GT action on the embedding calculus tower for knots

Geoffroy Horel (USPN, ENS)

BBS, November 25th 2020

Geoffroy Horel (USPN, ENS) GT action on the embedding calculus tower for knots

Definition

Fix a linear embedding $j : \mathbb{R} \to \mathbb{R}^3$. The space of long knots, denoted $Emb_c(\mathbb{R}, \mathbb{R}^3)$ is the space of embeddings from \mathbb{R} to \mathbb{R}^3 that coïncide with j outside of a compact subset of \mathbb{R} .

Definition

Fix a linear embedding $j : \mathbb{R} \to \mathbb{R}^3$. The space of long knots, denoted $Emb_c(\mathbb{R}, \mathbb{R}^3)$ is the space of embeddings from \mathbb{R} to \mathbb{R}^3 that coïncide with j outside of a compact subset of \mathbb{R} .

More generally, one can consider the space $Emb_c(\mathbb{R}, \mathbb{R}^d)$ of embeddings from \mathbb{R} to \mathbb{R}^d with $d \geq 3$.

Definition

Fix a linear embedding $j : \mathbb{R} \to \mathbb{R}^3$. The space of long knots, denoted $\text{Emb}_c(\mathbb{R}, \mathbb{R}^3)$ is the space of embeddings from \mathbb{R} to \mathbb{R}^3 that coïncide with j outside of a compact subset of \mathbb{R} .

More generally, one can consider the space $Emb_c(\mathbb{R}, \mathbb{R}^d)$ of embeddings from \mathbb{R} to \mathbb{R}^d with $d \geq 3$.

Definition

Fix a linear embedding $j : \mathbb{R} \to \mathbb{R}^3$. The space of long knots, denoted $\text{Emb}_c(\mathbb{R}, \mathbb{R}^3)$ is the space of embeddings from \mathbb{R} to \mathbb{R}^3 that coïncide with j outside of a compact subset of \mathbb{R} .

More generally, one can consider the space $Emb_c(\mathbb{R}, \mathbb{R}^d)$ of embeddings from \mathbb{R} to \mathbb{R}^d with $d \geq 3$.

Proposition

Connected sum of knots give this space the structure of a commutative H-space.

Definition

Fix a linear embedding $j : \mathbb{R} \to \mathbb{R}^3$. The space of long knots, denoted $\text{Emb}_c(\mathbb{R}, \mathbb{R}^3)$ is the space of embeddings from \mathbb{R} to \mathbb{R}^3 that coïncide with j outside of a compact subset of \mathbb{R} .

More generally, one can consider the space $Emb_c(\mathbb{R}, \mathbb{R}^d)$ of embeddings from \mathbb{R} to \mathbb{R}^d with $d \geq 3$.

Proposition

Connected sum of knots give this space the structure of a commutative H-space.

$$\rightarrow$$
 $(\ \) \rightarrow$ $(\$

Definition (Vassiliev, Gusarov, Stanford)

A map $\pi_0(Emb_c(\mathbb{R}, \mathbb{R}^3))) \to A$ with A an abelian group is an additive invariant of degree $\leq k$ if it is a monoid homomorphism and it is invariant under infection by pure braids lying in $\gamma_{k+1}(P_n)$.

Definition (Vassiliev, Gusarov, Stanford)

A map $\pi_0(Emb_c(\mathbb{R}, \mathbb{R}^3))) \to A$ with A an abelian group is an additive invariant of degree $\leq k$ if it is a monoid homomorphism and it is invariant under infection by pure braids lying in $\gamma_{k+1}(P_n)$.

Definition (Vassiliev, Gusarov, Stanford)

A map $\pi_0(Emb_c(\mathbb{R}, \mathbb{R}^3))) \to A$ with A an abelian group is an additive invariant of degree $\leq k$ if it is a monoid homomorphism and it is invariant under infection by pure braids lying in $\gamma_{k+1}(P_n)$.

Conjecture (Goodwillie-Weiss, Budney-Conant-Koytcheff-Sinha)

The map $ev_{k+1} : \pi_0(Emb_c(\mathbb{R}, \mathbb{R}^3)) \to \pi_0 T_{k+1}Emb_c(\mathbb{R}, \mathbb{R}^3)$ is the universal additive invariant of degree $\leq k$.

