Rolling backwards can move you forward: on embedding
problems in sparse expanders
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Abstract

We develop a general embedding method based on the Friedman-Pippenger tree em-
bedding technique (1987) and its algorithmic version, essentially due to Aggarwal et al.
(1996), enhanced with a roll-back idea allowing to sequentially retrace previously per-
formed embedding steps. We use this method to obtain the following results.

o We show that the size-Ramsey number of logarithmically long subdivisions of bounded
degree graphs is linear in their number of vertices, settling a conjecture of Pak (2002).

e We give a deterministic, polynomial time online algorithm for finding vertex-disjoint
paths of prescribed length between given pairs of vertices in an expander graph. Our
result answers a question of Alon and Capalbo (2007).

e We show that relatively weak bounds on the spectral ratio of d-regular graphs force
the existence of a topological minor of K; where ¢t = (1 — o(1))d. We also exhibit
a construction which shows that the theoretical maximum ¢ = d + 1 cannot be
attained even if A = O(v/d). This answers a question of Fountoulakis, Kiihn and
Osthus (2009).

1 Introduction

Given a graph H from some class of graphs, and a graph G with specific properties, is there
a copy of H in G7 In other words, does there exist an embedding of H into G? This general
question is one of the central settings of combinatorics. Embedding questions lie at the heart
of many classical problems, in particular problems in graph Ramsey theory and Turan-type
extremal theory.

We will consider embedding problems where the host graph G is sparse, i.e. the number
of edges in G is linear in its number of vertices. This is a natural and important setup
both for theoretical and practical reasons, and its potential applicability ranges from problems
in extremal combinatorics like Ramsey-type problems, to construction of lean but resilient
networks in computer networking.

In particular, we will work with sparse expanders — those are sparse graphs in which all sets
of vertices S of (up to) a certain size have a relatively large neighborhood. For a comprehensive
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source of information about expanders, see the survey of Hoory, Linial and Wigderson [32].
Closely related to expander graphs is the notion of pseudo-random graphs. Informally, a graph
is pseudo-random if it behaves similarly to a random graph when it comes to edge distribution.
A very popular class of examples of such graphs are (n,d, \)-graphs, introduced by Alon [2].

Definition 1.1. A d-reqular graph G on n vertices is an (n,d, \)-graph if all of the eigenvalues
of its adjacency matriz, except the largest one, are at most \ in absolute value.

One can show that the smaller X is, the closer the graph resembles a random graph in terms
of edge distribution (see Section 1.1.1 for some details). A small A also means that the graph
has good expansion properties and we will use a few such results throughout the paper. For a
survey on pseudo-random graphs, see the paper of Krivelevich and Sudakov [39].

For our embedding problems, usually the host graph G will be an (n, d, \)-graph, for suffi-
ciently small A and a constant d. What kind of subgraphs can we hope to find in such graphs?
One natural restriction will be that the girth of the graph we embed is Q(logn), as there exist
(n,d, \)-graphs with small spectral ratio A/d and of logarithmic girth, as shown in the seminal
paper of Lubotzky, Phillips and Sarnak [41]. Thus we are normally confined to embedding
trees and other graphs with large girth.

There is a large body of research devoted to finding (almost-spanning and spanning) bounded
degree trees in sparse expanders and in sparse random graphs. Beck [10] used results about
long paths in expanding graphs to argue that one can find monochromatic linear sized paths in
2-colored sparse random graphs. Friedman and Pippenger [26] proved an analogous statement
for arbitrary bounded degree trees in sparse expanders, which was improved upon by Haxell
[29], who showed that under similar assumptions one can embed even larger trees into (sparse)
expanders. Alon, Krivelevich and Sudakov [6] proved the existence of every almost spanning
tree of bounded degree in both sparse random graphs and in appropriate (n, d, \)-graphs, later
improved by Balogh, Csaba and Samotij and Pei [8], and for a resilience version of this result
see |9]. Finally, for random graphs G ~ G(n,p) with p = % and for a fixed d, Montgomery
[44] recently proved that for large enough C', G typically contains all spanning trees of maxi-
mum degree at most d, resolving an old conjecture of Kahn (see [34]). For results about finding
small minors of logarithmic girth in sparse expanders, see, e.g. [43, 51].

In this paper, we present three different results related to embedding into sparse expanders
— the first one deals with size-Ramsey numbers of logarithmic subdivisions of bounded degree
graphs and resolves a conjecture of Pak from 2002 [45|, while the second is concerned with the
classical problem of finding vertex-disjoint paths in graphs, and resolves a problem of Alon and
Capalbo from 2007 [4]. The third one is about finding topological minors of complete graphs in
(n,d, \)-graphs, and is related to a question of Fountoulakis, Kiithn and Osthus [25]|. For those
three problems we develop two variations of our embedding technique. Both are based on the
result of Friedman and Pippenger [26] about embedding trees in expander graphs vertex by
vertex and an idea by Daniel Johannsen [33], which allows us to successively remove vertices
from the list of already embedded vertices. This roll-back result turns out to be very powerful
for tackling problems of this sort. One of the variants which we show is algorithmic, and uses
ideas by Dellamonica and Kohayakawa [17], who showed an algorithmic version of the original
Friedman-Pippenger embedding result, by reducing it to a certain online matching problem
solved by Aggarwal et al. [1].



1.1 Size-Ramsey numbers of subdivided graphs

Given a graph H and an integer k > 2, a graph G is said to be k-Ramsey for H if every
coloring of the edges of G with k colors contains a monochromatic copy of H. This notion was
introduced by Ramsey [47], who proved that for every graph H there exists N € N such that
Ky is k-Ramsey for H. The smallest such N, denoted by Ry(H ), is called the Ramsey number.
Determining the asymptotic order of Ry(K,) is one of the most important open problems in
this area [14, 52|. We will be concerned with the related notion of size-Ramsey numbers,
introduced by Erdgs, Faudree, Rousseau and Schelp [22]. Given a graph H and an integer
k > 2, the size-Ramsey number Rk(H ) is the smallest integer m such that there exists a graph
G with m edges which is k-Ramsey for H. The existence of the Ramsey number immediately
implies the upper bound Rk(H ) < (R’“éH )). Other related notions include Folkman numbers,
chromatic-Ramsey numbers, degree-Ramsey numbers, etc. We refer the reader to a survey by
Conlon, Fox and Sudakov [15] for a thorough treatment of the topic.

Answering a $100 question of Erdds [20], Beck [10] showed that paths have linear size-
Ramsey number, that is Rg(Pn) < Cn for an absolute constant C'. He also raised the ques-
tion [11] of whether R,(H) grows linearly for graphs with bounded maximum degree. This was
proven for trees by Friedman and Pippenger [26] and for cycles by Haxell, Kohayakawa and
Fuczak [30]. However, the general case was settled in the negative by Rodl and Szemerédi [48],
who showed that there exists a constant ¢ > 0 such that for every sufficiently large n there is
a graph H with n vertices and maximum degree 3 for which RQ(H ) > nlogn. In the same
paper, they conjectured that log®n can be improved to n® for some constant £ > 0, but this
remains open.

