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LINKS ?



Outline of this talk

• Twisted Whitney towers and their trees

• Intersection invariants for order n twisted Whitney towers

• Classification of order n twisted Whitney towers in B
4

• The Higher-order Arf invariant Conjecture



Preview of end of talk

Key case of the Higher-order Arf invariant Conjecture
in the setting of ‘finite type’ invariants:

The following sum of trees represents a non-trivial finite type
concordance invariant of 2-component links
(first-non-vanishing, Z/2Z-coe�cients):
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This invariant is finite type degree 6.

J-B. Meilhan and A. Yasuhara have characterized all finite type
concordance invariants of string links in degrees Æ 5.



Preview of end of talk

Key case of the Higher-order Arf invariant Conjecture
in the setting of ‘gropes’:

The Bing double of any knot in S
3 having non-trivial Arf invariant

does not bound an embedded grope of degree 7 into B
4.

Left: The Bing double of the Figure-8 knot.
Right: One component of a degree 6 grope.



2-disks A and B in B4 = B3 ◊ I with p = A t B and A µ B3 ◊ ú

p

B

A

B B

Visualize: Hopf link = ˆA fi ˆB µ S
3 = ˆ(B3 ◊ I)



Intersections p, q œ A t B and a Whitney disk W pairing them:
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Before and after a Whitney move:
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Whitney move



Successful Whitney move: W is ‘clean’ and ‘framed’

Eliminates p, q œ A t B without creating new intersections in A or B:

A

B

W
qp

A

B

W is clean = embedded & interior disjoint from all surfaces.
W is framed = W has appropriate parallels.

Want to ‘measure’ obstructions to successful Whitney moves...



W not clean  Whitney move creates new intersections:

r œ W t C  r
Õ, r

ÕÕ œ A t C after W -move on A:

W

A

B

C

p
q A

B

C

r r' r''

Visualize: The Borromean Rings ˆA fi ˆB fi ˆC µ ˆB
4



‘higher-order Whitney disks’  ‘higher-order intersections’  trees...

Visualize: The Bing-double of the Hopf link in ˆB
4.



Definition:
A Whitney tower on A

2 # X
4 is defined by:

1. A itself is a Whitney tower.
2. If W is a Whitney tower and W is a Whitney disk pairing

intersections in W , then the union W fi W is a Whitney tower.

Part of a Whitney tower!

Goal: Study W to get info about A...
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So a Whitney tower W µ X
4 on a properly immersed surface

A
2 # X

4 is the union of A = fiiAi and ‘layers’ of Whitney disks.



The intersection forest multiset t(W) of a Whitney tower W

W ‘æ t(W) =
ÿ

‘p · tp +
ÿ

Ê(WJ) · J

Ai i i i

‘framed tree’ tp Ωp p unpaired intersection with sign ‘p = ±1,
‘twisted tree’ J := J ≠≠ Ωp WJ with twisting Ê(WJ) ”= 0 œ Z.



Paired intersections ≠æ rooted trees

W(i ,j) pairing Ai t Aj ‘≠æ rooted tree ≠≠< j
i = (i , j)

(i,j)

i
j

W

A
A

i

j



Paired intersections æ rooted trees

Recursively: W(I,J) pairing WI t WJ ‘≠æ ≠≠< J
I = (I , J)

(I,J)

I

J

W

W
W

Rooted trees I , J = non-associative bracketings from {1, 2, 3, . . . , m}
Notation convention: Singleton subscript Wi denotes component Ai .



Un-paired intersections æ un-rooted trees

Inner product ‘fuses’ rooted edges into single edge:

p œ W(I,J) t Wk ‘≠æ tp = È(I , J), K Í = I
J >≠≠ K

K pW

WJ
IW

W(I,J)



Recall: Whitney move uses two parallel copies of W :

W

p
q



-trees for twisted Whitney disks

The twisting Ê(W ) œ Z of W is the relative Euler number of a
normal section ˆW over ˆW determined by the sheets:

∂W

pq

A

B
Normal to B

Tangent to A

WJ ‘æ J := J ≠≠ if Ê(WJ) ”= 0.



