GT action on the embedding calculus tower for knots

Geoffroy Horel (USPN, ENS)

BBS, November 25th 2020

Finite type theory

Definition

Fix a linear embedding $j: \mathbb{R} \rightarrow \mathbb{R}^{3}$. The space of long knots, denoted $E m b_{c}\left(\mathbb{R}, \mathbb{R}^{3}\right)$ is the space of embeddings from \mathbb{R} to \mathbb{R}^{3} that coïncide with j outside of a compact subset of \mathbb{R}.

Finite type theory

Definition

Fix a linear embedding $j: \mathbb{R} \rightarrow \mathbb{R}^{3}$. The space of long knots, denoted $E m b_{c}\left(\mathbb{R}, \mathbb{R}^{3}\right)$ is the space of embeddings from \mathbb{R} to \mathbb{R}^{3} that coïncide with j outside of a compact subset of \mathbb{R}.

More generally, one can consider the space $E m b_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right)$ of embeddings from \mathbb{R} to \mathbb{R}^{d} with $d \geq 3$.

Finite type theory

Definition

Fix a linear embedding $j: \mathbb{R} \rightarrow \mathbb{R}^{3}$. The space of long knots, denoted $E m b_{c}\left(\mathbb{R}, \mathbb{R}^{3}\right)$ is the space of embeddings from \mathbb{R} to \mathbb{R}^{3} that coïncide with j outside of a compact subset of \mathbb{R}.

More generally, one can consider the space $E m b_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right)$ of embeddings from \mathbb{R} to \mathbb{R}^{d} with $d \geq 3$.

Finite type theory

Definition

Fix a linear embedding $j: \mathbb{R} \rightarrow \mathbb{R}^{3}$. The space of long knots, denoted $E m b_{c}\left(\mathbb{R}, \mathbb{R}^{3}\right)$ is the space of embeddings from \mathbb{R} to \mathbb{R}^{3} that coïncide with j outside of a compact subset of \mathbb{R}.

More generally, one can consider the space $E m b_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right)$ of embeddings from \mathbb{R} to \mathbb{R}^{d} with $d \geq 3$.

Proposition

Connected sum of knots give this space the structure of a commutative H -space.

Finite type theory

Definition

Fix a linear embedding $j: \mathbb{R} \rightarrow \mathbb{R}^{3}$. The space of long knots, denoted $E m b_{c}\left(\mathbb{R}, \mathbb{R}^{3}\right)$ is the space of embeddings from \mathbb{R} to \mathbb{R}^{3} that coïncide with j outside of a compact subset of \mathbb{R}.

More generally, one can consider the space $E m b_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right)$ of embeddings from \mathbb{R} to \mathbb{R}^{d} with $d \geq 3$.

Proposition

Connected sum of knots give this space the structure of a commutative H -space.

Finite type invariants for knots

Definition (Vassiliev, Gusarov, Stanford)

A map $\left.\pi_{0}\left(E m b_{c}\left(\mathbb{R}, \mathbb{R}^{3}\right)\right)\right) \rightarrow A$ with A an abelian group is an additive invariant of degree $\leq k$ if it is a monoid homomorphism and it is invariant under infection by pure braids lying in $\gamma_{k+1}\left(P_{n}\right)$.

Finite type invariants for knots

Definition（Vassiliev，Gusarov，Stanford）

A map $\left.\pi_{0}\left(E m b_{c}\left(\mathbb{R}, \mathbb{R}^{3}\right)\right)\right) \rightarrow A$ with A an abelian group is an additive invariant of degree $\leq k$ if it is a monoid homomorphism and it is invariant under infection by pure braids lying in $\gamma_{k+1}\left(P_{n}\right)$ ．

ルッルッ

Finite type invariants for knots

Definition (Vassiliev, Gusarov, Stanford)

A map $\left.\pi_{0}\left(E m b_{c}\left(\mathbb{R}, \mathbb{R}^{3}\right)\right)\right) \rightarrow A$ with A an abelian group is an additive invariant of degree $\leq k$ if it is a monoid homomorphism and it is invariant under infection by pure braids lying in $\gamma_{k+1}\left(P_{n}\right)$.

Conjecture (Goodwillie-Weiss,Budney-Conant-Koytcheff-Sinha)

The map $\mathrm{ev}_{k+1}: \pi_{0}\left(E m b_{c}\left(\mathbb{R}, \mathbb{R}^{3}\right)\right) \rightarrow \pi_{0} T_{k+1} E m b_{c}\left(\mathbb{R}, \mathbb{R}^{3}\right)$ is the universal additive invariant of degree $\leq k$.

