
On stable solutions to the Allen–Cahn equation with
bounded energy density in R4

Enric Florit-Simon and Joaquim Serra

Abstract. We show that stable solutions u : R4 → (−1, 1) to the Allen–Cahn equation with bounded energy
density (or equivalently, with cubic energy growth) are one-dimensional.

This is known to entail important geometric consequences, such as robust curvature estimates for stable phase
transitions, and the multiplicity one and Morse index conjectures of Marques–Neves for Allen–Cahn approximations
of minimal hypersurfaces in closed 4-manifolds.
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1 Introduction

1.1 The Allen–Cahn equation and its connection to minimal surfaces

The theory of phase transitions naturally leads to the study of the Ginzburg–Landau-type energy functional

Eε(u,Ω) =
1

σn−1

ˆ
Ω

(
ε

2
|∇u|2 + 1

ε
W (u)

)
dx, (1)

defined for scalar fields u : Ω → R, where Ω ⊂ Rn is open and σn−1 is defined in (9). The potential W is
typically chosen to be a symmetric double-well potential. Let us fix for concreteness the standard quartic potential
W (u) = 1

4 (1− u2)2.
Critical points uε of Eε satisfy the Allen–Cahn (A–C) equation:

−ε∆uε +
1

ε
W ′(uε) = 0. (2)

Originally introduced in the 1970s as a phase-field model for binary alloys [AC72], the Allen–Cahn equation has
since become central in the study of variational problems, nonlinear PDEs, and geometric analysis, due in large part
to its deep connection with the theory of minimal surfaces. In particular, as ε ↓ 0, the narrow interfacial regions
{−0.9 < uε < 0.9} converge (in a suitable sense) to minimal hypersurfaces.

This connection has been extensively explored since the 1980s through several major developments:

• In the 1970s and 1980s, foundational results established the connection between phase transitions and minimal
surfaces [MM77; Mod85b; Mod88]. During this period—and motivated by this connection—De Giorgi proposed
a famous conjecture [Gio78] on the classification of monotone solutions to the Allen–Cahn equation, which
remains largely open to this day.

• The development of a regularity theory for energy-minimizing solutions—culminating around 2010—revealed
a full analogy with the classical theory of area-minimizing hypersurfaces [CC95; CC06; Sav09; Sav10].

• In parallel to these developments, the varifold-based framework for the Allen–Cahn equation [Hut86; HT00;
Ton05; TW12] established that sequences of solutions with bounded energy converge (in a weak sense) to
generalized minimal surfaces—more precisely, integral stationary varifolds.

• From the 2000s onwards, gluing methods were used to construct solutions whose interfaces converge to pre-
scribed minimal surfaces [PKP13; Pac09; PKW07; PKW08; Pin+13]. This approach led to the resolution of
De Giorgi’s conjecture in high dimensions [PKW11] and to the construction of non-flat minimizing solutions
in dimension 8 [PW13; LWW17].
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• More recently, a new and powerful twist on gluing techniques has emerged: they have been used to develop
a fine regularity theory for stable solutions with multiple, nearly parallel transition layers [WW19a; WW19b;
CM20].

1.2 Stable phase transitions and the regularity question

The natural functional domain for the energy (1) is that of bounded functions in the Sobolev space H1(Ω).
We say that a H1 function uε : Ω → [−1, 1] is a minimizer of Eε in Ω if

Eε(uε,Ω) ≤ Eε(uε + ξ,Ω) for all ξ ∈ C1
c (Ω). (3)

That is, minimizers are understood here as absolute minimizers—functions that minimize the energy among all
admissible competitors with the same boundary data.

However, both from physical and geometric perspectives, it is natural to consider local minimizers: functions uε
that satisfy (3) but only for variations ξ that are small enough in the H1 norm.

From the physical viewpoint, local minimizers correspond to stable equilibrium configurations—states toward
which dissipative evolution processes (such as those governed by the time-dependent Allen–Cahn equation [AC72] or
the Cahn–Hilliard equation [CH58], for which Eε serves as a Lyapunov functional) may evolve. Absolute minimizers
describe only a restricted subclass of such configurations.

From the geometric viewpoint, in the context of Allen–Cahn approximations to minimal hypersurfaces in closed
Riemannian manifolds [TW12; Gua18; GG18; GG19; CM20; CM23], the relevant solutions are those of finite Morse
index. In particular, they are local—but not absolute—minimizers (in the function space, as above), in appropriate
subdomains.

It is a standard fact that if uε : Ω → [−1,+1] is a local minimizer of Eε in Ω, then uε ∈ C2(Ω), satisfies the
Euler–Lagrange equation (2), and, in addition, the stability inequality holds:ˆ

Ω

ε|∇ξ|2 + 1

ε
W ′′(uε)ξ

2 dx ≥ 0 for all ξ ∈ C1
c (Ω). (4)

Solutions of (2) that satisfy (4) are called stable.
Thus, stability is a necessary condition for local minimality (in the function space, as defined above). In practice,

except in degenerate and hence non-generic situations, the two notions are essentially equivalent1.
Given the central role of stability—both in the modeling of physical phase transitions and in the geometric study

of minimal hypersurfaces—a fundamental question arises concerning the regularity of stable phase transitions:

In dimension n ≤ 7, do sequences of stable solutions of Allen–Cahn converge smoothly, possibly with
multiplicity, to minimal hypersurfaces in the singular limit ε ↓ 0?

A more precise formulation is:

Conjecture 1.1. Let εj ↓ 0, and suppose that {uεj} is a sequence of stable solutions of (2) in a given domain
Ω ⊂ Rn, with uniformly bounded energy. If n ≤ 7, the curvatures of the level sets of uεj within the interfacial regions
{−0.9 < uεj < 0.9} are uniformly bounded along the sequence in compact subdomains of Ω.

While the analogous question for embedded minimal hypersurfaces was resolved around 50 years ago in the
classical works of Schoen, Simon, and Yau [SSY75; SS81]—see also [Wic14; Bel25] for important extensions removing
a priori embeddedness assumptions—its counterpart in the context of phase transitions has remained elusive.

A positive answer was previously known only in dimension n = 3, as a consequence of the works [AAC01; WW19a;
WW19b; CM20] (see below for details). This paper establishes the result in dimension n = 4 and introduces ideas
that may prove useful for addressing the remaining cases n = 5, 6, 7. The examples constructed in [PW13] (see also
[LWW17]) show that the conjecture cannot hold in dimensions n ≥ 8, confirming that the restriction to dimensions
n ≤ 7—originally motivated by the analogy with minimal surface theory—is indeed necessary.

For absolute minimizers, the regularity question is fully resolved through the theory developed in [MM77; CC06;
Sav09; Sav10]. However, these techniques do not carry over to the case of local minimizers, as they crucially depend
on the convergence of absolute minimizers to classical minimal hypersurfaces with multiplicity one—a property that
fails for local mimimizers.

Conjecture 1.1 is known to have significant implications in geometric analysis. In particular, a positive resolution
in a given dimension implies the validity of the Marques–Neves multiplicity one and Morse index conjectures [MN16]
for Allen–Cahn approximations in that same dimension, by the results in [WW19b; CM20]. See Section 1.5 for a
further discussion of this implication.

1Indeed, it is a standard fact that a solution of A–C in a bounded domain Ω is stable if and only if the first Dirichlet eigenvalue of
the Jacobi operator Jv := −∆v +W ′′(u) v is nonnegative. Moreover, except for the degenerate (and non-generic) case in which the first
eigenvalue is zero, stability implies that the solution is a local minimizer.
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1.3 The Wang–Wei reduction and the classification problem for stable solutions with
bounded energy density

Consider a solution u : Rn → [−1, 1] of the Allen–Cahn equation with ε = 1:

−∆u+W ′(u) = 0 in Rn. (5)

For such a function, we define the energy density on balls of radius r > 0 by

Mr(u) :=
1

rn−1
E1(u,Br) . (6)

By Modica’s monotonicity formula [Mod87; Mod88], the map r 7→ Mr(u) is nondecreasing in r.
We say that u has bounded energy density if M∞(u) := limr→∞ Mr(u) <∞.
As we explain in more detail below (see Sections 2.3 and 3.1), the groundbreaking works of Wang–Wei [WW19a;

WW19b] and Chodosh–Mantoulidis [CM23] reduce the regularity question for stable phase transitions, namely Con-
jecture 1.1, to the following conjectural classification result:

Conjecture 1.2. Let u : Rn → [−1, 1] be a stable solution to (5) with bounded energy density. Then, for n ≤ 7,

u must be one-dimensional, that is either identically ±1 or of the form u(x) = tanh
(

e·x−s0√
2

)
for some unit vector

e ∈ Sn−1 and s0 ∈ R.

A positive answer to this conjecture is currently known only for n = 2, by Ghossoub and Gui [GG98], and for
n = 3, by Alberti, Ambrosio, and Cabré [AAC01; AC00]. Both results date back over 25 years, and the question has
remained open in higher dimensions since then.

In this paper, we address the case n = 4.
It is worth noting that Conjecture 1.2 is a special case of the so-called stable (or strong2) De Giorgi conjecture,

which asserts the same classification result even without the assumption of bounded energy density. This stronger
version of the conjecture is completely open even in dimension n = 3.

The minimal surface analogue of this stronger conjecture—namely, that any complete, two-sided, stable minimal
hypersurface in Rn must be flat for n ≤ 7—is a classical result for n = 3 [FS80; CP79; Pog81] and has recently been
established in the breakthrough works [CL24] for n = 4 (see also [CL23; CMR24]), [Cho+] for n = 5, and [Maz]
for n = 6. The final case n = 7 remains open. Unfortunately, the powerful and delicate techniques from intrinsic
differential geometry used in these proofs appear to be inapplicable to the setting of phase transitions (strong De
Giorgi) or other similar variational scaling-dependent problems.

1.4 Main result

In this paper we establish the following:

Theorem 1.3 (Main result: Classification in R4). Let u : R4 → [−1, 1] be a stable solution to (5) with bounded

energy density. Then, u is either identically ±1 or of the form tanh
(

e·x−s0√
2

)
for some unit vector e ∈ Sn−1 and

s0 ∈ R.

In other words, we establish Conjecture 1.2 in dimension n = 4.
Combining Theorem 1.3 with the main result in [WW19b], local curvature estimates for stable solutions directly

follow. Indeed, let us define

A2(u) =

{
|D2u|2−|∇|∇u||2

|∇u|2 if ∇u ̸= 0

0 otherwise ;
and A(u) =

(
A2(u)

)1/2
.

It is easy to see that if ∇u(x) ̸= 0 then A2(u)(x) = |II{u=u(x)}|2(x)+ |∇T log |∇u||2(x), where II{u=u(x)} is the second
fundamental form of the level set {u = u(x)} and ∇T denotes the gradient in the directions tangent to {u = u(x)}.

Theorem 1.4 (Regularity for level sets, ε-version). Assume that uε : B1 ⊂ R4 → (−1, 1) is a stable solution
to ε-Allen–Cahn, satisfying that Eε(uε, B1) ≤ Λ. Then, there are ε0 > 0 and C depending only on Λ such that if
ε ≤ ε0, then

|∇uε| ≥
1

Cε
and A(uε) ≤ C in {|uε(x)| ≤ 0.9} ∩B1/2 . (7)

In particular, {uε = t} ∩B1/2 is then a smooth hypersurface for all |t| ≤ 0.9, with

|II{uε=t}| ≤ C in B1/2. (8)
2The term “strong De Giorgi conjecture” is justified by the fact that it is known to imply the original De Giorgi conjecture for

monotone solutions of the Allen–Cahn equation in Rn+1.
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This shows the validity of Conjecture 1.1 in dimension n = 4.
Some remarks are in order:

Remark 1.5. The regularity theory for stable solutions with multiple flat, nearly parallel interfaces developed
in [WW19a; CM20; WW19b] is a fundamental element in the proof of Theorem 1.3. This is recalled in Section 2.3.
To go beyond the scope of existing techniques, we introduce several new ingredients that may be of independent
interest, including:

• A “continuous induction” argument on the value of M∞, the energy density at infinity of the solutions, which
reduces Theorem 1.3 to the classification of a single critical solution with remarkably rigid properties.

• A tangential form of the stability inequality, which controls “bad balls” with large curvature by a notion of
height excess (i.e. flatness).

• A new monotonicity-type formula that relates the height excess back with the energy density.

Section 3 presents all of the ingredients mentioned above and provides a detailed outline of the core of the proof.
The goal is to give the reader a clear sense of both the main difficulties inherent in the problem and the strategy we
develop to overcome them.

Remark 1.6. It is noteworthy that a central part of our proof (outlined in Section 3.3) shows a striking formal
resemblance to the argument developed in the first part of [CFFS25] dealing with Bernoulli’s free boundary problem.

Even more intriguingly, although the overarching structure of these two arguments (Bernoulli part of [CFFS25]
and Section 3.3 on this paper) aligns closely, the specific ingredients involved in our proof are entirely different.

The connection becomes apparent only a posteriori, once one identifies the appropriate dictionary to translate
objects and scalings between the two seemingly unrelated problems. In writing Section 3.3, we made a deliberate
effort to highlight this analogy.

That said, we believe that leveraging this analogy in a meaningful way is quite nontrivial, requiring several entirely
new ideas. From this perspective, the strategy we develop—outlined in detail in Section 3—is genuinely original.

Finally, we emphasize that although [CFFS25] also contains results on the “free boundary Allen–Cahn” problem,
those are completely unrelated to our work. Only the part of the Bernoulli part exhibits meaningful analogies with
our approach.

Remark 1.7. Several parts of our proof remain valid in higher dimensions. In fact, a variant3 of our overall strategy
yields the classification of embedded stable minimal hypersurfaces with Euclidean area growth up to dimension 7,
independently of [SS81].

In this paper, the case n = 4 of Conjecture 1.2 is established by using the main results of [WW19b] as a
“black box”. We emphasize that while the regularity theory in [WW19b] is formulated in all dimensions, its main
results—which are optimal, at least as currently formulated—do not allow us to carry out our strategy in dimensions
5 ≤ n ≤ 7. Nonetheless, we believe it is possible that delving deeper into the proofs in [WW19b] and extracting
suitable versions of certain intermediate steps, one could combine them with ideas introduced in this paper to tackle
the higher-dimensional cases. For this reason, we have written parts of the paper in general dimension n.

We give a more technical comment on this dimensional obstruction in Section 3.4, after the overview of the proofs.

1.5 Geometric applications: Min-max solutions and the multiplicity one and Morse
index conjectures

There has been a growing interest in using Allen–Cahn approximations to construct geometric objects with special
properties, including minimal hypersurfaces on closed manifolds. In particular, we highlight the results in [Gua18;
GG18; GG19], building on [TW12; Wic14]:

• A remarkably simple min-max construction, of mountain-pass type, exhibits the existence of rich families of
ε-Allen–Cahn solutions on manifolds. More precisely, fixed a closed n-dimensional manifoldM , for every p ∈ N
one obtains (for ε > 0 sufficiently small) solutions upε :M → (−1, 1) with energy ∼ p1/n and Morse index ≤ p.

• Passing them to the limit (via Theorem A.3, obtained in [HT00]) as ε → 0, one obtains integral stationary
varifolds (i.e. generalised minimal hypersurfaces) Σp. Moreover, the Morse index bounds mean that the Σp are
locally stable.

• Using Theorem A.9 (obtained in [TW12], which uses the deep and powerful regularity theory for stable integral
varifolds in [Wic14]), the limits are then seen to be of optimal regularity (i.e., as regular as in the case of area
minimisers).

3This is explored in a work in preparation by the authors.
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A main issue in the strategy above is that, without Conjecture 1.1 (or equivalently Conjecture 1.2), in the second
bullet we are forced to pass the upε to the limit using [HT00], i.e. just as critical points—using stability essentially
only for the limit objects. There is then no geometric control in the convergence, which allows degeneration to occur4:
Indeed, several sheets of {uε = 0} could collapse onto the same limit, like catenoids converging to a hyperplane, losing
all information on energy, index or topology coming from the upε . The multiplicity one and Morse index conjectures5

[MN16] state that this should not happen generically, and they were first confirmed for n = 3 in the breakthrough
article [CM20] (via Allen–Cahn approximation). More precisely, [CM20] shows that on three-dimensional closed
manifolds with a generic Riemannian metric, the Σp above arise as smooth, multiplicity one limits of the level sets
{upε = 0}, and they have area ∼ p1/3 and Morse index exactly p. In particular, they are all distinct. This shows
a strong form of a famous conjecture of Yau on the existence of infinitely many minimal surfaces on closed, three-
dimensional manifolds.

[WW19b] extended the local estimates required in [CM20] to higher dimensions (up to 10, surprisingly), for stable
solutions satisfying a-priori curvature estimates (i.e., assuming precisely the thesis of Conjecture 1.1). As explained
in [CM20, Remark 1.4] and [WW19b, Remark 10.9], the only present bottleneck to showing the multiplicity one and
Morse index conjectures for Allen–Cahn approximations in dimension n, with 4 ≤ n ≤ 7, is then a positive answer
to Conjecture 1.2 in that dimension. Our Theorem 1.3 confirms it for n = 4.
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2 Previous results from the literature

2.1 Monotonicity formula

Lemma 2.1 (Modica inequality, [Mod85a]). Let u : Rn → R be a bounded A–C solution on all of Rn. Then,
|u| ≤ 1, and the inequality is strict unless u ≡ ±1. Moreover,

|∇u|2(x)
2

≤W (u(x)) .