1.1.1 Subdivisions of graphs

Since we are far from understanding size-Ramsey numbers of bounded degree graphs in general,
one natural step in this direction is to consider subdivisions of those graphs. Given a graph
H and a function o: E(H) — N, the o-subdivision H? of H is the graph obtained from H by
replacing each edge e € E(H) with a path of length o(e) joining the endpoints of e, such that
all these paths are mutually vertex-disjoint (except possibly at the endpoints). In other words,
cach edge e € F(H) is subdivided o(e) — 1 times.

Size-Ramsey numbers of ‘short’ subdivisions were first studied by Kohayakawa, Retter and
Rodl [35]. In a recent paper [19] we improved their bounds by showing that R,(H?) <
O(n'*t'/4), for constant ¢,k and for all bounded degree graphs H, thus removing a poly-
logarithmic factor from their bound and answering their question. In general, these graphs
were considered in the context of Ramsey theory by Burr and Erdds [13] and by Alon [3].

In Section 3.1 (Theorem 1) we show that bounded degree graphs with n vertices such that
every two vertices of degree > 3 are at distance ¢ = {2(logn) have linear size-Ramsey numbers
(in their order). In fact we prove a stronger result on arbitrary long subdivisions of bounded
degree graphs, answering a conjecture of Pak [45] along the way. He conjectured that long
subdivisions of bounded degree graphs have linear size-Ramsey number.

Conjecture 1.2 ([45]). For every k, D € N there exist C, L > 0 such that if H is a graph with
A(H) < D and o(e) = ¢ > Llog(v(H?)) for all e € E(H) then Ry(H?) < Cv(H?).

Pak [45] showed Rj,(H?) = O(v(H?)log(v(H?))), and the special case where H is a fixed
(small) graph and o(e) grows was resolved by Donadelli, Haxell and Kohayakawa [18].
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We show that every n-uniform graph on n vertices is k-Ramsey for H? with v(H?) < an
and o(e) > logn, for some small @« > 0. As a typical random graph with n vertices and m = Cn
edges is n-uniform, for sufficiently large C', there are an abundance of n-uniform graphs with
O(n) edges, thus confirming Conjecture 1.2.

Definition 1.3. Given 0 < n < 1, we say that a graph G with n vertices and density p =
e(G)/(3) is m-uniform if for every pair of disjoint subsets U,W C V(G) of size |U|,|W| > nn,
we have

|e(U, W) — [U[|W]p| < n|U[|W]p.
Now we state our result.

Theorem 1. For every k,D € N and for every 6 > 0, there exist n,a,C' > 0, such that
the following holds for every n-uniform graph G with n vertices and m > Cn edges: every
k-edge-coloring of G contains a monochromatic copy of every graph H?, where H is a graph
with mazimum degree at most D, v(H?) < an and o(e) > §logn for every e € E(H).

Besides random graphs, explicit constructions of p-uniform graphs of constant average de-
gree are also known. One class of examples of such graphs are (n,d, \)-graphs, for suitably
chosen parameters. Indeed, the well known Expander Mixing Lemma [5| states that for every
(n,d, \)-graph G and for every U,V C V(@) it holds:

cotv,v) - T < 3 v )

. . . _ )\
From this, one can see that every (m,d, A)-graph is n-uniform for n = 2\/;. Hence, for a

fixed d, the parameter \ is accountable for the uniformity of the distribution of the edges of
a d-regular graph. But how small can A be in terms of d, so that there exists a (n,d,\)-
graph? One can show that A = Q(\/E) for every such graph whenever d < 0.99n, and there are
known constructions of d-regular graphs for which A\ attains this bound, and n is arbitrarily
large. This provides us examples of bounded degree graphs, which are n-uniform (for n ~
d='/%). For several constructions of such graphs, see, e.g., [39]. As discussed above, there are
known constructions of such graphs which have logarithmic girth, showing that our result is
asymptotically tight with respect to the bound on o. Indeed, if H is a triangle, and G is a
graph with girth strictly larger than clogn, then G does not contain H? for any ¢ bounded
from above uniformly by clogn/3.

Note that Theorem 1 is in fact a universality result, meaning that the n-uniform graph in
question is k-Ramsey for all graphs in the class we are interested in, hence our theorem confirms
Pak’s conjecture in a strong way. Furthermore, from our proof it can be seen that we actually
find a monochromatic subgraph of the graph we color, which contains all described subdivided
graphs. Extending the definition in [36], we say that a graph G is k-partition universal for
a class of graphs F if for every k-coloring of the edges of GG, there exists a monochromatic
subgraph of G which contains a copy of every graph in F. Under this framework, we actually
prove that the graph we color is up to a constant factor the optimal k-partition universal graph
for the class of all described subdivisions of graphs. For further universality-type results in
Ramsey theory see for example [16, 19, 35, 36].



1.2 The vertex-disjoint paths problem

For a given graph G and a collection of k disjoint pairs of vertices (a;, b;) from G, can we find
for each 7 a path from a; to b;, such that the found paths are all vertex-disjoint? This decision
problem is AN'P-complete [28] when G is allowed to be an arbitrary graph. Furthermore, it
remains N P-complete, even when G is restricted to be in the class of planar graphs. For
fixed k, it is shown to be in P [49]|. A variant of this problem in random graphs was studied
independently by Hochbaum [31], and by Shamir and Upfal [50]. Both papers proved that for
a fixed set of at most O(y/n) disjoint pairs of vertices in the random graph G(n,m), with high
probability (whp) there exist vertex-disjoint paths between every pair if m > Cnlogn, for a
constant C' > 1. Subsequently, Broder, Frieze, Suen and Upfal [12| improved this result:

Theorem 1.4 (|12]). There exist o, B > 0, such that whp the following holds. Let G = G(n,m)
form = (logn +w(1))5, and let d = 2m/n. For every collection F of at most aﬁfg’gnd disjoint
pairs of vertices (a;, b;) in G, there exists a path for every i connecting a; to b;, such that all

paths are vertex-disjoint, if the following condition is satisfied for every vertex v € V(G):

|Ne(v) N (AU B)| < Bdg(v) where A = U{a;} and B = U;{b;}.

This is an improvement over the mentioned previous papers in many aspects. The number of
pairs is optimal up to a constant factor — most pairs in G(n, m) are at distance Q(logn/logd),
so in general one can hope to connect at most O(%) pairs (a;, b;) in a graph on n vertices.
Furthermore, the pairs (a;, b;) are not fixed before generating G(n,m), but are rather chosen
adversarily after having exposed a random graph G ~ G(n,m). The last constraint is also
optimal up to a constant factor — if the adversary chooses a; and b; to be at distance 2,
and then chooses all neighbours of a; to be in other pairs from F, then obviously one cannot
find the requested disjoint paths. The bound on the number of edges m is also asymptotically
optimal, as this many edges are needed for G to be connected whp.

Changing the focus to the sparse(r) setting, Alon and Capalbo [4] studied graphs with
constant average degree with good expansion properties. In particular, they proved that for
any graph G which is a d-blowup! of a (n,d, \)-graph with a small spectral ratio, and any

log

[12], one can connect those pairs with vertex-disjoint paths. The number of pairs is optimal up
to a constant factor, and they provide an online polynomial time algorithm for finding them.