Boundary twist on W changes Ê(W ) by ±1,
creates intersection p between W and a sheet paired by W

‘Side view’ near a point in ˆW :

boundary
twist of W

with blue
parallel of W
that intersects W:

W

p

Can create any clean W(I,J) by finger moves,
then boundary twist into J-sheet changes t(W) by:

I ≠≠< J
J ± I ≠≠< J



±-interior twist on W changes Ê(W ) by û2 and creates p œ W tW

After the interior twist,
near an arc in W that runs between the two sheets:

+ 1

- 1

- 1

+ 1

- 1

- 1

p

and
with
blue
parallel
of W

W

Can create any clean WJ by finger moves,
then ±-interior twist changes t(W) by:

±ÈJ , JÍ û 2 · J



Obstruction theory for links bounding twisted Whitney towers

• W is an order n twisted Whitney tower if t(W) contains only
framed trees of order Ø n and twisted trees of order Ø n/2,
where order := number of trivalent vertices.

• Will define abelian groups Tn
and intersection invariants ·n (W) := [t(W)] œ Tn
such that:

L bounds an order n twisted W with ·n (L) := ·n (W) = 0
if and only if L bounds an order n + 1 twisted Whitney tower.

• ·n (L) Ωæ Milnor invariants and higher-order Arf invariants



Towards intersection invariants ·n (W) = [t(W)] œ Tn
for order n twisted Whitney towers W µ B4 bounded by L µ S3

Tn := free abelian group on order n framed trees modulo
local antisymmetry (AS) and Jacobi (IHX) relations:

AS relations ∆ signs of the framed trees in t(W) only depend on the
orientation of L = fiiˆD

2 µ fiiD
2 Ai# B

4 after mapping to Tn.

IHX trees can be created locally by controlled manipulations of
Whitney disks.



The odd order target groups T2j≠1

Obstructions to raising twisted order from 2j ≠ 1 to 2j :
Definition:
T2j≠1 is the quotient of T2j≠1 by boundary-twist relations:

i ≠≠< J
J = 0

where J ranges over all order j ≠ 1 subtrees.

Since via boundary-twisting:

i ≠≠< J
J ‘æ i ≠≠< J + trees of order Ø 2j

and the trees on the right are allowed in order 2j twisted W .



The even order target groups T2j

Obstructions to raising twisted order from 2j to 2j + 1:
Definition:
T2j is the quotient of the free abelian group on
framed trees of order 2j and -trees of order j

by the following relations:

1. AS and IHX relations on order 2j framed trees
2. symmetry relations: (≠J) = J

3. twisted IHX relations: I = H + X ≠ ÈH , X Í
4. interior-twist relations: 2 · J = ÈJ , JÍ

Remark: ≠≠< J
J generate the torsion subgroup of T := üTn .



Intersection/obstruction theory for order n twisted Whitney towers

Definition:
For an order n twisted Whitney tower W define

·n (W) := [t(W)] œ Tn

Theorem:
If L µ S

3
bounds an order n twisted W µ B

4
with ·n (W) = 0 œ Tn ,

then L bounds an order n + 1 twisted Whitney tower.

Idea of proof: Realize relations by geometric constructions to turn
‘algebraic cancellation’ in Tn into ‘geometric cancellation’ by new
layer of Whitney disks.



Quick review of Milnor invariants

For L = L1 fi L2 fi · · · fi Lm µ S
3 and G = fi1(S3 \ L):

[Li ] œ Gn+1 (n+1)th lower central subroup =∆ Gn+1
Gn+2

≥= Ln+1

L = ünLn the free Z-Lie algebra on {X1, X2, . . . , Xm}.

