BBS TALK: EMBEDDING CALCULUS AND SMOOTH STRUCTURES

ALEXANDER KUPERS

ABSTRACT. I will explain joint work with Ben Knudsen about the extent to which
embedding calculus is sensitive to the smooth structures of the domain and target. In
particular, we will prove that in dimension 4 the approximations provided by embedding
calculus depends only on the underlying topological manifolds and the vector bundle
reductions of their tangent microbundles provided by the smooth structures. If time
permits, I will also give some examples of high-dimensional exotic spheres distinguished
by embedding calculus and ask some questions.

This is joint work with Ben Knudsen, see [KK20].

Question 0.1. To what extent can invariants from embedding calculus be used to distinguish
smooth structures?

1. INVARIANTS OF SMOOTH MANIFOLDS

Homeomorphic but not diffeomorphic smooth manifolds are homotopy equivalent, so
cannot be distinguished from each other by any of the usual invariants from algebraic
topology (such as homology groups or homotopy groups). However, not all hope is lost: we
could try to construct some other space from a manifold (and possibly some additional data),
and show that these spaces are not homotopy equivalent using an invariant from algebraic
topology.

The construction of these spaces had better depend on the smooth structure of d-
dimensional smooth manifold M. An analytic approach to doing so is to take spaces
of solutions of certain systems of differential equations on bundles over M this leads to
gauge theory. However, here we take geometric approach of considering spaces of smooth
embeddings.

Embedding of points. The following is the simplest example:

Definition 1.1. Write k = {1,...,k}. The configuration space Conf(M) is the space of
smooth embeddings & <— M, in the C*°-topology.

If there were a diffeomorphism f: M — M’ then this would induce a map f: Confy (M) —
Confj(M') with inverse the map induced by f~!, so Conf, (M) would be homotopy equivalent
to Confy(M’). Conversely, if Conf (M) and Confy(M’) are not homotopy equivalent then
M and M’ can not be diffeomorphic.

The configuration spaces are not the best choice of space to extract from M, as Confy (M)
is homeomorphic to the space of k-tuples of distinct points in M:

Confy (M) = {(my,...,my) € M* | m; #m; if i # j},

so its homotopy type does not depend on the smooth structure of M. However, they don’t
just depend on the homotopy type of M; by a result of Longoni and Salvatore [LS05],
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Confy(L(7,1)) is not homotopy equivalent to Confa(L(7,2)) even though the two lens spaces
L(7,1) and L(7,2) are homotopy equivalent.

Remark 1.2. Classically, lens spaces are distinguished by Reidemeister torion. On the other
hand, Longoni and Salvatore distinguish them by Massey products on the universal cover of
Confy(M). Can one in general detect Reidemeister torsion of manifolds in the homotopy
type of their configuration spaces? What about Whitehead torsion of h-cobordisms?

Embeddings of open discs. We could try to amend this by replacing k by k x R¢, which I
will think of as a collection of open discs. Then evaluation at the origin gives a map

Emb(k x R, M) — Confy (M)

which by isotopy extension is a fiber bundle with fiber over a configuration (mq, ..., my) given
by the space of embeddings k open discs sending the center of the ith open disc to m;. This
is homotopy equivalent to the space k-tuples of frames Iso(R%, T, M) x - - -Iso(R%, T,,,, M).
In particular, for £ = 1 we recover the homotopy type of the total space of the frame bundle
of TM.

Embeddings of open discs and maps between these. Of course, these spaces of embeddings are
natural in the domain: for any embedding &’ x R% < k x R%, precomposition induces a map
Emb(k x RY, M) — Emb(EK’ x R%, M).

This is continuous in the embeddings, and is associative. For example, this means Emb(k x
R% M) comes with actions of ¥, (permuting the discs) and O(d)* (rotating each of the
discs).

All these maps are convenient encoded in terms of enriched presheaves, an idea due to
Boavida de Brito and Weiss [BABW13]. Let Discy be the category whose objects are given
by k x R for k > 0 and whose morphism spaces are given by

Discq(k’ x Rk x RY) = Emb(k’ x RY k x RY).
That Emb(—, M) is natural in the open discs we plug into the domain is then succinctly
encoded as saying that it is a enriched presheaf
Emb(—, M): Disc;” — Top.
Remark 1.3. A presheaf on Discy is the same as a right module over the operad with
k-ary operations Emb(k x R?,R?), which is homotopy equivalent to the framed little k-disks
operad or equivalently the k-dimensional Fulton—-MacPherson operad (e.g. [Turl3]).
If there were a diffeomorphism f: M — M’, then postcomposing by f gives a map
fo—:Emb(—, M) — Emb(—, M")

of presheaves on Discy, which yields a homotopy equivalence whenever we evaluate at
any object £ x R?. Thus whether Emb(—, M) and Emb(—, M') are weakly equivalent as

presheaves—in the sense, that there is a zigzag of such “objectwise weak equivalences”
between them—can serve to distinguish M and M’.

