Twisted Whitney towers and the higher-order Arf conjecture

Rob Schneiderman - (with Jim Conant \& Peter Teichner)

January 27, 2021

EMBEDDING CALCULUS AND GROPE COBORDISM OF KNOTS

DANICA KOSANOVIĆ

Abstract. We show that the invariants $e v_{n}$ of long knots in a 3-manifold, produced from embedding calculus, are surjective for all $n \geq 1$. On one hand, this solves some of the remaining open cases of the connectivity estimates of Goodwillie and Klein, and on the other hand, it confirms one half of the conjecture by Budney, Conant, Scannell and Sinha that for classical knots $e v_{n}$ are universal additive Vassiliev invariants over the integers.

We actually study long knots in any manifold of dimension at least 3 and develop a geometric understanding of the layers in the embedding calculus tower and their first non-trivial homotopy groups, given as certain groups of decorated trees. Moreover, in dimension 3 we give an explicit interpretation of $e v_{n}$ using capped grope cobordisms and our joint work with Shi and Teichner.

The main theorem of the present paper says that the first possibly non-vanishing embedding calculus invariant ev_{n} of a knot which is grope cobordant to the unknot is precisely the equivalence class of the underlying decorated tree of the grope in the homotopy group of the layer.

As a corollary, we give a sufficient condition for the mentioned conjecture to hold over a coefficient group. By recent results of Boavida de Brito and Horel this is fulfilled for the rationals, and for the p-adic integers in a range, confirming that the embedding calculus invariants are universal rational additive Vassiliev invariants, factoring configuration space integrals.

Outline of this talk

- Twisted Whitney towers and their trees
- Intersection invariants for order n twisted Whitney towers
- Classification of order n twisted Whitney towers in B^{4}
- The Higher-order Arf invariant Conjecture

Preview of end of talk

Key case of the Higher-order Arf invariant Conjecture in the setting of 'finite type' invariants:

The following sum of trees represents a non-trivial finite type concordance invariant of 2-component links (first-non-vanishing, $\mathbb{Z} / 2 \mathbb{Z}$-coefficients):

This invariant is finite type degree 6.
J-B. Meilhan and A. Yasuhara have characterized all finite type concordance invariants of string links in degrees ≤ 5.

Preview of end of talk

Key case of the Higher-order Arf invariant Conjecture in the setting of 'gropes':

The Bing double of any knot in S^{3} having non-trivial Arf invariant does not bound an embedded grope of degree 7 into B^{4}.

Left: The Bing double of the Figure-8 knot.
Right: One component of a degree 6 grope.

2-disks A and B in $B^{4}=B^{3} \times I$ with $p=A \pitchfork B$ and $A \subset B^{3} \times *$

Visualize: Hopf link $=\partial A \cup \partial B \subset S^{3}=\partial\left(B^{3} \times I\right)$

Intersections $p, q \in A \pitchfork B$ and a Whitney disk W pairing them:

Before and after a Whitney move:

Whitney move

Successful Whitney move: W is 'clean' and 'framed'

Eliminates $p, q \in A \pitchfork B$ without creating new intersections in A or B :

W is clean $=$ embedded $\&$ interior disjoint from all surfaces. W is framed $=W$ has appropriate parallels.

Want to 'measure' obstructions to successful Whitney moves...

W not clean \rightsquigarrow Whitney move creates new intersections:

$$
r \in W \pitchfork C \quad \rightsquigarrow \quad r^{\prime}, r^{\prime \prime} \in A \pitchfork C \text { after } W \text {-move on } A \text { : }
$$

Visualize: The Borromean Rings $\partial A \cup \partial B \cup \partial C \subset \partial B^{4}$
'higher-order Whitney disks' $\rightsquigarrow ' h i g h e r-o r d e r ~ i n t e r s e c t i o n s ' ~ \rightsquigarrow ~ t r e e s . . . ~$

Visualize: The Bing-double of the Hopf link in ∂B^{4}.

Definition:

A Whitney tower on $A^{2} \rightarrow X^{4}$ is defined by:

1. A itself is a Whitney tower.
2. If \mathcal{W} is a $W h i t n e y ~ t o w e r ~ a n d ~ W ~ i s ~ a ~ W h i t n e y ~ d i s k ~ p a i r i n g ~$ intersections in \mathcal{W}, then the union $\mathcal{W} \cup W$ is a Whitney tower.