Definition (Vassiliev, Gusarov, Stanford)

A map $\pi_0(Emb_c(\mathbb{R}, \mathbb{R}^3))) \to A$ with A an abelian group is an additive invariant of degree $\leq k$ if it is a monoid homomorphism and it is invariant under infection by pure braids lying in $\gamma_{k+1}(P_n)$.

Conjecture (Goodwillie-Weiss, Budney-Conant-Koytcheff-Sinha)

The map $ev_{k+1} : \pi_0(Emb_c(\mathbb{R}, \mathbb{R}^3)) \to \pi_0 T_{k+1}Emb_c(\mathbb{R}, \mathbb{R}^3)$ is the universal additive invariant of degree $\leq k$.

True after tensoring with \mathbb{Q} (Kontsevich integral). The map ev_{k+1} is a degree $\leq k$ invariant (Budney-Conant-Koytcheff-Sinha, Kosanović-Shi-Teichner)

Geoffroy Horel (USPN, ENS) GT action on the embedding calculus tower for knots

Theorem (Kosanović)

The map ev_{k+1} is the universal additive invariant of degree $\leq k$ if the spectral sequence for $T_{k+1}Emb_c(\mathbb{R},\mathbb{R}^3)$ collapses at the E^2 -page along the diagonal t = s.

Theorem (Kosanović)

The map ev_{k+1} is the universal additive invariant of degree $\leq k$ if the spectral sequence for $T_{k+1}Emb_c(\mathbb{R},\mathbb{R}^3)$ collapses at the E^2 -page along the diagonal t = s.

Theorem (Boavida de Brito, H.)

The map $ev_{k+1} : \pi_0(Emb_c(\mathbb{R}, \mathbb{R}^3)) \to \pi_0 T_{k+1}Emb_c(\mathbb{R}, \mathbb{R}^3) \otimes \mathbb{Z}_{(p)}$ is the universal p-local additive invariant of degree $\leq k$ if $k \leq p + 1$. Furthermore, there is a non-canonical isomorphism

$$\pi_0 T_{k+1} Emb_c(\mathbb{R}, \mathbb{R}^3) \otimes \mathbb{Z}_{(p)} \cong \bigoplus_{s \le k} \mathcal{A}'_s \otimes \mathbb{Z}_{(p)}$$

where \mathcal{A}_*^l is the algebra of indecomposable Feynman diagrams.

Theorem (Kosanović)

The map ev_{k+1} is the universal additive invariant of degree $\leq k$ if the spectral sequence for $T_{k+1}Emb_c(\mathbb{R},\mathbb{R}^3)$ collapses at the E^2 -page along the diagonal t = s.

Theorem (Boavida de Brito, H.)

The map $ev_{k+1} : \pi_0(Emb_c(\mathbb{R}, \mathbb{R}^3)) \to \pi_0 T_{k+1}Emb_c(\mathbb{R}, \mathbb{R}^3) \otimes \mathbb{Z}_{(p)}$ is the universal p-local additive invariant of degree $\leq k$ if $k \leq p + 1$. Furthermore, there is a non-canonical isomorphism

$$\pi_0 T_{k+1} Emb_c(\mathbb{R}, \mathbb{R}^3) \otimes \mathbb{Z}_{(p)} \cong \bigoplus_{s \le k} \mathcal{A}'_s \otimes \mathbb{Z}_{(p)}$$

where \mathcal{A}_*^l is the algebra of indecomposable Feynman diagrams.

Idea : Would like to understand the homotopy type of Emb(M, N) with M and N two smooth manifolds of dimension m and n.

Idea : Would like to understand the homotopy type of Emb(M, N) with M and N two smooth manifolds of dimension m and n. Easy to do when the source manifold is a disk D^m . Then $Emb(M, N) \simeq Fr_m(TN)$.

Idea : Would like to understand the homotopy type of Emb(M, N) with M and N two smooth manifolds of dimension m and n. Easy to do when the source manifold is a disk D^m . Then $Emb(M, N) \simeq Fr_m(TN)$. If M is a disjoint union of k disks, then $Emb(M, N) \simeq Fr_{m,...,m}(TConf_k(N))$.