Question 1.4. How good of an invariant of the smooth manifold M is the presheaf
Emb(—, M)?

I will show that there is no clear-cut answer:

Theorem 1.5 (Knudsen-K.). If M and M' are homeomorphic 1-connected closed 4-
manifolds, then the presheaves Emb(—, M) and Emb(—, M') are weakly equivalent.
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Theorem 1.6 (Knudsen-K.). In infinitely-many dimensions d there exists an exotic sphere
¥4 so0 that the presheaves Emb(—, S?) and Emb(—,%%) are not weakly equivalent.

2. EMBEDDING CALCULUS

Before explaining the proofs of Theorem 1.5 and Theorem 1.6, let me explain their
relationship to embedding calculus and some consequences.

Let PSh(Discy) denote the category of enriched presheaves on Discy, of which Emb(—.M)
is an object. Then Emb(—, M) and Emb(—, M’) are equivalent if and only if there is a
homotopy-invertible element in the derived mapping space

MapgSh(Discd) (Emb(—, M), Emb(—, M")).

Remark 2.1. Strictly speaking, a derived mapping space depends on a choice of class of
weak equivalences; here they are the objectwise weak equivalences. One construction of the
derived mapping space is the Dwyer—-Kan hammock localisation, which is literally built from
zigzags of objectwise weak equivalences [DK80].

We encountered this space in an earlier talk. Recall from the talks in the first block that
embedding calculus provides a tower [Wei99]

|

ToEmb(M, M)
Emb(M, M’y —— TyEmb(M, M")
of approximations, which gives a map
Emb(M,N) — TooEmb(M, N) = }iolim T,Emb(M, N).
—00
This map is a homotopy equivalence when the handle dimension of M is < d—3 [GW99, GK15]

(and when d < 2, in joint work with Manuel Krannich [KK21]), but the map always exists
and is worth studying as a source of invariants.

Theorem 2.2 (Boavida de Brito—Weiss).
TooEmb(Mv N) = MapgSh(Discd) (Emb(_7 M)7 Emb(_7 N))

Thus these derived mapping spaces are models for embedding calculus; they may not be
the most explicit models for embedding calculus, unlike say [GKWO03], but it has excellent
formal properties.

2.1. Applications to (2-)knots in 4-manifolds. In Theorem 2.2 we assumed that M
and N both have dimension d. If M is of dimension ¢ < d, we can restrict Emb(—, M) a
presheaf on Discy by taking the composition

i*Emb(—, M): Disc,” BN Disc” (M), Top

with ¢ induced by taking the product with idge-¢. We then similarly have
ToEmb(M, N) ~ Mapgsy pisc,) (Emb(—, M), i*Emb(—, N)).

Let us deduce from this the following result for spaces of knots in 4-manifolds.
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Corollary 2.3. If M and M’ are homeomorphic 1-connected closed J-manifolds, then
Emb(St, M) and Emb(S*, M') are weakly equivalent. The same is true when we replace S*
by U,.S*t.

Proof. We use the previously stated result that the presheaves Emb(—, M) and Emb(—, M")
on Discy are weakly equivalent. If so, then the presheaves i*Emb(—, M) and i*Emb(—, N)
on Disc; are also weakly equivalent.

We write
Emb(S*, M) ~ T, Emb(S*, M) convergence
~ MapQSh(Discl)(Emb(—, SY),i*Emb(—, M)) Theorem 2.2
~ MapgSh(Discl)(Emb(—, S, i*Emb(—, M")) Theorem 1.5
~ T Emb(S*, M") Theorem 2.2
~ Emb(S*, M"). convergence
For the generalization just replace S* by L,.S'. ]

Remark 2.4. This answers a question of Viro [Virl5], and improves on a result of Arone
and Szymik (though they did a lot more) [AS19].

If we replace S with a surface ¥ and M, M’ as above, we still get that a diagram

Emb (X, M) —— ToEmb(S, M)

E

Emb(3, M') —— ToEmb(X, M)

with vertical map a weak equivalence. However, the horizontal maps are rarely a weak
equivalence, if ever (this is why we’ve had so many talks about embeddings of surfaces into
4-manifolds). However, we do learn the following lesson: any invariant of embeddings of
surfaces into 4-manifolds which factors over the limit of the embedding calculus Taylor tower
does not depend on the smooth structure of the target.

Question 2.5. Do configuration space integrals factor over the limit of the Taylor tower?
What about invariants based on Whitney towers?