The argument of Alon and Capalbo does not allow to control the length of the paths found
by the algorithm. Accordingly, they ask for a similar result where the length of the paths
between each pair is at most O(logn). In Section 3.2, we prove such a result (Theorem 2).
Furthermore, we do it not only for blowups, but directly for (n, d, \)-graphs for A < d*%°. We
get the optimal dependency on n and d, both for the number of pairs and for the upper bound
on the length of the paths. Finally, our algorithm is online in the sense that an adversary can
choose the pairs one by one, where the next pair is given after the connection for the previous
one is established.

collection of O (ﬂoiﬁ pairs of vertices in G which satisfy a similar local condition like in

Theorem 2. Let0 < ¢ < 1, and let G be an (n,d, X)-graph, with A\ < d*~¢/320 and d* > 5. Let

S be any set of vertices which satisfies |Ng(x)N S| < ¢ for every x € V(G). Let P = {a;,b;} be

!The d-blowup of a graph G is the graph obtained from G by replacing each vertex v with an independent
set I, of size d, and replacing every edge (v, u) with a complete bipartite graph between I, and I,.



a collection of at most fg)lﬁjgg ‘i disjoint pairs of vertices from S. There exists a polynomial time

algorithm to find vertex-disjoint paths in G between every pair of vertices {a;,b;}, such that
the paths are of equal length which is less than 5;?§g"d. Furthermore, the pairs (a;,b;) are given
one by one, and the next pair is revealed when the previous connection is made; all established

connections cannot be changed.

These results are closely related to the study of non-blocking networks, which arise in a
variety of applications, including construction of communication networks and distributed-
memory architectures. For some results see, e.g., [23, 24, 46]. In contrast to our results, the
graphs which are usually considered here have pre-determined sets of vertices ("inputs" and
"outputs") from which the pairs are chosen, while the pairs in our result can be chosen by an
adversary, but in such a way that they satisfy an essentially minimal local property. Besides
that, the path lengths in some constructions of non-blocking networks are also of optimal
O(logn) size |7]. Hence, in some sense our results are a common generalization of |7] and
[4], as we both allow the adversary to choose the pairs, and our paths are logarithmic in size,
although our algorithm is less efficient than the one in [7]. It can also be seen from our proof
that we can allow the adversary to terminate arbitrary already established connections between
pairs (and thus freeing the used vertices in the corresponding paths) a finite number of times
during the mentioned online algorithm. This feature is related to the study of permutation
networks [1].

A lot of attention has also been paid to the edge-disjoint paths problem. For a short survey,
see [27|, and for a result on edge-disjoint paths in sufficiently strong expander graphs see [4].

1.3 Topological minors

We will use the tools developed for proving Theorem 2 to derive results about topological
minors in expander graphs. We say that a graph H is a topological minor of a graph G if
there is a subdivision of H which is a subgraph in G; the vertices in this subdivision which
correspond to vertices of H we call branching vertices. Given an (n,d, \)-graph G, how large
can t be such that K is a topological minor of G? Since G is d-regular, the best one could
hope for is t = d + 1. We show that there is a topological minor of K; in (n,d, \)-graphs for
t = (1 —o(1))d, assuming A = o(d). Furthermore, if A < d'~¢ we find a topological minor on

the asymptotically smallest possible number of vertices O(dQ%), where all the paths which

connect the branching vertices are of the same length ¢ with ¢ = OGZE =). Note that we also
need a non-trivial upper bound on d, since by a well known argument of Erdés and Fajtlowitz
[21], one can show that d can be at most of order /n, if we want to guarantee a topological

minor of K, with t = (1 — o(1))d; for our argument we take d = O(n'/%).

Theorem 3. Let G be a (n,d, \)-graph with 240\ < d < n'/°/2, and let dy be such that dy > 3.
Then G contains a topological minor of K, for t = |d — 80\\/dy|, the paths between branching

logn

vertices being of equal length ¢, where { = O <10ng .

Theoretically, one might hope to find topological minors of K;,;, but we show that there
exist (n, d, \)-graphs with A = O(v/d) which do not contain a topological minor of Ky 1. This
is related to a question of Fountoulakis, Kithn and Osthus [25|, for which we will need the
following definition. We say that a graph G is (s, K)-expanding if for every subset X C V(G)



of size | X| < s we have |[Ng(X)| > K|X|. They ask for determining the parameters «, K such
that every (an, K)-expanding d-regular graph on n vertices contains a topological minor of
Kg.1. In particular, they ask whether constant expansion not depending on d already forces
a topological minor of K;,; in a d-regular graph. We answer this question in the negative
and show that there exist d-regular graphs with very strong expansion properties, but without
a topological minor of K4.;. In particular, for a = a(d) > 0, we show the existence of
(2d + 1)-regular (an,d — 3)-expanding graphs without a topological minor of Kygyo.

1.4 Outline of the paper and notation

In Section 2 we show two versions of our main embedding technique — in Section 2.1 we
show the non-algorithmic version of it, and in Section 2.2 we give an algorithmic version of
the technique. In Section 3, we prove our main results — Theorem 1 (the resolution of Pak’s
conjecture) in Section 3.1, and Theorem 2 (vertex-disjoint paths in (n, d, A)-graphs) in Section
3.2. Furthermore, in Section 3.3 we present results about topological minors in expander graphs
and in particular prove Theorem 3.

Notation. We follow standard graph theoretic notation. In particular, given a graph G and
a vertex x € V(G), we denote by Ng(z) the neighborhood of = in G. For a subset of vertices
X C V(G) we denote by I'¢(X) the neighborhood of X, that is I'¢(X) = (J,cx Na(z), and
we denote by Ng(X) the external neighborhood of X, that is Ng(X) = I'g(X) \ X. By 0g(x)
we denote the set of edges incident with vertex x in (G. Given disjoint subsets of vertices
A, B C V(G), we denote by eg(A, B) the number of edges with one endpoint in A and the
other in B, and with dg(A, B) = eq(A, B)/|A||B| the density of such a induced bipartite
graph. We denote by v(G) the number of vertices of G, and by e(G) the number of edges of
G. Given graphs G and H, we say that a mapping ¢: V(H) — V(G) is an embedding, with
the notation ¢: H < G, if it is injective and preserves edges of H (i.e. if {v,w} € E(H) then
{o(v),p(w)} € E(G)). For an embedding ¢: H — G and subsets S; C V(H), S5 C V(G)
we denote by ¢(S;) the image of S; under ¢, and by ¢~1(S,) the preimage of Sy under ¢, i.e.
#(S1) ={y € V(G) | Fw € Si: ¢(z) = y}, and ¢~ 1(Sy) = {x € V(H) | ¢(z) € So}. We omit
floors and ceilings whenever it is not crucial. Given two constant € and «, we use somewhat
informal notation ¢ < a to denote that ¢ is sufficiently small compared to a. We denote by
logn the natural logarithm of n and by N the set of positive integers.

2 Friedman-Pippenger type embedding theorems

Now we describe the main embedding machinery behind our proofs. It relies on the idea of
Friedman and Pippenger, used for embedding trees in expanders vertex by vertex, by maintain-
ing a certain invariant. An algorithmic version of this technique was presented by Dellamonica
and Kohayakawa, based on a result about an online matching game by Aggarwal et al. [1].
In the following two subsections, we give two Friedman-Pippenger type embedding theorems,
non-algorithmic and algorithmic, enhanced with a roll-back idea, which allows us to sequen-
tially retrace previously performed embedding steps. While the algorithmic result requires the
host graph to have stronger expansion properties, it also enables us to embed larger graphs
than with the technique described in Section 2.1.



