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Why this talk ?

Goodwillie-Klein-Weiss theory expresses the space of smooth embeddings
between two manifolds as some homotopy limit of a diagram:

Theorem (Goodwillie-Klein)

If dim(W ) > dim(M) + 2 then

Emb(M,W ) ' holim(O 7→ Emb(O,W ))

where in this homotopy limit O runs over all open subsets of M
di�eomorphic to a disjoint union of �nitely many copies of Rm.

This is usefull: the terms in the holim are

Emb(O,W ) ∼= Emb(
k∐
i=1

R
m,W ) ' Conf(k ,W )×̃(Stm(Rdim(W )))k

which are pretty computable spaces.
The goal of the talk is to give some grip on the notion of homotopy limits
(and hocolim, derived mapping spaces,. . . )
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The slogan

Homotopy limits (or colimits; or derived mapping spaces) are a variation of
usual limits (or colimits; or mapping spaces) which preserves (weak)
homotopy equivalences.

Eventually this will be achieved by replacing the diagram of the limit by a
homotopy equivalent �brant one (or co�brant; or a co�brant source and
�brant target)
We will explain this at the level of topological spaces. There are analogous
notions in all categories in which homotopy quivalences make sense i.e.
Quillen categories, e.g categories of chain complexes, or of operads in chain
complexes, or of CDGAs, or . . .
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A classical colimit: the pushout

Consider a diagram of topological spaces as follows

A

g

��

f // X

Y .

Its colimit colim( X A
foo g // Y ) is the pushout

X ∪A Y :=
X q Y

'
with f (a) ' g(a) for a ∈ A

Example: X = D2
+,Y = D2

− two
disks and A = S1 × [−ε, ε] a cylinder
that maps to the disks as inclusion of
a collar of the boundary circles.
Then D2

+ ∪A D2
−
∼= S2.

We get a "push-out square"
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A classical limit: the pullback

Consider a diagram of topological spaces as follows

E

p

��
X

f
// B.

Its limit lim( X
f // B E

poo ) is the pullback

X ×B E := {(x , e) ∈ X × E : f (x) = p(e)}
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An application to di�erential topology: the sphere eversion

Theorem ("Eversion of the sphere", Smale, 1957)

The standard embedding i : S2 ↪→ R
3 and the reversed embedding

R ◦ i : S2 ↪→ R
3, where R(x , y , z) = (x , y ,−z), are connected by a path of

immersions.

SCIENTIFIC 

ERIC 

EVERTED SPHERE SIXT.r CENTS 

�/966 
© 1966 SCIENTIFIC AMERICAN, INC

An explicit construction of the actual
path of immersions between the
standard sphere and the everted is
pretty complicated to describe. . .
But the clever Smale's strategy of
proof is more elegant
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Smale's strategy of proof of the eversion theorem

The eversion of the sphere is an immediate corollary of:

Theorem (Smale 1957)

The space Imm(S2,R3) :=
{
f : S2 # R

3
}
is path-connected

Strategy of proof:

1 write Imm(S2,R3) as a pullback

2 show that the terms of the pullback are homotopy equivalent to
spaces easier to understand

3 use standard formula that computes the homotopy groups of a
pullback from the homotopy groups of its terms (dual to the
Mayer-Vietoris formula for the homology of a push-out)

4 deduce that π0(Imm(S2,R3)) = {∗}
There is a pitfall after step 2: we would like that pullback preserves
homotopy equivalence (which it doesn't)
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Smale's proof - step 1: Imm(S2,R3) as a pullback

The 1st step is the standard technique in algebraic topology: cut the space
(here S2) into simpler pieces:

Recall that S2 is a push out

(?) A = S1 × [−ε, ε] �
� i+ //

� _

i−
��

p.o.

D2
+

j+
��

D2
−

j− // S2

Apply the contravariant functor I := Imm(−,R3) to diagram (?):

I(?) : I(A)

p.b.