Definition:

A Whitney tower on $A^{2} \rightarrow X^{4}$ is defined by:

1. A itself is a Whitney tower.
2. If \mathcal{W} is a Whitney tower and W is a Whitney disk pairing intersections in \mathcal{W}, then the union $\mathcal{W} \cup W$ is a Whitney tower.

Goal: Study \mathcal{W} to get info about $A \ldots$

So a Whitney tower $\mathcal{W} \subset X^{4}$ on a properly immersed surface $A^{2} \rightarrow X^{4}$ is the union of $A=\cup_{i} A_{i}$ and 'layers' of Whitney disks.

The intersection forest multiset $t(\mathcal{W})$ of a Whitney tower \mathcal{W}

$$
\mathcal{W} \mapsto t(\mathcal{W})=\sum \epsilon_{p} \cdot t_{p}+\sum \omega\left(W_{J}\right) \cdot J^{\infty}
$$

'framed tree' $t_{p} \leftarrow p$ unpaired intersection with sign $\epsilon_{p}= \pm 1$, 'twisted tree' $J^{\infty}:=J-\infty \longleftarrow W_{J}$ with twisting $\omega\left(W_{J}\right) \neq 0 \in \mathbb{Z}$.

Paired intersections \longrightarrow rooted trees

$W_{(i, j)}$ pairing $A_{i} \pitchfork A_{j} \quad \longmapsto \quad$ rooted tree $<_{i}^{j}=(i, j)$

Paired intersections \rightarrow rooted trees

Recursively: $W_{(I, J)}$ pairing $W_{I} \pitchfork W_{J} \longmapsto \quad<l_{I}^{J}=(I, J)$

Rooted trees $I, J=$ non-associative bracketings from $\{1,2,3, \ldots, m\}$ Notation convention: Singleton subscript W_{i} denotes component A_{i}.

Un-paired intersections \rightarrow un-rooted trees

Inner product 'fuses' rooted edges into single edge:

$$
p \in W_{(I, J)} \pitchfork W_{k} \quad \longmapsto \quad t_{p}=\langle(I, J), K\rangle=\prime_{J}^{\prime}>\kappa \kappa
$$

Recall: Whitney move uses two parallel copies of W :

The twisting $\omega(W) \in \mathbb{Z}$ of W is the relative Euler number of a normal section $\overline{\partial W}$ over ∂W determined by the sheets:

$$
W_{J} \quad \mapsto \quad J^{\infty}:=J-\infty \quad \text { if } \omega\left(W_{J}\right) \neq 0
$$

Boundary twist on W changes $\omega(W)$ by ± 1, creates intersection p between W and a sheet paired by W
'Side view' near a point in ∂W :

Can create any clean $W_{(I, J)}$ by finger moves, then boundary twist into J-sheet changes $t(\mathcal{W})$ by:

$$
I \ll_{J}^{J} \pm I<_{\infty}^{J}
$$

\pm-interior twist on W changes $\omega(W)$ by ∓ 2 and creates $p \in W \pitchfork W$

After the interior twist, near an arc in W that runs between the two sheets:

Can create any clean W_{J} by finger moves, then \pm-interior twist changes $t(\mathcal{W})$ by:

$$
\pm\langle J, J\rangle \quad \mp \quad 2 \cdot J^{\infty}
$$

Obstruction theory for links bounding twisted Whitney towers

- \mathcal{W} is an order n twisted Whitney tower if $t(\mathcal{W})$ contains only framed trees of order $\geq n$ and twisted trees of order $\geq n / 2$, where order $:=$ number of trivalent vertices.
- Will define abelian groups \mathcal{T}_{n}^{∞} and intersection invariants $\tau_{n}^{\infty}(\mathcal{W}):=[t(\mathcal{W})] \in \mathcal{T}_{n}^{\infty}$ such that:
L bounds an order n twisted \mathcal{W} with $\tau_{n}^{\infty}(L):=\tau_{n}^{\infty}(\mathcal{W})=0$ if and only if L bounds an order $n+1$ twisted Whitney tower.
- $\tau_{n}^{\infty}(L) \longleftrightarrow$ Milnor invariants and higher-order Arf invariants

Towards intersection invariants $\tau_{n}^{\infty}(\mathcal{W})=[t(\mathcal{W})] \in \mathcal{T}_{n}^{\infty}$ for order n twisted Whitney towers $\mathcal{W} \subset B^{4}$ bounded by $L \subset S^{3}$
$\mathcal{T}_{n}:=$ free abelian group on order n framed trees modulo local antisymmetry (AS) and Jacobi (IHX) relations:

AS relations \Rightarrow signs of the framed trees in $t(\mathcal{W})$ only depend on the orientation of $L=\cup_{i} \partial D^{2} \subset \cup_{i} D^{2} \xrightarrow{A_{i}} B^{4}$ after mapping to \mathcal{T}_{n}.