Define the order n Milnor invariant µn(L):

µn(L) :=
mÿ

i=1
Xi ¢ ¸i œ L1 ¢ Ln+1

where ¸i is the image in Ln+1 of the i-th longitude [Li ] œ Gn+1
Gn+2

.

Turns out: µn(L) œ Dn := ker{L1 ¢ Ln+1
bracket≠≠≠≠æ Ln+2}.



Summation maps ÷n ‘connect’ ·n (W) and µn(L)

Definition:
The map ÷n : Tn æ L1 ¢ Ln+1 is defined on generators by

÷n(t) :=
ÿ

vœt
Xlabel(v) ¢ Bracketv(t) ÷n(J ) := 1

2 ÷n(ÈJ , JÍ)

Here J is a rooted tree of order j for n = 2j .



Examples of ÷n for n = 1, 2

÷1(1 ≠≠< 3
2 ) = X1 ¢ ≠≠< 3

2 + X2 ¢ 1≠≠< 3 + X3 ¢ 1≠≠< 2
= X1 ¢ [X2, X3] + X2 ¢ [X3, X1] + X3 ¢ [X1, X2].

÷2( ≠≠< 2
1 ) = 1

2 ÷2( 1
2 >≠≠< 2

1)
= X1 ¢ 2 >≠≠< 2

1 + X2 ¢ 1 >≠≠< 2
1

= X1 ¢ [X2, [X1, X2]] + X2 ¢ [[X1, X2], X1].



The summation maps ÷n ‘connect’ ·n (W) and µn(L)

The image of ÷n is equal to the bracket kernel Dn < L1 ¢ Ln+1.

Theorem:
If L bounds a twisted Whitney tower W of order n, then the order q

Milnor invariants µq(L) vanish for q < n, and

µn(L) = ÷n ¶ ·n (W) œ Dn

Proof idea: Gropes in B
4 \ W display longitudes of L as iterated

commutators exactly according to ÷n ¶ ·n (W)...



The order n twisted Whitney tower filtration on links

Wn := {links in S
3 bounding order n twisted Whitney towers in B

4}
order n+1 twisted Whitney tower concordance

Obstruction theory =∆ Wn is a finitely generated abelian group

Via Cochran’s Bing-doubling techniques get epimorphisms

Rn : Tn ⇣ Wn

which send g œ Tn to the equivalence class of links bounding an
order n twisted Whitney tower W with ·n (W) = g .



Example of Rn : Tn ⇣Wn for n = 2

21

1 3

R2 B4into 

W(1,2)
L

L
1

2

L3

D1
D2

D3

L bounds W with ·2 (W) = 1
2 >≠≠≠< 1

3



Example of Rn : Tn ⇣Wn for n = 2

1

2

D1

D2
L2

L1

D2

R2

2 1
W

W

B4into

L bounds W with ·2 (W) = 2
1 >≠≠≠



Computation of Wn for n © 0, 1, 3 mod 4

Have commutative triangle diagram of epimorphisms:

Tn
Rn
// //

÷n
!!

!!

Wn

µn
✏✏

✏✏

Dn

Theorem:
The maps ÷n : Tn æ Dn are isomorphisms for n © 0, 1, 3 mod 4.

Corollary:
For n © 0, 1, 3 mod 4:

• µn : Wn æ Dn and Rn : Tn æ Wn are isomorphisms.

• ·n (W) œ Tn only depends on L = ˆW .



Towards computation of Wn for remaining cases n © 2 mod 4

Dn is a free abelian group of known rank for all n, so have a complete
computation of Wn

≥= Dn ≥= Tn in three quarters of the cases.