Finite type invariants for knots

Definition (Vassiliev, Gusarov, Stanford)

A map $\left.\pi_{0}\left(E m b_{c}\left(\mathbb{R}, \mathbb{R}^{3}\right)\right)\right) \rightarrow A$ with A an abelian group is an additive invariant of degree $\leq k$ if it is a monoid homomorphism and it is invariant under infection by pure braids lying in $\gamma_{k+1}\left(P_{n}\right)$.

Conjecture (Goodwillie-Weiss,Budney-Conant-Koytcheff-Sinha)

The map $\mathrm{ev}_{k+1}: \pi_{0}\left(E m b_{c}\left(\mathbb{R}, \mathbb{R}^{3}\right)\right) \rightarrow \pi_{0} T_{k+1} E m b_{c}\left(\mathbb{R}, \mathbb{R}^{3}\right)$ is the universal additive invariant of degree $\leq k$.

True after tensoring with \mathbb{Q} (Kontsevich integral). The map ev_{k+1} is a degree $\leq k$ invariant (Budney-Conant-Koytcheff-Sinha, Kosanović-Shi-Teichner)

Finite type invariants for knots

Theorem (Kosanović)

The map ev_{k+1} is the universal additive invariant of degree $\leq k$ if the spectral sequence for $T_{k+1} E m b_{c}\left(\mathbb{R}, \mathbb{R}^{3}\right)$ collapses at the E^{2}-page along the diagonal $t=s$.

Finite type invariants for knots

Theorem (Kosanović)

The map ev_{k+1} is the universal additive invariant of degree $\leq k$ if the spectral sequence for $T_{k+1} E m b_{c}\left(\mathbb{R}, \mathbb{R}^{3}\right)$ collapses at the E^{2}-page along the diagonal $t=s$.

Theorem (Boavida de Brito, H.)

The map $\operatorname{ev}_{k+1}: \pi_{0}\left(E m b_{c}\left(\mathbb{R}, \mathbb{R}^{3}\right)\right) \rightarrow \pi_{0} T_{k+1} E m b_{c}\left(\mathbb{R}, \mathbb{R}^{3}\right) \otimes \mathbb{Z}_{(p)}$ is the universal p-local additive invariant of degree $\leq k$ if $k \leq p+1$. Furthermore, there is a non-canonical isomorphism

$$
\pi_{0} T_{k+1} E m b_{c}\left(\mathbb{R}, \mathbb{R}^{3}\right) \otimes \mathbb{Z}_{(p)} \cong \oplus_{s \leq k} \mathcal{A}_{s}^{\prime} \otimes \mathbb{Z}_{(p)}
$$

where \mathcal{A}_{*}^{l} is the algebra of indecomposable Feynman diagrams.

Finite type invariants for knots

Theorem (Kosanović)

The map ev_{k+1} is the universal additive invariant of degree $\leq k$ if the spectral sequence for $T_{k+1} E m b_{c}\left(\mathbb{R}, \mathbb{R}^{3}\right)$ collapses at the E^{2}-page along the diagonal $t=s$.

Theorem (Boavida de Brito, H.)

The map $\operatorname{ev}_{k+1}: \pi_{0}\left(E m b_{c}\left(\mathbb{R}, \mathbb{R}^{3}\right)\right) \rightarrow \pi_{0} T_{k+1} E m b_{c}\left(\mathbb{R}, \mathbb{R}^{3}\right) \otimes \mathbb{Z}_{(p)}$ is the universal p-local additive invariant of degree $\leq k$ if $k \leq p+1$. Furthermore, there is a non-canonical isomorphism

$$
\pi_{0} T_{k+1} E m b_{c}\left(\mathbb{R}, \mathbb{R}^{3}\right) \otimes \mathbb{Z}_{(p)} \cong \oplus_{s \leq k} \mathcal{A}_{s}^{\prime} \otimes \mathbb{Z}_{(p)}
$$

where \mathcal{A}_{*}^{l} is the algebra of indecomposable Feynman diagrams.

Manifold calculus (Goodwillie-Weiss)

Idea : Would like to understand the homotopy type of $\operatorname{Emb}(M, N)$ with M and N two smooth manifolds of dimension m and n.

Manifold calculus (Goodwillie-Weiss)

Idea : Would like to understand the homotopy type of $\operatorname{Emb}(M, N)$ with M and N two smooth manifolds of dimension m and n. Easy to do when the source manifold is a disk D^{m}. Then $\operatorname{Emb}(M, N) \simeq \operatorname{Fr}_{m}(T N)$.