Idea : Would like to understand the homotopy type of Emb(M, N) with M and N two smooth manifolds of dimension m and n. Easy to do when the source manifold is a disk D^m . Then $Emb(M, N) \simeq Fr_m(TN)$. If M is a disjoint union of k disks, then $Emb(M, N) \simeq Fr_{m,...,m}(TConf_k(N))$. In general we have a map

 $Emb(M, N) \rightarrow \operatorname{holim}_{U \in \operatorname{Disk}(M)} Emb(U, N)$

Idea : Would like to understand the homotopy type of Emb(M, N) with M and N two smooth manifolds of dimension m and n. Easy to do when the source manifold is a disk D^m . Then $Emb(M, N) \simeq Fr_m(TN)$. If M is a disjoint union of k disks, then $Emb(M, N) \simeq Fr_{m,...,m}(TConf_k(N))$. In general we have a map

 $Emb(M, N) \rightarrow \operatorname{holim}_{U \in \operatorname{Disk}(M)} Emb(U, N)$

Theorem (Goodwillie-Klein)

If $\dim(N) - \dim(M) \ge 3$, then this map is a weak equivalence.

Idea : Would like to understand the homotopy type of Emb(M, N) with M and N two smooth manifolds of dimension m and n. Easy to do when the source manifold is a disk D^m . Then $Emb(M, N) \simeq Fr_m(TN)$. If M is a disjoint union of k disks, then $Emb(M, N) \simeq Fr_{m,...,m}(TConf_k(N))$. In general we have a map

 $Emb(M, N) \rightarrow \operatorname{holim}_{U \in \operatorname{Disk}(M)} Emb(U, N)$

Theorem (Goodwillie-Klein)

If $\dim(N) - \dim(M) \ge 3$, then this map is a weak equivalence.

In general we denote by $T_{\infty}Emb(M, N)$ this limit and

$$T_k Emb(M, N) := \operatorname{holim}_{U \in \operatorname{Disk}_{<_k}(M)} Emb(U, N)$$

Idea : Would like to understand the homotopy type of Emb(M, N) with M and N two smooth manifolds of dimension m and n. Easy to do when the source manifold is a disk D^m . Then $Emb(M, N) \simeq Fr_m(TN)$. If M is a disjoint union of k disks, then $Emb(M, N) \simeq Fr_{m,...,m}(TConf_k(N))$. In general we have a map

 $Emb(M, N) \rightarrow \operatorname{holim}_{U \in \operatorname{Disk}(M)} Emb(U, N)$

Theorem (Goodwillie-Klein)

If $\dim(N) - \dim(M) \ge 3$, then this map is a weak equivalence.

In general we denote by $T_{\infty}Emb(M, N)$ this limit and

$$T_k Emb(M, N) := \operatorname{holim}_{U \in \operatorname{Disk}_{<_k}(M)} Emb(U, N)$$

We have a tower

 $Emb(M, N) \rightarrow T_{\infty}Emb(M, N) \rightarrow \ldots \rightarrow T_{k}Emb(M, N) \rightarrow \ldots$

The configuration category of a manifold M denoted con(M) is the following category (over Fin).

The configuration category of a manifold M denoted con(M) is the following category (over Fin).

an object is a pair (S, φ) with S a finite set and φ an embedding S → M.

The configuration category of a manifold M denoted con(M) is the following category (over Fin).

- an object is a pair (S, φ) with S a finite set and φ an embedding S → M.
- a morphism from (S, ϕ) to (T, ψ) is a map $u : S \to T$ and a "sticky path" connecting ϕ to $\psi \circ u$ in M^S .

The configuration category of a manifold M denoted con(M) is the following category (over Fin).

- an object is a pair (S, φ) with S a finite set and φ an embedding S → M.
- a morphism from (S, ϕ) to (T, ψ) is a map $u : S \to T$ and a "sticky path" connecting ϕ to $\psi \circ u$ in M^S .

Manifold calculus (Boavida de Brito-Weiss)

Theorem (Boavida de Brito-Weiss)

Let M and N be two smooth manifolds. Then, there is a homotopy cartesian square

Manifold calculus (Boavida de Brito-Weiss)

Theorem (Boavida de Brito-Weiss)

Let M and N be two smooth manifolds. Then, there is a homotopy cartesian square

with Γ the space of sections of a fiber bundle over M whose fiber over m is the space of pairs (n, α) with $n \in N$ and $\alpha : \operatorname{con}(T_m M) \to \operatorname{con}(T_n N)$ a map of configuration categories.