Throughout this article, unless otherwise indicated we assume that u : Rn → (−1, 1) is a solution to A–C on all
of Rn, to make use of the Modica inequality. Define

σn−1 := ωn−1

ˆ 1

−1

√
2W (s) ds , where ωn−1 is the volume of the unit ball in Rn−1. (9)

Recall the definition of the monotonic energy density Mr in (6). We will more generally denote Mr(u, x0) :=
Mr(u(· − x0)), and we omit u from the notation whenever it is clear from the context.

Remark 2.2. For a solution u of ε-A–C instead, we naturally set Mε
r(u) :=

1
rn−1 Eε(u,Br) = Mr/ε(u(εx)). Unless

otherwise stated, we will always work with ε = 1.

Lemma 2.3 (Monotonicity formula, [Mod85b]). Let u : Rn → [−1, 1] be an A–C solution on all of Rn. Then,
Mr is monotone nondecreasing in r. More precisely,

d

dr
Mr(u) =

1

rn

ˆ
Br

1

σn−1

[
W (u)− |∇u|2

2

]
dx+

1

rn+1

ˆ
∂Br

1

σn−1
(x · ∇u)2 dHn−1(x) . (10)

2.2 Some results on stable solutions

There is a (weaker) form of the stability inequality (4), which closely resembles the one for minimal hypersurfaces.

Proposition 2.4 (Sternberg–Zumbrun inequality, [SZ98]). Let u : Rn → R be a stable solution to A–C, and
let η ∈ C1

c (Rn). Then, ˆ
A2η2 |∇u|2 ≤

ˆ
|∇η|2|∇u|2 . (11)

4On manifolds with boundary, the situation is even worse, as transition level sets could potentially collapse onto the boundary, even
when the latter is not minimal [LPS24]. In the prescribed mean curvature (i.e. inhomogeneous A–C equation) case, the transition level
sets could fold into a zero mean curvature submanifold instead, losing all the curvature information in the limit [BW21; MZ25].

5Originally formulated in the Almgren–Pitts min-max setting.
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Remark 2.5. Assume that ∇u(x0) ̸= 0. Then, in a Euclidean coordinate frame with ∇u
|∇u| (x0) = e1, one has

|∇u|2A2(x0) =
∑n

j=2

∑n
i=1 u

2
ij(x0).

We will repeatedly use:

Lemma 2.6. Let u : Rn → R be a solution to A–C, and assume that A ≡ 0 in some open set Ω. Then u is
one-dimensional in Rn, i.e. u = v(e · x) for some e ∈ Sn−1 and v : R → R.

Proof. If ∇u ≡ 0 in Ω then u is constant by unique continuation. Otherwise, we find some open cube Q ⊂ Ω with
∇u ̸= 0.
Step 1. u is 1D in Q.
Indeed, we can compute

D
∇u
|∇u|

=
D2u−∇|∇u| ⊗ ∇u

|∇u|

|∇u|
, thus A2 =

∥∥∥∥D ∇u
|∇u|

∥∥∥∥2 , (12)

which shows that ∇u
|∇u| is constant in Q precisely when A ≡ 0 there. Letting e = ∇u

|∇u| , this means that u = ṽ(e · x)
in Q for some ṽ : R → R.
Step 2. Conclusion. Given w ∈ Sn−1 with w · e = 0, we see that ∂wu ≡ 0 in Q. By unique continuation, this shows
that ∂wu ≡ 0 in Rn, thus u = v(e · x) in Rn for some v : R → R.

Definition 2.7. Let ϕ : R → (−1, 1) be defined as ϕ(s) = tanh
(

s√
2

)
; this is a monotone strictly increasing solution

of the A–C equation in 1D, and M∞(ϕ) = limR→∞ E(ϕ,BR) = 1.

Then, one has the following:

Proposition 2.8 (Classification in R). Let u : R → R be a stable A–C solution. Then, u is either ±1 or ±ϕ(s−s0)
for some s0 ∈ R. The same classification holds for solutions with limR→∞ E(u,BR) <∞.

This can be shown by an ODE analysis. The best known results in higher dimensions are:

Theorem 2.9 (Classification in R2, [GG98]). Let u : R2 → [−1, 1] be a stable A–C solution. Then, u is either
±1 or ϕ(a · x+ b) for some a ∈ S1 and b ∈ R.

Theorem 2.10 (Classification in R3, [AAC01; AC00]). Let u : R3 → [−1, 1] be a stable A–C solution, and
assume moreover that M∞(u) <∞. Then, u is either ±1 or ϕ(a · x+ b) for some a ∈ S2 and b ∈ R.

A modern proof of these two results consists in plugging in a log-cutoff η into (11) to see that A vanishes, so that
Lemma 2.6 reduces the results to Proposition 2.8.

Finally, we note the following simple but remarkable result:

Theorem 2.11 (Discrepancy decay, [Vil22, Proposition 2.4]). Let u : Rn → [−1, 1] be a stable solution to
A–C. Then, there is C = C(n) such that

1

Rn−1

ˆ
BR

W (u)− |∇u|2

2
≤ C

R1/3
. (13)

2.3 Wang–Wei “a-priori” estimates

Definition 2.12 (Sheeting assumptions). Let u : BR → (−1, 1) be a stable ε-A–C solution. We say that u
satisfies the sheeting assumptions in BR (with constant C1 > 0) if

ε|∇u| ≥ 1

C1
and R|Au| ≤ C1 in {|u| ≤ 0.9} ∩BR. (14)

In the lemma below—and throughout the paper—we will adopt the following notations: Given a point x ∈ Rn,
we write x′ ∈ Rn−1 for its first n − 1 coordinates, so that x = (x′, xn). Moreover, given a set Ω ⊂ Rn−1 and a
function g : Ω → R, we denote by graph g the set of points in Ω× R satisfying xn = g(x′).

Set CR := B′
R×[−R,R], where B′

R ⊂ Rn−1. Since A controls the curvatures of the level sets, one has the following
standard lemma:
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Lemma 2.13. In the setting of Definition 2.12, assume that u(0) = t ∈ [−0.9, 0.9]. There are δ ∈ (0, 1) and C2,
depending on C1 and n, such that:
Let {Γt

i}Ni=1 denote the connected components of {u = t} ∩Bδ2R. Then there are gt1 < ... < gtN , gti ∈ C∞(B′
δR), such

that—after choosing a suitable Euclidean coordinate frame:

Γt
i = graph gti in CδR and |Dgti |+R|D2gti | ≤ C2 .

Wang and Wei showed that a-priori C2 bounds can be upgraded to C2,ϑ bounds, obtaining moreover improved
separation and mean curvature estimates.

Theorem 2.14 ([WW19b], C2 implies C2,ϑ). Let n ≤ 10. Let u : BR → (−1, 1) be a stable ε-A–C solution,
and assume the sheeting assumptions hold in BR for some C1. Then, in the conclusion of Lemma 2.13, for every
ϑ ∈ (0, 1) there are C2 and δ0 > 0 depending additionally on ϑ such that if ε

R ≤ δ0, then

∥D2gti∥L∞ +Rθ[D2gti ]Cϑ ≤ C2

R
. (15)

Moreover, letting H[f ] := div( ∇f√
1+|∇f |2

) denote the mean curvature operator,

∥H[gti ]∥L∞ +
[
H[gti ]

]
Cϑ ≤ εC2

R2
. (16)

Additionally, the separation between layers satisfies

gti+1 − gti ≥
1 + ϑ

2

√
2ε log

(
R

ε

)
. (17)

Remark 2.15. We emphasise that we will consider ε = 1 in the vast majority of the article.

2.4 Wang’s classification result

Wang developed an analogue of Allard’s regularity theory for stationary varifolds in the Allen–Cahn case. In
particular, he obtained the following theorem, which allows to give a new proof of Savin’s result [Sav09].

Theorem 2.16 ([Wan17], Allard-type theorem for A–C). Let u : Rn → [−1, 1] be a solution to A–C. Then,
there is δ = δ(n) > 0 such that if M∞(u) ≤ 1 + δ, then u is either ±1 or ϕ(a · x+ b) for some a ∈ Sn−1 and b ∈ R.

3 The core of the proof

3.1 Reduction to a critical solution

Two regularity results. Theorem 2.14 may be regarded as an a priori estimate: it provides strong compactness
and regularity information under suitable assumptions, but its applicability appears to rely on the very classification
result we aim to establish. In contrast, Theorem 2.16 shows that the classification holds—in all dimensions and
without assuming stability—for solutions whose densities at infinity are sufficiently close to 1. This motivates:

Definition 3.1 (Subcritical density). Let n ∈ N, n ≤ 7, and let K ∈ R+. We say that K is a subcritical density
in Rn if the only bounded stable solutions to the A–C equation in Rn, with density at infinity M∞ ≤ K, are ±1 and
ϕ(a · x+ b) for some a ∈ Sn−1 and b ∈ R.

With this perspective, Theorem 1.3 amounts to showing that every K > 0 is a subcritical density. Intuitively,
our strategy is to prove Theorem 1.3 via a form of continuous induction on the density parameter K.

Using Theorem 2.14 we readily obtain regularity in regions of subcritical density (and just as in the Allard case,
we get an extra δ) – this is a general feature in geometric variational problems:

Theorem 3.2 (Regularity in subcritical regions). Let n ≤ 7, and let K be a subcritical density in Rn. Let
u : Rn → (−1, 1) be a stable solution to ε-A–C. Then, there are δ = δ(K) > 0 and C = C(K) such that the following
holds:
Assume that

Mε
R(u) ≤ K + δ and

ε

R
≤ δ .

Then, the sheeting assumptions (recall Definition 2.12) hold in BδR with this C.

Remark 3.3. We have stated this result for ε-A–C solutions in general just for ready applicability when performing
rescaling arguments; unless otherwise stated, everything else will be only for solutions to A–C with parameter 1.
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Sketch of proof (see detailed proof in Section 4.1 below). The reasoning closely follows that of [WW19b, Corollary
1.3].

We proceed in the spirit of B. White [Whi16]. Suppose, for contradiction, that there exists a sequence of solutions
ui with δi → 0 as in the statement, yet with no uniform curvature bounds. By zooming in at points where the
curvature is nearly maximal, we obtain a rescaled sequence ũi that now has uniform curvature bounds on expanding
domains.

At this point, Theorem 2.14 applies: the C2,ϑ bounds combined with the Arzelà–Ascoli theorem yield C2 con-
vergence to a global solution of the Allen–Cahn equation or to a complete minimal hypersurface. This limit object
has density bounded by K and unit curvature at the origin. Then, recalling Definition 3.1—or using the flatness of
complete, stable minimal hypersufaces with bounded density [SSY75; SS81]—this leads to a contradiction.

Examining the proof carefully, we find another natural condition with which we already know the curvature
estimates. A similar observation (in a somewhat different form) was already suggested by Wang–Wei.

Theorem 3.4 (Regularity in good balls). Let n ≤ 7. Let u : Rn → (−1, 1) be a stable solution to A–C, with
MR(u) ≤ C0. Then, there are constants δbad > 0, C and R0, depending only on C0, such that the following holds.
Assume that R ≥ R0, and thatˆ

B1(x)

A2
u|∇u|2 < δbad for every x ∈ BR ∩ {|u| ≤ 0.9} . (18)

Then, the sheeting assumptions (recall Definition 2.12) hold in BR
2
with this C.

Sketch of proof (see detailed proof in Section 4.1 below). We run the same contradiction argument, with δbad,i → 0
for contradiction. The only difference is that, in the global Allen–Cahn limit case, passing (18) also to the limit we
would get a solution with Au∞ ≡ 0 in B1. But then it is one-dimensional by Lemma 2.6, reaching a contradiction
just as before.

The critical solution. We set:

Definition 3.5. Let n ≤ 7. We call K∗ := sup{K > 0 subcritical density in Rn} the critical density. We say that
u : Rn → (−1, 1) is a critical solution if u is a stable solution to A–C such that M∞ = K∗ and u is not 1D.

Unless every K > 0 is a subcritical density—as we ultimately want to establish—we must have K∗ <∞. We can
then show:

Proposition 3.6 (Critical density is attained). Subcritical densities form an open set. In other words, assuming
that K∗ <∞, there exists a critical solution.

Proof 1. We show that the set of subcritical densities in Rn is open. Let K <∞ be subcritical. Then, Theorem 3.2
gives some δ = δ(K,n) > 0 such that, for any stable solution with M∞(u) ≤ K + δ, we have that Au ≤ C

R for every
R large enough. Then obviously Au ≡ 0, thus u is one-dimensional, which shows that K+δ is subcritical as well.

Proof 2. We show that the complement is closed instead. Assume that K∗ < ∞, so that there exists a sequence
Ki ↘ K∗ of densities which are not subcritical; up to passing to a subsequence, Ki ≤ K∗ + 1. By definition, there
exist stable solutions ui : Rn → (−1, 1) with M∞(ui) ≤ Ki but which are not 1D. By Theorem 3.4 there need to be
some zi ∈ Rn such that ˆ

B1(zi)

A2
ui
|∇ui|2 ≥ δbad , (19)

as otherwise Theorem 3.4 would give that Aui
≤ C

R for every R large enough, showing that ui is one-dimensional.
Up to a translation, zi = 0. Passing to a subsequential limit (using standard interior C3 estimates for solutions of
Allen–Cahn), we obtain a bounded stable solution u∞ to A–C with

M∞(u∞) = lim
r→∞

Mr(u∞) = lim
r→∞

lim
i→∞

Mr(ui) ≤ lim
i
Ki = K∗ .

On the other hand, by (19) we see that ˆ
B1

A2
u∞

|∇u∞|2 ≥ δbad .

But then u∞ is not one-dimensional, thus K∗ cannot be subcritical either.

From the above, we are compelled to define:
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Definition 3.7 (Bad centers and balls). Fix n ≤ 7, and let u : Rn → (−1, 1) be a critical solution. Let δbad > 0
be given by Theorem 3.4, with C0 = K∗.

We say that z ∈ Rn is a bad center, and that B1(z) is a bad ball (of radius one), if |u(z)| ≤ 0.9 andˆ
B1(z)

A2
u|∇u|2 ≥ δbad. (20)

Moreover, we call Z(u) := {z ∈ Rn : z bad center} the bad set, and denote with

BR(Z(u) ∩ Ω) :=
⋃

z∈Z(u)∩Ω

BR(z) = {x : dist(x,Z(u) ∩ Ω) ≤ R}

the R-neighborhood of the bad centers in a set Ω. We will write Z instead of Z(u) when there is no risk of confusion.

Then, Theorem 3.4 gives curvature estimates in the absence of bad centers. In particular:

Lemma 3.8 (Existence of bad centers). If u is a critical solution, then Z(u) ̸= ∅.

Proof. Otherwise, Theorem 3.4 would give that Au ≤ C
R for every R large enough. Then obviously Au ≡ 0, thus u

would be one-dimensional, a contradiction.

Large scale flatness. The critical solution has an extremely rigid structure:

Proposition 3.9 (Large-scale flatness). Let n ≤ 7. There exists a dimensional modulus of continuity ω such
that the following holds: Let u : Rn → (−1, 1) be a critical solution, and let z ∈ Z(u).

For any R ≥ 1, there exists ez,R ∈ Sn−1 such that

{|u| ≤ 0.9} ∩BR(z) ⊂ {|ez,R · (x− z)| ≤ ω(R−1)R} and K∗ − ω(R−1) ≤ MR(z) ≤ K∗. (21)

Moreover, K∗ is an integer. We emphasise that, in particular, ω is independent of z ∈ Z.

In other words, for a sufficiently large scale—around any bad center—the transition level sets of our solution
become close to a hyperplane of multiplicity K∗. Needless to say, this is a vast improvement with respect to a general
solution6, and we will make heavy use of this structure in the rest of the article.

Sketch of proof (see detailed proof in Section 4.2 below). The reason behind (21) is as follows:

• The densities K < K∗ are subcritical. If MR(z) ≤ K, Theorem 3.2 then yields curvature estimates (for R large
enough, and with constants depending on K). Letting R ↗ ∞, since by definition a bad ball is a region with
a definite amount of curvature, this forces MR(z) ↗ K∗, and with a uniform rate!

• In other words, we have found a modulus of continuity ω, independent of z, such that

K∗ − ω(R−1) ≤ MR(z) ≤ K∗ for any z ∈ Z .

But in particular, the density is becoming constant at large scales.

• By (the equality case of) the monotonicity formula, as R becomes larger our solution (rescaled) becomes
quantitatively closer to some stable minimal cone C = Cz,R, with vertex density K∗.

• After a rotation, a minimal cone can always be written as C = C̃ × Rn−k, where Rn−k is its “spine” (i.e.

directions of translation invariance), and C̃ ⊂ Rk has density strictly less than the vertex density (i.e. K∗) at
any given point x outside the origin.

• But then, we can apply the “inductive” curvature estimates (Theorem 3.2) in a small neighborhood around

any such x, giving smooth convergence there – and thus showing that C̃ \ {0} is smooth.

If k ̸= 2, Simons’ classification directly shows that C is a hyperplane. If k = 2, Theorem A.6 gives that C is a
hyperplane as well.

