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Diffeomorphism groups and their
classifying spaces



All manifolds M in this talk are smooth and connected (unless
explicitly specified otherwise).

We allow ∂M 6= ∅. Issues with orientations will be mostly
neglected; if they play a role will be mentioned occasionally.

We denote the group of diffeomorphisms of M with Diff(M). It
has a natural topology (due to Whitney, often called C∞) that
takes all derivatives into account. A sequence (fj ∈ Diff(M))∞j=1

converges iff all derivatives converge.

It thus makes sense to consider the classifying space BDiff(M).
Caveat: in general, BDiff(M) 6∼ Bπ0Diff(M),BDiffδ(M).

We are interested in the homotopy type of BDiff(M); it carries
more information than Diff(M) seen as a space or as a group.
One can say it combines both structures into one.
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Naive guess: if M is endowed with a "good" Riemannian metric
g, then Isom(M, g)→ Diff(M) is a weak equivalence.

Look at this for spheres:

SO(d + 1)

∼
��||

Diff∂(Dd) // Diff+(Sd) // Fr+(Sd)

Hence we get

SO(d + 1) = Isom+(Sd, ground)
∼−→ Diff+(Sd)⇔ Diff∂(Dd) ∼ ∗.

This is satisfied d = 1,2,3 (folklore, Smale, Hatcher) but fails
for all d ≥ 4 (Kervaire–Milnor, Novikov, Burghelea-Lashof,..., in
higher dimensions; Watanabe in dimension 4).
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By an old theorem of Ehresmann, any proper submersion
π : E→ B is a smooth fiber bundle, i.e., for M = π−1(b) a/the
fiber, we can identify π with M ×Diff(M) P→ B for P→ B a
principal Diff(M)-bundle.

We thus get (for all reasonable spaces B):

{Smooth M-bundles E→ B}/concordance
∼= {B→ BDiff(M)}/homotopy,

and H∗(BDiff(M)) is the ring of characteristic classes of smooth
M-bundles.

Our goal is to understand the homotopy type of BDiff(M) and
the ring of characteristic classes H∗(BDiff(M)) as well as possible.
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The 1st (classical) approach:
surgery and K-theory



This approach tries to compare Diff(M) to Aut(M), the homotopy
automorphisms of M which form a "group up to homotopy".

Introduce ˜BDiff(M), the classifying space for block bundles. Then
we have a factorization BDiff(M)→ ˜BDiff(M)→ BAut(M).

• The homotopy fiber of ˜BDiff(M)→ BAut(M) can be accessed
via surgery theory.

(Quinn’s space-level version of the surgery exact sequence)

• The homotopy fiber of BDiff(M)→ ˜BDiff(M) can be accessed
via Waldhausen’s algebraic K-theory of spaces.

(Hatcher, Weiss–Williams)
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The 2nd approach: homological
stability and moduli spaces



This approach was coined by Galatius and Randal-Williams,
following the seminal work of Madsen–Weiss. We denote
Wg := #g Sn×Sn. In dimension 2, this is a surface of genus g.

We have maps Diff∂(Wg\D2n)→ Diff∂(Wg+1\D2n).
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Theorem (Harer in dimension 2, G–R-W in high dimensions)

BDiff∂(Wg\D2n)→ BDiff∂(Wg+1\D2n) induces and isomorphism
in homology in degrees ≤∼ g/2 (≤∼ 3/2g for surfaces).

The 0-dimensional analogue is due to Nakaoka and states that
H∗ BΣg

∼−→ H∗ BΣg+1 in degrees ≤∼ 1/2g

N. Perlmutter proved analogues in odd dimensions.

This phenomenon is called homological stability.
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Once homological stability is established, we need to understand
the stable homology.

In dimension 0, this follows from Barratt–Priddy–Quillen which
we can be sated as ΩB

(∐
g≥0 BΣg

)
∼ Z× Ω∞0 S = Ω∞S.

We will later sketch what happens in higher dimensions. Key:
specific model for BDiff(M) deserving the name "moduli space":

BDiff(M) ∼ {N ⊂ (0,1)∞ | N smooth manifold, N ∼= M}
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Tautological classes



What classes in H∗(BDiff(M)) can we define?

For an oriented smooth M2n-bundle π : E→ B, we have:

• The vertical tangent bundle Tπ := ker(TE→ π∗TB) over E,
classified by a map E→ BSO(2n).

• The fiber integration map
∫
π : H∗E→ H∗−dB. If B is a smooth

manifold, this is PDB ◦ π∗ ◦ PDE.

Thus for c ∈ H∗(BSO(2n);Q) = Q[p1, p2, . . . , pn, e]/〈e2 − pn〉 we
can define κc :=

∫
π c(Tπ).

This is called tautological or generalized Miller–Morita–Mumford
or simply κ-class.

For surface bundles (n = 1) we only have κi := κei+1 of degree 2i.
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Madsen–Weiss



Unlike in higher dimensions, we have that the components of
Diff∂(S) are contractible for S a surface (∂S 6= ∅ allowed) other
than S2,T2 (Earle–Eells).

Thus, BDiff∂(Sg\D2) ∼ BΓg,1, with Γg,1 the mapping class group.