Manifold calculus (Boavida de Brito-Weiss)

Theorem (Boavida de Brito-Weiss)

Let M and N be two smooth manifolds. Then, there is a homotopy cartesian square

with Γ the space of sections of a fiber bundle over M whose fiber over m is the space of pairs (n, α) with $n \in N$ and $\alpha : \operatorname{con}(T_m M) \to \operatorname{con}(T_n N)$ a map of configuration categories.

There is a map $Imm(M, N) \to \Gamma'$ with Γ' the space of section of a fiber bundle over M whose fiber over m is the space of pairs $(n.\beta)$ with β an injective linear map $T_mM \to T_nN$. This is often an equivalence (Smale-Hirsch).

We specialize to $Emb_c(\mathbb{R}, \mathbb{R}^d)$.

We specialize to $Emb_c(\mathbb{R}, \mathbb{R}^d)$.

Theorem (Boavida de Brito-Weiss)

There is a fiber sequence

 $T_{\infty} \textit{Emb}_{c}(\mathbb{R}, \mathbb{R}^{d}) \rightarrow \textit{Imm}_{c}(\mathbb{R}, \mathbb{R}^{d}) \rightarrow \Omega \textit{Map}_{/\textit{Fin}}(\operatorname{con}(\mathbb{R}), \operatorname{con}(\mathbb{R}^{d}))$

We specialize to $Emb_c(\mathbb{R}, \mathbb{R}^d)$.

Theorem (Boavida de Brito-Weiss)

There is a fiber sequence

 $T_{\infty} \textit{Emb}_{c}(\mathbb{R}, \mathbb{R}^{d}) \rightarrow \textit{Imm}_{c}(\mathbb{R}, \mathbb{R}^{d}) \rightarrow \Omega \textit{Map}_{/\textit{Fin}}(\operatorname{con}(\mathbb{R}), \operatorname{con}(\mathbb{R}^{d}))$

There is a fiber sequence

 $T_k Emb_c(\mathbb{R}, \mathbb{R}^d) \to Imm_c(\mathbb{R}, \mathbb{R}^d) \to \Omega Map_{/Fin}(\operatorname{con}(\mathbb{R}, k), \operatorname{con}(\mathbb{R}^d, k))$

We specialize to $Emb_c(\mathbb{R}, \mathbb{R}^d)$.

Theorem (Boavida de Brito-Weiss)

There is a fiber sequence

 $T_{\infty} \textit{Emb}_{c}(\mathbb{R}, \mathbb{R}^{d}) \rightarrow \textit{Imm}_{c}(\mathbb{R}, \mathbb{R}^{d}) \rightarrow \Omega \textit{Map}_{/\textit{Fin}}(\operatorname{con}(\mathbb{R}), \operatorname{con}(\mathbb{R}^{d}))$

There is a fiber sequence

 $T_k \textit{Emb}_c(\mathbb{R}, \mathbb{R}^d) \rightarrow \textit{Imm}_c(\mathbb{R}, \mathbb{R}^d) \rightarrow \Omega \textit{Map}_{/\textit{Fin}}(\operatorname{con}(\mathbb{R}, k), \operatorname{con}(\mathbb{R}^d, k))$

Remark

• If $d \ge 4$, we can remove T_{∞} .

We specialize to $Emb_c(\mathbb{R}, \mathbb{R}^d)$.

Theorem (Boavida de Brito-Weiss)

There is a fiber sequence

 $T_{\infty} \textit{Emb}_{c}(\mathbb{R}, \mathbb{R}^{d}) \rightarrow \textit{Imm}_{c}(\mathbb{R}, \mathbb{R}^{d}) \rightarrow \Omega \textit{Map}_{/\textit{Fin}}(\operatorname{con}(\mathbb{R}), \operatorname{con}(\mathbb{R}^{d}))$

There is a fiber sequence

 $\mathcal{T}_k \textit{Emb}_c(\mathbb{R}, \mathbb{R}^d) \rightarrow \textit{Imm}_c(\mathbb{R}, \mathbb{R}^d) \rightarrow \Omega \textit{Map}_{/\textit{Fin}}(\operatorname{con}(\mathbb{R}, k), \operatorname{con}(\mathbb{R}^d, k))$

Remark

- If $d \ge 4$, we can remove T_{∞} .
- This is a corollary of the previous theorem, using the fact that the space at the top right corner in the cartesian square is contractible in this case (Alexander trick).

We specialize to $Emb_c(\mathbb{R}, \mathbb{R}^d)$.

