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EMBEDDING CALCULUS AND GROPE COBORDISM OF KNOTS
LINKS ?

DANICA KOSANOVIC

ABsTrRACT. We show that the invariants ev, of long knots in a 3-manifold, produced from
embedding calculus, are surjective for all n > 1. On one hand, this solves some of the remaining
open cases of the connectivity estimates of Goodwillie and Klein, and on the other hand, it
confirms one half of the conjecture by Budney, Conant, Scannell and Sinha that for classical
knots ev, are universal additive Vassiliev invariants over the integers.

We actually study long knots in any manifold of dimension at least 3 and develop a geometric
understanding of the layers in the embedding calculus tower and their first non-trivial homotopy
groups, given as certain groups of decorated trees. Moreover, in dimension 3 we give an explicit
interpretation of ev, using capped grope cobordisms and our joint work with Shi and Teichner.

The main theorem of the present paper says that the first possibly non-vanishing embedding
calculus invariant evy, of a knot which is grope cobordant to the unknot is precisely the equivalence
class of the underlying decorated tree of the grope in the homotopy group of the layer.

As a corollary, we give a sufficient condition for the mentioned conjecture to hold over a
coefficient group. By recent results of Boavida de Brito and Horel this is fulfilled for the rationals,
and for the p-adic integers in a range, confirming that the embedding calculus invariants are

universal rational additive Vassiliev invariants, factoring configuration space integrals.



Outline of this talk

Twisted Whitney towers and their trees

Intersection invariants for order n twisted Whitney towers

Classification of order n twisted Whitney towers in B*

The Higher-order Arf invariant Conjecture



Preview of end of talk

Key case of the Higher-order Arf invariant Conjecture
in the setting of ‘finite type’ invariants:

The following sum of trees represents a non-trivial finite type
concordance invariant of 2-component links
(first-non-vanishing, Z/27Z-coefficients):
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This invariant is finite type degree 6.

J-B. Meilhan and A. Yasuhara have characterized all finite type
concordance invariants of string links in degrees < 5.



Preview of end of talk

Key case of the Higher-order Arf invariant Conjecture
in the setting of ‘gropes'’:

The Bing double of any knot in S having non-trivial Arf invariant
does not bound an embedded grope of degree 7 into B*.

Left: The Bing double of the Figure-8 knot.
Right: One component of a degree 6 grope.



2-disks A and Bin B*=B3 x| with p=Ah B and AC B3 x %
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Visualize: Hopf link = 9AUIB C S® = 9(B® x I)




Intersections p, g € A B and a Whitney disk W pairing them:

choose W
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Before and after a Whitney move:

Whitney move ﬂ
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Successful Whitney move: W is ‘clean’ and ‘framed’

Eliminates p, g € A M B without creating new intersections in A or B:

W is clean = embedded & interior disjoint from all surfaces.
W is framed = W has appropriate parallels.

Want to ‘measure’ obstructions to successful Whitney moves...



W not clean ~~ Whitney move creates new intersections:

re WhC ~ r,r"eAm C after W-move on A:

Visualize: The Borromean Rings 0A U 0B U dC C 0B*



‘higher-order Whitney disks' ~~‘higher-order intersections’ ~ trees...

Visualize: The Bing-double of the Hopf link in 9B*.



Definition:
A Whitney tower on A? &5 X% is defined by:
1. Aitself is a Whitney tower.

2. If W is a Whitney tower and W is a Whitney disk pairing
intersections in W, then the union WU W is a Whitney tower.



Definition:
A Whitney tower on A? &5 X% is defined by:

1. Aitself is a Whitney tower.

2. If W is a Whitney tower and W is a Whitney disk pairing
intersections in W, then the union WU W is a Whitney tower.

V\//j/\/l\\
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Part of a Whltney tower!

Goal: Study W to get info about A...



So a Whitney tower YW C X* on a properly immersed surface
A? 95 X* is the union of A = U;A; and ‘layers’ of Whitney disks.

P




The intersection forest multiset t()V) of a Whitney tower W

Wi tOV) =) ety +> w(W))-J”
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‘framed tree’ t, <= p unpaired intersection with sign €, = £1,
‘twisted tree’ J” := J —o <+ W, with twisting w(W,) # 0 € Z.




Paired intersections — rooted trees

W,; ) pairing A; h A;  +——  rooted tree —< 4 = (i, )

WLJ)

Amrant




Paired intersections — rooted trees

Recursively: W, 5 pairing W, h W,  —  —<{ = (1,J)

Wiy

/

&S

W,

Rooted trees I, J = non-associative bracketings from {1,2 3,... m}
Notation convention: Singleton subscript W; denotes component A;.