I(D2
+)

i∗+oo

I(D2
−)

i∗−

OO

I(S2)
j∗−oo

j∗+

OO

I(?) is a pullback square because

I(D2

+)×I(A) I(D2

−)

={(f+ : D2

+ # R
3, f− : D2

− # R
3) s.t.

s.t. f+|A = f−|A}
= Imm(S2,R3) = I(S2)
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Smale's proof - step 2: homotopy equivalent pieces in the pb

Lemma

I(D2
±) ' SO(3) and

I(A) ' map(S1, SO(3))

I(?) : I(A)

p.b.

I(D2
+)

i∗+oo

I(D2
−)

i∗−

OO

I(S2)
j∗−oo

j∗+

OO

We explain the �rst homotopy equivalence. We have a map

Φ: Imm(D2,R3)
'−→ St2(R3) , f 7−→

(
df (0)(

∂

∂x
), df (0)(

∂

∂y
)

)
where St2(R3) is the Stiefel manifold of 2-frames in R3:

St2(R3) :=
{

(v ,w) ∈ R3 : v and w are lin. indep.
} Gram-Schmidt' SO(3)

and its easy to see that Φ is a homotopy equivalence.

The second h.e. of the lemma is by applying Smale'strategy again cutting
the cylinder A into two overlapping disks whose intersection is a disjoint
union of two disks (exercise)
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Pitfall in the proof: p.b. do not preserve homotopy equiv.

I(?) : I(A) ' map(S1, SO(3))

p.b.

I(D2
+) ' SO(3)oo

I(D2
−) ' SO(3)

OO

I(S2) = Imm(S2,R3)oo

OO

This suggests that Imm(S2,R3) is homotopy equivalent the pullback

(?) SO(3) // map(S1, SO(3)) SO(3)oo

But pullbacks do not preserve homotopy equivalences:

diagram pullback

{0} �
� //

'
��

[0, 1]

'
��

{1}? _oo

'
��

∅
6'
��

{∗} = // {∗} {∗}=oo {∗}

Actually pb(?) = SO(3)×map(S1,SO(3)) SO(3) = SO(3) 6' Imm(S2,R3)
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Pullbacks of �brant diagrams preserve weak equiv.

Proposition

Consider a commutative diagram of topological spaces where vertical maps
are weak homotopy equivalence and horizontal maps are Serre �brations

X
f // //

' α��

B
' β��

E
poooo

' γ��
X ′

f ′ // // B ′ E ′
p′oooo

then the pullbacks of the horizontal lines are weakly homotopy equivalent:

α×β γ : X ×B E
'−→ X ′ ×B′ E

′

Proof: use the long exact sequence of homotopy groups π∗ for pull-backs (dual to Mayer-Vietoris) and �ve-lemma.

De�nition

A map p : E � B is a (Serre) �bration if it
has the homotopy lifting property with
respect to Z = [0, 1]k for every k ≥ 0:

Z × {0}� _

��

∀H0 // E

p

����
Z × [0, 1]

∀h //

∃H
;;

B
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Converting a map into a �bration

Proposition (Serre)

Every map f : X → Y can be (functorially) factored as f = p ◦ w

f : X
w

'
// X̂

p // // Y

where w is a weak equivalence and p is a Serre �bration

Proof Set X̂ := {(x, η) ∈ X × Y [0,1] : f (x) = η(0)}, w : X → X̂ , x 7→ (x, cttx ) and p : X̂ → Y , (x, η) 7→ η(1).

For example the map

ctt : SO(3)→ map(S1, SO(3)) , u 7→ (cttu : ϑ 7→ u)

is not a �bration but it factors as fibration ◦ equiv:

SO(3)
ctt

'
// map(D2, SO(3))

p=i∗ // // map(S1, SO(3))
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Key lemma of Smale and end of proof of the eversion

Smale proves that Imm(D2,R3)� Imm(A,R3) is a Serre �bration:

Lemma (Smale)

For d > p, i∗ : Imm(Dp,Rd )� Imm(Sp−1 × [0, ε],Rd ) is a Serre �bration.

Proof: Not elementary. See M. Weiss "Immersion theory for homotopy theorists" for an accessible proof.

