Embedding obstructions in 4-space from the Goodwillie-Weiss calculus and Whitney disks

Slava Krushkal (joint work with Greg Arone)

January 13, 2021

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline:

• Background and history on embeddings of complexes into Euclidean spaces

- \bullet 2-complexes in \mathbb{R}^4
- New obstructions from intersections of Whitney disks
- From Whitney disks to maps of configuration spaces
- New obstructions from (mainly the bottom of) a (weaker version of) the Goodwillie-Weiss tower

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- The two obstructions are equal!
- A cohomological obstruction
- Questions

Warm-up: some basic topological combinatorics

A non-planar graph, K_5 :

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 $K_5 = 1$ -skeleton of the 4-simplex

Note: K_5 minus an edge is planar.

Moreover, for any embedding

 $f: (K_5 \text{ minus edge}) \hookrightarrow \mathbb{R}^2,$

 $f(S^0)$ links $f(S^1)$ where $f(S^0)$ is the boundary of the missing edge.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Historical background:

By general position any *n*-complex embeds into \mathbb{R}^d , d > 2n.

A geometric description of the van Kampen obstruction (1929)

$$o(K) \in H^{2n}_{\mathbb{Z}/2}(K imes K \smallsetminus \Delta; \mathbb{Z})$$

to embeddability of an *n*-complex K into \mathbb{R}^{2n} .

Here Δ is the "simplicial diagonal" consisting of all products of simplices $\sigma_1 \times \sigma_2$ having a vertex in common.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

A geometric description of the van Kampen obstruction (1929)

$$o(K) \in H^{2n}_{\mathbb{Z}/2}(K \times K \smallsetminus \Delta; \mathbb{Z})$$

Consider any general position map $f: K \longrightarrow \mathbb{R}^{2n}$. Endow the *n*-cells of *K* with arbitrary orientations, and for any two *n*-cells σ_1, σ_2 without vertices in common, consider the algebraic intersection number $f(\sigma_1) \cdot f(\sigma_2) \in \mathbb{Z}$. This gives an equivariant cochain

$$o_f: C_{2n}(K \times K \smallsetminus \Delta) \longrightarrow \mathbb{Z}.$$

Since this is a top-dimensional cochain, it is a cocycle. Its cohomology class equals the van Kampen obstruction o(K).

Consider any general position map $f: K \longrightarrow \mathbb{R}^{2n}$. Endow the *n*-cells of *K* with arbitrary orientations, and for any two *n*-cells σ_1, σ_2 without vertices in common, consider the algebraic intersection number $f(\sigma_1) \cdot f(\sigma_2) \in \mathbb{Z}$. This gives an equivariant cochain

$$o_f \colon C_{2n}(K \times K \smallsetminus \Delta) \longrightarrow \mathbb{Z}.$$

Since this is a top-dimensional cochain, it is a cocycle. Its cohomology class is the van Kampen obstruction o(K).

The fact that this cohomology class is independent of a choice of f may be seen geometrically. Any two general position maps $f_0, f_1: \mathcal{K} \longrightarrow \mathbb{R}^{2n}$ are connected by a 1-parameter family of maps f_t where at a non-generic time t_i an *n*-cell σ intersects an (n-1)-cell ν . Topologically the map $f_{t_i-\epsilon}$ and $f_{t_i+\epsilon}$ differ by tubing σ into a small *n*-sphere linking ν in \mathbb{R}^{2n} .

The effect of this elementary homotopy on the van Kampen cochain is precisely the addition of the elementary coboundary $\delta(\sigma \times \nu)$, where $\delta: C^{2n-1}(K \times K \smallsetminus \Delta) \longrightarrow C^{2n}(K \times K \smallsetminus \Delta)$.