Un-paired intersections — un-rooted trees

Inner product ‘fuses’ rooted edges into single edge:

[olS W(,J)rhWk — tp:<(/,J),K>: _I]>—K




Recall: Whitney move uses two parallel copies of W:




o-trees for twisted Whitney disks

The twisting w(W) € Z of W is the relative Euler number of a
normal section W over OW determined by the sheets:

ow B

Normal to B —

Tangent to 4

WJ = J2=J—o if w(WJ) 7é 0.



Boundary twist on W changes w(W) by +1,
creates intersection p between W and a sheet paired by W

‘Side view' near a point in OW:

f | |
boundary | |
twist of W
J_ _g Lp L |
- J 7
with blue

parallel of W | | bS EID Eb | |

that intersects W:

Can create any clean W, ) by finger moves,
then boundary twist into J-sheet changes t()V) by:

| <5 + 1 =<



+-interior twist on W changes w(W) by F2 and creates p ¢ W th W

After the interior twist,
near an arc in W that runs between the two sheets:

Sl ]
: [Slololo fil

Can create any clean W, by finger moves,
then +-interior twist changes t(W) by:

L) F 2.0



Obstruction theory for links bounding twisted Whitney towers

W is an order n twisted Whitney tower if t(V) contains only
framed trees of order > n and twisted trees of order > n/2,
where order := number of trivalent vertices.

Will define abelian groups 7,
and intersection invariants 7°(W) := [t(W)] € T,
such that:

L bounds an order n twisted W with 7(L) := 72(W) =0
if and only if L bounds an order n + 1 twisted Whitney tower.

w0

7°(L) <— Milnor invariants and higher-order Arf invariants

n



Towards intersection invariants 7°(W) = [t(W)] € T2
for order n twisted Whitney towers V¥V C B* bounded by L C S3

T, := free abelian group on order n framed trees modulo
local antisymmetry (AS) and Jacobi (IHX) relations:

Y e X

AS relations =- signs of the framed trees in t(WV) only depend on the
Ai
orientation of L = U;0D? C U;D? & B* after mapping to 7,.

IHX trees can be created locally by controlled manipulations of
Whitney disks.



The odd order target groups 757,

Obstructions to raising twisted order from 2j — 1 to 2;:

Definition:
T57_4 is the quotient of 75;_1 by boundary-twist relations:
2j—1 q j

i—<3=0

where J ranges over all order j — 1 subtrees.

Since via boundary-twisting:
i—<73 = i —<l + trees of order > 2j

and the trees on the right are allowed in order 2;j twisted W.



The even order target groups 7,7

Obstructions to raising twisted order from 2j to 2j + 1:

Definition:

T,; is the quotient of the free abelian group on
framed trees of order 2j and -trees of order j
by the following relations:

1. AS and IHX relations on order 2j framed trees

N

symmetry relations: (—J)” = J®
twisted IHX relations: [ = H” + X® — (H, X)
interior-twist relations: 2 - J® = (J, J)

W

Remark: « —< 7 generate the torsion subgroup of 7% := &7,
J g n



Intersection/obstruction theory for order n twisted Whitney towers

Definition:
For an order n twisted Whitney tower W define

T (W)= [tW)] e Ty

Theorem:
If L C S® bounds an order n twisted W C B* with 72(W) =0¢€ T2,
then L bounds an order n+ 1 twisted Whitney tower.

Idea of proof: Realize relations by geometric constructions to turn
‘algebraic cancellation’ in 7, into ‘geometric cancellation’ by new
layer of Whitney disks.



Quick review of Milnor invariants

For L=L;ULyU---UL, CS*and G=m(S*\L):

G,
[Li] € Gyt (n+1)th lower central subroup —> AR L1
n+2

L = ®,L, the free Z-Lie algebra on {X1, Xz, ..., Xn}.

Define the order n Milnor invariant p,(L):

/JJ,,(L) = ZX, &® g,‘ € £1 ® £n+1
i=1
Gn+l

where /; is the image in L, of the i-th longitude [L;] € 22

Gni2”

bracket

Turns out: p,(L) € D, :=ker{L; ® Ly1 —— Lyi2}.



Summation maps 7, ‘connect’ 7°°(W) and (L)

Definition:
The map n, : 7,7 — L1 ® L, is defined on generators by

i(£) = 3 Xaba) @ Bracket,(£)  ma(J?) = ;nn(u, )

vet

Here J is a rooted tree of order j for n = 2j.