IHX trees can be created locally by controlled manipulations of Whitney disks.

The odd order target groups $\mathcal{T}_{2 j-1}^{\infty}$

Obstructions to raising twisted order from $2 j-1$ to $2 j$:
Definition:
$\mathcal{T}_{2 j-1}^{\infty}$ is the quotient of $\mathcal{T}_{2 j-1}$ by boundary-twist relations:

$$
i<{ }_{J}^{J}=0
$$

where J ranges over all order $j-1$ subtrees.

Since via boundary-twisting:

$$
i \nless_{J}^{J} \mapsto \quad i \lll \lll \text { trees of order } \geq 2 j
$$

and the trees on the right are allowed in order $2 j$ twisted \mathcal{W}.

The even order target groups $\mathcal{T}_{2 j}^{\infty}$

Obstructions to raising twisted order from $2 j$ to $2 j+1$:

Definition:

$\mathcal{T}_{2 j}^{\infty}$ is the quotient of the free abelian group on framed trees of order $2 j$ and co-trees of order j by the following relations:

1. AS and IHX relations on order $2 j$ framed trees
2. symmetry relations: $(-J)^{\infty}=J^{\infty}$
3. twisted IHX relations: $I^{\infty}=H^{\infty}+X^{\infty}-\langle H, X\rangle$
4. interior-twist relations: $2 \cdot J^{\infty}=\langle J, J\rangle$

Remark: $\infty \ll_{J}^{J}$ generate the torsion subgroup of $\mathcal{T}^{\infty}:=\oplus \mathcal{T}_{n}^{\infty}$.

Intersection/obstruction theory for order n twisted Whitney towers

Definition:

For an order n twisted W hitney tower \mathcal{W} define

$$
\tau_{n}^{\infty}(\mathcal{W}):=[t(\mathcal{W})] \in \mathcal{T}_{n}^{\infty}
$$

Theorem:

If $L \subset S^{3}$ bounds an order n twisted $\mathcal{W} \subset B^{4}$ with $\tau_{n}^{\infty}(\mathcal{W})=0 \in \mathcal{T}_{n}^{\infty}$, then L bounds an order $n+1$ twisted Whitney tower.

Idea of proof: Realize relations by geometric constructions to turn 'algebraic cancellation' in \mathcal{T}_{n}^{∞} into 'geometric cancellation' by new layer of Whitney disks.

Quick review of Milnor invariants

For $L=L_{1} \cup L_{2} \cup \cdots \cup L_{m} \subset S^{3}$ and $G=\pi_{1}\left(S^{3} \backslash L\right)$:

$$
\left[L_{i}\right] \in G_{n+1}(n+1) \text { th lower central subroup } \Longrightarrow \frac{G_{n+1}}{G_{n+2}} \cong \mathcal{L}_{n+1}
$$

$\mathcal{L}=\oplus_{n} \mathcal{L}_{n}$ the free \mathbb{Z}-Lie algebra on $\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}$.
Define the order n Milnor invariant $\mu_{n}(L)$:

$$
\mu_{n}(L):=\sum_{i=1}^{m} X_{i} \otimes \ell_{i} \in \mathcal{L}_{1} \otimes \mathcal{L}_{n+1}
$$

where ℓ_{i} is the image in \mathcal{L}_{n+1} of the i-th longitude $\left[L_{i}\right] \in \frac{G_{n+1}}{G_{n+2}}$.
Turns out: $\mu_{n}(L) \in \mathcal{D}_{n}:=\operatorname{ker}\left\{\mathcal{L}_{1} \otimes \mathcal{L}_{n+1} \xrightarrow{\text { bracket }} \mathcal{L}_{n+2}\right\}$.

Summation maps η_{n} 'connect' $\tau_{n}^{\infty \rho}(\mathcal{W})$ and $\mu_{n}(L)$

Definition:

The map $\eta_{n}: \mathcal{T}_{n}^{\infty} \rightarrow \mathcal{L}_{1} \otimes \mathcal{L}_{n+1}$ is defined on generators by

$$
\eta_{n}(t):=\sum_{v \in t} X_{\text {label }(v)} \otimes \operatorname{Bracket}_{v}(t) \quad \eta_{n}\left(J^{\infty}\right):=\frac{1}{2} \eta_{n}(\langle J, J\rangle)
$$

Here J is a rooted tree of order j for $n=2 j$.