Finally, Theorem A.3 shows that K∗ is an integer.

This noticeably general argument, which reduces the general classification problem to ruling out a critical solution
satisfying (21), would likely lead to similar conclusions in many other Bernstein-type problems.

6Think, for instance, of a catenoidal-type solution with a neck at scale one, looking flat again for several larger scales, and then
developing a much larger neck at scale R ≫ 1.
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“A-priori estimate philosophy”. We believe it is worth highlighting that our proof of Theorem 1.3 does not
use the powerful regularity theory in [Wic14]. In fact, the use of the rich Allen–Cahn varifold theory developed in
[HT00; TW12] can interestingly be entirely bypassed in our article, and we elaborate on this point in Appendix B.

This renders the theory for stable solutions of the Allen–Cahn equation completely self-contained (not relying on
the theory of critical points), with [WW19b] understood as a (crucial) component.

For later use, we record the following byproduct of the proof (see Section 4.2):

Proposition 3.10 (No gaps). In the conclusions of Proposition 3.9, the following additionally holds:

K∗ − ω(R−1) ≤ Mω(R−1)R(y) ≤ K∗ for every y ∈ {ez,R · (x− z) = 0} ∩BR(z) . (22)

3.2 A tangential form of stability

We consider a tangential version of the stability inequality (introduced in [Ton05]) which relates the behaviour
of the bad set to the flatness. We first need some definitions:

Definition 3.11 (Tangential gradient and tangential Allen–Cahn 2nd fundamental form). Let e ∈ Sn−1

be a unit vector. We set ∇e′u := ∇u− (e · ∇u)e, and

A′2
e =

{
|D∇e′u|2−|∇|∇e′u||2

|∇u|2 if ∇e′u ̸= 0,

0 otherwise.

Here D∇e′u denotes the differential matrix of the vector field ∇e′u.

Remark 3.12. In a frame with e = en and ∇e′u
|∇e′u| (x0) = e1, we have |∇u|2A′2

e (x0) =
∑n−1

j=2

∑n
i=1 u

2
ij(x0).

Definition 3.13. We set the following dimensionless quantities.

• L2-height excess:

H2
r(u, e) :=

1

rn+1

ˆ
Br

(x · e)2
[
|∇u|2

2
+W (u)

]
, and H2

r(u) := inf
e∈Sn−1

H2
r(u, e).

• L2-tilt excess:

T2
r(u, e) :=

1

rn−1

ˆ
Br

(
1− (e · ∇u

|∇u|
)2
)
|∇u|2, and T2

r(u) := inf
e∈Sn−1

T2
r(u, e).

• L2-tangential curvatures:

K2
r(u, e) :=

1

rn−3

ˆ
Br(z)

A′2
e (u)|∇u|2, and K2

r(u) := inf
e∈Sn−1

K2
r(u, e).

Naturally, Hr(u),Tr(u),Kr(u) denote the corresponding square roots. Moreover, we denote

H2
r(u, e, x0) := H2

r(u(· − x0), e), T2
r(u, e, x0) := T2

r(u(· − x0), e), K2
r(u, e, x0) := K2

r(u(· − x0), e),

and likewise for T2
r(u, x0), K

2
r(u, x0),H

2
r(u, x0). We will mostly omit u from the notation, as it will be clear from

the context.

Proposition 3.14 (Tangential stability inequality). Let u : Rn → R be a stable solution to A–C, and let
e ∈ Sn−1. Then, there is C = C(n) such that

K2
R(e) ≤ CT2

2R(e).

Sketch of proof. We test (4) with ξ = |∇e′u|η, where η is a standard cutoff. A detailed proof (including the simple
computations which give the final inequality) is given in Section 4.3.

In our situations of interest, a Caccioppoli-type inequality will show7 that

K2
R(e) ≤ CH2

4R(e) , (23)

thus we work exclusively with the latter (we can forget about the tilt excess). Here are the main takeaways:

• The geometric flatness in (21) immediately shows that H2
R(ez,R, z) = o(1) as R → ∞. Therefore, we have

improved the right term from (11) to a quantity which decays at infinity!

7See Section 4.4 for how the notions of excess that we will use are related.
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• However, with a heavy drawback: A′2
e does not control the curvatures of the level sets in the direction of e

anymore (see Remark 3.12). This appears to be a major—and unresolved for now—difficulty in most problems
about stable solutions, in striking contrast with the very special case of minimal hypersurfaces in which one can
recover the full 2nd fundamental form on the left, yielding a stronger form of the stability inequality (Schoen’s
inequality, which is precisely [SS81, Lemma 1]).

• Since we lack a method to replicate [SS81] (or [SSY75], which uses Simons’ identity instead), we adopt a
different strategy. In fact, (23) will be used exclusively (but crucially) as a way to control the behaviour of
the bad set.

• By definition, each bad balls contributed a definite amount to the left term in stability—we show that each
bad ball still contributes a definite amount to the left term in (23), regardless of the choice of e.

Proposition 3.15 (A′ detects bad balls). Let u be a critical8 solution, and let z ∈ Z(u). Then, there is some
δ′bad > 0 depending only on n such thatˆ

B1(z)

A′2
e |∇u|2 ≥ δ′bad for every e ∈ Sn−1 .

The proof is given in Section 4.3. Essentially, the reason behind the result is that A′2
e ≡ 0 implies that u is 2D (and

thus 1D by Theorem 2.9).
Morally, “curvature accumulates in all directions”. The proof relies only on the classification of 2D stable solutions,

the best known result for many semilinear and free boundary problems, opening up the possibility of adapting our
strategy to them.

An important consequence of Proposition 3.15—combined with (23)—is the following lower bound for the height
excess around bad balls:

CH2
4R(z) ≥

c

Rn−3
. (24)

We are now ready to delve into the contradiction argument.

3.3 Reaching a contradiction – A full overview of the argument

To prove Theorem 1.3, we may assume for contradiction that K∗ < ∞. There exists then a critical solution
u : R4 → (−1, 1), with (nonempty, by Lemma 3.8) bad set Z as in Definition 3.7.
We will show that the existence of such u gives a contradiction (equivalently, the set of subcritical densities is
also closed). This may be seen as an “inductive step”: the fact that any solution with density < K∗ must be 1D
constrains the critical solution to have a special structure (21). This information will be crucially used to set up our
contradiction argument.

Interestingly, once we have combined the critical solution, the bad set inspired by Wang–Wei and its control
via tangential stability, all of which are new and completely independent from [CFFS25], our overarching strategy
will share striking analogies with the classification of 3D stable solutions to the Bernoulli problem in [CFFS25]. As
explained in Remark 1.6 this analogy is not obvious at all a priori. We choose on purpose notations and write our
results in a way that such parallelisms—which would otherwise be difficult to grasp—become as apparent as possible.

Overarching strategy. Perhaps optimistically, one might hope to exploit the closeness of Allen–Cahn level sets
to minimal surfaces in order to perform a geometric improvement-of-flatness iteration (à la De Giorgi, Allard, or
Savin). This would allow us to bring the flatness in (21) from scale R ≫ 1 down to scale one around some fixed
z ∈ Z and reach a contradiction.

Unfortunately, this naive approach fails. The point is that we have access to enhanced mean curvature bounds
only on good balls; meanwhile, nothing prevents the bad set from appearing dense along a hyperplane (at large
scales). In other words, good balls may be of infinitesimal size relative to the scale under consideration. In such
situations, the mean curvature estimates available on these good balls are useless for establishing regularity in the
much larger ball of interest.

The previous obstruction also makes an intrinsic approach in the spirit of [SSY75] or [Bel25] essentially hopeless,
apart from the fact that we do not have access to Schoen’s or Simons’ inequalities anyways.

To overcome this, our guiding philosophy will instead be to seek a contradiction from the very existence of the
bad set as a whole. An outline of our argument in this article is the following:

• We consider a carefully selected large bad ball BRk
(zk), with ε

2
k := H2

Rk
(zk) → 0.

8Criticality is not needed here: Assuming only u stable and
´
B1

A2
u|∇u|2 ≥ c0 > 0 instead, we would deduce that

´
B 1

δ

A′2
e |∇u|2 ≥ δ

for every e ∈ Sn−1, where δ = δ(c0, n) > 0.
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• Using the special properties of this ball, we find R♭
k, with 1 ≪ R♭

k ≪ Rk as k → ∞, and a new center yk such
that BR♭

k
(yk) ⊂ BRk

(zk) and

H2
R♭

k
(yk) ≲

(
R♭

k/Rk

)χ
ε2k and K∗ −MR♭

k
(yk) ≲

(
R♭

k/Rk

)χ
ε2k for some tiny χ > 0. (25)

• Via a crucial monotonicity-type inequality, which relates the height excess9 with the density pinching, we will
bring the improved flatness back to the original scale Rk, up to a logarithmic error:

H2
4Rk

(yk) ≲ H2
R♭

k
(yk) + log

(
Rk/R

♭
k

) [
K∗ −MR♭

k
(yk)

]
≲
(
R♭

k/Rk

)χ
log
(
Rk/R

♭
k

)
ε2k ,

so that

ε2k = H2
Rk

(zk) ≲ H2
4Rk

(yk) ≲
(
R♭

k/Rk

)χ
log
(
Rk/R

♭
k

)
ε2k .

For k sufficiently large, since R♭
k/Rk → 0 this yields a contradiction.

Very informally, we improve the flatness of u in BRk
(zk) with respect to itself, which is naturally a contradiction.

We now explain our strategy in more detail.
Selection of center and scale. Consider the following:

Definition 3.16 (Size of the bad set at resolution θR). Given θ ∈ (0, 1], define

N(θ,BR(z)) :=(θR)−n
∣∣∣BθR(Z ∩BR(z))

∣∣∣ (26)

=(θR)−n
∣∣∣ ∪z̃∈Z∩BR(z) BθR(z̃)

∣∣∣ , (27)

i.e. essentially the number of balls of radius θR needed to cover Z ∩BR(z) (by standard covering arguments).

Set Nθ := N(θ,BR(z)). Stability easily gives
∣∣∣B1(Z ∩ BR(z))

∣∣∣ ≲ Rn−3, i.e. N 1
R
≲ Rn−3. We may then hope at

best that Z behaves like a codimension-three submanifold of Rn, or codimension-two in {u = 0}. Now, if that were
the case, we would have Nθ ∼ θ−(n−3) for every θ ∈ (0, 1], a “Minkowski-type” bound; on the other hand, we only
know a “Hausdorff” bound N 1

R
≲ Rn−3, perfectly compatible with the bad set looking essentially (n−1)-dimensional

at large resolutions θR≫ 1, leaving no big good regions available.
As explained before, there is then no hope to be able to perform a geometric iteration, and we will need to

improve the excess via another argument. An instructive observation is the following: Assume that Nθ ≥ θ−(n−3+β);
by Vitali, we find ∼ Nθ disjoint bad balls BθR(zi) ⊂ BR(z). Then, we can bound

∼Nθ∑
i=1

K2
θR(zi) ≤ inf

e∈Sn−1

∼Nθ∑
i=1

1

(θR)n−3

ˆ
BθR(zi)

A′2
e |∇u|2 ≤ inf

e∈Sn−1

1

(θR)n−3

ˆ
BR(z)

A′2
e |∇u|2 = θ−(n−3)K2

R(z) ;

in particular, since Nθ ≥ θ−(n−3+β), there is at least one zj in the sum such that K2
θR(zj) ≤ θβK2

R(z).
In other words, we have improved our tangential curvatures with an algebraic rate! Changing the center may

seem nonstandard in this class of problems—the point is that zj is a bad center again, just as good as z to continue
our contradiction argument thanks to the uniformity in (21).

To transform this into an excess decay, we would need a sort of “reverse stability relation”. This motivates (see
Section 5.2 for the short proofs):

Lemma 3.17 (Selection 1: Choice of Rk and zk). Let α ∈ (0, 14 ). There exist Rk → ∞ and zk ∈ Z such that

ε2k := H2
4Rk

(zk) → 0

and

H2
4R(z) ≤ 2

(
K2

R(z)

K2
Rk

(zk)

)1+α

ε2k for every z ∈ Z and R ∈ [R0, Rk]. (28)

We obtain this by essentially choosing zk and Rk which maximise
H2

4R(z)

K
2(1+α)
R (z)

, which is a slightly penalised (by

α > 0) version of the tangential stability inequality, among all z ∈ Z and R ≤ Rk.

9The motivation behind this definition of excess in our article was precisely that we found (a weighted version of) it to satisfy this
challenging monotonicity-type relation.
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From the discussion above, it is then natural to consider, for a fixed β ∈ (0, 1):

θ̃k ≃ inf
{
θ : exists z ∈ Z with BθRk

(z) ⊂ BRk
(zk),K

2
θRk

(z) ≤ θβK2
Rk

(zk)
}
, (29)

so that we find new R̃k := θ̃kRk and z̃k with (by (28)) the desired excess decay H2
4R̃k

(z̃k) ≤ θ̃
β(1+α)
k ε2k. On top of

that, the bound we wanted for Nθ will actually now hold10 relative to BR̃k
(z̃k). The precise statement is:

Lemma 3.18 (Selection 2: Passing to R̃k and z̃k). Let Rk, zk, εk be given by Lemma 3.17, and fix β ∈ (0, 1).

For k large enough, there exist θ̃k ∈ (R0

Rk
, 1] and z̃k ∈ Z∩BRk

(zk) such that, putting R̃k := θ̃kRk and ε̃k := θ̃
β(1+α)
k εk,

the following hold:

• BR̃k
(z̃k) ⊂ BRk

(zk) and R̃k → ∞.

• H2
4R̃k

(z̃k) ≤ 2ε̃2k → 0.

• Excess bound:

H2
4R(z) ≤ 2

(
K2

R(z)

K2
R̃k

(z̃k)

)1+α

ε̃2k ≤ 2

(
R̃k

R

)(n−3)(1+α)

ε̃2k for any z ∈ Z, R ≥ R0 s.t. BR(z) ⊂ BR̃k
(z̃k).

(30)

• Bad ball count:

N(θ,BR̃k
(z̃k)) ≤ Cθ−(n−3+β) for all θ ∈ (

R0

R̃k

, 1]. (31)

Observe that we carry over (30) too; this will be just as important as (31). This concludes Section 5.2.

Linearisation and improvement of flatness. It is at this second center and scale that our setting will allow
us to perform a linearisation procedure. Let us restrict to n = 4 in what follows. The main steps will be:

(i) By (30), which guarantees flatness at many scales, we will be able to cover almost all of {u = 0}∩BR̃k/4
(z̃k)—except

for a small neighbourhood of the bad set—by a union of K∗ graphs xn = g̃i(x
′), with g̃i : B

′
R̃k/4

(z̃′k) → R (in

suitable Euclidean coordinates after rotation). The prime notation ′ will be used throughout to denote objects
in Rn−1, the first n− 1 coordinates of a point, etc.—see more comments on this notation below.
We will then consider, for each i = 1, . . . ,K∗, the functions

hi(x
′) :=

g̃i(z̃
′
k + R̃kx

′)− (z̃k)n

R̃kε̃k
, which have L1 norm of size 1 in B′

1/4.

(ii) A crucial step will be to show that the mean curvatures of the hi are much smaller—in fact, bounded (in L1)

by a positive power of ε̃k. This will combine all the special properties of the pair center-scale (z̃k, R̃k) and
of course will strongly rely on [WW19b]. Then, this result will imply (via a standard iteration), that at any
z̄ ∈ Z ∩BR̃k

we can find K∗ different affine functions ℓ̄i such that

|hi − ℓ̄i| is of size O(ε̃
3χ/2
k ) on average over B′

ε̃χk
(z̄′/R̃k) , (32)

for some tiny exponent χ > 0.
Up to scaling back, this amounts to a small improvement of flatness for each layer g̃i. Notice however that, a
priori, there would be no reason why the ℓ̄i should be similar to one another (for example, the g̃i could have
all been linear functions themselves to begin with).

(iii) Finally, by carefully leveraging the properties obtained from the continuous induction argument—more pre-
cisely, using (21), which forces all layers of {u = 0} to lie close to each other when viewed inside a sufficiently
large ball centered at any bad center—we will show that the ℓ̄i must in fact be very close to one another. More
precisely, we will find a single affine function ℓ (for example one can take ℓ := Rk ℓ̄1(z̃

′
k + · )) such that:

|g̃i − ℓ|
ε̃χk R̃k

is of size O(ε̃
χ/2
k ) on average over B′

ε̃χk R̃k
(z̄) , for every i ∈ {1, ...,K∗} . (33)

This collective improvement of flatness of the layers will then be upgraded to an improvement on H2 and
K∗ −M, leading to (25) and thus the final contradiction.

We now explain in more detail the steps above. Throughout the paper, we use the prime notation ′ to denote
projections of sets11, points, and balls onto Rn−1 = R3.

10As otherwise the argument before the lemma would allow the curvature decay to continue.
11For example, if A ⊂ Rn we set A′ := {x′ ∈ Rn−1 : (x′, t) ∈ A for some t ∈ R}.
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Given λ > 0, we set

Ωλ := {dist(x′, [Z ∩BR̃k
(z̃k)]

′) ≥ ε̃λkR̃k} ∩B′
1
2 R̃k

(z̃′k) ⊂ Rn−1 . (34)

Notice that the set Ωλ clearly depends on k, but we omit this dependence in the notation for readability, as there is
no risk of confusion.