2.1 The original Friedman-Pippenger theorem with rollbacks
We start with a standard definition of expansion.

Definition 2.1. Let s € N and K > 0. We say that a graph G is (s, K)-expanding if for every
subset X C V(QG) of size | X| < s we have |[Ng(X)| > K|X]|.

In order to develop our machinery, we define the notion of an (s, D)-good embedding,.

Definition 2.2. Let G be a graph and let s, D € N. Given a graph F with maximum degree
at most D, we say that an embedding ¢: F — G is (s, D)-good if

TCa(X)\o(F)| = > [D—degp(o™ ()] + |6(F) N X]| (2)

for every X C V(Q) of size | X| < s. Here we slightly abuse the notation by setting degy(0) :=
0, i.e. if a vertex v € V(G) is not used by ¢ to embed F, then we set degr(¢~'(v)) = 0.

We remark that the notion of a good embedding is the same as the one used by Friedman
and Pippenger [26] up to the last term on the right side of the inequality. The proof of the
following theorem is almost identical to the one in [26|, and we present it in the Appendix for
completeness.

Theorem 2.3. Let F be a graph with A(F) < D and v(F) < s, for some D, s € N. Suppose we
are given a (2s—2, D+2)-expanding graph G and a (2s—2, D)-good embedding ¢: ' — G. Then
for every graph F' with v(F') < s and A(F") < D which can be obtained from F by successively
adding a new vertex of degree 1, there exists a (2s — 2, D)-good embedding ¢': F' — G which
extends ¢.

The second result we need is a simple corollary of the definition of (s, D)-goodness. While
easy to prove, this observation [33| turns out to yield a powerful method for connecting vertices
in expanding graphs. It has also been utilized in the recent paper by Montgomery [44] for
embedding spanning trees in random graphs.

Lemma 2.4. Suppose we are given graphs G and F with A(F) < D, and an (s, D)-good
embedding ¢: F — G, for some s,D € N. Then for every graph F' obtained from F by
successively removing a vertex of degree 1, the restriction ¢' of ¢ to F' is also (s, D)-good.

Proof. We show that the statement holds for the case where F” is obtained from F' by removing
a single vertex v € V(F') of degree 1. The lemma then follows by iterating it. Let ¢’ be a
restriction of F' to such F”, and let w € I denote the unique neighbor of v. Let X C V(G)
with | X| < s.

Assume first that ¢(v) ¢ X. If ¢(w) ¢ X then both the left hand side (LHS) and the right
hand side (RHS) of (2) do not change. Otherwise (if ¢(w) € X) the RHS of (2) increases by 1
(as the degree of w in F” is one less than it was in F'). However, as ¢(v) is no longer occupied
(i.e. 9(v) & ¢'(F')) and ¢(v) € Ng(p(w)), the LHS also increases by one, hence the inequality
again holds.

Now, let ¢(v) € X. If ¢(w) € X, then the LHS increases by one, the first term on the RHS
increases by two, and the last term decreases by one. Finally, if ¢(w) ¢ X, the LHS grows
by one, while the first term on the RHS also grows by one, and the last term drops by one.
Hence, in every case the inequality holds. ]



2.2 Algorithmic Friedman-Pippenger with roll-backs

In this section we prove an algorithmic version of the embedding technique provided by The-
orem 2.3 and Lemma 2.4 from Section 2.1. We start with a description of an online matching
game, to which we reduce our embedding problem.

Let m > 0 be an integer. The game is played on a bipartite graph H = (U UV, E). In the
beginning we set M (the current matching) to be empty. At each step an adversary chooses a
vertex x € U which is not covered by M, and we match it to some free vertex in V' to extend
M. After each step the adversary is allowed to remove any number of edges from the current
matching M, but at most m times in total during the game. In |1, Lemma 2.2.7], Aggarwal
et al. describe a polynomial time algorithm which finds a matching of size n, against any
adversary, if H satisfies the property that for each X C U of size |X| < n, even if we remove
at most half of the edges incident to every vertex in X, there are still at least 2| X | neighbors
of X in the obtained graph.

Theorem 2.5 ([1], Aggarwal et al.). Let H = (UUV, E) be a bipartite graph and let n,m € N,
such that for every X C U of size | X| < n and for every F C E such that |FNOg(x)| < dy(x)/2
for every x € X, we have that |Ny_p(X)| > 2|X|. Then there is an algorithm which finds a
matching of size n against any adversary, if the adversary is allowed to remove edges from the
matching at most m times in total during the game. Furthermore, the number of operations
which the algorithm performs is polynomial in m + |V (H)|.

Definition 2.6. We say that a graph G = (V, E) has property P,(n,d) if for every X CV
of size | X| < n and every F C E such that |F N 0g(z)| < - dg(x) for every x € X, we have
[Ne-r(X)] = 2d[X].

Definition 2.7. Given a graph G, a subset of vertices S C V(G), and natural numbers
n,m,d € N, we define the following online game, which we call the (G, S, n, m,d)-forest build-
ing game. At each step there is a forest T C G (initially T := (S, 0)) with less than n edges in
G, and the adversary requests a vertex v € T' such that dr(v) < d and we are supposed to find
a neighbor of v in V(G) —V(T), hence extending T by a new leaf. The adversary is allowed to
successively remove any number of vertices of degree 1 in T after every step, but he is allowed
to do so at most m times in total, and none of the removed vertices are allowed to be in S.
We win if at some point T has n edges.

The next theorem gives a handy tool for embedding forests algorithmically in a robust way.
In comparison to the technique presented in Section 2.1, here we require a stronger notion of
expansion (the P, (n,d)-property) for the host graph, but the graphs we are embedding can
have more vertices than before. The idea of the proof is similar to the one in [17].

Theorem 2.8. Let o, f > 0 with 5 < 2a — 1 and let G be a graph with property P,(n,d). Let
S be a non-empty subset of vertices S C V(G), such that for every vertex x € V(G) it holds
that |Ng(z) N S| < B -dg(x). Then there is an algorithm which wins the (G, S, dn, m,d)-forest
building game after performing a number of operations polynomial in m + |V (G)|.

Proof. In order to use Theorem 2.5, we construct the following auxiliary graph. Let H be a
bipartite graph with classes U = V(G) x [d] and V = {v | v € V(G) — S}. In other words, U
consists of d copies of V(G), and V' is a copy of V(G) — S. Two vertices (u,j) € U and v € V



are adjacent iff {u, v} is an edge in G. Now we show that H satisfies the condition of Theorem
2.5 (with dn instead of n).

Let X C U be of size | X| < dn, and F' C E(H) be such that |F N dg(z)| < dy(x)/2 for
every z € X. We want to show that [Ny_r(X)| > 2|X|. By the pigeonhole principle, one of
the d copies of V(G) in U contains at least |X|/d elements from X, or in other words, there
is an i € [d] such that the set X; := {(u,?) | (u,i) € X} is of size |X;| > |X|/d. Let Y be an
arbitrary subset of X; of size exactly [|X|/d], and let Y’ = {u | (u,i) € Y} C V(G).