Manifold calculus (Goodwillie-Weiss)

Idea : Would like to understand the homotopy type of $\operatorname{Emb}(M, N)$ with M and N two smooth manifolds of dimension m and n. Easy to do when the source manifold is a disk D^{m}. Then $\operatorname{Emb}(M, N) \simeq \operatorname{Fr}_{m}(T N)$. If M is a disjoint union of k disks, then $\operatorname{Emb}(M, N) \simeq \operatorname{Fr}_{m, \ldots, m}\left(\operatorname{TConf}_{k}(N)\right)$.

Manifold calculus (Goodwillie-Weiss)

Idea : Would like to understand the homotopy type of $\operatorname{Emb}(M, N)$ with M and N two smooth manifolds of dimension m and n. Easy to do when the source manifold is a disk D^{m}. Then $\operatorname{Emb}(M, N) \simeq \operatorname{Fr}_{m}(T N)$. If M is a disjoint union of k disks, then $\operatorname{Emb}(M, N) \simeq \operatorname{Fr}_{m, \ldots, m}\left(\operatorname{Conf}_{k}(N)\right)$. In general we have a map

$$
\operatorname{Emb}(M, N) \rightarrow \operatorname{holim}_{U \in \operatorname{Disk}(M)} \operatorname{Emb}(U, N)
$$

Manifold calculus (Goodwillie-Weiss)

Idea : Would like to understand the homotopy type of $\operatorname{Emb}(M, N)$ with M and N two smooth manifolds of dimension m and n. Easy to do when the source manifold is a disk D^{m}. Then
$\operatorname{Emb}(M, N) \simeq \operatorname{Fr}_{m}(T N)$. If M is a disjoint union of k disks, then $\operatorname{Emb}(M, N) \simeq \operatorname{Fr}_{m, \ldots, m}\left(\operatorname{Conf}_{k}(N)\right)$. In general we have a map

$$
\operatorname{Emb}(M, N) \rightarrow \operatorname{holim}_{U \in \operatorname{Disk}(M)} \operatorname{Emb}(U, N)
$$

Theorem (Goodwillie-Klein)

If $\operatorname{dim}(N)-\operatorname{dim}(M) \geq 3$, then this map is a weak equivalence.

Manifold calculus (Goodwillie-Weiss)

Idea : Would like to understand the homotopy type of $\operatorname{Emb}(M, N)$ with M and N two smooth manifolds of dimension m and n. Easy to do when the source manifold is a disk D^{m}. Then
$\operatorname{Emb}(M, N) \simeq \operatorname{Fr}_{m}(T N)$. If M is a disjoint union of k disks, then $\operatorname{Emb}(M, N) \simeq \operatorname{Fr}_{m, \ldots, m}\left(\operatorname{Conf}_{k}(N)\right)$. In general we have a map

$$
\operatorname{Emb}(M, N) \rightarrow \operatorname{holim}_{U \in \operatorname{Disk}(M)} \operatorname{Emb}(U, N)
$$

Theorem (Goodwillie-Klein)

If $\operatorname{dim}(N)-\operatorname{dim}(M) \geq 3$, then this map is a weak equivalence.
In general we denote by $T_{\infty} \operatorname{Emb}(M, N)$ this limit and

$$
T_{k} E m b(M, N):=\operatorname{holim}_{U \in \operatorname{Disk}_{\leq k}(M)} E m b(U, N)
$$

Manifold calculus (Goodwillie-Weiss)

Idea : Would like to understand the homotopy type of $\operatorname{Emb}(M, N)$ with M and N two smooth manifolds of dimension m and n. Easy to do when the source manifold is a disk D^{m}. Then
$\operatorname{Emb}(M, N) \simeq \operatorname{Fr}_{m}(T N)$. If M is a disjoint union of k disks, then $\operatorname{Emb}(M, N) \simeq \operatorname{Fr}_{m, \ldots, m}\left(\operatorname{Conf}_{k}(N)\right)$. In general we have a map

$$
\operatorname{Emb}(M, N) \rightarrow \operatorname{holim}_{U \in \operatorname{Disk}(M)} \operatorname{Emb}(U, N)
$$

Theorem (Goodwillie-Klein)

If $\operatorname{dim}(N)-\operatorname{dim}(M) \geq 3$, then this map is a weak equivalence.
In general we denote by $T_{\infty} \operatorname{Emb}(M, N)$ this limit and

$$
T_{k} E m b(M, N):=\operatorname{holim}_{U \in \operatorname{Disk}_{\leq k}(M)} E m b(U, N)
$$

We have a tower

$$
\operatorname{Emb}(M, N) \rightarrow T_{\infty} \operatorname{Emb}(M, N) \rightarrow \ldots \rightarrow T_{k} \operatorname{Emb}(M, N) \rightarrow \ldots
$$

Manifold calculus (Boavida de Brito-Weiss)

Definition

The configuration category of a manifold M denoted $\operatorname{con}(M)$ is the following category (over Fin).