Towards understanding the remaining cases n © 2 mod 4:
Proposition:
The map 1 ¢ J ‘æ ≠≠≠< J

J œ T4j≠2 induces an isomorphism:

Z2 ¢ Lj ≥= Ker(÷4j≠2 : T4j≠2 æ D4j≠2)



Towards computation of Wn for remaining cases n © 2 mod 4

Extending the algebraic side of the triangle:

È1 ¢ JÍ
ff

&&

Z2 ¢ Lj
%%

%%

È ≠≠≠< J
JÍ // // T4j≠2

R4j≠2
// //

÷4j≠2
##

##

W4j≠2

µ4j≠2
✏✏

✏✏

D4j≠2



Towards defining higher-order Arf invariants

R4j≠2 induces –j : Z2 ¢ Lj ⇣ K4j≠2 := ker{µ4j≠2 : W4j≠2 ⇣ D4j≠2}

È1 ¢ JÍ
ee

%%

Z2 ¢ Lj
–j

// //

%%

%%

K4j≠2
✏✏

✏✏

È ≠≠≠< J
JÍ // // T4j≠2

R4j≠2
// //

÷4j≠2
##

##

W4j≠2

µ4j≠2
✏✏

✏✏

D4j≠2



Higher-order Arf invariant diagram

Also extending the topological side of the triangle:

(Z2 ¢ Lj)/ Ker –j

È1 ¢ JÍ
gg

''

Z2 ¢ Lj

OO

OO

–j
// //

''

''

K4j≠2
jj

Arf j
jj

jj

✏✏

✏✏

È ≠≠≠< J
JÍ // // T4j≠2

R4j≠2
// //

÷4j≠2
##

##

W4j≠2

µ4j≠2
✏✏

✏✏

D4j≠2

Arf j := K4j≠2 æ (Z2 ¢ Lj)/ Ker –j



Higher-order Arf invariants and computation of Wn for all n

Corollary:
The groups Wn are classified by Milnor invariants µn and, in addition,

higher-order Arf invariants Arf j for n = 4j ≠ 2.

In particular, a link bounds an order n + 1 twisted W if and only if its
Milnor invariants and higher-order Arf invariants vanish up to order n.



Higher-order Arf invariant diagram

(Z2 ¢ Lj)/ Ker –j

Z2 ¢ Lj

OO

OO

–j
// //

''

''

K4j≠2
jj

Arf j
jj

jj

✏✏

✏✏

T4j≠2
R4j≠2
// //

÷4j≠2
##

##

W4j≠2

µ4j≠2
✏✏

✏✏

D4j≠2



Conjectured higher-order Arf invariant diagram

Z2 ¢ Lj
$$

$$

K4j≠2oo

Arf j
oooo

✏✏

✏✏

T4j≠2
R4j≠2
// //

÷4j≠2
##

##

W4j≠2

µ4j≠2
✏✏

✏✏

D4j≠2

Conjecture: (Higher-order Arf invariant conjecture)
Arf j : K4j≠2 æ Z2 ¢ Lj are isomorphisms for all j .

This conjecture would imply Wn
·n≠æ Tn is an isomorphism for all n.



Determining the image of 2 Æ Arf j Æ Z2 ¢ Lj?

• Arf1 corresponds to classical Arf invariants of the link
components. Are the Arf j for j > 1 also determined by finite
type isotopy invariants?

• The links R4j≠2( ≠≠< J
J ) realizing the image of Arf j are known

not to be slice by work of J.C. Cha.

• Fundamental first open test case: Does the Bing double of the
Figure-8 knot R6 ( ≠≠< (1,2)

(1,2) ) œ W6 bound an order 7 twisted
Whitney tower?

• If the Bing double of the Figure-8 knot does bound an order 7
twisted Whitney tower, then Arf j are trivial for all j Ø 2.



Bing(Fig8) bounds W with t(W) = ((1, 2), (1, 2))

W = D1 fi D2 fi W(1,2) fi W(1,2),(1,2))

W((1,2),(1,2))

W(1,2)L

L

1

2



1

2

p

3

4

D
W

W

1

(1,2)

((1,2),3)



1 1

2
2

3 3

4 4