Throughout, ok(1) denotes a (positive) quantity that can be made arbitrarily small by taking k sufficiently large
(independently of all other variables involved in the statements).

Our starting point towards point (i) described above is:

Proposition 3.19 (Graphical decomposition). Let γ := 1/4. For any given k, let us choose a Euclidean
coordinate frame12 such that H2

4R̃k
(en, z̃k) ≤ 2ε̃2k. Then—for k sufficiently large—there are K∗ smooth graphs

gi : Ω2−γ/2 → R, g1 < ... < gK∗ , such that

{u = 0} ∩B 1
2 R̃k

(z̃k) ∩ (Ω2−γ/2 × R) =
K∗⋃
i=1

graph gi .

Furthermore, recalling that H[f ] := div( ∇f√
1+|∇f |2

), we have

|∇gi| ≤ ok(1) and |H[gi]|(x′) ≤
C

dist2(x′, [Z ∩BR̃k
(z̃k)]′)

. (35)

By (30) it can be seen that

1

R̃k

∥gi − (z̃k)n∥L∞(Ω2−γ/2) ≲ ε̃k (i.e. we have initial collective flatness ε̃k) .

As explained in (ii) above, we would like to say that these graphs look minimal/harmonic, to perform an iteration
that improves this flatness. On the other hand, they are only defined on a “punctured domain” Ω2−γ/2, and with
estimates from (35) degenerating as we approach the (projected) bad set. This forces us to work with:

• L1 measures of smallness and minimality/harmonicity, instead of L∞.

• New, delicate Whitney-type extensions g̃i of our graphs (performed in Section 7.1), with g̃i ≡ gi in Ω2−γ , which
capture the integral information coming from (30).

Let hi(x
′) :=

g̃i(z̃
′
k+R̃kx

′)−(z̃k)n

ε̃kR̃k
. In Section 7.2 we will establish precise local L1 bounds for |∆hi|. In particular,

we will prove—together with other, more refined estimates that are also needed but omit here—thatˆ
B′

1/8

|∆hi| = O
(
ε̃
1/10
k

)
.

Then, given z̄ ∈ B 1
8 R̃k

(z̃k), a simple iteration then gives affine functions ℓi : R3 → R so that

1

(ε̃χk R̃k)

 
B′

(ε̃
χ
k
R̃k)

(z̄′)

|g̃i − ℓi| ≲ ε̃
1+χ/2
k , (36)

i.e. (32) up to rescaling.
To upgrade (36) to (33)—which is point (iii) above—we will proceed as follows:

• An L∞ idealisation: Define B1 := Bε̃χk R̃k
(z̄) and B2 := Bε̃1+2χ

k R̃k
(z̄) ⊂ B1. Set ε̄k := ε̃

1+χ/2
k (ε̃χk R̃k). Let us

imagine that we had (36) in L∞ form rather than merely on average. For this idealisation, let us also forget
about the distinction between gi are g̃i, thus pretending that they are both defined in the full domain without
holes. We would then have:

|gi − ℓi| ≲ ε̄k in B′1, thus |gi − ℓi| ≲ ε̄k in B′2 ⊂ B′1 as well. (37)

Moreover, by (21) all of the gi pass inside B
2; in particular, |gj − gi| ≲ diam(B2) ≲ ε̄k in B′2.

By the above and the triangle inequality, |ℓj − ℓi| ≲ ε̄k in B′2 too. Since the gi can’t cross each other, the ℓi
(which are affine) are forced to be always very close, and then |ℓj − ℓi| ≲ ε̄k in B′1 as well, as desired.

• Our case (L1 with L∞ scaling): As we will see, B2 \ Ω2−γ is actually tiny, thus the distinction between gi
and g̃i is only a minor technical issue. On the other hand, compared to (37), the implication 

B′1
|g̃i − ℓi| ≲ ε̄k =⇒

 
B′2

|g̃i − ℓi| ≲ ε̄k (38)

12This frame always exists thanks to the second bullet in Lemma 3.18.
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is not automatic and hard to establish.

We will show this implication by running (in Proposition 7.10) a second iteration (a geometric improvement
of oscillation); however, this will require |∆hi| to be substantially smaller than what is needed to prove (36).
This extra smallness —obtained in Proposition 7.6— happens to break a natural criticality of the problem and
must be obtained through a delicate dichotomy argument. Once the implication (38) is established, arguing

just as above for the rest we find that |ℓj − ℓi| ≲ ε̄k in B′1 for all 1 ≤ i, j ≤ K∗.

Combining the above, letting ℓ := ℓ1 we will find:

Proposition 3.20 (Improvement of flatness at scale ε̃χk R̃k). Let n = 4 and fix χ ∈ (0, 1
20 ], β ∈ (0, 1

40 ] and
α ∈ (0, 1

40 ]. Given any z̄ ∈ Z ∩ BR̃k/8
(z̃k), there exists—for k large enough—an affine function ℓ : Rn−1 → R such

that

1

(ε̃χk R̃k)|B′
ε̃χk R̃k

(z̄′)|

ˆ
B′

ε̃
χ
k
R̃k

(z̄′)∩Ω2−γ

∣∣gi − ℓ
∣∣ ≤ Cε̃

1+χ/2
k for every i ∈ {1, ...,K∗}, (39)

where C depends only on χ, β, and α.

Section 7 is devoted exclusively to proving this result, following the strategy we just outlined. In Section 8 we
use Proposition 3.20 to conclude our contradiction argument:

Improvement of Allen–Cahn excess and density. Choosing z̄ in Proposition 3.20 to be at the “boundary”
of the bad set, we find a clean (meaning free of bad centers) ball B̃1(ȳ) ⊂ B1 of comparable size, where we have

uniform elliptic estimates. Then (39) transforms into an L∞ estimate, i.e. 1

(ε̃χk R̃k)
∥gi − ℓ∥

L∞(B̃′1(ȳ))
≲ ε̃

1+χ/2
k . Since

{u = 0} is given by the K∗ graphs gi in this ball, this will lead to13

H2
(ε̃χk R̃k)/4

(ȳ) ≲ ε̃
2+2χ/3
k , and moreover K∗ − ε̃

2+2χ/3
k ≲ M(ε̃χk R̃k)/4

(ȳ) ≤ K∗ .

A monotonicity-type relation and the final contradiction. By the monotonicity formula, the above density
pinching should mean u is very conical. In Theorem 8.5 we exhibit a new, delicate monotonicity-type relation which

quantifies this. Letting H̃ and M̃ be the variants14 of H and M defined in Definition 8.3, it says that

H̃r ≤ H̃λr + C| log(λ)|1/2(M̃r − M̃λr)
1/2 for any r > 0 and λ ∈ (0,

1

2
) . (40)

This inequality, which may be viewed as an outward epiperimetric-type relation, allows us to transport the improved
height excess back to the original BRk

(zk) from Selection 1 (see Lemma 3.17). This improves H4Rk
(zk) with respect

to itself, reaching a contradiction as in the brief overview at the beginning of the section.

3.4 Obstructions to the proof in higher dimensions

Most results have been carefully optimised so that they hold in higher dimensions. The main obstruction to
extending our proof comes from the mean curvature estimate in Theorem 2.14 (which is optimal as stated).

Indeed, even in the very idealised case where one knew a priori that there is only one single bad ball, say centered
at 0, a natural obstruction arises in dimensions 5 ≤ n ≤ 7.

Here is an overview in this idealised setting: Using that H2
4R̃k

(z̃k) ≤ ε̃2k and applying (24), we find a lower bound

for the flatness in B4R̃k
(z̃k) for our solution: namely,

ε̃2k ≥ c

R̃n−3
k

, or ε̃
2/(n−3)
k ≥ c

R̃k

. (41)

This bound is moreover sharp in the case in which Z ∩B4R̃k
(z̃k) consisted exclusively of a single bad center, i.e. z̃k.

Now, exactly as in (i) above, consider the rescalings

hi(x
′) :=

g̃i(z̃
′
k + R̃kx

′)− (z̃k)n

R̃kε̃k
, which have L1 norm of size 1 in B′

1/4 .

13The bound on H is easy, since we will have exponential decay away from {u = 0}. To go from the large concentration of {u = 0} to
a lower bound on M, we will combine a slicing argument and the behaviour of 1D periodic Allen–Cahn solutions (Appendix D).

14Interestingly, we obtain the challenging formula for weighted (by a heat-type kernel) versions of H and M, which will be just as good
as the original versions (see Proposition 8.4) for our purposes.
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To perform an improvement of flatness iteration—even just for a small number of scales—we need the mean curvatures
of the hi to be small, as we described in (ii) above. More precisely, the mean curvatures should be bounded (in L1)
by some positive power of ε̃k.

Naturally, the mean curvature bound we have access to is the one in Theorem 2.14, or (35) in our setting. Rescaled
to the hi, it says at best that ˆ

B′
1/4

|H[hi]| is of size O

(
1

R̃kε̃k

)
.

Combined with the bound (41), we find then that
ˆ
B′

1/4

|H[hi]| ≤ C
ε̃
2/(n−3)
k

ε̃k
= Cε̃

5−n
n−3

k .

Already for n = 5 we do not obtain a positive power of ε̃k anymore. This means that the mean curvature estimates
on the hi are simply too large to allow for an improvement of flatness iteration.

It would appear then that, in order to overcome this obstruction, one cannot forget the more precise information of
where (16) comes from: namely, a Toda-type elliptic system governing the interaction between layers (see [WW19b]).

4 Key preliminary results

4.1 Regularity results – Proofs of Theorems 3.2 and 3.4

Proof of Theorem 3.2. Notice that the statement is scaling invariant. Hence, by considering the rescaled function
u(R · ), we can (and do) assume that R = 1.
Step 1. We first prove the lower bound for |∇uε|.
Assume for contradiction there are δ1,i, δ2,i, εi → 0 such that:
We have

Mεi
1 (uεi) ≤ K + δ1,i , (42)

yet

there is some xi ∈ Bδ2,i ∩ {|uεi | ≤ 0.9} with |∇uεi |(xi) <
1

iεi
. (43)

Since B1−δ2,i(xi) ⊂ B1, by (42) we can bound

Mεi
1−δ2,i

(uεi , xi) =
Eε(uεi , B1−δ2,i(xi))

(1− δ2,i)n−1
≤ Eε(uεi , B1)

(1− δ2,i)n−1
≤ K + δ1,i

(1− δ2,i)n−1
. (44)

Consider the rescalings ũi(x) := uεi(εi(x− xi)). Letting Ri =
(1−δ2,i)

εi
, the ũi are now A–C solutions with parameter

1 defined on BRi
. Moreover, by (44) and monotonicity we find that

Mr(ũi) ≤
K + δ1,i

(1− δ2,i)n−1
for all r ≤ Ri , (45)

yet by (43) we have |ũi|(0) ≤ 0.9 and |∇ũi|(0) < 1
i . Since |ũi| ≤ 1 and they all satisfy (5), standard C3 estimates

and Arzelà-Ascoli provide a subsequence converging in C2
loc(Rn) to ũ∞, a bounded stable solution to A–C on all of

Rn, such that

M∞(ũ∞) = lim
r→∞

Mr(ũ∞) ≤ K yet |ũ∞|(0) ≤ 0.9 and |∇ũ∞|(0) = 0 .

On the other hand, since we are assuming thatK is a subcritical density, together with the fact that |ũ∞|(0) ≤ 0.9 < 1
we deduce that ũ∞ = ϕ(a · x+ b) for some appropriate a, b, but then |∇ũ∞|(0) = ϕ′(b) ̸= 0, a contradiction.
Step 2. We prove the bound for Auε ; (8) follows then directly.
Recall that we are assuming R = 1; we will find C and r ∈ (0, 1), depending on K, such that

Auε ≤ C

r
in {|uε(x)| ≤ 0.9} ∩Br ,

which is equivalent to proving the statement.
We show this by contradiction. Assume there were δ1,i, δ2,i, εi → 0 such that Mεi

1 (uεi) ≤ K + δ1,i , yet

δ2,iAuεi
(xi) → ∞ for some xi ∈ {|uεi | ≤ 0.9} ∩Bδ2,i ,
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which in particular gives that

sup
x∈{|uεi

|≤0.9}∩B2δ2,i

dist(x, ∂B2δ2,i)|A(ui)|(x) → ∞ .

Let yi ∈ {|uεi | ≤ 0.9} ∩B2δ2,i be such that

2dist(yi, ∂B2δ2,i)|A(ui)|(yi) ≥ sup
x∈B2δ2,i

dist(x, ∂B2δ2,i)|A(ui)|(x) , (46)

and set

Ri := dist(yi, ∂B2δ2,i), Ai := |A(ui)|(yi) and ε̃i =
εi

Auεi
(xi)

.

Defining ũi(x) := uεi(yi +
1

Auεi
(yi)

x), we now have solutions with A–C parameters ε̃i, defined on domains B ri
2 Ai

converging to Rn (since riAi → ∞), and which (by the same computation as in Step 1, since yi ∈ B2δ2,i) satisfy

Mε̃i
r (ũi) ≤

K + δ1,i
(1− 2δ2,i)n−1

for all r ≤ Ri . (47)

Case 1. We have ε̃i → ε̃∞ ∈ (0,∞]. The functions ũi then satisfy elliptic estimates, which (since Aũi
(0) = 1) shows

that necessarily ε̃∞ ∈ (0,∞). But then, the same argument as in Step 1 combined with the fact that Aϕ(a·x+b) ≡ 0
yields a contradiction.
Case 2. Otherwise, ε̃i → 0. Now, observe that we have A(ũi)(0) = 1 and (thanks to (46)) also A(ũi) ≤ 4 in B ri

2 Ai
.

Together with Step 1, this means precisely that the ũi satisfy the sheeting assumptions from Definition 2.12 in
balls of radius one, and therefore we have the conclusions of Theorem 2.14 as well. This gives uniform C2,ϑ estimates
for some fixed θ > 0, say θ = 1

2 , which (by Ascoli–Arzelà) shows that the level sets {ũi = ũi(0)} converge (up to

passing to a subsequence, not relabeled) in C2,ϑ
loc (Rn), to a complete minimal hypersurface Σ. By Theorem A.5, it is

stable; moreover, as in Step 1 using (137) we find that Hn−1(Σ ∩ BR) ≤ CC0R
n−1 for every R > 0. Then, by the

stable Bernstein theorem with Euclidean area growth in Rn with n ≤ 7, see [SS81], we deduce that Σ is a union of
parallel hyperplanes, and in particular |IIΣ| ≡ 0. By the C2,ϑ estimates once again, which imply convergence in C2

loc,
we deduce that actually supB1

|II{ũi=ũi(0)}| → 0.
It then follows (see [WW19a; WW19b] for more details) that

sup
x∈{ũi=ũi(0)}∩B1/2

|A(ũi)|(x) → 0.

On the other hand, we had |A(ũi)|(0) = 1, a contradiction for i large enough.

Proof of Theorem 3.4. This is essentially a variant of [WW19b, Corollary 1.3]. Following exactly the same contra-
diction argument as in the previous proof, in Step 1 we would get solutions with the additional assumption that´
B1(xi)

A(uεi)
2|∇uεi |2 → 0, so that the limit ũ∞ would satisfy

´
B1

A(ũ∞)2|∇u∞|2 = 0. Then ũ∞ would be one-

dimensional by Lemma 2.6, thus either ±1 or of the form ϕ(a · x + b) by Proposition 2.8, reaching a contradiction
exactly as in the previous proof. In Step 2, the proof of Case 1 would follow this exact same reasoning, and Case 2
did not use the subcritical density assumption anyways.

4.2 Large-scale flatness – Proofs of Propositions 3.9 and 3.10

Proofs of Propositions 3.9 and 3.10. Step 1. Density at large scales.
We first show that K∗ − ω( 1

R ) ≤ MR(z) ≤ K∗. The second inequality holds by monotonicity. For the first one,
let K < K∗; we want to see that there is some universal R0 = R0(K) such that MR(z) > K if R ≥ R0. But
indeed, by definition of K∗ we know that K is subcritical, and in particular we can apply Theorem 3.2 (with ε = 1),
from which it follows that if MR(z) ≤ K then Au ≤ C

R in B1(z) (as long as R ≥ R0(K)). On the other hand´
B1(z)

Au|∇u|2 ≥ δbad > 0 by assumption, and |∇u| ≤ C is bounded. This implies that necessarily MR(z) > K up

to making R0(K) large enough, as desired.

We are ready to prove the rest of Propositions 3.9 and 3.10. We assume then for contradiction that there were
some δ1 > 0, and some Ri → ∞, ui and zi as in the statement, but such that for any given e ∈ Sn−1 either

{|ui| ≤ 0.9} ∩BRi
(zi) ̸⊂ {|e · (x− zi)| ≤ δ1Ri} (48)

or

Mδ1R(ui, y) < K∗ − δ1 for some y ∈ {e · (x− zi) = 0} ∩BRi(zi) . (49)
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Step 2. Rescaling and cone analysis.
Rescaling by 1

Ri
, we get solutions ũi(x) := ui(zi + Rix) of ε̃i-A–C with parameters ε̃i =

1
Ri

. By Theorem A.3 and
Theorem A.5, they will converge—up to subsequence—to a limit stationary stable integral varifold V = (Σ, θ). We
will write Σ instead of V and suppV , by slight abuse of notation; our simple arguments will be of very standard
nature. Let MR(Σ, y) := 1

ωn−1Rn−1 ∥Σ∥(BR(y)), and MR(Σ) := MR(Σ, 0). Using (137) and Step 1 we see that

MR(Σ) = limi→∞ MRRi(ui) ≡ K∗. Thus, by the monotonicity formula for stationary integral varifolds, Σ will be a
cone, meaning that λΣ = Σ for any λ > 0. We want to see that Σ is a hyperplane.

