move removes intersections $\sigma_{1} \cap \sigma_{2}$ but creates new intersections $\sigma_{2} \cap \sigma_{3}$

A neighborhood of the Whitney disk in \mathbb{R}^{4} is a 4-ball D^{4}, and the the intersection of the three surfaces with ∂D^{4} forms the Borromean rings:

Geometric higher obstructions for 2-complexes in \mathbb{R}^{4} :

Assume $o(K)=0$. Consider an immersion $f: K \longrightarrow \mathbb{R}^{4}$ where all non-adjacent 2-cells have trivial algebraic intersection number. Pair up \pm pairs of intersections, and choose Whitney disks W.

$\mathrm{C}_{\mathrm{s}}(K, 3):=$ "simplicial" configuration spaces with all products $\sigma_{i} \times \sigma_{j} \times \sigma_{k}$ of simplices removed where at least two of the simplices have a vertex in common.

Define the geometric obstruction measuring triple intersection numbers. This obstruction depends on the choice of Whitney disks W pairing the intersections of non-adjacent 2-cells of K. Let $\sigma_{i}, i=1,2,3$ be three 2-cells of K.

Consider the 6-cochain:

$$
w_{3}: C_{6}\left(C_{s}(K, 3)\right) \longrightarrow \mathbb{Z}
$$

defined as follows. Let $\sigma_{i}, \sigma_{j}, \sigma_{k}$ be 2-cells of K which pairwise have no vertices in common, and define

$$
w_{3}\left(\sigma_{i} \times \sigma_{j} \times \sigma_{k}\right)=W_{i j} \cdot f\left(\sigma_{k}\right)+W_{j k} \cdot f\left(\sigma_{i}\right)+W_{k i} \cdot f\left(\sigma_{j}\right)
$$

The resulting cohomology class is denoted

$$
\mathcal{W}_{3}(K, f, W) \in H_{\Sigma_{3}}^{6}\left(C_{s}(K, 3) ; \mathbb{Z}[(-1)]\right)
$$

$$
w_{3}\left(\sigma_{i} \times \sigma_{j} \times \sigma_{k}\right)=W_{i j} \cdot f\left(\sigma_{k}\right)
$$

Why consider the sum?

A move that replaces an intersection $W_{12} \cap \sigma_{3}$ with $W_{23} \cap \sigma_{1}$

Operations on cochains similar to the van Kampen obstruction:

If the cohomology class is trivial, there exists a Whitney tower of height 2

Theorem Let $f: K \longrightarrow \mathbb{R}^{4}$ be an immersion with double points paired up with Whitney disks W. Suppose the cohomology class

$$
\mathcal{W}_{3}(K, f, W) \in H^{6}\left(\mathrm{C}_{\mathrm{s}}(S, 3)\right)
$$

is trivial. Then there exists a map $\tilde{f}: K \longrightarrow \mathbb{R}^{4}$ which admits a Whitney tower of order 2.

Figure: Left: a Whitney tower of order 2 and the associated tree. Right: the AS relation and the IHX relation
$\mathcal{T}_{n}:=$ the free abelian group generated by trivalent trees with n leaves, modulo the AS and IHX relations.

A tower of obstructions defined using intersections of Whitney towers, studied by (Conant-)Schneiderman-Teichner.

$$
\tau_{n}(W):=\sum_{p} \epsilon(p) t_{p} \in \mathcal{T}_{n}
$$

where the sum is taken over all unpaired (order n) intersections points p, and $\epsilon(p)$ is the sign of the intersection. Consider the Σ_{n}-equivariant $2 n$-cochain:

$$
w_{n}: C_{2 n}\left(\mathrm{C}_{\mathrm{s}}(K, n)\right) \longrightarrow \mathcal{T}_{n-2}
$$

The resulting cohomology class is denoted

$$
\mathcal{W}_{\mathrm{n}}(K, W) \in H_{\Sigma_{n}}^{2 n}\left(\mathrm{C}_{\mathrm{s}}(K, n) ; \mathcal{T}_{n-2}\right)
$$

From Whitney disks to $Z / 2 Z$-equivariant maps of 2-point configuration spaces

Lemma. Let K be a 2-complex and $f: K \longrightarrow \mathbb{R}^{4}$ a general position map such that all intersections of non-adjacent 2-cells are paired up with split Whitney disks W. This data determines a Σ_{2}-equivariant map $F_{f, W}: C_{s}(K, 2) \longrightarrow C\left(\mathbb{R}^{d}, 2\right)$.

Claim: the definition of $F:=F_{f, W}$ on the 4-cells $\sigma_{i} \times \sigma_{j}$ on the next slide can be extended to give a continuous Σ_{2}-equivariant $\operatorname{map} C_{s}(K, 2) \longrightarrow C\left(\mathbb{R}^{d}, 2\right)$. (This uses the fact that the original map f and the result of the Whitney move are isotopic.)