Examples of η_{n} for $n=1,2$

$$
\begin{aligned}
\eta_{1}\left(1<{ }_{2}^{3}\right) & =X_{1} \otimes<_{2}^{3}+X_{2} \otimes 1<^{3}+X_{3} \otimes 1<_{2} \\
& =X_{1} \otimes\left[X_{2}, X_{3}\right]+X_{2} \otimes\left[X_{3}, X_{1}\right]+X_{3} \otimes\left[X_{1}, X_{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
\eta_{2}\left(\infty<{ }_{1}^{2}\right) & =\frac{1}{2} \eta_{2}\left(\begin{array}{l}
1 \\
2
\end{array}<{ }_{1}^{2}\right) \\
& =X_{1} \otimes 2<{ }_{1}^{2}+X_{2} \otimes{ }^{1}><1 \\
& =X_{1} \otimes\left[X_{2},\left[X_{1}, X_{2}\right]\right]+X_{2} \otimes\left[\left[X_{1}, X_{2}\right], X_{1}\right] .
\end{aligned}
$$

The summation maps η_{n} 'connect' $\tau_{n}^{\infty}(\mathcal{W})$ and $\mu_{n}(L)$

The image of η_{n} is equal to the bracket kernel $\mathcal{D}_{n}<\mathcal{L}_{1} \otimes \mathcal{L}_{n+1}$.

Theorem:

If L bounds a twisted Whitney tower \mathcal{W} of order n, then the order q Milnor invariants $\mu_{q}(L)$ vanish for $q<n$, and

$$
\mu_{n}(L)=\eta_{n} \circ \tau_{n}^{\infty}(\mathcal{W}) \in \mathcal{D}_{n}
$$

Proof idea: Gropes in $B^{4} \backslash \mathcal{W}$ display longitudes of L as iterated commutators exactly according to $\eta_{n} \circ \tau_{n}^{\infty}(\mathcal{W}) \ldots$

The order n twisted Whitney tower filtration on links

$\mathrm{W}_{n}^{\infty}:=\frac{\left\{\text { links in } S^{3} \text { bounding order } n \text { twisted Whitney towers in } B^{4}\right\}}{\text { order } n+1 \text { twisted Whitney tower concordance }}$

Obstruction theory $\Longrightarrow \mathrm{W}_{n}^{\infty}$ is a finitely generated abelian group
Via Cochran's Bing-doubling techniques get epimorphisms

$$
R_{n}^{\infty}: \mathcal{T}_{n}^{\infty} \rightarrow \mathrm{W}_{n}^{\infty}
$$

which send $g \in \mathcal{T}_{n}^{\infty}$ to the equivalence class of links bounding an order n twisted Whitney tower \mathcal{W} with $\tau_{n}^{\omega \rho}(\mathcal{W})=g$.

Example of $R_{n}^{\infty}: \mathcal{T}_{n}^{\infty} \rightarrow \mathrm{W}_{n}^{\infty}$ for $n=2$

L bounds \mathcal{W} with $\tau_{2}^{c s}(\mathcal{W})=\frac{1}{2}><\frac{1}{3}$

Example of $R_{n}^{\infty}: \mathcal{T}_{n}^{\infty} \rightarrow \mathrm{W}_{n}^{\infty}$ for $n=2$

L bounds \mathcal{W} with $\tau_{2}^{\infty}(\mathcal{W})={ }_{1}^{2}>-\infty$

Computation of W_{n}^{∞} for $n \equiv 0,1,3 \bmod 4$

Have commutative triangle diagram of epimorphisms:

$$
\begin{aligned}
\mathcal{T}_{n}^{\infty} \xrightarrow{R_{n}^{\infty}} & \mathrm{W}_{n}^{\infty} \\
\eta_{n} & \\
& \neq \mu_{n} \\
& \not \mathcal{D}_{n}
\end{aligned}
$$

Theorem:

The maps $\eta_{n}: \mathcal{T}_{n}^{\infty} \rightarrow \mathcal{D}_{n}$ are isomorphisms for $n \equiv 0,1,3 \bmod 4$.