All points in Σ have density at most K∗, by upper semicontinuity. Define S to be the set of all points of Σ
with density exactly K∗; since M∞(Σ) = K∗ as well, Σ is also a cone around any point of S. By standard GMT15

arguments, S is actually a linear subspace, the “spine” of Σ, and Σ + x = Σ for any x ∈ S. In an appropriate
Euclidean frame, we can decompose Σ = C × Rn−k, 1 ≤ k ≤ n, so that C ⊂ Rk is still a stable minimal hypercone.
Moreover, letting ΘΣ(x) := limR→0 MR(Σ, x), we have that

{0} × Rn−k = S = {ΘΣ = K∗} = {ΘΣ ≥ K∗} . (50)

The takeaway here is that all points in C \ {0} have density below K∗. In fact, we have a strict drop, i.e. there
exists16 some K = K(Σ) < K∗ such that supx∈(C\{0})×Bn−k

1
ΘΣ(x) ≤ K.

Let δ = δ(K) > 0 be given by Theorem 3.2. Let A = Bk
1 \ Bk

1/2 ⊂ Rk. By the convergence of the A–C energies
to the limit and upper semicontinuity, we easily see that up to making δ > 0 smaller, for i large enough we have
Mε̃i

δ (ũi, X) ≤ K+δ for every X ∈ (C∩A)×Bn−k
1 . Moreover, up to making i larger, we have ε̃i ≤ δ2. This means that

(by Theorem 3.2) the sheeting assumptions are satisfied in Bδ2(X) for some C = C(K), for every X ∈ A∩Sk−1×B1,
which gives uniform curvature estimates for {u = t} for every |t| ≤ 0.9. Passing to the limit (via Ascoli–Arzelà and
Hausdorff convergence), we conclude these level sets converge in C1,α to (C ∩ A) × Bn−k

1 , and in particular C ∩ A
is C1,α. Since C is a cone, we deduce that C \ {0} is C1,α as well, and therefore smooth by standard bootstrapping
results for minimal graphs.

Case 1. If 3 ≤ k ≤ n, then Simons’ classification [Sim68] of hypercones C ⊂ Rk, 3 ≤ k ≤ 7, which are smooth
and stable outside of the origin gives that C (and thus Σ) is a hyperplane.

Case 2. If k = 1, 2: If k = 1, Σ is trivially a hyperplane. If k = 2, i.e. Σ = C × Rn−2, applying Theorem A.6
(given that Σ is an ε-limit of stable ε-A–C solutions), we conclude that Σ needs to be a hyperplane as well.
Step 3. Conclusion.
Choosing an appropriate Euclidean coordinate frame, by the Constancy Theorem ([Sim18, p. 243]) we have Σ =
K∗[{xn = 0}], and K∗ ∈ N by integrality. In particular, by (138) applied to the ũi, {|ũi| ≤ 0.9} ∩ B1 ⊂ {|xn| ≤ δ1}
for i large enough, which scaling back gives (48) for the ui.

We are left with showing that, given δ1 > 0, we have

Mε̃i
δ1
(ũi, y) ≥ K∗ − δ1 for every y ∈ {xn = 0} ∩B1

for i large enough, since it gives then (49) after scaling and thus yields a contradiction.

Now, since Σ = K∗[{xn = 0}], obviously Mr(Σ, y) = K∗ for any such y and r > 0. Assume there were however
yi ∈ {xn = 0} ∩B1 such that Mε̃i

δ1
(ũi, yi) < K∗ − δ1 instead, and let y∞ = limk yik be an accumulation point.

Let λ < 1; by (137), we see that limi→∞ M
ε̃ik
λδ1

(ũi, y∞) = Mλδ1(Σ, y) = K∗. In particular, M
ε̃ik
λδ1

(ũik , y∞) ≥
K∗ − 1

10δ1 for all k large enough.
Now, up to making k even larger, we additionally have Bδ1(yik) ⊃ Bλδ1(y∞). Fixing λ close enough to 1 (de-

pending on K∗ and δ1), we can then ensure that M
ε̃ik
δ1

(ũik , yik) ≥ K∗−δ1
K∗− 1

10 δ1
M

ε̃ik
λδ1

(ũik , y∞), just by direct comparison.

Combining the above we reach M
ε̃ik
δ1

(ũik , yik) ≥ K∗ − δ1, a contradiction.

4.3 Tangential stability and bad balls – Proofs of Propositions 3.14 and 3.15

Proof of Proposition 3.14. We will show that, for every η ∈ C1
c (Rn),

ˆ
A′2

e η
2 |∇u|2 ≤

ˆ (
1−

(
e · ∇u

|∇u|

)2
)
|∇η|2|∇u|2 =

ˆ
|∇η|2|∇e′u|2 ,

15Geometric Measure Theory; see for instance [Sim18].
16Indeed, notice that since C is a cone we have sup

x∈(C\{0})×Bn−k
1

ΘΣ(x) = sup
(xk,xn−k)∈(C∩Sk−1)×Bn−k

1
ΘΣ(x

k, xn−k). If the

strict drop were false, we would find a limit point x = (xk, xn−k) ∈ C ∩ Sk−1 × Bn−k
1 with (by upper semicontinuity of densities)

ΘΣ(x
k, xn−k) = K∗, but (by (50)) then xk = 0, a contradiction with xk ∈ Sn−1.
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which plugging in a standard linear cutoff shows Proposition 3.14.
We test stability with ξ = |∇e′u|η, getting

−
ˆ
W ′′(u)(|∇e′u|η)2 ≤

ˆ
|∇(|∇e′u|η)|2 =

ˆ
|∇e′u|2|∇η|2 + |∇|∇e′u||2η2 + 1

2
∇(|∇e′u|2) · ∇η2 . (51)

On the other hand, differentiating (5) in a direction τ ∈ Sn−1 and multiplying by the directional derivative uτ gives
that uτ∆uτ =W ′′(u)u2τ , which adding over an orthonormal basis {τj}n−1

j=1 of {τ · e = 0} and multiplying by η2 shows∑
j

uτj∆uτjη
2 =W ′′(u)|∇e′u|2η2 .

Integrating by parts, we obtain that

−
ˆ
W ′′(u)|∇e′u|2η2 =

ˆ ∑
j

|∇uτj |2η2 +
1

2

ˆ ∑
j

∇u2τj · ∇η
2 =

ˆ ∑
j

|∇uτj |2η2 +
1

2

ˆ
∇(|∇e′u|2) · ∇η2 .

Combining this with (51), we find thatˆ (∑
j

|∇uτj |2 − |∇|∇e′u||2
)
η2 ≤

ˆ
|∇e′u|2|∇η|2 ,

which since
∑

j |∇uτj |2 =
∑

j

∑n
i=1(∂iuτj )

2 = |D∇e′u|2 shows the desired result.

Proof of Proposition 3.15. Assume the proposition is false for contradiction. Then, we find appropriate ek, uk such
that

´
B1(xk)

A2(uk)|∇uk|2 ≥ δbad but
´
B1(xk)

A′2
ek
(uk)|∇uk|2 ≤ 1

k . Letting ũk(x) := uk(x− xk), up to a subsequence

we obtain a stable solution ũ∞ = limk ũk and some e∞ ∈ Sn−1 such that
´
B1

A2(ũ∞)|∇u∞|2 ≥ δbad but A′
e∞(ũ∞) ≡ 0

in B1. Then, by Proposition 4.1 below, we deduce that ũ∞ is two-dimensional. By the 2D stable De Giorgi conjecture
(Theorem 2.9) then ũ∞ is either ±1 or of the form ϕ(a ·x+b), but then A(ũ∞) ≡ 0, and we reach a contradiction.

Proposition 4.1. Let u : Rn → R be a solution to A–C, and assume that A′
e ≡ 0 for some e ∈ Sn−1 in some open

set Ω. Then u is two-dimensional in Rn, i.e. u = v(a1 · x, a2 · x) for some orthogonal directions a1, a2 ∈ Sn−1 and
v : R2 → R.

Proof. Assume withot loss of generality e = en. Assuming that ∇′u ̸= 0, we can compute

D
∇′u

|∇′u|
=
D∇′u−∇|∇′u| ⊗ ∇′u

|∇′u|

|∇′u|
, thus A′2

e =

∥∥∥∥D ∇′u

|∇′u|

∥∥∥∥2 .
The same argument as in Lemma 2.6 then gives the result.

4.4 Height and tilt excesses

The first result is a Caccioppoli-type inequality for the level sets of u (rather than u itself).

Lemma 4.2 (Caccioppoli). Let u : Rn → R be an A–C solution, and let η ∈ C1
c (Rn). Then, there is C = C(n)

such that ˆ
|∇e′nu|2η2 ≤ 4

ˆ
|xn|2|∇u|2|∇η|2 + C

ˆ
W (u)|xnηηn| .

Proof. Obtained as in [Wan17, Remark 4.7]; we give the proof in Appendix C for convenience of the reader.

Recall the cylinder notation Cr := B′
r × [−r, r] ⊂ Rn−1 × R. The following well-known lemma asserts that most

of the energy is concentrated around the intermediate transition layers.

Lemma 4.3 (Exponential decay). Let u : Rn → R be an A–C solution, and assume that {|u| ≤ 0.85} ∩ C4R ⊂
{|xn| ≤ δR}, where δ ∈ (0, 1) and R ≥ 1. Then, there are dimensional constants C and c0 > 0 such that

sup
C2R∩{|xn|≥2δR}

[
|∇u|2

2
+W (u)

]
≤ Ce−c0δR . (52)

Proof. Standard; a proof is given in Appendix C for convenience of the reader.

We now relate L∞-flatness (“height”) and the L2-height excess.
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Lemma 4.4 (Height controls height excess). Given λ ∈ (0, 1), there exist c0 > 0 and C depending on λ such
that the following holds. Assume that {|u| ≤ 0.9} ∩ C4R ⊂ {|xn| ≤ δR} for some δ > 0 and R ≥ 1. Then,

H2
R(en) ≤ Cmax{δ2, R−2(1−λ)}MR + Ce−c0R

λ

.

Proof. Let δ̃ = max{δ,R−(1−λ)}. If δ̃ ≥ 1, the inequality is trivial. Otherwise, letting P =
[
|∇u|2

2 +W (u)
]
, using

Lemma 4.3 we can estimate

H2
R(u, e) =

1

Rn+1

ˆ
BR

|x · e|2P =
1

Rn+1

ˆ
BR∩{|x·e|≤2δ̃R}

|x · e|2P +
1

Rn+1

ˆ
BR∩{|x·e|>2δ̃R}

|x · e|2P

≤ 1

Rn+1
(2δ̃R)2

ˆ
BR∩{|x·e|≤2δ̃R}

P +
C

Rn−1
e−c0δ̃R ≤ Cδ̃2MR + Ce−c0R

λ

.

Lemma 4.5 (Height excess controls height). Let δ1 ∈ (0, 1). Then, there is δ2 > 0 depending on δ1, n such that
if H2

R(en) ≤ δ22, then, for all R ≥ 1,

{|u| ≤ 0.9} ∩BR/2 ⊂ {|xn| ≤ max{δ1,
1

R
}R} .

More generally, given additionally c0 > 0, up to making δ2 > 0 smaller we have that

{x : M δ1
2 R

(x) ≥ c0} ∩BR/2 ⊂ {|xn| ≤ δ1R} .

Proof. Step 1. Density of intermediate layers.
Let δ̃1 := max{δ1, 1

R}. We first see that {|u(x)| ≤ 0.9} ⊂ {M δ̃1
2 R

(x) ≥ c0}, for some c0 > 0 depending on n.

Indeed, since ∥∇u∥L∞ ≤ C(n) and W (s) > 0 for s ̸= ±1, there are c > 0 and r0 ∈ (0, 12 ) depending on n such that

W (u) ≥ c > 0 in Br0(x). Therefore, Mr0(x) = 1
rn−1
0

´
Br0

(x)
1

σn−1

[
|∇u|2

2 +W (u)
]
≥ c0. On the other hand, since

δ̃1
2 R ≥ 1

2 > r0, Lemma 2.3 gives that M δ̃1
2 R

(x) ≥ c0 as well.

Step 2. Conclusion.
By Step 1, it suffices to prove the second part of the result. If by contradiction there is x ∈ BR/2 \ {|xn| ≤ δ1R} with

M δ1
2 R

(x) ≥ c0, then (since B δ1
2 R

(x) ⊂ {|xn| ≥ δ1
2 R} ∩BR) we have that

H2
R(en) ≥

1

Rn+1

ˆ
B δ1

2
R
(x)

|yn|2
[
|∇u|2

2
+W (u)

]
dy ≥

(
δ1
2

)2
1

Rn−1

ˆ
B δ1

2
R
(x)

[
|∇u|2

2
+W (u)

]
dy

=

(
δ1
2

)n+1

M δ1
2 R

(x) ≥ c0

(
δ1
2

)n+1

,

and then if H2
R(en) ≤ δ22 with δ2 small enough we reach a contradiction.

We can finally give:

Proposition 4.6 (Height excess controls tilt excess). Let u : Rn → R be an A–C solution, with M∞ ≤ C0.
Then, there are C, R0 and c > 0, depending on C0 and n, such that if R ≥ R0, then

T2
R(en) ≤ CH2

2R(en) + e−cR .

Proof. We will show that if r ≥ R0 then

T2
r(en) ≤ CH2

16r(en) + e−cr , (53)

which up to a finite covering argument shows the desired result as well (with some different C, c,R0).
Let ξ ∈ C1

c (R) be a standard cutoff satisfying χ[−1,1] ≤ ξ ≤ χ[−4/3,4/3], so that ξ ≡ 1 in [−1, 1]. Plugging

η(x′, xn) = ξ( |x
′|
r )ξ(xn

r ) into Lemma 4.2, since χBr
≤ η ≤ χB2r

and ηn ≡ 0 in {|xn| ≤ r} we findˆ
Br

|∇e′nu|2 ≤ C

r2

ˆ
B2r

|xn|2|∇u|2 + C

ˆ
B2r∩{|xn|≥r}

[
|∇u|2

2
+W (u)

]
|xnηηn| .

We consider two different cases:
If {|u| ≤ 0.85} ∩ C4r ⊂ {|xn| ≤ r

2}, then applying Lemma 4.3 to the last term we obtain (53).
Otherwise, Lemma 4.5 shows thatH2

16r(en) ≥ c > 0 as long asR ≥ R0 is large enough. SinceT
2
r(en) ≤ CMr ≤ CM∞

is uniformly bounded, we conclude (53) as well.
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We end this section with a general comparison result. Morally, it says that if the level sets can be approximated
well by two hyperplanes x+ e⊥x and y + e⊥y , then they are both close in direction and “height”.

Lemma 4.7 (Coefficient comparison). Given C0 ≥ 1, there exist C and R0 depending on C0,n such that the
following holds.

Let u : Rn → R be an A–C solution. Then, for any x, y ∈ Rn satisfying 1
C0

≤ MR(x) ≤ C0 and R ≥
max{ 1

2dist(x, y), R0}, for all ex, ey ∈ Sn−1 we have:

min
σ∈{+1,−1}

|ex − σey| ≤ C[H6R(ex, x) +H6R(ey, y)] + Ce−cR (54)

and

|ex · (x− y)| ≤ C[H6R(ex, x) +H6R(ey, y)] + Ce−cR. (55)

Proof. Step 1. Proof of (54).
Combining (13) and the lower density assumption, we see that 1

Rn−1

´
BR(x)

|∇u|2 ≥ c as long as R ≥ R0, so that in

particular

min
σ∈{+1,−1}

|ex − σey|2 ≤ C

Rn−1

ˆ
BR(x)

min
σ∈{+1,−1}

|ex − σey|2|∇u|2 . (56)

By the triangle inequality we can compute

min
σ∈{+1,−1}

|ex − σey|2|∇u|2 ≤ 2 min
σ∈{+1,−1}

∣∣ex|∇u| − σ∇u
∣∣2 + 2 min

σ∈{+1,−1}
|ey|∇u| − σ∇u||2

= 2
[(
2|∇u|2 − 2|∇u · ex||∇u|

)
+
(
2|∇u|2 − 2|∇u · ey||∇u|

)]
,

thus by Cauchy–Schwarz we have

min
σ∈{+1,−1}

|ex − σey|2|∇u|2 ≤ 4
[
(|∇u|2 − |∇u · ex|2) + (|∇u|2 − |∇u · ey|2)

]
= 4
[
|∇e′xu|2 + |∇e′yu|2

]
.

Combining this with (56) and using that BR(x) ⊂ B3R(y), we find that

min
σ∈{+1,−1}

|ex − σey|2 ≤ C
[ ˆ

B3R(x)

|∇e′xu|2 +
ˆ
B3R(y)

|∇e′yu|2
]
= C

[
T2

3R(ex, x) +T2
3R(ey, y)

]
.