We also define F' C E(G) as follows:

F = {{u,v} cE(G) |ueY ve V' and {(u,9),7)} € F}

Let G’ be the graph obtained from G by deleting all edges in F” and by deleting all edges
which have one vertex in Y’ and the other in S\ Y’. Note the following facts:

(1) |Ng—p(Y)[ = [Ne (Y')],
(i) dg(z) > (1 — a)dg(z) for all z € Y.

The first claim is true as for every vertex v € Ng (Y’) there is a vertex (u,i) € Y such that
{(u,1),v} is an edge in H — F. For the second claim, notice that every vertex x € Y’ after
deleting the edges incident to S\ Y’ from G, loses at most [ - dg(z) edges, and after deleting
F’ from G it loses at most half of its remaining edges, which gives dg/(x) > %dg(x) >
(1 — a)dg(z) edges.

It follows from the second claim and from |Y’'| = [|X|/d] < [nd/d] = n (and from the
assumption that G has the P,(n, d)-property), that |[Ng/(Y')| > 2d|Y’| > 2|X|. Together with
(¢) this implies [Ny_p(X)| = [Nu-r(Y)| = 2|X].

Now we reduce our forest building game on the graph G to the matching game on the graph
H. At the beginning our initial forest is set to be the empty graph on S, i.e. T := (S5,0) C G.
We also set our auxiliary matching M in H to be empty in the beginning. During the game M
and T" will have the same number of edges. In each step the adversary requests a vertex u € T’
such that dr(u) < d, and we want to find a vertex v in Ng(u) \ V(7T') which extends 7', such
that {u,v} is a new leaf in 7. In order to do this, we find a vertex (u, j) in H for some j < d,
which is not covered by M (in the next paragraph we show that such a vertex exists), and we
extend M by finding a match v € V for (u, j), using the algorithm from Theorem 2.5. Now
we add the edge (u,v) (which is in G by the definition of H) to T'. Note also that v was not in
T before, as v certainly is not in S (by the definition of v), and for every other vertex z € T
the vertex 7 is covered by M, as x has been added to T by the same procedure, so T # ©.

When the adversary wants to delete an edge (u,v) (where v is of degree 1 in T') from T,
then we also delete the corresponding edge {(u,j),v} from M. Note that if at any step the
adversary requests a vertex u such that dr(u) < d, then a vertex of the form (u,4) (for some
i € [d]) has been used only at most d — 1 times by the current matching M, so it is valid
to assume that in each step we can find such a vertex which is not covered by M. Since the
algorithm finds a forest T" with dn edges at the same point when M contains dn edges, and
we remove edges from the matching only at most m times in total, thanks to Theorem 2.5, we
are done. [
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3 Applications

3.1 Size-Ramsey number of long subdivisions

Before we start with the proof of Theorem 1, we state a few preliminary results which will help
us find a subgraph with good expansion properties in the edge colored graph in question.

3.1.1 Preliminaries

The following lemma tells us that if in a graph all sets of a specified size expand well, we can
delete relatively few vertices, so that in the remaining graph all smaller sets also expand well.
For related results see for example [37]. A similar statement also appeared in [42].

Lemma 3.1. Let G be a graph such that |Ng(X)| > 3Ks for every subset X C V(G) of size
|X| = s, for some s € N and K > 1. Then there exists a subset B C V(G) of size |B| < s
such that G — B 1s (s, K)-expanding.

Proof. Let B C V(G) be a largest set such that |[Ng(B)| < K|B| and |B| < s (or B = 0 if
no such set exists). We show that H = G — B is (s, K) expanding. Let X C V(H) be an
arbitrary non-empty set of size | X| < s and suppose |Ng(X)| < K|X|. Then |[Ng(X U B)| <
K|X|+ K|B| = K|X U B|, so by assumption we have |X U B| > s; let S R be a partition of
X U B with |S| = s. Therefore, we conclude:

[Nu(X)| = [Na(X UB)| = [Na(B)| = [Na(S)| = |R] - Ks 2 3Ks —s — Ks > Ks > K|X|
which contradicts the assumption that [Ny (X)| < K|X|, so we are done. O

Regular pairs
The proof of Theorem 1 combines results from Section 2.1 with a sparse version of Sze-
merédi’s regularity lemma for multicolored graphs (or rather its corollary given shortly).

Definition 3.2. Given a graph G and disjoint subsets U,W C V(G), we say that the pair
(U,W) is (G, e,p)-regular for some g,p € (0,1) if

|dG(U/7 W/) - dG(U7 W)| Sep
for every U" C U of size |U'| > €|U|, and W' CW of size |[W'| > e|W]|.

Remark 3.3. If U' C U and W C W are as above and dg(U, W) > ep, then there ezists
at least one edge between U’ and W' in G, as otherwise dg(U',W') = 0, which contradicts
lda (U, W' — dg(U,W)| < ep. It follows that |[Ng(U")| > (1 —&)|W|.

The following corollary of Szemerédi’s regularity lemma was proven in [30, Lemma 3.4].

Lemma 3.4. For every k > 2 and 0 < e < 1, there exist u,n > 0 such that the following holds:
Suppose G = (V, E) is an n-uniform graph with n vertices and density p = e(G)/(g) >0, and
let E=FyUE,U...UEL be an k-edge-coloring of G. Then, for some 1 < z < k, there exist
pairwise disjoint subsets Vi, Vo, V3 CV of size |V;| = un such that

(a) (V;,V;) is (G, e, p)-reqular, where G, = (V, E,), and
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(b) de.(Vi,V;) = plVil|V;1 )2k,
for every 1 <1< 5 <3.
We are ready to prove Theorem 1, which we restate here.

Theorem 1. For every k,D € N and for every 6 > 0, there exist n,a,C' > 0, such that
the following holds for every n-uniform graph G with n vertices and m > Cn edges: every
k-edge-coloring of G contains a monochromatic copy of every graph H?, where H is a graph
with mazimum degree at most D, v(H?) < an and o(e) > §logn for every e € E(H).

3.1.2 Proof of Theorem 1 — resolution of Pak’s conjecture

Proof of Theorem 1. Let pu = p(k,e) and n = n(k,e) > 0 be given by Lemma 3.4 for a
sufficiently small constant ¢ < D!, k1. Also assume w.l.o.g. that D > 1/§. Suppose we are
given an n-uniform graph G with n vertices and a k-edge-coloring F(G) = Ey U Ey U ... U Ey,
and let 1 < z < k and Vj, V5, V3 C V(G) be obtained by applying Lemma 3.4. In the rest of
the proof we show that I' = (V(G), E.,) contains H? for every H satisfying conditions of the
theorem with o = ep.

Prepare I'. Let t = |V;| = pun. Let I” = I'[V4, V5] be a bipartite subgraph of I induced by
Vi and V5. From (T, ¢, p)-regularity of (V1,V5) and from the assumption ¢ < 1/k,1/D, we
conclude (Remark 3.3) that for every subset X C V/(I") of size | X| = 2s, where

s = 2D%t,

we have

INp/(X)| >t —et — | X| >1t/2>3(D+ 3)|X].
Therefore, by Lemma 3.1 there exists a subset B C V(IV) of size |B| = s such that ' =I"\ B
is (2s, D + 3)-expanding. Let V] =V, \ B and Vj =V, \ B, so that I'g = I'g[V/, V3]. Most of
H? will be embedded using I'p and the machinery from Section 2.1, with occasional help from
set V.