Manifold calculus (Boavida de Brito-Weiss)

Definition
The configuration category of a manifold M denoted $\operatorname{con}(M)$ is the following category (over Fin).

- an object is a pair (S, ϕ) with S a finite set and ϕ an embedding $S \rightarrow M$.

Manifold calculus (Boavida de Brito-Weiss)

Definition

The configuration category of a manifold M denoted $\operatorname{con}(M)$ is the following category (over Fin).

- an object is a pair (S, ϕ) with S a finite set and ϕ an embedding $S \rightarrow M$.
- a morphism from (S, ϕ) to (T, ψ) is a map $u: S \rightarrow T$ and a "sticky path" connecting ϕ to $\psi \circ u$ in M^{S}.

Manifold calculus (Boavida de Brito-Weiss)

Definition

The configuration category of a manifold M denoted $\operatorname{con}(M)$ is the following category (over Fin).

- an object is a pair (S, ϕ) with S a finite set and ϕ an embedding $S \rightarrow M$.
- a morphism from (S, ϕ) to (T, ψ) is a map $u: S \rightarrow T$ and a "sticky path" connecting ϕ to $\psi \circ u$ in M^{S}.

Manifold calculus (Boavida de Brito-Weiss)

Theorem (Boavida de Brito-Weiss)

Let M and N be two smooth manifolds. Then, there is a homotopy cartesian square

$$
\begin{aligned}
& T_{\infty} \operatorname{Emb}(M, N) \longrightarrow \operatorname{Map}_{/ F i n}(\operatorname{con}(M), \operatorname{con}(N)) \\
& \stackrel{\downarrow}{\downarrow} \operatorname{lmm}(M, N) \longrightarrow \Gamma
\end{aligned}
$$

Manifold calculus (Boavida de Brito-Weiss)

Theorem (Boavida de Brito-Weiss)

Let M and N be two smooth manifolds. Then, there is a homotopy cartesian square

$$
\begin{aligned}
& T_{\infty} \operatorname{Emb}(M, N) \longrightarrow \operatorname{Map}_{/ F i n}(\operatorname{con}(M), \operatorname{con}(N))
\end{aligned}
$$

with Γ the space of sections of a fiber bundle over M whose fiber over m is the space of pairs (n, α) with $n \in N$ and $\alpha: \operatorname{con}\left(T_{m} M\right) \rightarrow \operatorname{con}\left(T_{n} N\right)$ a map of configuration categories.

Manifold calculus (Boavida de Brito-Weiss)

Theorem (Boavida de Brito-Weiss)

Let M and N be two smooth manifolds. Then, there is a homotopy cartesian square

$$
\begin{aligned}
& T_{\infty} \operatorname{Emb}(M, N) \longrightarrow M a p_{/ F i n}(\operatorname{con}(M), \operatorname{con}(N)) \\
& \stackrel{\downarrow}{\downarrow} \operatorname{lmm}(M, N) \longrightarrow \Gamma
\end{aligned}
$$

with Γ the space of sections of a fiber bundle over M whose fiber over m is the space of pairs (n, α) with $n \in N$ and $\alpha: \operatorname{con}\left(T_{m} M\right) \rightarrow \operatorname{con}\left(T_{n} N\right)$ a map of configuration categories.

There is a map $\operatorname{Imm}(M, N) \rightarrow \Gamma^{\prime}$ with Γ^{\prime} the space of section of a fiber bundle over M whose fiber over m is the space of pairs ($n . \beta$) with β an injective linear map $T_{m} M \rightarrow T_{n} N$. This is often an equivalence (Smale-Hirsch).

Manifold calculus for knots

We specialize to $E m b_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right)$.

Manifold calculus for knots

We specialize to $E m b_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right)$.

Theorem (Boavida de Brito-Weiss)

There is a fiber sequence

$$
T_{\infty} E m b_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right) \rightarrow \operatorname{Imm}_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right) \rightarrow \Omega \operatorname{Map}_{/ F i n}\left(\operatorname{con}(\mathbb{R}), \operatorname{con}\left(\mathbb{R}^{d}\right)\right)
$$

Manifold calculus for knots

We specialize to $E m b_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right)$.