If $f: K \hookrightarrow \mathbb{R}^{2n}$ then there is a $\mathbb{Z}/2$ - equivariant map

$$f \times f: K \times K \smallsetminus \Delta \longrightarrow \mathbb{R}^{2n} \times \mathbb{R}^{2n} \smallsetminus \Delta.$$

Algebraic characterization of the van Kampen obstruction:

 $o(K) \in H^{2n}_{\mathbb{Z}/2}(K \times K \smallsetminus \Delta; \mathbb{Z})$ is an obstruction to the existence of a $\mathbb{Z}/2$ - equivariant map $K \times K \smallsetminus \Delta \longrightarrow (\mathbb{R}^{2n} \times \mathbb{R}^{2n}) \smallsetminus \Delta$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

If $f: K \hookrightarrow \mathbb{R}^{2n}$ then there is a $\mathbb{Z}/2$ - equivariant map

$$f \times f: K \times K \smallsetminus \Delta \longrightarrow (\mathbb{R}^{2n} \times \mathbb{R}^{2n}) \smallsetminus \Delta.$$

Algebraic characterization of the van Kampen obstruction:

 $o(K) \in H^{2n}_{\mathbb{Z}/2}(K \times K \setminus \Delta; \mathbb{Z})$ is an obstruction to the existence of a $\mathbb{Z}/2$ - equivariant map $K \times K \setminus \Delta \longrightarrow \mathbb{R}^{2n} \times \mathbb{R}^{2n} \setminus \Delta$.

Example Let K = the *n*-skeleton of the 2n + 2-simplex. Then $o(K) \neq 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 $K_5 = 1$ -skeleton of the 4-simplex

Theorem (van Kampen, Shapiro, Wu) Let n > 2. An *n*-complex K embeds into \mathbb{R}^{2n} if and only if the van Kampen obstruction $o(K) \in H^{2n}_{\mathbb{Z}/2}(K \times K \smallsetminus \Delta; \mathbb{Z})$ is trivial.

Idea of the proof: If the cohomology class o(K) is trivial, there is a an immersion $f : K \longrightarrow \mathbb{R}^{2n}$ where non-adjacent simplices have zero algebraic intersection number. Use the Whitney trick (for intersections and self-intersections) to find an embedding.

Theorem (van Kampen, Shapiro, Wu) Let n > 2. An *n*-complex K embeds into \mathbb{R}^{2n} if and only if the van Kampen obstruction $o(K) \in H^{2n}_{\mathbb{Z}/2}(K \times K \smallsetminus \Delta; \mathbb{Z})$ is trivial.

Building on work of Haefliger, Weber extended the embeddability result to the "metastable range" of dimensions:

Given an m-dimensional simplicial complex K and a $\mathbb{Z}/2$ -equivariant map $f_2: C(K,2) \longrightarrow C(\mathbb{R}^d,2)$ with

 $2d \geq 3(m+1),$

there exists a PL embedding $f: K \longrightarrow \mathbb{R}^m$ such that the induced map f_{Λ}^2 is $\mathbb{Z}/2$ -equivariantly homotopic to f_2 .

Theorem (van Kampen, Shapiro, Wu) Let n > 2. An *n*-complex K embeds into \mathbb{R}^{2n} if and only if the van Kampen obstruction $o(K) \in H^{2n}_{\mathbb{Z}/2}(K \times K \smallsetminus \Delta; \mathbb{Z})$ is trivial.

Idea of the proof: If the cohomology class o(K) is trivial, there is a an immersion $f: K \longrightarrow \mathbb{R}^{2n}$ where non-adjacent simplices have zero algebraic intersection number. Use the Whitney trick to find an embedding.

Theorem (Freedman - K. - Teichner, 1994) There exist 2-complexes K which do not embed into \mathbb{R}^4 but the van Kampen obstruction o(K) is trivial.

Theorem (Freedman - K. - Teichner, 1994) There exist 2-complexes K which do not embed into \mathbb{R}^4 but the van Kampen obstruction o(K) is trivial.

Idea of the proof: Let K = the 2-skeleton of the 6-simplex. Then $o(K) \neq 0$, so K does not embed into \mathbb{R}^4 .

Lemma Let K' be K with a single 2-cell removed. Then K' embeds into \mathbb{R}^4 , and moreover for *any* embedding $f: K' \hookrightarrow \mathbb{R}^4$, the mod 2 linking number of $f(S^1)$, $f(S^2)$ is non-zero. Here S^1 is the boundary of the missing 2-cell.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - 釣べ⊙

Sketch of the proof, continued

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Take the wedge sum of two copies of K' and consider the 2-complex L is obtained by attaching a 2-cell along the commutator [a, b].