Examples of n, for n=1,2

n1(1<§) = X1®—<§ + XK®1—<3 4+ X3® 1—<,
= X1 ® [Xo, X3]+ Xo @ [ X3, Xi] + X3 ® [X1, X3].

(e —<13) =3m(3><1)
=X1®,><3 +Xe1><?
= X1 ® [Xa, [X1, Xo]] + X2 ® [[ X1, Xa], Xi].



The summation maps 7, ‘connect’ 77°(W) and p,(L)

The image of 7, is equal to the bracket kernel D, < L1 ® L,11.

Theorem:

If L bounds a twisted Whitney tower VW of order n, then the order q
Milnor invariants 14(L) vanish for g < n, and

pin(L) = nn o 77 (W) € D,

Proof idea: Gropes in B*\ W display longitudes of L as iterated
commutators exactly according to n, o 7/(W)...



The order n twisted Whitney tower filtration on links

W {links in S® bounding order n twisted Whitney towers in B*}
no order n+1 twisted Whitney tower concordance

Obstruction theory = W, is a finitely generated abelian group
Via Cochran’s Bing-doubling techniques get epimorphisms
Ry T =Wy

which send g € 7, to the equivalence class of links bounding an
order n twisted Whitney tower W with 77°(W) = g.



Example of R : 7> — W} for n =2

N

L bounds W with 75°(W) = 3 ><1



Example of R : 7> — W} for n =2

2

= D

L bounds W with 75°(W) = 2 >— o



Computation of W? for n=0,1,3 mod 4

Have commutative triangle diagram of epimorphisms:

Theorem:
The maps n, : T;” — D, are isomorphisms for n =0,1,3 mod 4.

Corollary:

Forn=0,1,3 mod 4:
® 1,2 WP =D, and R : 7,7 — WY are isomorphisms.
o 72(W) € T only depends on L = OW.



Towards computation of W? for remaining cases n =2 mod 4

D, is a free abelian group of known rank for all n, so have a complete
computation of W = D, = T in three quarters of the cases.

Towards understanding the remaining cases n =2 mod 4:
Proposition:
Themapl®@ J s o —<7 € Ts7—» induces an isomorphism:

Zo @ Lj = Ker(maj—2 : Tgj—o — Daj-2)



Towards computation of W? for remaining cases n =2 mod 4

Extending the algebraic side of the triangle:

10 J))=——7,® L;



Towards defining higher-order Arf invariants

Ri;— induces af : Zy @ Lj — Kg,_5 := ker{piaj 2 : Wg;_5 = Daj >}

<1®J>Zz®ﬁj\ | T
(0 —<J)— 42 - QWZ—z



Higher-order Arf invariant diagram

Also extending the topological side of the triangle:

(ZQ X ﬁj)/ Ker Oéj-/J
T Arf;
(18 )) ——7 8 L, K2
\ y . Rﬁf_z l

(0 —<9) Ta7 -2 W7,

\ lﬂ4j—2
M4j—2
Dyj—o

Arfj = K5, = (Zr @ L)/ Kera?



Higher-order Arf invariants and computation of W, for all n

Corollary:

The groups W5 are classified by Milnor invariants 1, and, in addition,
higher-order Arf invariants Arf; for n = 4j — 2.

In particular, a link bounds an order n+ 1 twisted W if and only if its
Milnor invariants and higher-order Arf invariants vanish up to order n.



Higher-order Arf invariant diagram

(Zy ® L;)/ Kerai?
T Arf;
Z2 ® ‘Cj / KZ}—Z

.



Conjectured higher-order Arf invariant diagram

Conjecture: (Higher-order Arf invariant conjecture)
Arfj 1 K§i_p — Zo ® L are isomorphisms for all j.

n

This conjecture would imply W 2 7= is an isomorphism for all n.



Determining the image of 2 < Arf; < Z, ® L;?

e Arf; corresponds to classical Arf invariants of the link
components. Are the Arf; for j > 1 also determined by finite
type isotopy invariants?

e The links Ry (e —<7 ) realizing the image of Arf; are known
not to be slice by work of J.C. Cha.

e Fundamental first open test case: Does the Bing double of the

Figure-8 knot R¢ (e —<8§; ) € Wg bound an order 7 twisted
Whitney tower?

e [f the Bing double of the Figure-8 knot does bound an order 7
twisted Whitney tower, then Arf; are trivial for all j > 2.



Bing(Fig8) bounds W with t(W) = ((1,2),(1,2))”

W =Dy UDyU W12y U W) 1,2))

Ws ...

W/F(I-Z),(LZ))
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