Theorem (Boavida de Brito-Weiss)

There is a fiber sequence

$$
T_{\infty} E m b_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right) \rightarrow \operatorname{Imm}_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right) \rightarrow \Omega M a p_{/ F i n}\left(\operatorname{con}(\mathbb{R}), \operatorname{con}\left(\mathbb{R}^{d}\right)\right)
$$

There is a fiber sequence
$T_{k} E m b_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right) \rightarrow \operatorname{Imm}_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right) \rightarrow \Omega \operatorname{Map}_{/ F i n}\left(\operatorname{con}(\mathbb{R}, k), \operatorname{con}\left(\mathbb{R}^{d}, k\right)\right)$

Manifold calculus for knots

We specialize to $E m b_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right)$.

Theorem (Boavida de Brito-Weiss)

There is a fiber sequence
$T_{\infty} E m b_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right) \rightarrow \operatorname{Imm}_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right) \rightarrow \Omega M a p_{/ F i n}\left(\operatorname{con}(\mathbb{R}), \operatorname{con}\left(\mathbb{R}^{d}\right)\right)$
There is a fiber sequence
$T_{k} E m b_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right) \rightarrow \operatorname{Imm}_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right) \rightarrow \Omega M a p_{/ \text {Fin }}\left(\operatorname{con}(\mathbb{R}, k), \operatorname{con}\left(\mathbb{R}^{d}, k\right)\right)$

Remark

- If $d \geq 4$, we can remove T_{∞}.

Manifold calculus for knots

We specialize to $E m b_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right)$.

Theorem (Boavida de Brito-Weiss)

There is a fiber sequence
$T_{\infty} E m b_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right) \rightarrow \operatorname{Imm}_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right) \rightarrow \Omega M_{p_{/ F i n}}\left(\operatorname{con}(\mathbb{R}), \operatorname{con}\left(\mathbb{R}^{d}\right)\right)$
There is a fiber sequence
$T_{k} E m b_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right) \rightarrow \operatorname{Imm}_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right) \rightarrow \Omega M a p_{/ F i n}\left(\operatorname{con}(\mathbb{R}, k), \operatorname{con}\left(\mathbb{R}^{d}, k\right)\right)$

Remark

- If $d \geq 4$, we can remove T_{∞}.
- This is a corollary of the previous theorem, using the fact that the space at the top right corner in the cartesian square is contractible in this case (Alexander trick).

Manifold calculus for knots

We specialize to $E m b_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right)$.

Theorem (Boavida de Brito-Weiss)

There is a fiber sequence
$T_{\infty} E m b_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right) \rightarrow \operatorname{Imm}_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right) \rightarrow \Omega M_{p_{/ F i n}}\left(\operatorname{con}(\mathbb{R}), \operatorname{con}\left(\mathbb{R}^{d}\right)\right)$
There is a fiber sequence
$T_{k} E m b_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right) \rightarrow \operatorname{Imm}_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right) \rightarrow \Omega M a p_{/ F i n}\left(\operatorname{con}(\mathbb{R}, k), \operatorname{con}\left(\mathbb{R}^{d}, k\right)\right)$

Remark

- If $d \geq 4$, we can remove T_{∞}.
- This is a corollary of the previous theorem, using the fact that the space at the top right corner in the cartesian square is contractible in this case (Alexander trick).

Manifold calculus for knots

We write $T_{k}=T_{k} E m b_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right)$. We denote by L_{k} the homotopy fiber of the map $T_{k} \rightarrow T_{k-1}$. We have a fiber sequence

$$
T_{k} \rightarrow \operatorname{Imm}_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right) \rightarrow \Omega M a p_{/ F i n}\left(\operatorname{con}(\mathbb{R}, k), \operatorname{con}\left(\mathbb{R}^{d}, k\right)\right)
$$

Manifold calculus for knots

We write $T_{k}=T_{k} E m b_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right)$. We denote by L_{k} the homotopy fiber of the map $T_{k} \rightarrow T_{k-1}$. We have a fiber sequence

$$
T_{k} \rightarrow \operatorname{Imm}_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right) \rightarrow \Omega M a p_{/ F i n}\left(\operatorname{con}(\mathbb{R}, k), \operatorname{con}\left(\mathbb{R}^{d}, k\right)\right)
$$

Using that $\operatorname{Imm}_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right) \simeq \Omega \operatorname{Map}\left(\operatorname{con}(\mathbb{R}, 2), \operatorname{con}\left(\mathbb{R}^{d}, 2\right)\right)$, we get