Theorem (Madsen–Weiss)
H∗stable(BΓg,1) = Q[κ1, κ2, . . . ]

Theorem (Galatius–Randal-Williams)
For 2n ≥ 4,
H∗stable(BDiff∂(Wg\D2n)) = Q[κc, c monomial in pi, i > n

4 , e]
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Cobordism Categories



An important ingredient for the proofs of these results is the
concept of cobordism categories: Cd is a topological category
whose

• objects are closed (d− 1)-manifolds

• morphisms are cobordisms, embedded in (0, t)× (0,1)∞−1

(Endowed with tangential structures; for instance, orientations).

Theorem (Galatius–Madsen–Tillmann–Weiss)

BCd ∼ Ω∞−1MTO(d).

In case this is completely new to you, I recommend the lecture
notes on talks on the Madsen–Weiss theorem by S. Galatius,
available on N. Wahl’s website.

We will sketch the idea of the proof for the 0-dimensional case.
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The 0-dimensional cobordism category is the E∞ algebra

{C ⊂ (0,1)∞ | C finite} ∼
∐
g

BΣg

Introduce the En−k-algebras (for 0 ≤ k ≤ n)

Ψn,k = {C ⊂ Rk × (0,1)n−k | C discrete in Rn}

Points are allowed to "disappear at∞".

Using simplicial methods, one can prove that BΨn,k ∼ Ψn,k+1.

For k ≥ 1, Ψn,k is connected, hence Ψn,k ∼ ΩΨn,n.

We thus get BΨn,0 ∼ Ψn,1 ∼ ΩΨn,2 ∼ · · · ∼ Ωn−1Ψn,n.

We will explain below that Ψn,n ∼ Sn, then

B
(∐

g BΣg

)
∼ colimnΩn−1Sn = Ω∞−1S. (This is BPQ)
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Scanning



We want to understand the homotopy type of

Ψn,n = {C ⊂ Rn | C discrete} ∼←−↩ {C ⊂ Rn | |C| ≤ 1} ∼ Sn

With a similar argument, we can prove

{N ⊂ Rn | N d-manifold} ∼←−↩ {V ⊂ Rn | V affine d-plane} ∪ ∅
= Th(Gr⊥d (Rn))

By definition, MTOn = ΩnTh(Gr⊥d (Rn)).
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Tautological classes & group actions



Recall: the tautological ring of M is sub-ring
R∗(M) ⊂ H∗(BDiff+(M);Q) generated by κ-classes.

Stable results only describe it in a range. What if we are
interested in algebraic properties of R∗(M)?

Theorem (Randal-Williams)

If Tk y M2n effectively and such that either

(a) χ(M) 6= 0 and MTk is connected, or

(b) MTk is discrete and non-empty,

then K-dim(R∗(M)) ≥ k.

Theorem (Galatius–Grigoriev–Randal-Williams)
In dimensions 4m + 2 ≥ 6, we have
R∗(Wg)/

√
0 = Q[κep1 , κep2 . . . , κepn−1 ] for g > 1.
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G (connected) Lie group. When is the assignment

{Smooth actions G y M} → {Smooth M-bundles E→ BG}

surjective?

Theorem (R.)
For G = SU(2),M = Wg, it is not.

I do not know if this can also happen for G = S1.
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The 3rd approach: embedding
calculus



As this was central to block I, I won’t say what embedding
calculus à la Weiss is.

The reason it is relevant is that we have
Diff∂(M) = Emb∂(M)→ T∞ Emb∂(M).

For T∞ Emb(M,N), convergence requires codim ≥ 3.

If we allow the boundary to move, the right dimension count is
handle-dim(M), geom-dim(N).

handle-dim 1
2∂

(Wg\D2n) = n, geom-dim(Wg\D2n) = 2n, so

Diff 1
2∂

(Wg\D2n) is susceptible to embedding calculus.

Playing this off against the results by Galatius–Randal-Williams
on Diff∂(Wg\D2n) has led to several breakthrough recently.

The most important tool is the Weiss fiber sequence that will
feature in forthcoming talks.
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Diffeomorphisms of discs



We already saw that studying the homotopy type and
(co)homology of BDiff∂(Dd) is of fundamental importance.

Morlet: for d ≥ 5, BDiff∂(Dd) ∼ ΩdTOP(d)/O(d).

There is a fiber sequence BDiff∂(Dd+1)→ BC(Dd)→ BDiff∂(Dd)

with C meaning concordances.

Waldhausen + Igusa: there is a map BC(Dd)→ ΩA(∗) ∼Q ΩK(Z)

that is a homology isomorphism in some range, growing with d.
(The range was recently improved significantly by M. Krannich)

This leads to non-trivial classes in H4j(BDiff∂(D2n+1);Q)

(Farrell–Hsiang, known for more than 40 years).
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T. Watanabe has discovered unrelated non-trivial classes in
π`(2n−2)BDiff

fr
∂ (D2n+1)⊗Q and π`(4n−6)BDiff

fr
∂ (D2n)⊗Q

that are related to graph complexes. (about 10 years ago)

M. Weiss’s discovery that more Pontryagin classes survive under
BTOP(d)→ BTOP ∼ BO than in BO(d) gives yet different
classes in H4i−d(BDifffr

∂ (Dd);Q). (even more recently)

Kupers–Randal-Williams have used deep results on Torelli
spaces to prove that ‘outside some bands’, the cohomology of
BDiff∂(D2n) consists only of K-theory and ‘Dalian’ classes.

Several people are currently working on better understanding
whether and if so, how these different classes in
H∗(BDiff∂(Dd);Q) constitute the whole cohomology.
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