Claims:

1.
$$o(L) = 0$$

2. *L* does not embed into \mathbb{R}^4 .

Claim: *L* does not embed into \mathbb{R}^4 .

Use Stallings' theorem: Suppose $f: X \longrightarrow Y$ induces an isomorphism on H_1 and an epimorphism on H_2 . Then for all k, f induces an isomorphism

$$\pi_1(X)/\pi_1^k(X) \cong \pi_1(Y)/\pi_1^k(Y)$$

where π^k is the *k*-th term of the lower central series, $\pi^2 = [\pi, \pi], \pi^k = [\pi^{k-1}, \pi].$ Take $X = S^1 \vee S^1, Y = \mathbb{R}^4 \smallsetminus (S^2 \sqcup S^2)$. It follows that $\pi_1(\mathbb{R}^4 \smallsetminus (S^2 \sqcup S^2))$ is like the free group modulo any term of the l.c.s., so $[a, b] \neq 1$, a contradiction. Theorem (Freedman - K. - Teichner, 1994) There exist 2-complexes K which do not embed into \mathbb{R}^4 but the van Kampen obstruction o(K) is trivial.

Non-planarity of graphs is characterized by the Kuratowski theorem: a graph G is non-planar if and only if it contains K_5 or $K_{3,3}$ as a minor.

Question Is there a collection of "minors" characterizing none-embeddability of 2-complexes into \mathbb{R}^4 ?

Question Is there a set of geometric moves relating any two maps of 2-complexes $f: K \longrightarrow \mathbb{R}^4$ with trivial van Kampen cochain?

New work (joint with Greg Arone): a higher obstruction theory

In dimensions n > 2 the vanishing of the van Kampen class is necessary and sufficient for embeddability of an *n*-complex *K* into \mathbb{R}^{2n} .

For n = 2 the obstruction is incomplete, due to the failure of the Whitney trick in 4 dimensions. The goal is to introduce higher obstructions, measuring the failure of the Whitney trick.

▲□▶▲□▶▲目▶▲目▶ 目 のへぐ

Whitney trick with embedded Whitney disk:

The generic case in dim 4: the Whitney disk W intersects another surface:

The Whitney move removes intersections $\sigma_1 \cap \sigma_2$ but creates new intersections $\sigma_2 \cap \sigma_3$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A neighborhood of the Whitney disk in \mathbb{R}^4 is a 4-ball D^4 , and the the intersection of the three surfaces with ∂D^4 forms the Borromean rings:

・ロト ・雪 ト ・ ヨ ト ・

э

Geometric higher obstructions for 2-complexes in \mathbb{R}^4 :

Assume o(K) = 0. Consider an immersion $f: K \longrightarrow \mathbb{R}^4$ where all non-adjacent 2-cells have trivial algebraic intersection number. Pair up \pm pairs of intersections, and choose Whitney disks W.

 $C_s(K,3) :=$ "simplicial" configuration spaces with all products $\sigma_i \times \sigma_j \times \sigma_k$ of simplices removed where at least two of the simplices have a vertex in common.

Define the geometric obstruction measuring triple intersection numbers. This obstruction depends on the choice of Whitney disks W pairing the intersections of non-adjacent 2-cells of K. Let σ_i , i = 1, 2, 3 be three 2-cells of K.

Consider the 6-cochain:

$$w_3: C_6(C_s(K,3)) \longrightarrow \mathbb{Z},$$

defined as follows. Let $\sigma_i, \sigma_j, \sigma_k$ be 2-cells of K which pairwise have no vertices in common, and define

$$w_3(\sigma_i \times \sigma_j \times \sigma_k) = W_{ij} \cdot f(\sigma_k) + W_{jk} \cdot f(\sigma_i) + W_{ki} \cdot f(\sigma_j),$$

The resulting cohomology class is denoted

$$\mathcal{W}_3(K, f, W) \in H^6_{\Sigma_3}(\mathsf{C}_{\mathsf{s}}(K, 3); \mathbb{Z}[(-1)]).$$

$$w_3(\sigma_i \times \sigma_j \times \sigma_k) = W_{ij} \cdot f(\sigma_k)$$

Why consider the sum?