Manifold calculus for knots

We write $T_{k}=T_{k} E m b_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right)$. We denote by L_{k} the homotopy fiber of the map $T_{k} \rightarrow T_{k-1}$. We have a fiber sequence

$$
T_{k} \rightarrow \operatorname{Imm}_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right) \rightarrow \Omega M^{\prime} p_{/ F i n}\left(\operatorname{con}(\mathbb{R}, k), \operatorname{con}\left(\mathbb{R}^{d}, k\right)\right)
$$

Using that $\operatorname{Imm}_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right) \simeq \Omega \operatorname{Map}\left(\operatorname{con}(\mathbb{R}, 2), \operatorname{con}\left(\mathbb{R}^{d}, 2\right)\right)$, we get

Theorem

There is a weak equivalence for $2 \leq k \leq \infty$

$$
\begin{aligned}
L_{k} & \simeq \Omega^{2} \operatorname{hofib}\left[\operatorname{Map}\left(\operatorname{con}(\mathbb{R}, k), \operatorname{con}\left(\mathbb{R}^{d}, k\right)\right)\right. \\
& \left.\rightarrow \operatorname{Map}\left(\operatorname{con}(\mathbb{R}, k-1), \operatorname{con}\left(\mathbb{R}^{d}, k-1\right)\right)\right]
\end{aligned}
$$

The Goodwillie-Weiss spectral sequence

The tower of fibrations $\ldots \rightarrow T_{k} \rightarrow T_{k-1} \rightarrow \ldots$ induces a spectral sequence

The Goodwillie-Weiss spectral sequence

The tower of fibrations $\ldots \rightarrow T_{k} \rightarrow T_{k-1} \rightarrow \ldots$ induces a spectral sequence (which converges for $d \geq 4$)

The Goodwillie-Weiss spectral sequence

The tower of fibrations $\ldots \rightarrow T_{k} \rightarrow T_{k-1} \rightarrow \ldots$ induces a spectral sequence (which converges for $d \geq 4$)

$$
E_{-s, t}^{1}=\pi_{t-s} L_{s} \Longrightarrow \pi_{t-s} E m b_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right)
$$

The Goodwillie-Weiss spectral sequence

The tower of fibrations $\ldots \rightarrow T_{k} \rightarrow T_{k-1} \rightarrow \ldots$ induces a spectral sequence (which converges for $d \geq 4$)

$$
E_{-s, t}^{1}=\pi_{t-s} L_{s} \Longrightarrow \pi_{t-s} E m b_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right)
$$

Theorem (Goodwillie-Weiss, Göppl)

We have $\pi_{t-s}\left(L_{s}\right)=\bigcap_{i=0}^{s-1} \operatorname{ker}\left(\pi_{t}\left(s^{i}\right)\right)$ with

$$
s^{i}: \operatorname{Emb}\left(\underline{s}, \mathbb{R}^{d}\right) \rightarrow \operatorname{Emb}\left(\underline{s-1}, \mathbb{R}^{d}\right)
$$

the map that forgets the i-th point.

The Goodwillie-Weiss spectral sequence

The tower of fibrations $\ldots \rightarrow T_{k} \rightarrow T_{k-1} \rightarrow \ldots$ induces a spectral sequence (which converges for $d \geq 4$)

$$
E_{-s, t}^{1}=\pi_{t-s} L_{s} \Longrightarrow \pi_{t-s} E m b_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right)
$$

Theorem (Goodwillie-Weiss,Göppl)

We have $\pi_{t-s}\left(L_{s}\right)=\bigcap_{i=0}^{s-1} \operatorname{ker}\left(\pi_{t}\left(s^{i}\right)\right)$ with

$$
s^{i}: E m b\left(\underline{s}, \mathbb{R}^{d}\right) \rightarrow E m b\left(\underline{s-1}, \mathbb{R}^{d}\right)
$$

the map that forgets the i-th point.
This can be computed completely in terms of homotopy groups of spheres using the fiber sequence

$$
\bigvee_{s-1} S^{d-1} \rightarrow E m b\left(\underline{s}, \mathbb{R}^{d}\right) \rightarrow E m b\left(\underline{s-1}, \mathbb{R}^{d}\right)
$$

Main theorem

Theorem (Boavida-H.)

Let p be a prime. Let $E_{-s, t}^{r}$ be the Goodwillie-Weiss spectral sequence for $T_{\infty} \operatorname{Emb}\left(\mathbb{R}, \mathbb{R}^{d}\right)$. In the spectral sequence $E_{-s, t}^{r} \otimes \mathbb{Z}_{(p)}$, in the range $t<2 p-2+(s-1)(d-2)$, the only possibly non-zero differential are the d^{r} with $r-1$ a multiple of $(p-1)(d-2)$.