Using Proposition 4.6 we obtain (54).

Step 2. Proof of (55).
Recall that

H2
R(ex, x) =

1

Rn+1

ˆ
BR(x)

|ex · (X − x)|2
[
|∇u|2

2
+W (u)

]
dX ,

and likewise for H2
R(ey, y). On the other hand, we can bound

|ex · (x− y)| ≤ |ex · (X − x)|+ |ex − σey||X|+ |ey · (X − y)| .
Integrating, and using (54) and MR(x) ≤ C0 to bound the second term on the right, we readily find (55).

4.5 Wang–Wei in a flat setting

We rewrite Theorem 2.14 in a flat, large-scale setting. This is the version we will use in the rest of the article:

Theorem 4.8 ([WW19b] in a flat setting). Let n ≤ 10. Let u : BR → (−1, 1) be a stable A–C solution, and
assume the sheeting assumptions hold in BR for some C1. Let δ1 > 0 and θ ∈ (0, 1). Then, there exist C2 depending
on C1, θ, as well as R0 depending on δ1, C1, θ such that the following hold.
Assume additionally that

∅ ̸= {u = 0} ∩BR ⊂ {|en · x| ≤ δ2R}

for some δ2 ∈ (0, 1/16) and R ≥ R0. Then, there is some N ∈ N such that:

• There are C∞ graphs gi : B
′
3
5R

→ [−R/8, R/8], g1 < ... < gN , such that {u = 0} ∩ C 3
5R

=
⋃N

i=1 graph gi.

• The estimates (15)–(17) hold for the gi.

Proof. Immediate from Lemma 2.13 and Theorem 2.14, by making δ2 > 0 sufficiently small.
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Moreover, we collect some additional properties.

Lemma 4.9 (Additional properties). Let δ1 > 0. In the setting of Theorem 4.8, up to making δ2 > 0 smaller
and R0 larger depending also on δ1, the following additionally hold:

• The graphs satisfy ∥∇gi∥L∞ ≤ δ1.

• There holds {|u| ≤ 0.9} ⊂ {|en · x| ≤ δ2R+ C2} in CR/2.

• We have |MR/2(u)−N | ≤ δ1N .

For the proof, we first need:

Lemma 4.10 (1D approximation). Let u : BR → (−1, 1) be a stable A–C solution, and assume the sheeting
assumptions hold in BR for some C1. Given b1 ∈ (0, 1) and δ > 0, there exists R0 = R0(C1, b1, δ, n) such that if
R ≥ R0, then

inf
a∈Sn−1, b∈R

∥u− ϕ(a · x+ b)∥L∞(B 1
δ
(x0)) ≤ δ for any x0 ∈ {|u| ≤ 1− b1} ∩BR/2 .

In other words, making R large enough then u is close to a 1D solution around any intermediate point.

Proof of Lemma 4.10. Notice that, by exponential decay (Lemma 4.3), there is C = C(n, b1) such that {|u| ≤
1 − b1} ∩ BR/2 ⊂ {x : dist(x, {|u| ≤ 0.85}) ≤ C} for R0 large enough. It easily follows that it suffices to show the
Lemma just with 1− b1 = 0.85.

Observe now that, for any x0 ∈ {|u| ≤ 0.85} ∩ BR/2, there is r0 = r0(n) > 0 such that—up to making R0

larger—we have Br0(x0) ⊂ {|u| ≤ 0.9} ∩ BR. In particular, the bounds in (14) are satisfied at all such points. We
conclude by arguing exactly as in [WW19b, Lemma 2.1].

Proof of Lemma 4.9. The first bullet follows directly by interpolation, up to making δ2 > 0 small.
For the second one, observe that if R0 and C2 are large enough, Lemma 4.10 ensures that u changes sign in

BC2
(x) for any x ∈ {|u| ≤ 0.9} ∩ CR/2. In particular

dist({|u| ≤ 0.9} ∩ CR/2,∪N
i=1graph gi ∩ C 3

4R
) = dist({|u| ≤ 0.9} ∩ CR/2, {u = 0} ∩ C 3

4R
) ≤ C2 , (57)

which gives the second bullet.
For the third one, define vi(x) = [sign (u)]ϕ(dist(x, graph gi)). By the first bullet, |∇gi| ≤ δ1 as long as R0 is

large enough and δ2 is small enough. Up to updating these values, this easily shows that |MR/2(vi)− 1| ≤ δ1, since
|M∞(ϕ)| = 1 and gi is almost flat.
On the other hand, given δ > 0, set Ωi := {dist(x, graph gi) ≤ 1

δ } ∩ BR/2. Thanks to (57) and Lemma 4.3, we have
exponential decay away from ∪igraph gi, thus up to making δ small enough we easily obtain that E(u,BR/2\∪N

i=1Ωi) ≤
δ1N . Moreover, using Lemma 4.10, it is easy to see that |u− vi| ≤ δ1 in Ωi as long as R0 is large enough.
Adding up these facts, the third bullet readily follows.

5 Setting up the contradiction

5.1 General setting

We assume that n ≤ 7 in this section; we will restrict to n = 4 from Section 6 on.
From now on, we fix a critical solution u : Rn → (−1, 1), which has density at infinity M∞ = K∗ <∞. In particular,
u is not 1D.

We will use C,Ci, R0 (resp. c, ci, r0) to denote large (resp. small) positive universal constants—unless otherwise
stated—and which may change from line to line.

Lemma 5.1 (Excess goes to 0). Let z ∈ Z. Then, HR(z) ≤ ω̃(R−1), where ω̃ is a dimensional modulus of
continuity.

Proof. By Proposition 3.9, there is ez,R such that

{|u| ≤ 0.9} ∩BR(z) ⊂ {x : |ez,R · (x− z)| ≤ ω(R−1)R}.
But then, applying Lemma 4.4 (appropriately translated and rotated) with, say, λ = 1/2, we deduce thatH 1

4
√

2
R(ez,R, z) =

ω̃(R−1), for some new modulus of continuity ω̃.
Thus H 1

4
√

2
R(z) = ω̃(R−1) as well, and considering 4

√
2R instead of R (and conveniently updating ω̃) gives the

result.
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Proposition 5.2 (Tangential stability and bad ball count). Let z ∈ Z. If R ≥ R0, then

R3−n|B1(Z) ∩B 3R
4
(z)| ≤ CK2

R(e, z) ≤ CH2
4R(e, z) for any e ∈ Sn−1, (58)

thus

R3−n|B1(Z) ∩B 3R
4
(z)| ≤ CK2

R(z) ≤ CH2
4R(z) . (59)

Remark 5.3. In particular, for n = 4 we see that

H2
R(z) ≥

c

R
. (60)

Proof. Step 1. Bad ball count.
We first show that

R3−n|B1(Z ∩B 3R
2
)| ≤ CK2

2R(e). (61)

By Proposition 3.15, given any bad center z and any e ∈ Sn−1 we know that
´
B1(z)

A′2
e |∇u|2 ≥ δ′bad. Consider

the collection of balls {B1(z)}z∈Z∩B 3R
2

for such z, and pass to a disjoint Vitali subcollection {B(zi)}Ni=1, so that

B1(Z ∩B 3R
2
) ⊂

⋃
iB5(zi). Since the B1(zi) are disjoint, we can bound

|B1(Z ∩B 3R
2
)| ≤ 5n

N∑
i=1

|B1(zi)| ≤
5n

δ′bad

N∑
i=1

ˆ
B1(zi)

A′2
e |∇u|2 ≤ 5n

δ′bad

ˆ
B2R

A′2
e |∇u|2 ,

where in the last inequality we used that B1(zi) ⊂ B1+ 3R
2

⊂ B2R as long as R ≥ 2. Multiplying by R3−n we conclude

(61).

Step 2. Comparison of T and H.
Recentering (61) and combining this with Proposition 3.14 and Proposition 4.6, we see that

R3−n|B1(Z) ∩B 3R
4
(z)| ≤ CK2

R(e, z) ≤ CT2
2R(e, z) ≤ CH2

4R(e, z) + e−cR (62)

for R ≥ R0 large enough. Since z ∈ Z we obviously have |B1(Z) ∩ B 3R
4
(z)| > c, and then (62) shows in particular

that H2
4R(e, z) ≥ c

Rn−3 . Thus,

T2
2R(e, z) ≤ CH2

4R(e, z) . (63)

We see then that

R3−n|B1(Z) ∩B 3R
4
(z)| ≤ CK2

R(e, z) ≤ T2
2R(e, z) ≤ CH2

4R(e, z) , (64)

which gives (58); taking infima among e ∈ Sn−1, we obtain (59).

5.2 Selection of center and scale – Proof of Lemmas 3.17 and 3.18

We first give:

Proof of Lemma 3.17. Given R ≥ R0, set

F (R) := sup
z∈Z

H2
4R(z)

K
2(1+α)
R (z)

,

which corresponds to penalising the stability inequality (58) by introducing an α > 0 exponent. The lower bound
for K in (59), together with the fact that H is uniformly bounded (since M is), shows that F (R) ≤ CR(n−3)(1+α).
Moreover, tangential stability (i.e. (59)) gives that

F (R) = sup
z∈Z

H
2(1+α)
4R (z)

K
2(1+α)
R (z)

1

H2α
4R(z)

≥ c sup
z∈Z

1

H2α
4R(z)

.

Lemma 5.1 then shows that limR→∞ F (R) = ∞; defining F̃ (R) = supr∈[R0,R] F (r), which is finite and nondecreasing,

naturally limR→∞ F̃ (R) = ∞ as well.

By definition, we can find r ∈ [R0, R] with
2
3 F̃ (R) ≤ F (r) ≤ F̃ (R), thus trivially 2

3 F̃ (r) ≤ F (r) ≤ F̃ (r) as well. It is
then clear that we can find a sequence Rk → ∞ and associated zk ∈ Z with

1

2
F̃ (Rk) ≤

H2
4Rk

(zk)

K
2(1+α)
Rk

(zk)
≤ F̃ (Rk) ,

and setting ϵk := H2
4Rk

(zk), which tends to zero by Lemma 5.1, we conclude the proof.
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Recall the definition of N(θ,BR(z)), the size of the bad set at resolution θR, in Definition 3.16.

Lemma 5.4. Let z ∈ Z, R > 0 and θ ∈ (0, 1]. Then, we can find disjoint bad balls {BθR(z̃i)}Qi=1 such that

{z̃i}Qi=1 ⊂ Z ∩BR(z), and

cN(θ,BR(z)) ≤ Q ≤ CN(θ,BR(z)) and

Q⋃
i=1

BθR(z̃i) ⊂ BθR(Z ∩BR(z)) ⊂
Q⋃
i=1

B5θR(z̃i) . (65)

Proof. The collection of balls BθR(z̃) with z̃ ∈ Z ∩BR(z) covers BθR(Z ∩BR(z)) = ∪z̃∈Z∩BR(z)BθR(z̃) by definition.

We can then pass to a 5-Vitali disjoint subcover, i.e. a finite disjoint subcollection {BθR(z̃i)}Qi=1 with the property

that the {B5θR(z̃i)}Qi=1 still cover BθR(Z ∩BR(z)). The result is then immediate.

We now give:

Proof of Lemma 3.18. Let

θk := inf

{
θ ≥ R0

Rk
: exists z ∈ Z with BθRk

(z) ⊂ BRk
(zk),K

2
θRk

(z) ≤ θβK2
Rk

(zk)

}
. (66)

Combining (59) (with R = R0) and (28), for k large enough we see that 0 < 10R0

Rk
≤ θk ≤ 1. By definition of infimum,

we can choose θ̃k ∈ [θk,min{2θk, 1}] and z̃k ∈ Z such that, letting R̃k := θ̃kRk,

BR̃k
(z̃k) ⊂ BRk

(zk) and K2
R̃k

(z̃k) ≤ θ̃βkK
2
Rk

(zk). (67)

Combining (67) with (28), in particular we see that

H2
4R(z) ≤ 2

(
K2

R(z)

K2
R̃k

(z̃k)

)1+α

ε̃2k for any BR(z) ⊂ BR̃k
(z̃k), (68)

so that the second inequality in (30) follows by using the trivial comparison K2
R(z) ≤ (R̃k/R)

n−3K2
R̃k

(z̃k). Applying

(68) with z = z̃k and R = R̃k, we deduce that H2
4R̃k

(z̃k) ≤ 2ε̃2k ≤ 2ε2k → 0, so that moreover R̃k → ∞ by (59).

It remains to see (31). Consider θ = tθ̃k with t ∈ (R0

R̃k
, 12 ), and assume that Nθ ≥ Cθ−(n−3+β) for some C large for

contradiction; by Lemma 5.4, we find Q ≥ θ−(n−3+β) disjoint bad balls with
⋃Q

i=1BθR(z̃i) ⊂ BθR(Z∩BR(z)). Then,
by the disjoint property, we can bound

Q∑
i=1

K2
θR̃k

(z̃i) ≤ inf
e∈Sn−1

Q∑
i=1

1

(θR̃k)n−3

ˆ
BθR̃k

(zi)

A′2
e |∇u|2 ≤ inf

e∈Sn−1

1

(θR̃k)n−3

ˆ
BR̃k

(z̃k)

A′2
e |∇u|2 = θ−(n−3)K2

R̃k
(z̃k) ;

(69)
in particular, since Q ≥ θ−(n−3+β) there is at least one j ∈ {1, ..., Q} such that K2

θR̃k
(z̃j) ≤ θβK2

R̃k
(z̃k), which

contradicts the definition of θ̃k and θk.

6 Graphical decomposition

We restrict to n = 4 in the remainder of the article.

6.1 Graphical direction

We first show that, thanks to (30), a single direction dominates at all scales of interest. Recall that γ := 1
4 .

Lemma 6.1 (Graphical direction). Let α ∈ (0, γ8 ] = (0, 1
32 ]. For any given k, let us choose a Euclidean coordinate

frame17 such that H2
4R̃k

(en, z̃k) ≤ 2ε̃2k. Then,

ε̃
2−γ/2
k R̃k → ∞ and sup

z∈Z∩B 1
2
R̃k

(z̃k), R∈[ε̃
2−γ/2
k R̃k,R̃k]

H2
R(en, z) → 0 as k → ∞ . (70)

Proof. Let R̂k := ε̃
2−γ/2
k R̃k.

Step 1. Growth of the smallest scale R̂k.

Combining Lemma 3.18 and (60) we have that 2ε̃2k ≥ H2
4R̃k

(z̃k) ≥ c

R̃k
, or R̃k ≥ cε̃−2

k . Thus, R̂k ≥ cε̃
−γ/2
k

ε̃k→0−−−→ ∞.

17This frame always exists thanks to the second bullet in Lemma 3.18.
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Step 2. Coefficient comparison.

Let l ∈ N be such that Rl := 2−lR̃k ≥ R̂k

2 . By Step 1, we have that Rl ≫ R0 for k large enough, so that we can
apply (30). Hence, given z ∈ Z ∩B 1

2 R̃k
(z̃k) for every i = 1, ..., l there exists some vector vi such that

H2
4Ri

(vi, z) ≤ C(R̃k/Ri)
1+αε̃2k = C2(1+α)iε̃2k. (71)

Observe that we can take v1 = en in (71), since H2
4R̃k

(en, z̃k) ≤ 2ε̃2k.

Claim. We have the bound H2
4Ri

(en, z) ≤ C(R̃k/Ri)
1+αε̃2k, for every i = 1, ..., l.

Assuming the claim the second property in (70) follows, thanks to the bound

(R̃k/Rl)
1+αε̃2k ≤ Cε̃

−(2−γ/2)(1+α)
k ε̃2k = Cε̃

γ/2−2α+γα/2
k ≤ Cε̃

γ/4
k

ε̃k→0−−−→ 0 .

To show the claim, observe that (71) gives that H2
4Ri

(vi, z) +H2
4Ri

(vi+1, z) ≤ C2(1+α)iε̃2k. Applying Lemma 4.7,
and adding over i the corresponding geometric sum, we find that

|vj − vi|2 ≤ C2(1+α)iε̃2k = C(R̃k/Ri)
1+αε̃2k for any 1 ≤ j < i ≤ l.

Taking j = 1 (recall that v1 = en) we find that |en − vi|2 ≤ C(R̃k/Ri)
1+αε̃2k, which easily shows that

H2
4Ri

(en, z) ≤ CH2
4Ri

(vi, z) + C|ek − vi|2 ≤ C(R̃k/Ri)
1+αε̃2k

as desired.