We can �nish Smale eversion theorem proof:

I(D2
+) // //

'
��

I(A)

'
��

I(D2
−)oooo

'
��

Imm(S2,R3)

'
��

=⇒

map(D2
+, SO(3)) // // map(S1, SO(3)) map(D2

−, SO(3))oooo map(S2, SO(3))

Therefore
π0(Imm(S2,R3)) ∼= π0(map(S2, SO(3)) ∼= π0(SO(3))× π2(SO(3)) = {∗}

Pascal Lambrechts Homotopy limits for the working low-dimensional/di�erential topologist 13 / 26



Some terminology around diagrams and their limits

A diagram D : X
f // B E

poo can be seen as a functor D : Spb → Top
where S = Spb is the category {{0} ↪→ {0, 1} ←↩ {1}} with 3 objects and 2
non identity morphisms with the same target. S is the shape of D.
A morphism of diagrams α : D→ D′ is a commutative diagram

X
f //

α0��

B
α01��

E
poo

α1��
X ′

f ′ // B ′ E ′,
p′oo

in other words a natural transformation between the functors D and D′.
This de�nes the category TopS of diagrams of spaces of shape S.
The morphism α is a weak equivalence if each map αi is a weak
equivalence (i.e. induce bijection on all πk).
The pullback of such a diagram is its limit which is a functor

lim: TopS → Top , D 7→ limD = X ×B E

Pullbacks do not preserve weak equivalence:

α : D '−→ D′ 6=⇒ limα : limD '−→ limD′
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The pullback as a space of natural transformations

Let D : X
f // B E

poo be a diagram of shape Spb.
Its limit is the pullback

X ×B E = {(x , e) ∈ X × E : f (x) = p(e)}
∼= {(x , b, e) ∈ X × B × E : f (x) = b = p(x)}

∼=


{∗} = //

x��

{∗}
b��

{∗}=oo

e��
X

f // B E ,
poo


= Nat

(
D0 :=

(
{∗} = // {∗} {∗}=oo

)
, D
)

Thus
limD ∼= Nat(D0,D)

where D0 is the constant diagram of one-point spaces {∗}.
Pascal Lambrechts Homotopy limits for the working low-dimensional/di�erential topologist 15 / 26



De�nition and key properties of the homotopy pullback

Let D : X
f // B E

poo be a diagram of shape Spb.

Set D0 :=
(
{∗} = // {∗} {∗}=oo

)
. Then limD ∼= Nat(D0,D)

Set D0
[ :=

(
{0} �
� // [0, 1] {1}? _oo

)
.

The homotopy pullback or homotopy limit of D is

holimD := Nat(D0
[,D)

=
{

(x , β, e) ∈ X × B [0,1] × E : f (x) = β(0), β(1) = p(e)
}

1 holim is a functor TopSpb → Top

2 holim preserves weak equiv.: α : D '−→ D′ =⇒ holimD '−→ holimD′
3 there is a natural map η : limD→ holimD as η := Nat(D0

[→D0,D)

4 if D is inj−�brant (i.e.f and p are Serre �bration) then η is a weak equiv.

5 every diagram D has a inj−�brant replacement D '−→ D]

These properties are quite easy to prove.
(4) and (5) gives another way to compute the holim: holimD ' limD]
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Why D[
0
?

holimD := Nat(D[
0
,D). Why do we take D[

0
= ({0} ↪→ [0, 1]←↩ {1}}) ?

D[
0
∈ TopSpb is a proj−co�brant diagram

D[
0

'−→ D0 is a weak equivalence

any D is proj−�brant

In other words the key fact is that D[
0
is a co�brant replacement of D0

Second approach: holim′D := Nat(D0,D]) = limD]

D] ∈ TopSpb is a inj−�brant diagram

D] '−→ D is a weak equivalence

D0 is inj−co�brant because the one-point spaces * are CW-complexes

In other words the key fact is that D] is a �brant replacement of D

Advantage of the second approch holimD = limD]: It make sense in
categories where there is no internal objects of natural transformations, e.g.
if D = (A→ B ← C ) is a diagram of CDGA then we can set

holim′D = lim(( A // B Coo )]) = lim( Â // // B Ĉoooo )
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Holim for more general diagrams

Let S be any small category (giving the shape of diagrams).
D : S → Top a diagram of spaces
D0 : S → Top the diagram of one-point spaces
limD = lims∈S D(s) ∼= Nat(D0,D)

There exists a "proj−co�brant replacement" D[
0

'−→ D0 and we set

holim
s∈S

D(s) := Nat(D[0,D).