イロト 不得 トイヨト イヨト

3

A move that replaces an intersection $W_{12} \cap \sigma_3$ with $W_{23} \cap \sigma_1$

Operations on cochains similar to the van Kampen obstruction:

If the cohomology class is trivial, there exists a Whitney tower of height 2 $% \left({{{\rm{D}}_{\rm{T}}}} \right)$

・ロト ・ 一下・ ・ ヨト・

э

Theorem Let $f: K \longrightarrow \mathbb{R}^4$ be an immersion with double points paired up with Whitney disks W. Suppose the cohomology class

$$\mathcal{W}_3(K, f, W) \in H^6(\mathsf{C}_{\mathsf{s}}(S, 3))$$

is trivial. Then there exists a map $\tilde{f}: K \longrightarrow \mathbb{R}^4$ which admits a Whitney tower of order 2.

Figure: Left: a Whitney tower of order 2 and the associated tree. Right: the AS relation and the IHX relation

 $T_n :=$ the free abelian group generated by trivalent trees with *n* leaves, modulo the AS and IHX relations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A tower of obstructions defined using intersections of Whitney towers, studied by (Conant-)Schneiderman-Teichner.

$$\tau_n(W) := \sum_p \epsilon(p) t_p \in \mathcal{T}_n,$$

where the sum is taken over all unpaired (order *n*) intersections points *p*, and $\epsilon(p)$ is the sign of the intersection. Consider the \sum_{n} -equivariant 2n-cochain:

$$w_n: C_{2n}(C_s(K, n)) \longrightarrow \mathcal{T}_{n-2},$$

The resulting cohomology class is denoted

$$\mathcal{W}_{n}(K,W) \in H^{2n}_{\Sigma_{n}}(C_{s}(K,n);\mathcal{T}_{n-2}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

From Whitney disks to Z/2Z-equivariant maps of 2-point configuration spaces

Lemma. Let K be a 2-complex and $f: K \longrightarrow \mathbb{R}^4$ a general position map such that all intersections of non-adjacent 2-cells are paired up with split Whitney disks W. This data determines a Σ_2 -equivariant map $F_{f,W}: C_s(K,2) \longrightarrow C(\mathbb{R}^d,2)$.

Claim: the definition of $F := F_{f,W}$ on the 4-cells $\sigma_i \times \sigma_j$ on the next slide can be extended to give a continuous Σ_2 -equivariant map $C_s(K,2) \longrightarrow C(\mathbb{R}^d,2)$. (This uses the fact that the original map f and the result of the Whitney move are isotopic.)

(日)((1))

 $\mathbb{Z}/2\mathbb{Z}$ -equivariant map $F: C_s(K,2) \longrightarrow C(\mathbb{R}^d,2)$. Since $f(\sigma_3)$ is disjoint from both $f(\sigma_1)$ and $f(\sigma_2)$, define

$$F|_{\sigma_1 \times \sigma_3 \cup \sigma_2 \times \sigma_3} := f \times f|_{\sigma_1 \times \sigma_2 \cup \sigma_2 \times \sigma_3}.$$

Now consider the map $f': K \longrightarrow \mathbb{R}^4$ which coincides with f everywhere except for a small disk neighborhood of the Whitney arc in σ_1 . In this neighborhood f is defined to be the result of the Whitney move along the Whitney disk W_{12} , making $f'(\sigma_1)$ disjoint from $f'(\sigma_2)$. (As a result of this move, $f'(\sigma_1)$ intersects f'(3).) Define

$$\mathsf{F}|_{\sigma_1\times\sigma_2}:=f'\times f'|_{\sigma_1\times\sigma_2}.$$

Higher obstructions from the Goodwillie-Weiss calculus

Denote C(K, n): the ordered *n*-point configuration space.

If $f: \mathcal{K} \hookrightarrow \mathbb{R}^4$ then for each $n \geq 2$ there is a Σ_{n^-} equivariant map

$$C(K, n) \longrightarrow C(\mathbb{R}^4, n)$$

Recall: the van Kampen obstruction $o(K) \in H^{2n}_{\Sigma_2}(C(K, 2); \mathbb{Z})$ is an obstruction to the existence of such a map for n = 2.