We have only used the second inequality of (30), which is a “worst case bound” that holds for every z. For later
use, we note the following “stronger” result :

Lemma 6.2 (Sum of height excesses). Assume that R ∈ [ε̃
2−γ/2
k R̃k, R̃k] and k is large enough. Then, given

{zj}j∈J ⊂ Z ∩B 1
2 R̃k

(z̃k) with {BR(zj)}j∈J pairwise disjoint, there exist vj ∈ Sn−1 such that

|vj − en| ≤ ok(1) and
∑
j∈J

H2
4R(vj , zj) ≤ C

(
R̃k

R

)1+α

ε̃2k. (72)

Proof. We will use18: Given positive numbers {aj}j∈J and some α > 0, we have
∑

j∈J a
1+α
j ≤ (

∑
j∈J aj)

1+α.
By this fact and (30), we can estimate

∑
j∈J

H2
4R(zj) ≤ 2

∑
j∈J

(
K2

R(zj)

K2
R̃k

(z̃k)

)1+α

ε̃2k ≤ 2

∑
j∈J

K2
R(zj)

K2
R̃k

(z̃k)

1+α

ε̃2k. (73)

Since the {BR(zj)}j∈J are pairwise disjoint, arguing as in (69) we can bound∑
j∈J

K2
R(zj) ≤ (R̃k/Rl)

n−3K2
R̃k

(z̃k) = (R̃k/Rl)K
2
R̃k

(z̃k) ,

so that together with (73) and the definition of H we find vj ∈ Sn−1 with∑
j∈J

H2
4R(vj , zj) ≤ C(R̃k/R)

1+αε̃2k . (74)

By Lemma 6.1, since R ≥ ε̃
2−γ/2
k R̃k we know that H2

4R(en, zj) = ok(1); likewise, (74) shows that H
2
4R(vj , zj) = ok(1).

Applying Lemma 4.7, up to possibly changing the sign of the vj then |vj − en| = ok(1) as well.

6.2 Decomposing {u = 0} into K∗ layers – Proof of Proposition 3.19

We can finally show that the level sets of our solution decompose into exactly K∗ graphs away from the bad set.

Proof of Proposition 3.19. Let R̂k := ε̃
2−γ/2
k R̃k.

Observe first that, combining Proposition 3.9 with (70) and Lemma 4.7, we immediately deduce:

Let δ > 0. Then, for k large enough, for any z ∈ Z ∩B 1
2 R̃k

(z̃k) and R ∈ [R̂k, R̃k] we have

{u = 0} ∩BR(z) ⊂ {|en · (x− z)| ≤ ok(1)R} (75)

18To show this: Dividing by (
∑

j∈J aj)
1+α, we can assume

∑
j∈J aj = 1, thus in particular aj ≤ 1 for every j ∈ J . But then

a1+α
j ≤ aj , so that

∑
j∈J a

1+α
j ≤

∑
j∈J aj = 1 = (

∑
j∈J aj)

1+α as desired.
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and

K∗ −MδR(y) ≤ ok(1) for every y ∈ {en · (x− z) = 0} ∩BR(z) . (76)

Given x̄′ ∈ Ω2−γ/2, let z(x̄
′) ∈ Z ∩BR̃k/2

(z̃k) be such that ρ := dist (x̄′,Z ′) = |x̄′−z′(x̄)|, and put x̄ = (x̄′, (z(x̄′))n).

Bρ(x̄) is obviously a good ball, i.e. Bρ(x̄) ∩ Z = ∅. For k large enough, the sheeting assumptions are then satisfied
in B3ρ/4(x̄) thanks to Theorem 3.4, and moreover (75)–(76) give that

{u = 0} ∩Bρ(x̄) ⊂ {|en · (x− x̄)| ≤ ok(1)ρ} and K∗ −Mδρ(x̄) ≤ ok(1) . (77)

Set Cρ/2(x̄) = B′
ρ/2(x̄

′)×[x̄n−ρ/2, x̄n+ρ/2]. For k large enough, by Theorem 4.8 and Lemma 4.9 we see that there are

exactly K∗ smooth graphs gi : B
′
ρ/2(x̄

′) → [−ρ/8, ρ/8], g1 < ... < gK∗ , such that {u = 0} ∩ Cρ/2(x̄) =
⋃K∗

j=1 graph gi
and |∇gi| ≤ ok(1).

Vertically, these graphs actually cover all of the zero level set: Indeed, given y ∈ {u = 0} ∩ B 1
2 R̃k

(z̃k), with

y′ ∈ B′
ρ/2(x̄

′), assume for contradiction that y /∈
⋃K∗

j=1 graph gi, so that y /∈ Cρ/2(x̄). This means that |yn− x̄n| ≥ ρ/2,

thus letting R = 2|yn − x̄n| we see that

y ∈ {u = 0} ∩BR(x̄) but |en · (y − x̄)| = |yn − x̄n| ≥
R

2
, (78)

which contradicts (77) for k large enough.

Summing up our argument up to now, given any point in Ω2−γ/2, we have obtained a local (horizontally) de-
composition of the intermediate level sets as exactly (vertically) K∗ graphs. In particular, given any x′, y′ ∈ Ω2−γ/2,
in case their associated decompositions have an overlap then they obviously need to match. Taking the union over
x̄′ ∈ Ω2−γ/2 of these graphs, we have shown:
For k large enough there are K∗ smooth graphs gi : Ω2−γ/2 → R, g1 < ... < gK∗ , such that

{u = 0} ∩B 1
2 R̃k

(z̃k) ∩ (Ω2−γ/2 × R) =
K∗⋃
i=1

graph gi .

Finally, we already saw that |∇gi| ≤ ok(1), which together with Theorem 4.8 (i.e. (16)) gives (35).

We record moreover the following byproduct of the proof (which follows directly from (75)):

Lemma 6.3 (Large scale flatness). We have |gi(x′)− zn| ≤ ok(1)|x′ − z′| in Ω2−γ/2, for every z ∈ Z ∩B 1
2 R̃k

(z̃k)

and i ∈ {1, ...,K∗}.

7 Improvement of excess for the graphs – Proof of Proposition 3.20

The goal of this section is to prove Proposition 3.20. It will be a consequence of the following:

Proposition 7.1. Fix χ ∈ (0, 1
20 ], β ∈ (0, 1

40 ] and α ∈ (0, 1
40 ]. There exist a constant C and smooth extensions

g̃i : B
′
1
4 R̃k

(z̃′k) → R, with g̃i ≡ gi in B
′
1
4 R̃k

(z̃′k)∩Ω2−γ such that the following holds for every k large enough: For any

given z̄ ∈ Z ∩B 1
4 R̃k

(z̃k), there is an affine function ℓ : Rn−1 → R such that

1

(ε̃χk R̃k)

 
B′

ε̃
χ
k
R̃k

(z̄′)

∣∣g̃i(x′)− ℓ
∣∣ dx ≤ Cε̃

1+χ/3
k for every i ∈ {1, ...,K∗} , (79)

In particular, (39) follows.

7.1 A Whitney-type extension

We construct new Whitney-type extensions which capture (30). We need:

Definition 7.2 (Projected bad set and distance). In what follows, we set Nθ := N
(
θ,BR̃k

(z̃k)
)
. Moreover, for

x′ ∈ Rn we set d(x′) := dist
(
x′, [Z ∩BR̃k

(z̃k)]
′) and

N ′
θ := (θR̃k)

−3
∣∣∣B′

θR̃k
([Z ∩BR̃k

(z̃k)]
′)
∣∣∣ = (θR̃k)

−3
∣∣∣⋃z̃′∈[Z∩BR̃k

(z̃k)]′
B′

θR̃k
(z̃′)
∣∣∣ .

Lemma 7.3. Let θ ∈ (0, 1]. We have N ′
θ ≤ CNθ, so that

|{d ≤ θR̃k} ∩B′
1
2 R̃k

(z̃k)| ≤ C(θR̃k)
3Nθ . (80)
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Proof. Since |{x′ : d(x′) ≤ θR̃k} ∩ B′
1
2 R̃k

(z̃k)| ≤ (θR̃k)
3N ′

θ by definition, it suffices to show N ′
θ ≤ CNθ. But

indeed, projecting the simple result in Lemma 5.4, we find that we can cover B′
θR̃k

([Z ∩ BR̃k
(z̃k)]

′) with at most

CN(θ,BR̃k
(z̃k)) = CNθ projected bad balls of radius 5θR̃k, which gives N ′

θ ≤ CNθ.

The main result of this section is:

Proposition 7.4 (Extension). There exist smooth functions g̃i : B
′
1
4 R̃k

(z̃′k) → R such that the following hold:

(i) g̃i ≡ gi in B
′
1
4 R̃k

(z̃′k) ∩ Ω2−γ = B′
1
4 R̃k

(z̃′k) \B′
ε̃2−γ
k R̃k

([Z ∩BR̃k
(z̃k)]

′).

(ii)
ffl
B′

1
4
R̃k

(z̃′
k)
|g̃i − (z̃k)n| ≤ Cε̃kR̃k.

(iii) We have |∇g̃i| ≤ ok(1) in B
′
1
4 R̃k

(z̃′k).

(iv) The mean curvature of g̃i has the following bound in L1, in the region B′
1
4 R̃k

(z̃′k) \Ω2−γ where g̃i and gi differ:

ˆ
B′

1
4
R̃k

(z̃′
k)\Ω2−γ

|H[g̃i]| ≤ CNε̃2−γ
k

ε̃2−γ
k R̃k + C

√
Nε̃2−γ

k
ε̃
1+(2−γ)(3−α)/2
k R̃2

k . (81)

Preliminaries. Before giving the proof we introduce some definitions and a preparatory lemma. Set

C0 := ⌈ 1
2 log2(n− 1)⌉+ 3 = 4 (n = 4) and l⋆ := ⌈− log2 ε̃

2−γ
k ⌉+ 3. (82)

Dyadic cubes. For l ≥ C0, consider the grid of dyadic cubes of the form

Q = 2−lR̃k([0, 1)
n−1 + y′), where y′ ∈ Zn−1 . (83)

We say that Q has vertex at 2−lR̃ky
′. We define the triple cube TQ by TQ = 2−lR̃k([−1, 2)n−1 + y′).

We denote Ql := {Q of the form (83) : TQ ∩ B′
1
4 R̃k

(z̃′k) ̸= ∅}. We define the predecessor of Q, denoted PQ, as the

cube in Ql−1 which contains Q.
Note: By the choice of C0, since l ≥ C0, if Q ∈ Ql then TQ ⊂ B′

1
2 R̃k

(z̃′k). Furthermore, the Euclidean ball of radius

equal to the diameter of TQ centered at any point of TQ is still contained in B′
1
2 R̃k

(z̃′k).

Cutoffs and partition of unity. Fix a smooth cutoff η◦ ∈ C∞
c ((−1/2, 3/2)n−1) such that η◦ ≥ 1 in [0, 1]n−1. We

define

η̃◦(x
′) =


η◦(x

′)∑
ζ′∈{−1,0,1}n−1 η◦(x′ + ζ ′)

if x′ ∈ [−1, 2]n−1 ,

0 otherwise ,

so that
∑

ζ′∈Zn−1

η̃◦( · + ζ ′) ≡ 1 .

We can get a rescaled dyadic version in the obvious way: For Q ∈ Ql with vertex 2−lR̃ky
′, we put

ηQ(x
′) := η̃◦

(
x′

2−lR̃k

− y′
)
, so that

∑
Q̃⊂TQ

ηQ̃ ≡ 1 in Q and
∑
Q∈Ql

ηQ ≡ 1 in B′
1
4 R̃k

(z̃k) .

We emphasise that ηQ is supported in the triple cube TQ. Moreover, we obtain19

|ηQ|+ 2−lR̃k|∇ηQ|+ (2−lR̃k)
2|D2ηQ| ≤ C(n) for all Q ∈ Ql. (84)

Bad dyadic cubes. Recall that 2−4ε̃2−γ
k ≤ 2−l⋆ ≤ 2−3ε̃2−γ

k . Let us define

X :=
⋃{

Q ∈ Ql⋆ : TQ ∩ [Z ∩BR̃k
(z̃k)]

′ ̸= ∅
}

and TX :=
⋃{

TQ : Q ∈ Ql⋆ , Q ⊂ X
}
.

In particular, we have the inclusions20

B′
1
4 R̃k

(z̃′k) ∩B2−4ε̃2−γ
k R̃k

([
Z ∩BR̃k

(z̃k)
]′) ⊂ TX ⊂ Bε̃2−γ

k R̃k

([
Z ∩BR̃k

(z̃k)
]′)

. (85)

We also consider a larger resolution version: For C0 ≤ l ≤ l∗ we define X l :=
{
Q ∈ Ql : TQ ∩ TX ̸= ∅

}
.

Lemma 7.5. Let C0 ≤ l ≤ l⋆. To each Q ∈ X l, we can assign an affine map ℓQ : Rn−1 → R with

R−1
k |ℓQ(z̃′k)− (z̃k)n|+ |∇ℓQ| ≤ ok(1) (86)

19Standard by scaling. The constant depends on η̃◦, which is fixed depending on the dimension.
20For the last inclusion, notice that any point in TX must be at most at distance 3

√
n− 1 2−l∗ R̃k ≤ 3

√
n− 1 2−3ε̃2−γ

k R̃k < ε̃2−γ
k R̃k

from some point in
[
Z ∩B

R̃k
(z̃k)

]′
. We have used that 3

√
n− 1 2−3 < 1 for n = 4.

28



such that the following hold. Put

h2Q :=
1

(2−lR̃k)n−1

ˆ
TQ×

(
(z̃k)n−

1
4 R̃k,(z̃k)n+

1
4 R̃k

) |xn − ℓQ(x
′)|2
[
|∇u|2

2
+W (u)

]
dx′dxn ; (87)

assuming TQ ∩ Ω2−γ/2 ̸= ∅ then

1

(2−lR̃k)n−1

ˆ
TQ∩Ω2−γ/2

|gi − ℓQ(x
′)|2dx′ ≤ Ch2Q for all 1 ≤ i ≤ K∗ . (88)

We then have the bound ∑
Q∈X l

(
hQ

2−lR̃k

)2

≤ C

(
R̃k

2−lR̃k

)1+α

ε̃2k. (89)

Moreover, we have the following comparisons: For l ≥ C0 + 1, we have

∥ℓQ − ℓPQ∥L∞(Q1) ≤ C(hQ + hPQ); (90)

whenever Q1, Q2 ∈ X l and TQ1 ∩ TQ2 ̸= ∅, then

∥ℓQ1
− ℓQ2

∥L∞(Q1) ≤ C(hQ1
+ hQ2

). (91)

Finally, for Q ∈ XC0 we can take ℓQ(x
′) = (z̃k)n.

Proof. It is convenient to assume—after a translation—that z̃k = 0. Write P =
[
|∇u|2

2 +W (u)
]
. We divide the

proof into three steps.

Step 1. We first establish the following claim: Let R ∈ [ε̃2−γ
k R̃k, R̃k]. For k large enough, suppose that {zj}j∈J ⊂

Z ∩ B 1
2 R̃k

is a collection with {B′
R(z

′
j)}j∈J pairwise disjoint; in particular, the unprojected balls {BR(zj)}j∈J are

pairwise disjoint too. We claim then that∑
j∈J

1

Rn+1

ˆ
B′

R(z′
j)×
(
R̃k

4 ,
R̃k

4

) |xn − ℓj(x
′)|2P ≤ C(R̃k/R)

1+αε̃2k + C(R̃k/R)
ne−cR, (92)

where ℓj : Rn−1 → R are affine functions satisfying

R−1
k |ℓj(0)|+ |∇ℓj | ≤ ok(1). (93)

Indeed, Lemma 6.2 gives unit vectors vj ∈ Sn−1 such that

|vj − en| ≤ ok(1) and
∑
j∈J

H2
4R(vj , zj) ≤ C(R̃k/R)

1+αε̃2k, (94)

where

H2
4R(vj , zj) =

1

(4R)n+1

ˆ
B4R(zj)

|vj · (x− zj)|2P dx.

Using Lemmas 4.5 and 6.1, we have

|(zj)n| = |zj · en| ≤ ok(1)R̃k and {|u| ≤ 0.9} ⊂ {x : |xn − (zj)n| ≤ ok(1)R} in B′
4R(z

′
j)×

(
R̃k

2 ,
R̃k

2

)
. (95)

Set aj =
vj−(vj ·en)en

vj ·en ∈ Rn−1 and bj =
vj ·zj

vj ·en ∈ R. Define ℓj(x
′) = aj · x′ + bj , so that graph ℓj = {vj · (x− zj) = 0}.

Since |zj · en| ≤ ok(1)R̃k and |vj − en| ≤ ok(1), we get (93).
Moreover, notice that |xn − ℓj(x

′)| ≤ 2|vj · (x− zj)| for all x ∈ Rn (for k large), thus we have:

1

Rn+1

ˆ
B4R(zj)

|xn − ℓj(x
′)|2P dx ≤ CH2

4R(vj , zj) .

We estimate the rest by exponential decay: by (95) and Lemma 4.3, we have

P ≤ Ce−cR in B′
R(z

′
j)×

(
R̃k

4 ,
R̃k

4

)
\ {|xn| ≤ R} ,

and thus

1

Rn+1

ˆ
B′

R(zj)×
(
R̃k

4 ,
R̃k

4

) |xn − ℓj(x
′)|2P ≤ CH2

4R(vj , zj) + Ce−cR.

Then (92) follows recalling (94) and using that at most C(R̃k/R)
n disjoint balls of radius R fit inside the cylinder

B′
Rk

× (−R̃k, R̃k)—a brutal bound that is sufficient here because it is multiplied by the exponential.
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Step 2. We now combine the claim in Step 1 and a covering argument.
To each Q ∈ X l, assign a point zQ ∈ Z such that Q ⊂ B′

60 2−lR̃k
(z′Q). Applying the Besicovitch covering lemma

to the family of balls {B′
60 2−lR̃k

(z′Q)}Q∈X l , we obtain a dimensional constant bn (with n = 4) and a decomposition

into bn subfamilies, each consisting of pairwise disjoint balls, such that their union still covers the union of the cubes
in X l. By Step 1 (with R = 2−lR̃k) applied to each of these subfamilies, (87) and (89) follow21.