Main theorem

Theorem (Boavida-H.)

Let p be a prime. Let $E_{-s, t}^{r}$ be the Goodwillie-Weiss spectral sequence for $T_{\infty} \operatorname{Emb}\left(\mathbb{R}, \mathbb{R}^{d}\right)$. In the spectral sequence $E_{-s, t}^{r} \otimes \mathbb{Z}_{(p)}$, in the range $t<2 p-2+(s-1)(d-2)$, the only possibly non-zero differential are the d^{r} with $r-1$ a multiple of $(p-1)(d-2)$.

Corollary

- For $n \leq(p-1)(d-2)+3$ and $i \leq 2 p-6+2(d-2)$:

$$
\pi_{i}\left(T_{n} E m b_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right)\right) \otimes \mathbb{Z}_{(p)} \cong \oplus_{t-s=i} E_{-s, t}^{2}\left(T_{n}\right) \otimes \mathbb{Z}_{(p)}
$$

Main theorem

Theorem (Boavida-H.)

Let p be a prime. Let $E_{-s, t}^{r}$ be the Goodwillie-Weiss spectral sequence for $T_{\infty} \operatorname{Emb}\left(\mathbb{R}, \mathbb{R}^{d}\right)$. In the spectral sequence
$E_{-s, t}^{r} \otimes \mathbb{Z}_{(p)}$, in the range $t<2 p-2+(s-1)(d-2)$, the only possibly non-zero differential are the d^{r} with $r-1$ a multiple of $(p-1)(d-2)$.

Corollary

- For $n \leq(p-1)(d-2)+3$ and $i \leq 2 p-6+2(d-2)$:

$$
\pi_{i}\left(T_{n} E m b_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right)\right) \otimes \mathbb{Z}_{(p)} \cong \oplus_{t-s=i} E_{-s, t}^{2}\left(T_{n}\right) \otimes \mathbb{Z}_{(p)}
$$

- For $d>4$ (resp. $d=4$) and $i<2 p+2 d-4($ resp. $i<2 p)$:

$$
\pi_{i}\left(E m b_{c}\left(\mathbb{R}, \mathbb{R}^{d}\right)\right) \otimes \mathbb{Z}_{(p)} \cong \oplus_{t-s=i} E_{-s, t}^{2} \otimes \mathbb{Z}_{(p)}
$$

Main theorem, sketch of proof

Definition

Let X be a simply connected finite type CW-complex. There exists a unique space up to homotopy $L_{p} X$ called the p-completion of X with a map $X \rightarrow L_{p} X$ such that

- The map $X \rightarrow L_{p} X$ induces an isomorphism in $H_{*}\left(-, \mathbb{F}_{p}\right)$
- The map $X \rightarrow L_{p} X$ induces p-completion at the level of homotopy groups.

Main theorem, sketch of proof

Definition

Let X be a simply connected finite type CW-complex. There exists a unique space up to homotopy $L_{p} X$ called the p-completion of X with a map $X \rightarrow L_{p} X$ such that

- The map $X \rightarrow L_{p} X$ induces an isomorphism in $H_{*}\left(-, \mathbb{F}_{p}\right)$
- The map $X \rightarrow L_{p} X$ induces p-completion at the level of homotopy groups.

We denote by $T \otimes \mathbb{Z}_{p}$ the tower that we get by replacing $\operatorname{con}\left(\mathbb{R}^{d}\right)$ by its p-completion. The associated spectral sequence is simply the Goodwillie-Weiss spectral sequence tensored with \mathbb{Z}_{p}.

Main theorem, sketch of proof

Definition

Let X be a simply connected finite type CW-complex. There exists a unique space up to homotopy $L_{p} X$ called the p-completion of X with a map $X \rightarrow L_{p} X$ such that

- The map $X \rightarrow L_{p} X$ induces an isomorphism in $H_{*}\left(-, \mathbb{F}_{p}\right)$
- The $\operatorname{map} X \rightarrow L_{p} X$ induces p-completion at the level of homotopy groups.

We denote by $T \otimes \mathbb{Z}_{p}$ the tower that we get by replacing $\operatorname{con}\left(\mathbb{R}^{d}\right)$ by its p-completion. The associated spectral sequence is simply the Goodwillie-Weiss spectral sequence tensored with \mathbb{Z}_{p}.

Theorem (Boavida, H.)