Suppose it is trivial. In this case, does there exist a map for n = 3?

If $f: K \hookrightarrow \mathbb{R}^4$ then there is an induced map of of cubical diagrams for K and for \mathbb{R}^4 :

(日)

э

When $X = \mathbb{R}^4$, the entries marked X are contractible.

Since van Kampen's obstruction vanishes, there exists

$$f_2: C(K,2) \longrightarrow C(\mathbb{R}^4,2)$$

The new obstruction is the homotopy lifting obstruction:

$$C(K,3) \xrightarrow{p_{K}} C(K,2)^{\times 3} \xrightarrow{(f_{2})^{3}} C(\mathbb{R}^{4},2)^{\times 3}$$
(2)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへぐ

It is an element

$$\mathcal{O}_3(K)\in H^6_{\Sigma_3}(\mathsf{C}\,(K,3);\mathbb{Z}[-1])$$

The two obstructions are equal!

Theorem. Given a 2-complex K with trivial van Kampen's obstruction, let W be a collection of split Whitney disks for double points of a map $f: K \longrightarrow \mathbb{R}^4$. Let $F_{f,W}: C_s(K,2) \longrightarrow C(R^4,2)$ be the Σ_2 -equivariant map determined by f, W. Then

$$\mathcal{W}_{3}(K, f, W) = i^{*} \mathcal{O}_{3}(K, F_{f, W}) \in H^{6}_{\Sigma_{3}}(\mathsf{C}_{\mathsf{s}}(K, 3); \mathbb{Z}[(-1)]),$$

where i: $C_s(K,3) \longrightarrow C(K,3)$ is the inclusion map.

(An implicit assumption: the 2-complex has been subdivided so that $C_s(K,2)$ is (equivariantly) homotopy equivalent to C(K,2).)

Idea of the proof: lift a map of the 5-skeleton and relate the two obstruction cochains.

Outline of the connection with the Arnold class:

A well-known fact:

Lemma

$$p_{\mathbb{R}^d}$$
: $C(\mathbb{R}^d, 3) \rightarrow C(\mathbb{R}^d, 2)^3$

is surjective in cohomology, and its kernel in cohomology is the ideal generated by the Arnold class.

Here the Arnold class is the cohomological element:

 $\mathit{u_{12}} \otimes \mathit{u_{23}} \otimes 1 + 1 \otimes \mathit{u_{23}} \otimes \mathit{u_{31}} - \mathit{u_{12}} \otimes 1 \otimes \mathit{u_{31}} \in$

 $H^{6}(C(\mathbb{R}^{4}, \{1, 2\}) \times C(\mathbb{R}^{4}, \{2, 3\}) \times C(\mathbb{R}^{4}, \{3, 1\})).$

where u_{ij} is a (certain preferred) generator of C (\mathbb{R}^4 , {i, j})

Outline of the connection with the Arnold class:

By definition, our obstruction $\mathcal{O}_3(K)$ is an element in the Σ_3 -equivariant cohomology group $H^6_{\Sigma_3}(C(K,3);\mathbb{Z}^{\pm})$. There is a natural homomorphism

$$H^6_{\Sigma_3}(\mathsf{C}\,(K,3);\mathbb{Z}^\pm)\to H^6(\mathsf{C}\,(K,3);\mathbb{Z}^\pm)^{\Sigma_3}\subset H^6(\mathsf{C}\,(K,3))$$

Lemma

The image of $\mathcal{O}_3(K)$ in $H^6(C(K,3))$ under this homomorphism is (the image of) the Arnold class under the map

$$p_k \circ f_2^3$$
: $C(K,3) \to C(K,2)^3 \to C(\mathbb{R}^4,2)^3$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Work in progress with Greg Arone, Danica Kosanović, Rob Schneiderman and Peter Teichner:

• A "non-repeating" tower T_n for link maps of 2-spheres into a 4-manifold (any π_1)

• A Whitney tower of height n gives a point in T_n

• The Whitney tower obstruction of Schneiderman-Teichner equals the obstruction to lifting to T_{n+1}

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