We get a functor holim: TopS → Top with properties (1)-(5).

An alternative approach which works in more general categories than Top
(Quillen model categories): there is a notion of "inj−�brant replacement"

D '−→ D] and we can de�ne

holim′D := limD]

with properties (1)-(5) .
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Homotopy colimits

Consider a diagram of spaces E := ( X A
foo g // Y ) and its colimit

colimE = X ∪A Y :=
X q Aq Y

∼
with f (a) ∼ a ∼ g(a)

Note that E : (Spb)op → Top and recall D0 : Spb → Top. Then

colimE ∼= E⊗Spb D0 :=
qs∈SE(s)× D0(s)

≡
where (Eφ(e ′), d) ≡ (e ′,D0φ(d)) for e ′ ∈ E(s ′), d ∈ D0(s), φ : s → s ′ in S

Then

hocolimE := E⊗SpbD
[
0
∼=

X q A× [0, 1]q Y

≡
with f (a) ≡ (a, 0), (a, 1) ≡ g(a)

1 hocolim is a functor Top(Spb)
op → Top

2 hocolim preserves weak equivalences of diagrams
3 there is a natural map ε : hocolimE→ colimE
4 if E is proj−co�brant then ε is a weak equiv.
5 every diagram E has a proj−co�brant replacement E[ '−→ E

Thus we also have hocolimE ' colimE[
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Derived mapping spaces

In Top we have the mapping space map(X ,Y ) := {f : X → Y }.
It behaves well with (co)limits: for diagrams X,Y : S → Top

1 map(colims∈S X(s),Y ) ∼= lims∈S map(X(s),Y )
2 map(X , lims∈S Y(s)) ∼= lims∈S map(X ,Y(s))

The derived mapping space homap = maph is a variation of map which
preserves weak equivalences:
if α : X

'−→ X ′ and β : Y
'−→ Y ′ are weak equivalences then

(α∗, β∗) : homap(X ′,Y )
'−→ homap(X ,Y ′).

Also homap behaves well with homotopy (co)limits: same as (1)-(2) with
pre�xes "ho" and ' instead of ∼=.
The de�nition will be

homap(X ,Y ) := map(X [,Y ])

where

X [ '−→ X is a co�brant replacement of the source

Y
'−→ Y ] is a �brant replacement of the target
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Map does not preserve weak equivalence in Top

Weak equivalences in Top are maps f : X
'−→ Y such that πi (f ) are

isomorphisms for every i ≥ 0 and every basepoint.
Consider the Warsaw interval W = {(0, 0)} ∪ {(t, sin(π/t)) : 0 < t ≤ 1}
and the 0-sphere S0 ∼= {(0, 0), (0, 1)}.
The inclusion α : S0 ↪→W is a weak equivalence but α∗ is not:

map(W , S0)
6'α∗ ��

= {constant maps W → S0} ∼= S0

map(S0, S0) ∼= S0 × S0

Reasons:

weak equivalences are detected by π∗, hence are recognized by maps
out of spheres Sn−1 and disks Dn

W cannot be built using spheres and disks, i.e. it is not a CW-complex
constructed by iterated pushouts with Sn−1 ↪→ Dn

("attachments of cells")

Proposition

If α : X
'−→ X ′ is a weak equivalences between CW-complexes then

α∗ : map(X ,Y )
'−→ map(X ′,Y ) is a weak equivalence.
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Some Quillen model category terminology

Categories like Top (or TopS , Chains,CDGA,CDGAS , . . .) admits a/many
Quillen model structures determined by three classes of maps:

weak equivalences α : X
'−→ X ′

co�brations i : A� X obtained as iterated attachment of "cells"