$\mathbb{Z} / 2 \mathbb{Z}$-equivariant map $F: \mathrm{C}_{\mathrm{s}}(K, 2) \longrightarrow \mathrm{C}\left(\mathbb{R}^{d}, 2\right)$. Since $f\left(\sigma_{3}\right)$ is disjoint from both $f\left(\sigma_{1}\right)$ and $f\left(\sigma_{2}\right)$, define

$$
\left.F\right|_{\sigma_{1} \times \sigma_{3} \cup \sigma_{2} \times \sigma_{3}}:=f \times\left. f\right|_{\sigma_{1} \times \sigma_{2} \cup \sigma_{2} \times \sigma_{3}} .
$$

Now consider the map $f^{\prime}: K \longrightarrow \mathbb{R}^{4}$ which coincides with f everywhere except for a small disk neighborhood of the Whitney arc in σ_{1}. In this neighborhood f is defined to be the result of the Whitney move along the Whitney disk W_{12}, making $f^{\prime}\left(\sigma_{1}\right)$ disjoint from $f^{\prime}\left(\sigma_{2}\right)$. (As a result of this move, $f^{\prime}\left(\sigma_{1}\right)$ intersects $f^{\prime}(3)$.) Define

$$
\left.F\right|_{\sigma_{1} \times \sigma_{2}}:=f^{\prime} \times\left. f^{\prime}\right|_{\sigma_{1} \times \sigma_{2}}
$$

Higher obstructions from the Goodwillie-Weiss calculus

Denote $C(K, n)$: the ordered n-point configuration space.
If $f: K \hookrightarrow \mathbb{R}^{4}$ then for each $n \geq 2$ there is a $\Sigma_{n^{-}}$equivariant map

$$
\mathrm{C}(K, n) \longrightarrow \mathrm{C}\left(\mathbb{R}^{4}, n\right)
$$

Recall: the van Kampen obstruction $o(K) \in H_{\Sigma_{2}}^{2 n}(C(K, 2) ; \mathbb{Z})$ is an obstruction to the existence of such a map for $n=2$.

Suppose it is trivial. In this case, does there exist a map for $n=3$?

If $f: K \hookrightarrow \mathbb{R}^{4}$ then there is an induced map of of cubical diagrams for K and for \mathbb{R}^{4} :

When $X=\mathbb{R}^{4}$, the entries marked X are contractible.

Since van Kampen's obstruction vanishes, there exists

$$
f_{2}: C(K, 2) \longrightarrow C\left(\mathbb{R}^{4}, 2\right)
$$

The new obstruction is the homotopy lifting obstruction:

$$
\begin{equation*}
C(K, 3) \xrightarrow{\ldots \ldots \ldots \ldots \ldots} C\left(\mathbb{R}^{d}, 3\right) \tag{2}
\end{equation*}
$$

It is an element

$$
\mathcal{O}_{3}(K) \in H_{\Sigma_{3}}^{6}(C(K, 3) ; \mathbb{Z}[-1])
$$

The two obstructions are equal!

Theorem. Given a 2-complex K with trivial van Kampen's obstruction, let W be a collection of split Whitney disks for double points of a map $f: K \longrightarrow \mathbb{R}^{4}$. Let $F_{f, W}: C_{s}(K, 2) \longrightarrow C\left(R^{4}, 2\right)$ be the Σ_{2}-equivariant map determined by f, W. Then

$$
\mathcal{W}_{3}(K, f, W)=i^{*} \mathcal{O}_{3}\left(K, F_{f, W}\right) \in H_{\Sigma_{3}}^{6}\left(C_{s}(K, 3) ; \mathbb{Z}[(-1)]\right)
$$

where $i: \mathrm{C}_{\mathrm{s}}(K, 3) \longrightarrow \mathrm{C}(K, 3)$ is the inclusion map.
(An implicit assumption: the 2-complex has been subdivided so that $\mathrm{C}_{\mathrm{s}}(K, 2)$ is (equivariantly) homotopy equivalent to $\mathrm{C}(K, 2)$.)

Idea of the proof: lift a map of the 5-skeleton and relate the two obstruction cochains.

Outline of the connection with the Arnold class:
A well-known fact:
Lemma

$$
p_{\mathbb{R}^{d}}: C\left(\mathbb{R}^{d}, 3\right) \rightarrow C\left(\mathbb{R}^{d}, 2\right)^{3}
$$

is surjective in cohomology, and its kernel in cohomology is the ideal generated by the Arnold class.
Here the Arnold class is the cohomological element:

$$
\begin{gathered}
u_{12} \otimes u_{23} \otimes 1+1 \otimes u_{23} \otimes u_{31}-u_{12} \otimes 1 \otimes u_{31} \in \\
H^{6}\left(C\left(\mathbb{R}^{4},\{1,2\}\right) \times C\left(\mathbb{R}^{4},\{2,3\}\right) \times C\left(\mathbb{R}^{4},\{3,1\}\right)\right)
\end{gathered}
$$

where $u_{i j}$ is a (certain preferred) generator of $C\left(\mathbb{R}^{4},\{i, j\}\right)$

Outline of the connection with the Arnold class:
By definition, our obstruction $\mathcal{O}_{3}(K)$ is an element in the
 natural homomorphism

$$
H_{\Sigma_{3}}^{6}\left(\mathrm{C}(K, 3) ; \mathbb{Z}^{ \pm}\right) \rightarrow H^{6}\left(\mathrm{C}(K, 3) ; \mathbb{Z}^{ \pm}\right)^{\Sigma_{3}} \subset H^{6}(\mathrm{C}(K, 3))
$$

Lemma

The image of $\mathcal{O}_{3}(K)$ in $H^{6}(\mathrm{C}(K, 3))$ under this homomorphism is (the image of) the Arnold class under the map

$$
p_{k} \circ f_{2}^{3}: C(K, 3) \rightarrow C(K, 2)^{3} \rightarrow \mathrm{C}\left(\mathbb{R}^{4}, 2\right)^{3}
$$

Work in progress with Greg Arone, Danica Kosanović, Rob Schneiderman and Peter Teichner:

- A "non-repeating" tower T_{n} for link maps of 2-spheres into a 4-manifold (any π_{1})
- A Whitney tower of height n gives a point in T_{n}
- The Whitney tower obstruction of Schneiderman-Teichner equals the obstruction to lifting to T_{n+1}