Corollary:

For $n \equiv 0,1,3 \bmod 4$:

- $\mu_{n}: \mathrm{W}_{n}^{\infty} \rightarrow \mathcal{D}_{n}$ and $R_{n}^{\infty}: \mathcal{T}_{n}^{\infty} \rightarrow \mathrm{W}_{n}^{\infty}$ are isomorphisms.
- $\tau_{n}^{\infty}(\mathcal{W}) \in \mathcal{T}_{n}^{\infty}$ only depends on $L=\partial \mathcal{W}$.

Towards computation of W_{n}^{∞} for remaining cases $n \equiv 2 \bmod 4$

\mathcal{D}_{n} is a free abelian group of known rank for all n, so have a complete computation of $\mathrm{W}_{n}^{\infty} \cong \mathcal{D}_{n} \cong \mathcal{T}_{n}^{\infty}$ in three quarters of the cases.

Towards understanding the remaining cases $n \equiv 2 \bmod 4$:

Proposition:

The map $1 \otimes J \mapsto \infty \longrightarrow<_{J}^{J} \in \mathcal{T}_{4 j-2}^{\infty}$ induces an isomorphism:

$$
\mathbb{Z}_{2} \otimes \mathcal{L}_{j} \cong \operatorname{Ker}\left(\eta_{4 j-2}: \mathcal{T}_{4 j-2}^{\infty} \rightarrow \mathcal{D}_{4 j-2}\right)
$$

Towards computation of W_{n}^{∞} for remaining cases $n \equiv 2 \bmod 4$

Extending the algebraic side of the triangle:

Towards defining higher-order Arf invariants

$R_{4 j-2}^{\infty}$ induces $\alpha_{j}^{\infty}: \mathbb{Z}_{2} \otimes \mathcal{L}_{j} \rightarrow \mathrm{~K}_{4 j-2}^{\infty}:=\operatorname{ker}\left\{\mu_{4 j-2}: \mathrm{W}_{4 j-2}^{\infty} \rightarrow \mathcal{D}_{4 j-2}\right\}$

Higher-order Arf invariant diagram

Also extending the topological side of the triangle:

Higher-order Arf invariants and computation of W_{n}^{∞} for all n

Corollary:

The groups W_{n}^{∞} are classified by Milnor invariants μ_{n} and, in addition, higher-order Arf invariants Arf_{j} for $n=4 j-2$.

In particular, a link bounds an order $n+1$ twisted \mathcal{W} if and only if its Milnor invariants and higher-order Arf invariants vanish up to order n.

Higher-order Arf invariant diagram

$$
\mathbb{Z}_{2} \otimes \mathcal{L}_{j} \xrightarrow{\left(\mathbb{Z}_{2} \otimes \mathcal{L}_{j}\right) / \operatorname{Ker} \alpha_{j}^{\infty}}
$$

Conjectured higher-order Arf invariant diagram

$$
\mathbb{Z}_{2} \otimes \mathcal{L}_{j} \sharp-\stackrel{A}{-}_{\operatorname{Arf}_{j}}^{\sim}
$$

Conjecture: (Higher-order Arf invariant conjecture)
Arf $_{j}: \mathrm{K}_{4 j-2}^{\infty} \rightarrow \mathbb{Z}_{2} \otimes \mathrm{~L}_{j}$ are isomorphisms for all j.
This conjecture would imply $\mathrm{W}_{n}^{\infty} \xrightarrow{\tau_{n}^{\infty}} \mathcal{T}_{n}^{\infty}$ is an isomorphism for all n.

Determining the image of $2 \leq \operatorname{Arf}_{j} \leq \mathbb{Z}_{2} \otimes \mathcal{L}_{j}$?

- Arf $_{1}$ corresponds to classical Arf invariants of the link components. Are the Arf_{j} for $j>1$ also determined by finite type isotopy invariants?
- The links $R_{4 j-2}^{\infty}(\infty \ll J)$ realizing the image of Arf $_{j}$ are known not to be slice by work of J.C. Cha.
- Fundamental first open test case: Does the Bing double of the Figure-8 knot $R_{6}^{\infty}\left(\infty-<_{(1,2)}^{(1,2)}\right) \in \mathrm{W}_{6}^{\infty}$ bound an order 7 twisted Whitney tower?
- If the Bing double of the Figure-8 knot does bound an order 7 twisted Whitney tower, then Arf $_{j}$ are trivial for all $j \geq 2$.

Bing(Fig8) bounds \mathcal{W} with $t(\mathcal{W})=((1,2),(1,2))^{\infty}$

$$
\mathcal{W}=D_{1} \cup D_{2} \cup W_{(1,2)} \cup W_{(1,2),(1,2))}
$$