2.2. Proof of Theorem 1.6. The relationship to embedding calculus also leads to a quick

proof of Theorem 1.6. Let us focus on dimension 16 for concreteness, in which case we use
[HLS65]:

Theorem 2.6 (Hsiang-Levine-Szczarba). There is an exotic 16-sphere %16 which does not
embed in R,

Corollary 2.7. The presheaves Emb(—, S16) and Emb(—,X1¢) on Discig are not weakly
equivalent.
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Proof. Suppose that there were an equivalence Emb(—, ¥16) — Emb(—, S16), then we have
Emb(S'% R'Y) ~ T, ,Emb(S'6, R'?) convergence
~ MapﬁSh(DiSCw)(Emb(—, S'6) i*Emb(—,R*)) Theorem 1.5

~ Mapgsh (Disc,q) (Emb(—, $'¢), i*Emb(—,R")) existence of equivalence

~ T Emb(X'¢, R1?) Theorem 1.5
~ Emb(X'0, R19) convergence.
The domain is non-empty, but the target is empty. We get a contradiction. ]

In fact, this happens for d = 27 for j > 3 (using work of Mahowald). The lowest dimension
d in which T know an example is d = 8 (using work of Levine). All the examples have
non-trivial coker(J)-component; I do not know whether there is an bP-sphere for which this
is true (being a d-dimensional bP-sphere is equivalent to admitting an embedding into R+2,
due to Kervaire). More ambitiously, one can ask:

Question 2.8. For X, % € 04, is Emb(—, ¥) ~ Emb(—,Y’) if and only if 3 is diffeomorphic
to £%'? What about other smooth manifolds which are homeomorphic but not diffeomorphic?

Also not that we don’t actually need that there is a homotopy-invertible map Emb(—, ¥1¢) —
Emb(—, S6), just a map.

Question 2.9. If M, M’ are closed manifolds of the same dimension, is any map of
presheaves Emb(—, M) — Emb(—, M') homotopy-invertible?

3. PROOF OF THEOREM 1.5

Let me now explain why, for homeomorphic 1-connected closed 4-manifolds M, M’ we
have a weak equivalence of presheaves Emb(—, M) ~ Emb(—, M’) on Discy. More generally,
we prove this is the case if we have a homeomorphism f: M — M’ so that the topological
derivative lifts to an isomorphism of vector bundles f*T'M’ = T M. More precisely, the
diagram of tangent microbundle classifiers

M M’
T“‘% )AbM’
4

BTop(

which we may assume commutes, should lift to a diagram

M M’
TM\,A ()/T’

BO4

commuting up to homotopy over BTop(4). Since Top(4)/0(4) — Top/O is 5-connected by
Freedman—Quinn [FQ90], the only obstruction to f having this property is an obstruction
class in H3(M;Z/2); if M is 1-connected this vanishes by Poincaré duality.

One of the reasons that I described embedding calculus in terms of derived mapping spaces
of presheaves is that we may replace the domain Discy of the presheaves with a Dwyer—-Kan
equivalent category [Korl7).

A Dwyer—Kan equivalence F: C — D between enriched categories is an enriched functor
that is essentially surjective on homotopy categories (i.e. replace the mapping spaces by their
sets of path components) and has the property that the maps C(x,y) — D(F(z), F(y)) are
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weak equivalences. Then X, X’ € PSh(D) are weakly equivalent if and only if X o F, X' o F' €
PSh(D) are.

The idea is now to replace smooth manifolds M by pairs (M,TM) of a topological
manifold with a vector bundle refinement of their tangent microbundle, and replace smooth
embeddings by the homotopy pullback

Emb®((M,TM),(N,TN)) ——— Bun*>(TM,TN)

| |

Emb™P (M, N) ——— Bun™? (™M, T™"N),

where Bun'” denotes vector bundle maps and Bun™" denotes microbundle maps. We call
these “formally smooth manifolds” and “formally smooth embeddings”. We write T M for
T M if M is smooth and we pick the tangent bundle as the vector bundle refinement of its
tangent microbundle.

Just like smooth embeddings of d-discs are determined by their germ near the origin, so
are topological embeddings. This gives

Emb®(R?, RY) ~ O(d) —— Bun*(TR%, TRY) ~ O(d)

| l

Emb™P (R4, R?) ~ Top(d) —— Bun™(T™PR?, T™PR4) x Top(d)

so the inclusion Emb(R%, R?) — Emb™(R?,R?) is a weak equivalence. Then same is true
replacing the domain by L;R? and the target by any formally smooth manifold M.
This means that

j: Discy — Discly
is an equivalence on mapping spaces, and as it is an isomorphism on homotopy categories it
is a Dwyer—Kan equivalence. Similarly, one proves that Emb(—, M) — j*Embe(—, M) and
Emb(—, M) — j*Emb®™(—, M") equivalences. It thus suffices to show that

Emb'®(—, M) ~ Emb®(—, M’)

in PSh(Discgs). Now we observe that a postcomposition with a homeomorphism f: M — M’
preserving the tangent bundle induces a weak equivalence Emb®™(—, M) — Emb™(—, M").
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