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Finite type theory

Definition

Fix a linear embedding j : R→ R3. The space of long knots,
denoted Embc(R,R3) is the space of embeddings from R to R3

that coïncide with j outside of a compact subset of R.

More generally, one can consider the space Embc(R,Rd) of
embeddings from R to Rd with d ≥ 3.

Proposition
Connected sum of knots give this space the structure of a
commutative H-space.
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Finite type invariants for knots

Definition (Vassiliev, Gusarov, Stanford)

A map π0(Embc(R,R3)))→ A with A an abelian group is an
additive invariant of degree ≤ k if it is a monoid homomorphism
and it is invariant under infection by pure braids lying in γk+1(Pn).

Conjecture (Goodwillie-Weiss,Budney-Conant-Koytcheff-Sinha)

The map evk+1 : π0(Embc(R,R3))→ π0Tk+1Embc(R,R3) is the
universal additive invariant of degree ≤ k .

True after tensoring with Q (Kontsevich integral). The map evk+1
is a degree ≤ k invariant (Budney-Conant-Koytcheff-Sinha,
Kosanović-Shi-Teichner)
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Finite type invariants for knots

Theorem (Kosanović)

The map evk+1 is the universal additive invariant of degree ≤ k if
the spectral sequence for Tk+1Embc(R,R3) collapses at the
E 2-page along the diagonal t = s.

Theorem (Boavida de Brito, H.)

The map evk+1 : π0(Embc(R,R3))→ π0Tk+1Embc(R,R3)⊗ Z(p)

is the universal p-local additive invariant of degree ≤ k if
k ≤ p + 1. Furthermore, there is a non-canonical isomorphism

π0Tk+1Embc(R,R3)⊗ Z(p)
∼= ⊕s≤kAI

s ⊗ Z(p)

where AI
∗ is the algebra of indecomposable Feynman diagrams.
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Manifold calculus (Goodwillie-Weiss)

Idea : Would like to understand the homotopy type of Emb(M,N)
with M and N two smooth manifolds of dimension m and n.

Easy
to do when the source manifold is a disk Dm. Then
Emb(M,N) ' Frm(TN). If M is a disjoint union of k disks, then
Emb(M,N) ' Frm,...,m(TConfk(N)). In general we have a map

Emb(M,N)→ holimU∈Disk(M)Emb(U,N)

Theorem (Goodwillie-Klein)

If dim(N)− dim(M) ≥ 3, then this map is a weak equivalence.

In general we denote by T∞Emb(M,N) this limit and

TkEmb(M,N) := holimU∈Disk≤k (M)Emb(U,N)

We have a tower

Emb(M,N)→ T∞Emb(M,N)→ . . .→ TkEmb(M,N)→ . . .
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Manifold calculus (Boavida de Brito-Weiss)

Definition
The configuration category of a manifold M denoted con(M) is the
following category (over Fin).

an object is a pair (S , φ) with S a finite set and φ an
embedding S → M.
a morphism from (S , φ) to (T , ψ) is a map u : S → T and a
“sticky path” connecting φ to ψ ◦ u in MS .
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Manifold calculus (Boavida de Brito-Weiss)

Theorem (Boavida de Brito-Weiss)

Let M and N be two smooth manifolds. Then, there is a homotopy
cartesian square

T∞Emb(M,N) //

��

Map/Fin(con(M), con(N))

��
Imm(M,N) // Γ

with Γ the space of sections of a fiber bundle over M whose fiber
over m is the space of pairs (n, α) with n ∈ N and
α : con(TmM)→ con(TnN) a map of configuration categories.

There is a map Imm(M,N)→ Γ′ with Γ′ the space of section of a
fiber bundle over M whose fiber over m is the space of pairs (n.β)
with β an injective linear map TmM → TnN. This is often an
equivalence (Smale-Hirsch).
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Manifold calculus for knots

We specialize to Embc(R,Rd).

Theorem (Boavida de Brito-Weiss)

There is a fiber sequence

T∞Embc(R,Rd)→ Immc(R,Rd)→ ΩMap/Fin(con(R), con(Rd))

There is a fiber sequence

TkEmbc(R,Rd)→ Immc(R,Rd)→ ΩMap/Fin(con(R, k), con(Rd , k))

Remark
If d ≥ 4, we can remove T∞.
This is a corollary of the previous theorem, using the fact that
the space at the top right corner in the cartesian square is
contractible in this case (Alexander trick).
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Manifold calculus for knots

We write Tk = TkEmbc(R,Rd). We denote by Lk the homotopy
fiber of the map Tk → Tk−1. We have a fiber sequence