Embed H. Consider a graph H with maximum degree D and let o: E(H) — N be a
function such that v(H?) = v(H) + > ..y o(e) < et and o(e) > dlogn for every e € E(H).
Let (e1,...,e,) be an arbitrary ordering of the edges of H, and for each 0 < i < m set
H; = (V(H),{e1,...,e;}). Note that Hy is just an empty graph on the vertex set V(H). We
inductively show that for each 0 < ¢ < m there exists an embedding ¢,;: HY — I' such that
the following holds:

(1) &:(V(H)) € V{, and
(2) the restriction of ¢; to F; = ¢; *(V(I'p)), denoted by f;: F; < I'p, is (25 — 2, D)-good.

Let us first prove the base case i = 0. Note that Hj = H, is an empty graph on the vertex
set V(H). Let a be a vertex (some new auxiliary vertex not used before) and v € V;, and
set ¢p(a) =v. As I'p is (2s, D + 3)-expanding, it is easy to see that ¢ is a (2s, D + 2)-good
embedding of a graph consisting of a single vertex. Let us extend such a one-vertex graph to a
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path P of length 2¢t. By Theorem 2.3, there exists an (2s, D+2)-good embedding ¢f,: P < I'p.
Consider an arbitrary bijection between V' (H) and the set of odd vertices in P (i.e. the first
vertex, third vertex, etc.). As ¢p(a) is mapped into VY, all these vertices are also necessarily
mapped into V]. Together with ¢, such a bijection gives an embedding ¢¢: Hy — I'p with
oo(V(H)) C V/. As ¢ was a (2s,D + 2)-good embedding, it is easy to verify that ¢ is a
(2s, D)-good embedding, hence also a (2s — 2, D)-good embedding,.

Suppose the induction holds for some ¢ < m and let e;1; = {a,b}. In short, we need to
find a path from ¢;(a) to ¢;(b) of length o(e;11), such that the part of it that goes through
['p maintains (2s — 2, D)-goodness. In the proof we use auxiliary parameters (1,0, h € N,
defined as follows: choose h € N to be the smallest integer such that (D — 1)" > &t, and
set {4 = |o(e;1)/2] —h —1 and ¢y = [o(e;41)/2] — h — 1. Note that ¢1,¢, > 1 since
lo(eiy1)/2] > |dlogn/2] > logp_;n > h+ 2, where we used 1/e > D > 1/6.

Let F;, = gbi_l(FB) be the part of HY embedded into I'p, and f; be the restriction of ¢; to
F;. We start by constructing the graph F/ in two steps: First attach to F; two paths of lengths
{1 and /5, one rooted in a and the other in b, and let @’ and V' denote the other ends of such
paths. Then attach two complete (D — 1)-ary trees of depth h, one rooted in @’ and the other
in b'. Let us denote the set of leaves of these trees by L, and L,, respectively, and note that
|La| = |Ly| = (D—1)" > et by the choice of h. Such trees have less than (D—1)"1 < (D—1)%et
vertices each, which together with a trivial bound ¢, < ¢y < o(e;41) < v(H?) implies

o(F)) <o(F) +2(ly—1)+2-((D—1)%t — 1)
<v(H?)+2v(H?) +2(D —1)%t < s.

Assuming D > 3 each vertex has degree at most D in F and, by its definition, F] can be
constructed from F; by successively adding a vertex of degree 1. Therefore, we can apply
Theorem 2.3 to obtain a (2s — 2, D)-good embedding f/: F/ < I'g which extends f;.

Every vertex in L, is at distance exactly ¢; 4+ h from a, and every vertex in L is at distance
exactly € + h from b. Thus f/(L,) € Vj and f/(L,) C Vj, for some ji,jo € {1,2}. Next,
we find a path of length 2 from f/(L,) to f/(L,) with the internal vertex lying in V3. From
(T, g, p)-regularity of the pairs (V1,V3) and (Va, V3), and | f/(L,)|, | f/(Ls)| > €t, we know that
all but at most 2et vertices in V3 \ ¢;(HY) are adjacent to both f/(L,) and f/(Ly). As |V3] =t
and v(H7) < et, this implies that there exists a free vertex in V3 adjacent both to f/(L,) and
f1(Ly), which gives a desired path of length 2.

To summarize, we have found a path P(z,y) of length 2 from f/(z) to f/(y), for some
x € L, and y € Ly, with the internal vertex avoiding V; UV, and ¢;(HY). By Lemma 2.4, the
restriction of f/ to the graph obtained by removing all newly added vertices to F; which do
not lie either on the path from z to a or from y to b is (2s — 2, D)-good. Together with the
path P(z,y), this defines an embedding ¢; 4, of HY , into I'. O

3.2 Vertex-disjoint paths in expanding graphs

Theorem 2.8 provides a framework for embedding forests (in polynomial time) into graphs with
certain expansion properties, while allowing arbitrary leaf deletions along the way. We present
an application of this result to the classical problem of finding vertex-disjoint paths between
given pairs of vertices in graphs.

Now we state the key result of this subsection. Theorem 2 (stated in the introduction) will
then follow directly from the properties of (n,d, A)-graphs.
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Theorem 3.5. Let G be a graph with the P,(n,d) property for 3 < d < n, and such that for
every two disjoint U,V C V(G) of sizes |U|,|V| > n(d — 1)/16 there exists an edge between
U and V. Let S be any set of vertices such that |Ng(z) N S| < Bdg(x) for every x € V(Q)
and let P = {a;,b;} be a collection of at most dnlogd " Jisioint pairs from S. If B < 2a — 1

15logn
then there exists a polynomial time algorithm to find vertex-disjoint paths in G between every

pair of vertices {a;, b;}, such that the length of each path is 2 Pﬁjgg((z/—lf))w + 3. Furthermore, the

pairs (a;, b;) are given one by one, and the next pair is revealed when the previous connection
15 made; all established connections cannot be changed.

Proof. By Theorem 2.8, there is an algorithm which works in time polynomial in V(G), and
wins the (G, S, nd, n?d?, d)-forest building game. We construct the required disjoint paths one
by one as follows. Let h be the smallest integer such that (d — 1)" > 16

For the first pair {a;,b,} we find two disjoint complete (d — 1)-ary trees of depth h in G,
rooted at a; and by, using the algorithm for winning the forest building game. The sets of
leaves of those trees are then of size at least n/16 each. To each leave of each tree we then
attach at least one but at most d — 1 new edges, so that the resulting trees are of depth h + 1,
and have exactly ”(‘i—gl) leaves. Therefore, by assumption, there is an edge connecting these
sets of leaves, thus creating a path (between a; and by) of length 2h + 3. Remove from our
current forest all other edges which do not lie on this path. We continue in the same fashion, by
finding two complete (d — 1)-ary trees rooted at as and by (disjoint from the path connecting a;
and by), then finding a connecting edge between the sets of leaves, and removing all edges from
the (d — 1)-ary trees, which do not lie on the found path. We delete the edges successively, by
always removing the edges which are incident with vertices of degree 1, just like in the forest
building game.