Theorem (Boavida de Brito-Weiss)

There is a fiber sequence

 $T_{\infty} \textit{Emb}_{c}(\mathbb{R}, \mathbb{R}^{d}) \rightarrow \textit{Imm}_{c}(\mathbb{R}, \mathbb{R}^{d}) \rightarrow \Omega \textit{Map}_{/\textit{Fin}}(\operatorname{con}(\mathbb{R}), \operatorname{con}(\mathbb{R}^{d}))$

There is a fiber sequence

 $\mathcal{T}_k \textit{Emb}_c(\mathbb{R}, \mathbb{R}^d) \rightarrow \textit{Imm}_c(\mathbb{R}, \mathbb{R}^d) \rightarrow \Omega \textit{Map}_{/\textit{Fin}}(\operatorname{con}(\mathbb{R}, k), \operatorname{con}(\mathbb{R}^d, k))$

Remark

- If $d \ge 4$, we can remove T_{∞} .
- This is a corollary of the previous theorem, using the fact that the space at the top right corner in the cartesian square is contractible in this case (Alexander trick).

We write $T_k = T_k Emb_c(\mathbb{R}, \mathbb{R}^d)$. We denote by L_k the homotopy fiber of the map $T_k \to T_{k-1}$. We have a fiber sequence

 $T_k \to Imm_c(\mathbb{R}, \mathbb{R}^d) \to \Omega Map_{/Fin}(\operatorname{con}(\mathbb{R}, k), \operatorname{con}(\mathbb{R}^d, k))$

We write $T_k = T_k Emb_c(\mathbb{R}, \mathbb{R}^d)$. We denote by L_k the homotopy fiber of the map $T_k \to T_{k-1}$. We have a fiber sequence

 $T_k \to Imm_c(\mathbb{R}, \mathbb{R}^d) \to \Omega Map_{/Fin}(\operatorname{con}(\mathbb{R}, k), \operatorname{con}(\mathbb{R}^d, k))$

Using that $Imm_c(\mathbb{R}, \mathbb{R}^d) \simeq \Omega Map(\operatorname{con}(\mathbb{R}, 2), \operatorname{con}(\mathbb{R}^d, 2))$, we get

We write $T_k = T_k Emb_c(\mathbb{R}, \mathbb{R}^d)$. We denote by L_k the homotopy fiber of the map $T_k \to T_{k-1}$. We have a fiber sequence

$$T_k \to Imm_c(\mathbb{R}, \mathbb{R}^d) \to \Omega Map_{/Fin}(\operatorname{con}(\mathbb{R}, k), \operatorname{con}(\mathbb{R}^d, k))$$

Using that $Imm_c(\mathbb{R}, \mathbb{R}^d) \simeq \Omega Map(\operatorname{con}(\mathbb{R}, 2), \operatorname{con}(\mathbb{R}^d, 2))$, we get

Theorem

There is a weak equivalence for $2 \le k \le \infty$

$$L_k \simeq \Omega^2 \mathrm{hofib}[Map(\mathrm{con}(\mathbb{R},k),\mathrm{con}(\mathbb{R}^d,k))]$$

$$\rightarrow Map(\operatorname{con}(\mathbb{R}, k-1), \operatorname{con}(\mathbb{R}^d, k-1))]$$

The tower of fibrations $\ldots \rightarrow T_k \rightarrow T_{k-1} \rightarrow \ldots$ induces a spectral sequence

The tower of fibrations $\ldots \rightarrow T_k \rightarrow T_{k-1} \rightarrow \ldots$ induces a spectral sequence (which converges for $d \ge 4$)

The tower of fibrations $\ldots \rightarrow T_k \rightarrow T_{k-1} \rightarrow \ldots$ induces a spectral sequence (which converges for $d \ge 4$)

$$E^1_{-s,t} = \pi_{t-s}L_s \implies \pi_{t-s}Emb_c(\mathbb{R},\mathbb{R}^d)$$

The tower of fibrations $\ldots \rightarrow T_k \rightarrow T_{k-1} \rightarrow \ldots$ induces a spectral sequence (which converges for $d \ge 4$)

$$E^{1}_{-s,t} = \pi_{t-s}L_s \implies \pi_{t-s}Emb_c(\mathbb{R},\mathbb{R}^d)$$

Theorem (Goodwillie-Weiss,Göppl)

We have $\pi_{t-s}(L_s) = \bigcap_{i=0}^{s-1} \ker(\pi_t(s^i))$ with

$$s^i: Emb(\underline{s}, \mathbb{R}^d) \to Emb(\underline{s-1}, \mathbb{R}^d)$$

the map that forgets the i-th point.