Tk → Immc(R,Rd)→ ΩMap/Fin(con(R, k), con(Rd , k))

Using that Immc(R,Rd) ' ΩMap(con(R, 2), con(Rd , 2)), we get

Theorem
There is a weak equivalence for 2 ≤ k ≤ ∞

Lk ' Ω2hofib[Map(con(R, k), con(Rd , k))

→ Map(con(R, k − 1), con(Rd , k − 1))]
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The Goodwillie-Weiss spectral sequence

The tower of fibrations . . .→ Tk → Tk−1 → . . . induces a spectral
sequence

(which converges for d ≥ 4)

E 1
−s,t = πt−sLs =⇒ πt−sEmbc(R,Rd)

Theorem (Goodwillie-Weiss,Göppl)

We have πt−s(Ls) =
⋂s−1

i=0 ker(πt(s i )) with

s i : Emb(s,Rd)→ Emb(s − 1,Rd)

the map that forgets the i-th point.

This can be computed completely in terms of homotopy groups of
spheres using the fiber sequence∨

s−1

Sd−1 → Emb(s,Rd)→ Emb(s − 1,Rd)
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Theorem (Goodwillie-Weiss,Göppl)

We have πt−s(Ls) =
⋂s−1

i=0 ker(πt(s i )) with

s i : Emb(s,Rd)→ Emb(s − 1,Rd)

the map that forgets the i-th point.

This can be computed completely in terms of homotopy groups of
spheres using the fiber sequence∨

s−1

Sd−1 → Emb(s,Rd)→ Emb(s − 1,Rd)
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Main theorem

Theorem (Boavida-H.)

Let p be a prime. Let E r
−s,t be the Goodwillie-Weiss spectral

sequence for T∞Emb(R,Rd). In the spectral sequence
E r
−s,t ⊗ Z(p), in the range t < 2p − 2 + (s − 1)(d − 2), the only

possibly non-zero differential are the d r with r − 1 a multiple of
(p − 1)(d − 2).

Corollary

For n ≤ (p − 1)(d − 2) + 3 and i ≤ 2p − 6 + 2(d − 2) :

πi (TnEmbc(R,Rd))⊗ Z(p)
∼= ⊕t−s=iE

2
−s,t(Tn)⊗ Z(p)

For d > 4 (resp. d = 4) and i < 2p + 2d − 4 (resp. i < 2p) :

πi (Embc(R,Rd))⊗ Z(p)
∼= ⊕t−s=iE

2
−s,t ⊗ Z(p)
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Main theorem, sketch of proof

Definition
Let X be a simply connected finite type CW-complex. There exists
a unique space up to homotopy LpX called the p-completion of X
with a map X → LpX such that

The map X → LpX induces an isomorphism in H∗(−,Fp)

The map X → LpX induces p-completion at the level of
homotopy groups.

We denote by T ⊗ Zp the tower that we get by replacing con(Rd)
by its p-completion. The associated spectral sequence is simply the
Goodwillie-Weiss spectral sequence tensored with Zp.

Theorem (Boavida, H.)

There is a non-trivial action of Γ = Gal(Q/Q) on the tower
{Tn ⊗ Zp}n∈N. This action is what forces some of the differentials
to be zero.
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Main theorem, sketch of proof

Let χ : Γ→ Ẑ× ∼= Aut(µ∞) be the cyclotomic character.

Definition
Let M be a finitely generated Zp-module, the Γ-action given by
γ.m = χ(γ)nm is called the cyclotomic action of weight n.

Theorem (Boavida, H.)

There is an action of Γ = Gal(Q/Q) on the tower
{Tn ⊗ Zp}n∈N.
In the range t < 2p − 2 + (s − 1)(d − 2), we have
E 1
−s,t ⊗ Zp = 0 unless t = n(d − 2) + 1.

The Γ-action on E 1
−s,n(d−2)+1 ⊗ Zp is cyclotomic of weight n.
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Main theorem, sketch of proof

Construction (Étale homotopy type)

Let X be an algebraic varitey defined over the rational numbers.
Then the algebraic p-completion of the homotopy groups of
X (C)top have an action of Γ. In fact (in good cases) the homotopy
type LpX (C)top has an action of Γ

In particular, there is a Galois action on the p-completion of the
pure braid groups. This extends to a Galois action on the
p-completion of con(R2) (Drinfel’d).
This can be extended to the p-completion of con(Rd) via the
following theorem.

Theorem (Boavida de Brito-Weiss)

Let M and N be two manifold. There is a functorial way to
construct con(M × N) from con(M) and con(N).
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