We do this procedure for every pair of vertices, and note that we can do this as at any given

point the current forest which we use for our argument has at most

dnlogd
15logn

(d—1)n dn dn
a-jn dan gy
6 ~ g T

-(2h+3)+2-4-

edges, where the first term is a bound on the total number of edges used in previous paths, and
the second one bounds the number of edges in the current (d—1)-ary trees we use. Furthermore
we delete vertices of degree 1 at most 2|P| - dn < n%d® times. This completes the proof. ]

The following result can be derived from the Expander Mixing Lemma through rather
routine calculations.

Lemma 3.6 ([17|, Lemma 2.7). Let G be an (n,d,\)-graph and let dy, ng be positive integers.
G has property P,(ng,dy) for a > 0 if the following holds:

1+4dy) A
1—a>n°(+n°)+g(1+\/2do).

We are ready to give the promised proof of Theorem 2, restated below for the convenience
of the reader.

Theorem 2. Let 0 < e < 1, and let G be an (n, d, \)-graph, with X\ < d*=¢/320 and d® > 5. Let

47
S be any set of vertices which satisfies |Ng(x)N S| < ¢ for every x € V(G). Let P = {a;,b;} be
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a collection of at most g"(”)lfg L disjoint pairs of vertices from S. There exists a polynomial time

algorithm to find vertex-disjoint paths in G between every pair of vertices {a;,b;}, such that
the paths are of equal length which is less than 5;?§g"d. Furthermore, the pairs (a;,b;) are given
one by one, and the next pair is revealed when the previous connection is made; all established
connections cannot be changed.

Proof. Let ng = n/16dy and dy = d°. From Lemma 3.6 we see that G has the Ps/4(no, do)-
property. Furthermore, by the Expander Mixing Lemma (eq. (1)), we have that for sets

U,V C V(G) of size at least % it holds:

d|U||V| (do — 1)d
eq(U, V) > - WUV = VIUIV] | === =) = ;56d0 -

which, together with A < d/320 and dy > 5 gives eq(U, V) > 0. Applying Theorem 3.5 to G
completes the proof; here are the final calculations.

e Number of pairs:

donologdy nlog d*/? B enlogd _ e logd
15logng  16-15log(n/16d;)  480log(n/16d,) ~ 480logn’

e Length of paths:

log(no/16) log(n/256d,) logn
2| ———= 3=2 | —————= <5 .
[log(do —1) * log(ds/? — 1) oS elogd

3.3 Topological minors in (n,d, \)-graphs

Now we use Theorem 3.5 from the previous subsection to prove Theorem 3, restated here for
the reader’s convenience.

Theorem 3. Let G be a (n,d, \)-graph with 240\ < d < n'/°/2, and let dy be such that dy > 3.
Then G contains a topological minor of K; for t = |d — 80\\/dy|, the paths between branching

vertices being of equal length ¢, where { = O 115gg;)
Proof. Let T = {vy,...,v} be a set of ¢t vertices with pairwise distances at least four in

G; one can find such a set by putting a vertex from G into 7" and removing all vertices
at distance at most four from G, and repeating this process. For each vertex v; € T, let
S; = {v] |1 <j <t,i#j}bean arbitrary set of neighbors of v; of size |S;| = ¢t — 1. Now
consider the following set of pairs

P = {(l, ])|1<Z<j<t}

and note that for every two distinct S; and S; there is exactly one pair from S; x S; in P. We
want to use Theorem 3.5 to link the pairs in P, which evidently will give a topological minor
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of K; in G. Note that G has the P,(ng,dy) property for a = 1 — % dy and ng = Qd‘r’o—? by
Lemma 3.6; indeed, note that

1+4dy) A AL oA A
%(2—20)+E(1+\/2-d0)<603+23\/d_0<403\/d_0=1—04-

Hence, since for every x € V(G) we have |[Ng(z) N (JPUT)| < fpd, for =1 — %,
and < 2a— 1 holds, and since every two disjoint sets in G of size ng(dyp — 1)/16 have an edge
between them by (1), we indeed can apply Theorem 3.5 and get a topological minor of K; such

that the constructed paths between vertices in each pair in P are of length 2 {%—‘ +3=

@) (fé’gg;)), completing the proof. ]

By assuming that A < D/240 and setting dy = 3 in the theorem above, one can get a
topological minor of K; for t = D — O(\). Can we do better? If A is small, can we find
a topological minor of Kp,; in an (n,d, \)-graph? In the rest of the section we show that
the answer to the latter question is negative; we give constructions of graphs which show
that one cannot do much better than what is given in Theorem 3. This is related to the
following question of Fountoulakis, Kithn and Osthus [25]. For which values «, k, d does every
(an, k)-expanding d-regular graph on n vertices contain a topological minor of K17 We will
show that even if we assume strong expansion properties, this still does not force a topological
minor of K4 1; in particular, for d > 3 and infinitely many values of n we show that there is an
(an,d — 3)-expanding (2d + 1)-regular graph, where o = «(d), with no subdivision of Kygo.
First, we need the following definition.

Definition 3.7. The strong product of two graphs G and G5 is the graph G1IXG5 on the vertex
set V(G1) x V(Gg), where (uy, uz) is adjacent to (vy,vs) if and only if one of the following holds:

e u; = v and us ~ vy in Gy;
® Uy = vy and vy ~ uy in Gy;
e uy ~ vy 1 Gy and vy ~ uy in Gsy.
Given a graph G, we denote with G the strong product of G and K;: G* = G K K;,.

Lemma 3.8. Let G be a triangle-free d-regular graph for d > 7, and let k > 2. Then G*) does
not contain a topological minor of Ky fort = kd + 2.

Proof. Observe that G*) can be obtained from G by replacing each vertex v in G by a clique
C, of size k, and then making all vertices in C), adjacent to all vertices in C, if v ~ u in G.
Hence, G*) is (kd + k — 1)-regular. Now, suppose to the contrary, that there is a topological
minor 7 of K, in G®. Let v be one of its branch vertices. We show that there is at least
another vertex w € C, which is a branch vertex in T'. If this is not the case, then every vertex
w in C, is either not a neighbor of v in T, or it is one of the internal vertices in T" adjacent
to v. In the latter case, this means that the path in 7', starting at v and continuing with
w, at some point leaves C, and lands in one of the kd other neighbors w’ of v in G®). This
implies that vw’ is not an edge in T, since every cycle in a topological minor contains at least
3 branching vertices. Note also that for distinct vertices wy, ws € C, in the latter case, w, w)
are also distinct, as otherwise we again get a cycle with less than 3 branching vertices.
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In both cases discussed in the passage above, for every vertex in w € C, — v, one of the
kd + k — 1 neighbors of v in G® is not its neighbor in 7', and thus v has at most kd + k —
1—(|Cy| = 1) = kd = t — 2 neighbors in T, a contradiction. Hence, we may assume that there
is another branching vertex w € C, and without loss of generality, let vw be an edge in 7.
Consider the (common) neighborhood in G*) —C, of v and w, and note it is of size kd and that
it is a disjoint union of cliques of size k, since by assumption G does not contain triangles. Since
both v and w have at least (t — 1) — (k — 1) > kd — k neighbors in 7' — C,, each, it means they
have at least kd — 2k > d common neighbors in T'— C,,, denoted by N. Note that all vertices in
N are also branching vertices. Now, by the pigeonhole principle, there exist two vertices x, 2’
in N from the same k-clique in G*). In order to get to the other at least |N| —|C,| > kd — 3k
branching vertices in N \ C,,  and 2’ must use internally vertex disjoint paths of length at
least two (indeed, recall that no vertex in C, is adjacent to any vertex in N \ C, in the graph
G®)). This is in turn not possible, since z and 2’ have an identical neighborhood (up to z, '),
which is of size kd+ k — 1, so one of them will use less than half of those to get to each vertex in
N\ C,, which is a contradiction since |N \ Cy| > kd — 3k > *£F=L for ¢ > 7. This completes
the proof. ]

The next lemma is a standard exercise in spectral graph theory (see for example Problem
11.7 in [40]).