The tower of fibrations $\ldots \rightarrow T_k \rightarrow T_{k-1} \rightarrow \ldots$ induces a spectral sequence (which converges for $d \ge 4$)

$$E^{1}_{-s,t} = \pi_{t-s}L_s \implies \pi_{t-s}Emb_c(\mathbb{R},\mathbb{R}^d)$$

Theorem (Goodwillie-Weiss,Göppl)

We have $\pi_{t-s}(L_s) = \bigcap_{i=0}^{s-1} \ker(\pi_t(s^i))$ with

$$s^i: Emb(\underline{s}, \mathbb{R}^d) \to Emb(\underline{s-1}, \mathbb{R}^d)$$

the map that forgets the i-th point.

This can be computed completely in terms of homotopy groups of spheres using the fiber sequence

$$\bigvee_{s-1} S^{d-1} \to \textit{Emb}(\underline{s}, \mathbb{R}^d) \to \textit{Emb}(\underline{s-1}, \mathbb{R}^d)$$

Theorem (Boavida-H.)

Let p be a prime. Let $E_{-s,t}^r$ be the Goodwillie-Weiss spectral sequence for $T_{\infty} Emb(\mathbb{R}, \mathbb{R}^d)$. In the spectral sequence $E_{-s,t}^r \otimes \mathbb{Z}_{(p)}$, in the range t < 2p - 2 + (s - 1)(d - 2), the only possibly non-zero differential are the d^r with r - 1 a multiple of (p - 1)(d - 2).

Theorem (Boavida-H.)

Let p be a prime. Let $E_{-s,t}^r$ be the Goodwillie-Weiss spectral sequence for $T_{\infty} Emb(\mathbb{R}, \mathbb{R}^d)$. In the spectral sequence $E_{-s,t}^r \otimes \mathbb{Z}_{(p)}$, in the range t < 2p - 2 + (s - 1)(d - 2), the only possibly non-zero differential are the d^r with r - 1 a multiple of (p - 1)(d - 2).

Corollary

• For
$$n \le (p-1)(d-2) + 3$$
 and $i \le 2p - 6 + 2(d-2)$:

 $\pi_i(T_n Emb_c(\mathbb{R}, \mathbb{R}^d)) \otimes \mathbb{Z}_{(p)} \cong \oplus_{t-s=i} E^2_{-s,t}(T_n) \otimes \mathbb{Z}_{(p)}$

Theorem (Boavida-H.)

Let p be a prime. Let $E_{-s,t}^r$ be the Goodwillie-Weiss spectral sequence for $T_{\infty} Emb(\mathbb{R}, \mathbb{R}^d)$. In the spectral sequence $E_{-s,t}^r \otimes \mathbb{Z}_{(p)}$, in the range t < 2p - 2 + (s - 1)(d - 2), the only possibly non-zero differential are the d^r with r - 1 a multiple of (p - 1)(d - 2).

Corollary

• For
$$n \leq (p-1)(d-2) + 3$$
 and $i \leq 2p - 6 + 2(d-2)$:

$$\pi_i(T_n Emb_c(\mathbb{R}, \mathbb{R}^d)) \otimes \mathbb{Z}_{(p)} \cong \oplus_{t-s=i} E^2_{-s,t}(T_n) \otimes \mathbb{Z}_{(p)}$$

• For d > 4 (resp. d = 4) and i < 2p + 2d - 4 (resp. i < 2p) :

$$\pi_i(\textit{Emb}_c(\mathbb{R},\mathbb{R}^d))\otimes\mathbb{Z}_{(p)}\cong\oplus_{t-s=i}E^2_{-s,t}\otimes\mathbb{Z}_{(p)}$$

Main theorem, sketch of proof

Definition

Let X be a simply connected finite type CW-complex. There exists a unique space up to homotopy L_pX called the *p*-completion of X with a map $X \to L_pX$ such that

- The map $X \to L_p X$ induces an isomorphism in $H_*(-, \mathbb{F}_p)$
- The map X → L_pX induces p-completion at the level of homotopy groups.