�bration p : E → B which are maps that have the right lifting property

with respect to co�bration weak equivalences
'
�

that satisfy some axioms like: every map f : X → Y factors as

X
'
� X̂ � Y and as X � Ỹ

'
� Y

an object C is co�brant if ∅� C

an object F is �brant if F � ∗
Each map ∅ → X factors as ∅� X [ '−→ X which gives a co�brant
replacement of X
Each map Y → ∗ factors as Y '−→ Y ] � ∗ which gives a �brant
replacement of Y
holim, hocolim, homap usually make sense in such categories
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(Serre) Quillen model structure on Top

The classical Quillen structure on Top is given by:

weak equivalences are f : X
'−→ X ′ s.t π∗(f ) are iso

co�brations are relative CW-complexes X � X ∪ en1 ∪ en2 ∪ · · ·
co�brant objects are CW-complexes and their retracts

[0, 1]k × {0}
'
� [0, 1]k × [0, 1] are co�brations weak equivalences

�brations are exactly the Serre �brations

every space X is �brant (because X → ∗ is a Serre �bration)

A co�brant replacement of a space X is a CW-approximation X [ '−→ X .
For example α : S0 '−→W is the CW-approximation of the Warsaw interval
by the CW-complexe S0

In Top the derived mapping space is given by

homap(X ,Y ) := map(X [,Y )

where X [ '−→ X is a CW-approximation and we can take Y ] = Y because
every space is �brant.
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Projective Quillen model structure on TopS

We said that D0
[ := ({0} → [0, 1]← {1}) was a co�brant replacement of

D0 = (∗ → ∗ ← ∗). For which Quillen structure on TopS (with S = Spb) ?
The projective Quillen structure on TopS :

weak equivalences α : D '−→ D′ are maps of diagrams such that
α(s) : D(s)

'−→ D′(s) for every s ∈ S
�bration f : X� Y are maps of diagrams such that
f (s) : X(s)� Y(s) is a Serre �bration for every s ∈ S
thus every diagram D is proj−�brant

co�brations are more complicated: there are built by cell attachments.

There are 0-cells Zd for every d ∈ S := {{0} → {0, 1} ← {1}} given by

Zd : S → Top , s 7→ Zd (s) := homS(d , s) ∈ Set ⊂ Top

So: Z{0} = (∗ → ∗ ← ∅) , Z{0,1} = (∅ → ∗ ← ∅) , Z{1} = (∅ → ∗ ← ∗)
Higher cells are just Sn−1 × Zd ↪→ Dn × Zd .
Exercise: D0

[ is proj−co�brant i.e. built out of cells, but D0 is not. (see
Dror-Farjoun "Homology and homotopy of diagrams")
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Injective Quillen model structure on TopS

There is another Quillen structure on TopS : the injective one:

weak equivalences α : D '−→ D′ same as before

co�bration f : X� Y are maps of diagrams such that
f (s) : X(s)� Y(s) is a co�bration for every s ∈ S (relative CW-complex)

thus a diagram D is co�brant if every term D(s) is a CW-complex

�brations and �brant diagrams are more complicated to describe.

For the special case S = Spb a diagram D = ( X
f // B E

poo ) is
�brant if both f and p are Serre �brations.
For more complicated shapes S it is more delicate to give a criterion for a
diagram to be �brant (see Dwyer-Spalanski)
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Homotopy limits as a special case of derived mapping space

In TopS there is a notion of mapping space between diagram X,Y : S →Top

map(X,Y) := mapTopS (X,Y) = Nat(X,Y).

We de�ned two Quillen model structures on TopS : projective and injective
but both with the same weak equivalences.
For each there is a notion of derived mapping space. Let us compute the
derived mapping space maph(D0,D) = homap(D0,D) for both:

homapproj(D0,D) = map((D0)[proj , (D)]proj )

= map(D[0,D) =: holimD
homapinj(D0,D) = map((D0)[inj , (D)]inj )

= map(D0,D]) = limD] =: holim′D

It turns out that if the Quillen model structures have the same weak
equivalences then the derived mapping spaces are equivalent, hence
holimD ' holim′D.
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