Lemma 3.9. Let {\;}icr be the eigenvalues of graph Gy, and {u;}jcs be the eigenvalues of
graph Go. Then the eigenvalues of G1 X Gy are N\ipr; + Ni + g, for (i,7) € I x J.

Using Lemmas 3.8 and 3.9, we get the following result.

Theorem 3.10. Let G be a triangle-free (n,d, \)-graph with 7 < d < n—1 and let k > 2. Then
G® is a (kn,kd +k — 1,kX + k — 1)-graph without a topological minor of K, for t = kd + 2.

Proof. By Lemma 3.8 the graph G*) does not contain a topological minor of K. It is left to
prove that the second largest eigenvalue in absolute value of G is at most kX + k — 1. First,
it is an easy exercise to show that the eigenvalues of K} are k — 1 with multiplicity 1, and —1
with multiplicity £ — 1. On the other hand, the largest eigenvalue of G is d while the other
eigenvalues are by assumption at most A in absolute value. By applying Lemma 3.9, one can
see that all except the largest eigenvalue of G*) are at most A(k — 1) + X + (k — 1) in absolute
value, so we are done. O

Remark 3.11. Recall that in the introduction we mentioned that there exist triangle-free
(n,d, \)-graphs with A\ = O(v/d). By assuming that A\ = O(\/d) in the previous theorem,
one gets a (ny,dy, \1)-graph where ny = kn, dy = kd+k —1 and \y = kX +k — 1, with no

topological minor of K; witht = dy — (k—3) = dy — © (2—?) Recall that by Theorem & one
is guaranteed to find a topological minor of K; for t = dy — ©(\1) whenever Ay < dy/240; by
fizing d and X\, and choosing k to be large in the previous theorem, one gets t = dy — O()\y),

matching the mentioned lower bound for t.

Finally, we have the following corollary of Lemma 3.8, which gives a concrete bound for
the parameters in the abovementioned question of Fountoulakis, Kiithn and Osthus, putting an
emphasis on the expansion ratio, which is close to half of the degree of the constructed regular
graph.
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Corollary 3.12. For every d > 4 there exists a constant o > 0, such that for infinitely many
values of n there is a (an,d — 3)-ezpanding (2d + 1)-reqular graph on n wvertices without a
topological minor of Kogyo.

Proof. Let G be a random bipartite d-regular graph on an even number n/2 of vertices; such a
graph is whp (an, d — 3)-expanding for constant o = «(d) (see, for example, Theorem 4.16 in
[32]). By Lemma 3.8, the graph G® does not contain a K4, -topological minor; furthermore,
one can easily see that G is also (an, d — 3)-expanding, so we are done. [
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Appendix

Proof of Theorem 2.3. Let F’ be a graph obtained from F by adding a leaf v to a vertex
w € V(F) such that dp(w) < D — 1 and v(F’) < s, and let us show that an embedding
¢’ as described exists; the theorem then follows by induction. For a set X C V(G) and an
embedding f: H — G let

R(X, f) = La(X)\ f(H)| = Y [D = degy(f ' (v)] = [F(H) N X].

veX
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Let Y = I'g(d(w)) \ ¢(F); for every a € Y we can extend ¢ to an embedding ¢, of F’ by
letting ¢, (v) = a. We need to show that there is an a € Y such that R(X,¢,) > 0 for all X
with |X| < 2s — 2. Suppose to the contrary that for every a € Y there exists a set X, with
| X.| <25 — 2 such that R(X,, ¢,) < 0. By assumption ¢ is (2s — 2, D)-good, so it holds that
R(X,¢) > 0 for all sets X with |X| < 2s — 2. Note that for every a € Y we have:

R(Xa,¢a) — R(Xa,¢) = —1]a € T¢(X,)| + 1[a € X, + 1[p(w) € X,| —1]a € X,]
=1[¢(w) € X,] —1[a € Pa(X,)]

Hence, in order to have R(X,, ¢,) < 0, we may assume that R(X,,¢) =0, ¢(w) ¢ X, and
a € I'g(X,). We will also need the following claims.

Claim 4.1. If X C V(Q) is such that R(X,¢) =0 and | X| < 2s — 2 then | X| <s—1.

Proof. Since G is (2s — 2, D + 2)-expanding, we have that |['¢(X)| > (D +2)|X|; we also know
that v(F) < s — 1. Thus we have

0=R(X,0) > (D+2)|X|—(s—1)— |X|D - |X][=|X][-(s—1),
so the claim follows. O

Claim 4.2. The function R(-,®) is submodular, i.e., for all sets of vertices A, B it holds that
R(AU B, @)+ R(AN B, @) < R(A, ) + R(B, ¢).

Proof. The first term of R(X, ¢) is a submodular function of X, and the other two are modular,
so the claim follows. ]

Claim 4.3. If for A, B C V(G) it holds that R(A,¢) = R(B,¢) = 0, and |A|,|B| < s — 1,
then RCLAU B, ¢) =0 and |AU B| < s — 1.

Proof. Since ¢ is (2s — 2, D + 2)-good and |[AU B|,|AN B| < 2s — 2, we have that R(A U
B,¢), RLAN B,¢) > 0. Now it follows by Claim 4.2 that R(AU B, ¢) = 0, and in turn, by
Claim 4.1 we have [AUB| < s — 1. O

Now we are ready to finish the proof. Recall that for every a € Y it holds that | X,| < 2s—2
and R(X,,¢) = 0. Let X* = J,oy Xo and let us show that R(X*,¢) = 0, and thus by Claim
4.1 we will have | X*| < s—1. If Y = (), we are done, and otherwise we get by induction and
Claim 4.3 that R(X*,¢) = 0. Now we consider the set X' = X* U {¢(w)}, and notice that
X* € X' since we showed that ¢(w) ¢ X, for every a € Y, so ¢(w) ¢ X*. Since a € I'¢(X,)
for every a € Y, this means that I'g(¢(w)) \ ¢(F) = Y C I'¢(X*), hence the first term in
R(X*,¢) and the first term in R(X’, ¢) are the same. Furthermore, because of the second
term, we have R(X’, ¢) < R(X*, ¢) — (D — degF(w)) < R(X*,¢) —1<0as ¢(w) € X' and
o(w) ¢ X*, a contradiction with R(X’, ¢) > 0. O
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