There is a non-trivial action of $\Gamma=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ on the tower $\left\{T_{n} \otimes \mathbb{Z}_{p}\right\}_{n \in \mathbb{N}}$. This action is what forces some of the differentials to be zero.

Main theorem, sketch of proof

Let $\chi: \Gamma \rightarrow \hat{\mathbb{Z}}^{\times} \cong \operatorname{Aut}\left(\mu_{\infty}\right)$ be the cyclotomic character.

Main theorem, sketch of proof

Let $\chi: \Gamma \rightarrow \hat{\mathbb{Z}}^{\times} \cong \operatorname{Aut}\left(\mu_{\infty}\right)$ be the cyclotomic character.

Definition

Let M be a finitely generated \mathbb{Z}_{p}-module, the Γ-action given by $\gamma \cdot m=\chi(\gamma)^{n} m$ is called the cyclotomic action of weight n.

Main theorem, sketch of proof

Let $\chi: \Gamma \rightarrow \hat{\mathbb{Z}}^{\times} \cong \operatorname{Aut}\left(\mu_{\infty}\right)$ be the cyclotomic character.

Definition

Let M be a finitely generated \mathbb{Z}_{p}-module, the Γ-action given by $\gamma \cdot m=\chi(\gamma)^{n} m$ is called the cyclotomic action of weight n.

Theorem (Boavida, H.)

- There is an action of $\Gamma=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ on the tower $\left\{T_{n} \otimes \mathbb{Z}_{p}\right\}_{n \in \mathbb{N}}$.

Main theorem, sketch of proof

Let $\chi: \Gamma \rightarrow \hat{\mathbb{Z}}^{\times} \cong \operatorname{Aut}\left(\mu_{\infty}\right)$ be the cyclotomic character.

Definition

Let M be a finitely generated \mathbb{Z}_{p}-module, the Γ-action given by $\gamma \cdot m=\chi(\gamma)^{n} m$ is called the cyclotomic action of weight n.

Theorem (Boavida, H.)

- There is an action of $\Gamma=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ on the tower $\left\{T_{n} \otimes \mathbb{Z}_{p}\right\}_{n \in \mathbb{N}}$.
- In the range $t<2 p-2+(s-1)(d-2)$, we have $E_{-s, t}^{1} \otimes \mathbb{Z}_{p}=0$ unless $t=n(d-2)+1$.

Main theorem, sketch of proof

Let $\chi: \Gamma \rightarrow \hat{\mathbb{Z}}^{\times} \cong \operatorname{Aut}\left(\mu_{\infty}\right)$ be the cyclotomic character.

Definition

Let M be a finitely generated \mathbb{Z}_{p}-module, the Γ-action given by $\gamma \cdot m=\chi(\gamma)^{n} m$ is called the cyclotomic action of weight n.

Theorem (Boavida, H.)

- There is an action of $\Gamma=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ on the tower $\left\{T_{n} \otimes \mathbb{Z}_{p}\right\}_{n \in \mathbb{N}}$.
- In the range $t<2 p-2+(s-1)(d-2)$, we have $E_{-s, t}^{1} \otimes \mathbb{Z}_{p}=0$ unless $t=n(d-2)+1$.
- The Γ-action on $E_{-s, n(d-2)+1}^{1} \otimes \mathbb{Z}_{p}$ is cyclotomic of weight n.

Main theorem, sketch of proof

Construction (Étale homotopy type)

Let X be an algebraic varitey defined over the rational numbers. Then the algebraic p-completion of the homotopy groups of $X(\mathbb{C})_{\text {top }}$ have an action of Γ. In fact (in good cases) the homotopy type $L_{p} X(\mathbb{C})_{\text {top }}$ has an action of Γ

Main theorem, sketch of proof

> Construction (Étale homotopy type)
> Let X be an algebraic varitey defined over the rational numbers. Then the algebraic p-completion of the homotopy groups of $X(\mathbb{C})_{\text {top }}$ have an action of Γ. In fact (in good cases) the homotopy type $L_{p} X(\mathbb{C})_{\text {top }}$ has an action of Γ

In particular, there is a Galois action on the p-completion of the pure braid groups. This extends to a Galois action on the p-completion of $\operatorname{con}\left(\mathbb{R}^{2}\right)$ (Drinfel'd).
This can be extended to the p-completion of $\operatorname{con}\left(\mathbb{R}^{d}\right)$ via the following theorem.

Theorem (Boavida de Brito-Weiss)

Let M and N be two manifold. There is a functorial way to construct $\operatorname{con}(M \times N)$ from $\operatorname{con}(M)$ and $\operatorname{con}(N)$.