Definition

Let X be a simply connected finite type CW-complex. There exists a unique space up to homotopy L_pX called the *p*-completion of X with a map $X \to L_pX$ such that

- The map $X \to L_p X$ induces an isomorphism in $H_*(-,\mathbb{F}_p)$
- The map X → L_pX induces p-completion at the level of homotopy groups.

We denote by $T \otimes \mathbb{Z}_p$ the tower that we get by replacing $\operatorname{con}(\mathbb{R}^d)$ by its *p*-completion. The associated spectral sequence is simply the Goodwillie-Weiss spectral sequence tensored with \mathbb{Z}_p .

Definition

Let X be a simply connected finite type CW-complex. There exists a unique space up to homotopy L_pX called the *p*-completion of X with a map $X \to L_pX$ such that

- The map $X \to L_p X$ induces an isomorphism in $H_*(-,\mathbb{F}_p)$
- The map X → L_pX induces p-completion at the level of homotopy groups.

We denote by $T \otimes \mathbb{Z}_p$ the tower that we get by replacing $\operatorname{con}(\mathbb{R}^d)$ by its *p*-completion. The associated spectral sequence is simply the Goodwillie-Weiss spectral sequence tensored with \mathbb{Z}_p .

Theorem (Boavida, H.)

There is a non-trivial action of $\Gamma = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on the tower $\{T_n \otimes \mathbb{Z}_p\}_{n \in \mathbb{N}}$. This action is what forces some of the differentials to be zero.

Definition

Let M be a finitely generated \mathbb{Z}_p -module, the Γ -action given by $\gamma.m = \chi(\gamma)^n m$ is called the cyclotomic action of weight n.

Definition

Let *M* be a finitely generated \mathbb{Z}_p -module, the Γ -action given by $\gamma . m = \chi(\gamma)^n m$ is called the cyclotomic action of weight *n*.

Theorem (Boavida, H.)

• There is an action of $\Gamma = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on the tower $\{T_n \otimes \mathbb{Z}_p\}_{n \in \mathbb{N}}$.

Definition

Let *M* be a finitely generated \mathbb{Z}_p -module, the Γ -action given by $\gamma . m = \chi(\gamma)^n m$ is called the cyclotomic action of weight *n*.

Theorem (Boavida, H.)

- There is an action of $\Gamma = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on the tower $\{T_n \otimes \mathbb{Z}_p\}_{n \in \mathbb{N}}$.
- In the range t < 2p 2 + (s 1)(d 2), we have $E^{1}_{-s,t} \otimes \mathbb{Z}_{p} = 0$ unless t = n(d 2) + 1.

Definition

Let *M* be a finitely generated \mathbb{Z}_p -module, the Γ -action given by $\gamma.m = \chi(\gamma)^n m$ is called the cyclotomic action of weight *n*.

Theorem (Boavida, H.)

- There is an action of $\Gamma = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on the tower $\{T_n \otimes \mathbb{Z}_p\}_{n \in \mathbb{N}}$.
- In the range t < 2p 2 + (s 1)(d 2), we have $E^{1}_{-s,t} \otimes \mathbb{Z}_{p} = 0$ unless t = n(d 2) + 1.
- The Γ -action on $E^1_{-s,n(d-2)+1}\otimes \mathbb{Z}_p$ is cyclotomic of weight n.

Construction (Étale homotopy type)

Let X be an algebraic varitey defined over the rational numbers. Then the algebraic p-completion of the homotopy groups of $X(\mathbb{C})_{top}$ have an action of Γ . In fact (in good cases) the homotopy type $L_pX(\mathbb{C})_{top}$ has an action of Γ

Construction (Étale homotopy type)

Let X be an algebraic varitey defined over the rational numbers. Then the algebraic p-completion of the homotopy groups of $X(\mathbb{C})_{top}$ have an action of Γ . In fact (in good cases) the homotopy type $L_pX(\mathbb{C})_{top}$ has an action of Γ

In particular, there is a Galois action on the *p*-completion of the pure braid groups. This extends to a Galois action on the *p*-completion of $con(\mathbb{R}^2)$ (Drinfel'd). This can be extended to the *p*-completion of $con(\mathbb{R}^d)$ via the following theorem.

Theorem (Boavida de Brito-Weiss)

Let M and N be two manifold. There is a functorial way to construct $con(M \times N)$ from con(M) and con(N).