Finally, (90)-(91) can be obtained as straightforward consequences of (54)-(55) in Lemma 4.7.

Step 3. Let us finally prove (88).

Let λ = λ(n) > 0 be such that, given any x ∈ {u = 0}, W (u) ≥ λ in Bλ(x). Put R = 2−lR̃k. By Fubini,

h2Q ≥ c

Rn+1

ˆ
Q∩Ω2−γ

dx′
ˆ gi(x

′)+λ

gi(x′)−λ

dxn|xn − ℓQ(x
′)|2P

≥ cλ

Rn+1

ˆ
Q∩Ω2−γ

dx′
ˆ gi(x

′)+λ

gi(x′)−λ

dxn|xn − ℓQ(x
′)|2 ≥ c

Rn+1

ˆ
Q∩Ω2−γ

dx′|gi(x′)− ℓj(x
′)|2 .

We can now give the:

Proof of Proposition 7.4. For C0 ≤ l ≤ l⋆, for each cube Q ∈ X l let ℓQ : Rn−1 → R be the affine function provided
by Lemma 7.5. In particular,∑

Q∈X l

(2−lR̃k)
−2−(n−1)

ˆ
Ω2−γ/2∩TQ

|gi − ℓQ|2 ≤ C2l(1+α)ε̃2k for all 1 ≤ i ≤ K∗. (96)

We extend the definition of ℓQ to the rest of cubes Q ∈ Ql \ X l: For Q ∈ QC0 we set ℓQ(x
′) = (z̃k)n, and for

Q ∈ Ql \ X l with l ≥ C0 + 1 we define recursively ℓQ := ℓPQ for Q ∈ Ql \ X l.

Approximating functions: For l ≥ C0, define
22 ψl :

⋃
Ql → R by ψl :=

∑
Q∈Ql ηQℓQ.

Definition of g̃i. Consider the cutoff function ηX =
∑

Q∈Ql⋆ , Q⊂X ηQ, which satisfies

ηX ≡ 1 in X, ηX ≡ 0 in Rn−1 \ TX, ε̃2−γ
k R̃k|∇ηX |+ (ε̃2−γ

k R̃k)
2|D2ηX | ≤ C.

We define g̃i by gluing ψl⋆ and gi via a cutoff:

g̃i := ψl⋆ηX + gi(1− ηX) = ψl⋆ +
∑

Q∈Ql⋆

ηQ(1− ηX)(gi − ℓQ).

Notice that (i) holds automatically by (85). To see (ii), observe first that it holds for gi and over B′
1
4 R̃k

(z̃′k) ∩ Ω2−γ

instead (directly by (88), taking lQ(x
′) = (z̃k)n for Q ∈ QC0). Now, by (86) we get the brutal bound |g̃i(x′)−(z̃k)n| ≤

ok(1)R̃k in B′
1
4 R̃k

(z̃′k) \ Ω2−γ ; using that this set is small easily gives (ii). By (35) and (86) we also get (iii).

Mean curvature estimate. The main work is then in obtaining (iv).
We first focus on bounding D2ψl⋆ . By construction, for all l ≥ C0 + 1 and Q ∈ Ql, we have

(ψl − ψl−1)|Q ≡ 0 whenever TQ ∩
⋃
(X l) = ∅. (97)

Then, combining (89) (applied at scales l and l − 1) with (90)-(91) and using (84), we obtain23∑
Q∈Ql

(2−lR̃k)
−2 sup

Q
|ψl − ψl−1|2 ≤ C 2l(1+α)ε̃2k. (98)

Similarly: ∑
Q∈Ql

(2−lR̃k)
2 sup

Q
|D2(ψl − ψl−1)|2 ≤ C2l(1+α)ε̃2k . (99)

Then, Chebyshev’s inequality gives

#
{
Q ∈ Ql : R̃k sup

Q
|D2(ψl − ψl−1)| ≥ t

}
≤ 1

t2
2l(3+α)ε̃2k, for all t > 0 . (100)

21After noticing that for l ≤ l⋆ we have (2l)ne−c2−lR̃k ≤ C(εk)
(γ−2)ne−cε

−γ
k ≤ Cε̃2k for k large enough (since ε̃2kR̃k ≥ 1).

22Notice that, in particular, the domain of ψl contains the ball B′
1
4
R̃k

(z̃′k).

23To see this, a useful observation is the following: if TQ1 ∩ (
⋃

X l) ̸= ∅ for some Q1 ∈ X l, and if Q2 ∈ Ql is a contiguous cube such
that Q2 ⊂ TQ1, then the triples of their respective predecessors, TPQ1 and TPQ2, must both belong to X l−1 and necessarily intersect.
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Next we use the above to show that for given l with C0 ≤ l ≤ l∗, setting Nl∗ := #X l∗ we have∑
Q∈X l∗

R̃k sup
Q

|D2(ψl − ψl−1)| ≤ CN
1/2
l∗

23l∗/22lα/2ε̃k. (101)

We distinguish two cases. Notice that 23(l∗−l) is the number of cubes of Q ∈ X l∗ that fit in a single cube of Ql.

- Case 1. Suppose thatNl∗ ≤ 23(l∗−l). Then, we bound the maximum by the sum in (99), obtaining R̃k supQ |D2(ψl−
ψl−1)| ≤ C2l(3+α)/2ε̃k for every Q ∈ Ql. Using this bound in the Q ∈ X l∗ and summing,∑

Q∈X l∗

R̃k sup
Q

|D2(ψl − ψl−1)| ≤ CNl∗2
l(3+α)/2ε̃k ≤ CN

1/2
l∗

23l∗/22lα/2ε̃k .

- Case 2. Suppose that Nl∗ ≥ 23(l∗−l). The worse case scenario is then that the Nl∗ “small” cubes in X l∗ keep
filling the large cubes in Ql, starting from the ones contributing the most to the sum (99), and then continuing in
decreasing order according to their contribution. Let p∗ ∈ N be such that 2p∗−1 ≤ Nl∗/2

3(l∗−l) ≤ 2p∗ . We then use
(100) with 1

t2 2
l(3+α) ε̃2k = 2p−1 to estimate the maximal possible contribution of the 2p−123(l∗−l) cubes that occupy

positions 2p−123(l∗−l) to 2p23(l∗−l) in (101). Doing so we obtain:∑
Q∈X l∗

R̃k sup
Q

|D2(ψl − ψl−1)| ≤ C

p∗∑
p=0

23(l∗−l)2p
2l(3+α)/2 ε̃k

2p/2
≤ C23(l∗−l)2p∗/22l(3+α)/2 ε̃k ≤ CN

1/2
l∗

23l∗/22lα/2ε̃k.

Combining the two cases gives (101). Summing (101) for C0 ≤ l ≤ l⋆, and using that ψC0
≡ 0, we reach:∑

Q∈X l⋆

R̃k sup
Q

|D2ψl⋆ | ≤ CN
1/2
l∗

2l∗(3+α)/2ε̃k .

We now transform this into an integral bound. Note that cubes Q ∈ Ql⋆ have volume (2−l⋆R̃k)
3 ≤ (2ε̃2−γ

k R̃k)
3 and

cover B′
1
4 R̃k

(z̃′k). Moreover, 2l⋆ ≤ ε̃
−(2−γ)
k and Nl∗ ≤ CNε̃2−γ

k
. We then obtain

ˆ
⋃

X l

R̃k|D2ψl⋆ | ≤
∑

Q∈X l⋆

(2ε̃2−γ
k R̃k)

3 sup
Q
R̃k|D2ψl⋆ | ≤ CN

1/2
l∗

ε̃
−(2−γ)(3+α)/2
k ε̃k(ε̃

2−γ
k R̃k)

3

≤ CN
1/2

ε̃2−γ
k

ε̃
1+(2−γ)(3−α)/2
k R̃3

k .

(102)

Notice that H[g̃i] = Lig̃i := tr(Ai(x
′)D2g̃i), for some |Ai(x

′)− Id| ≤ ok(1) by (iii). We split our desired estimate into
regions.
Region 1: Since ηX ≡ 1 in X, by (102) we reachˆ

X∩B 1
4
R̃′

k
(z̃′

k)\Ω2−γ

|H[g̃i]| =
ˆ
B′

1
4
R̃k

(z̃′
k)\Ω2−γ

|Liψl⋆ | ≤ C

ˆ
B′

1
4
R̃′

k

(z̃′
k)\Ω2−γ

|D2ψl⋆ | ≤ CN
1/2

ε̃2−γ
k

ε̃
1+(2−γ)(3−α)/2
k R̃2

k.

The remaining estimates will involve gi as well.
Region 2: Since ηX ≡ 0 in Rn−1\TX and all points in this domain are at distance ≥ 2−4ε̃2−γ

k R̃k from [Z∩BR̃k
(z̃k)]

′,
using (16) and then (80) we obtain

ˆ
(B′

1
4
R̃′

k

(z̃′
k)\Ω2−γ)\TX

|H[g̃i]| =
ˆ
(B′

1
4
R̃′

k

(z̃′
k)\Ω2−γ)\TX

∣∣H[gi]
∣∣ ≤ C

|B′
1
4 R̃

′
k

(z̃′k) \ Ω2−γ |

(ε̃2−γ
k R̃k)2

≤ CNε̃2−γ
k

(ε̃2−γ
k R̃k) .

Region 3: We conclude by bounding
´
TX\X |Li(g̃i − ψl⋆)|. Observe that (96) implies that24∑

Q∈Ql∗

Q⊂TX\X

1

(2−l⋆R̃k)2

 
TQ

|gi − ℓQ|2 ≤ C2l⋆(1+α)ε̃2k , thus
∑

Q∈Ql∗

Q⊂TX\X

1

(ε̃2−γ
k R̃k)

 
TQ

|gi − ℓQ| ≤ CN
1/2

ε̃2−γ
k

2l⋆(1+α)/2ε̃k .

Note: Similar estimates hold replacing ℓQ by ℓQ1 , where Q1 is any adjacent cube with Q1 ⊂ TQ, by (91).

Since gi is almost a minimal graph, verifying ∥H[gi]∥Cθ ≤ C(ε̃2−γ
k R̃k)

−2 by (16), standard elliptic estimates give

sup
Q

(
|gi − ℓQ|
ε̃2−γ
k R̃k

+ |∇(gi − ℓQ)|+ ε̃2−γ
k R̃k|D2(gi − ℓQ)|

)
≤ C

 
TQ

|gi − ℓQ|
ε̃2−γ
k R̃k

+
C

ε̃2−γ
k R̃k

,

24To go from the first inequality to the second one, we use that the number of cubes is bounded by CN
ε̃
2−γ
k

, the inequality between

the arithmetic and quadratic means, and the Cauchy–Schwarz inequality.
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for every cube Q in Ql⋆ , with Q ⊂ TX \X.
Using these estimates, noticing that in TX \X we have g̃i − ψl⋆ =

∑
Q∈Ql⋆ ηQ(1− ηX)(gi − ℓQ), and using the

standard product rules to compute the second derivatives of products we obtain:∑
Q⊂TX\X

sup
Q
ε̃2−γ
k R̃k|Li(g̃i − ψl⋆)| ≤ CN

1/2

ε̃2−γ
k

2l⋆(1+α)/2ε̃k +
C

ε̃2−γ
k R̃k

#{Q ⊂ TX \X}.

Finally, since the volume of each cube Q ∈ Ql⋆ is (2−l⋆R̃k)
n−1, with n = 4, and 2−ℓ∗ is comparable to ε̃2−γ

k we
obtain: ˆ

TX\X
|Li(g̃i − ψl⋆)| ≤

(Cε̃2−γ
k R̃k)

n−1

ε̃2−γ
k R̃k

(
N

1/2

ε̃2−γ
k

2l⋆(1+α)/2ε̃k +
#{Q ⊂ TX \X}

(ε̃2−γ
k R̃k)

)
≤ CR̃2

kN
1/2

ε̃2−γ
k

ε̃
1+(2−γ)(3−α)/2
k + CNε̃2−γ

k
ε̃2−γ
k R̃k.

Adding all the previous estimates completes the proof.

7.2 Linearised equation

Recall that γ = 1
4 . We show that our extended graphs are very harmonic in an L1 sense.

Proposition 7.6 (Linearised equation). Fix χ ∈ (0, 1
20 ], β ∈ (0, 1

40 ] and α ∈ (0, 1
40 ]. For every z̄′ ∈ (Z ∩

B 1
8 R̃k

(z̃k))
′ we have that

1

(ε̃kR̃k)
ρ2

 
B′

ρ(z̄
′)

|H[g̃i]| ≤ Cε̃
1
10

k for every ρ ∈ [ε̃1+2χ
k R̃k,

1

8
R̃k] , (103)

provided that k is large enough.

Remark 7.7. This should be interpreted as follows: up to scale ε̃1+2χ
k R̃k, the deviation of the g̃i from an approx-

imating minimal graph is small25 relative to the size of the g̃i themselves, which is ε̃kR̃k. A key point is that our
analysis penetrates the “critical scale” ε̃kR̃k, as explained below in the proof.

Proof. We will show that ˆ
B′

1
2
R̃k

(z̃k)

|H[g̃i]| ≤ Cε̃2−2β
k R̃2

k (104)

and moreover ˆ
B′

ε̃
1/2
k

R̃k

(z̄)

|H[g̃i]| ≤ Cε̃
2+ 1

5

k R̃2
k for every z̄′ ∈ (Z ∩B 1

8 R̃k
(z̃k))

′ . (105)

Combining them immediately implies (103): Indeed, considering (104) and the fact that β ≤ 1
8 , we immediately see

that

1

(ε̃kR̃k)
ρ2

 
B′

ρ(z̄)

|H[g̃i]| ≤ Cε̃
1− 1

4

k R̃kρ
−1 ≤ Cε̃

1
4

k for every ρ ∈ [ε̃
1/2
k R̃k, R̃k] .

Likewise,multiplying (105) by ρ−1 and using χ ≤ 1
20 we find that

1

(ε̃kR̃k)
ρ2

 
B′

ρ(z̄)

|H[g̃i]| ≤ Cε̃
1+ 1

5

k R̃kρ
−1 ≤ Cε̃

1
10

k R̃2
k for every ρ ∈ [ε̃1+2χ

k R̃k, ε̃
1/2
k R̃k] .

It remains to establish (104)-(105). We divide the proof into three steps.
Step 1. Estimating H[g̃i].
The second term in (81) is small: By (31), γ = 1

4 , and the bounds for α and β, we have√
Nε̃2−γ

k
ε̃
1+(2−γ)(3−α)/2
k R̃2

k ≤ ε̃
− 7

8 (1+
1
40 )

k ε̃
1+ 7

8 (3−
1
40 )

k R̃2
k = ε̃

1+ 7
8 (2−

2
40 )

k R̃2
k ≤ ε̃

2+ 1
5

k R̃2
k . (106)

Given V ⊂ B 1
4 R̃k

(z̃k), (81) then gives
ˆ
V

|H[g̃i]| ≤
ˆ
V ∩Ω2−γ

|H[gi]|+ Cε̃2−γ
k R̃kNε̃2−γ

k
+ Cε̃

2+ 1
5

k R̃2
k .

25In fact, it is of size ε̃
1+ 1

10
k R̃k, thus smaller than the size of the g̃i by rate of a small power ε̃

1
10
k .
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By Theorem 2.14 we know that |H[gi]| ≤ Cd−2, so that given θ ∈ (0, 1/2], together with (80) we can bound
ˆ
{θR̃k≤d≤2θR̃k}∩B′

1
2
R̃k

(z̃′
k)

|H[gi]| ≤ C
(θR̃k)

3Nθ

(θR̃k)2
= CθR̃kNθ .

Denoting θj = 2−j , and letting 1 ≤ j1 < j2 with θj2 ≤ ε̃2−γ
k ≤ θj2−1, by summing we find thatˆ

{ε̃2−γ
k R̃k≤d≤θj1 R̃k}∩B′

1
2
R̃k

(z̃′
k)

|H[gi]| ≤ CR̃k

∑
j1≤j≤j2

θjNθj ,

or (letting V = {d ≤ θj1R̃k} ∩B′
1
2 R̃k

(z̃k), so that V ∩ Ω2−γ = {ε̃2−γ
k R̃k ≤ d ≤ θj1R̃k} ∩B′

1
2 R̃k

(z̃k))

ˆ
{d≤θj1 R̃k}∩B′

1
2
R̃k

(z̃′
k)

|H[g̃i]| ≤ CR̃k

∑
j1≤j≤j2

θjNθj + Cε̃
2+ 1

5

k R̃2
k . (107)

Step 2. Proof of (104).
We will use the following bounds:

• Nθ ≤ θ−1−β . This follows from (31).

• c ≤ R̃kε̃
2
k. This follows from (60) with R = 4R̃k combined with H2

4R̃k
(z̃k) ≤ 2ε̃2k (see Lemma 3.18).

Choosing j1 = 1 in (107),ˆ
B′

1
2
R̃k

(z̃k)

|H[g̃i]| ≤ CR̃kθ
−β
j2

+ Cε̃
2+ 1

5

k R̃2
k ≤ C(R̃kε̃

2
k)R̃kε̃

−β(2−γ)
k + Cε̃

2+ 1
5

k R̃2
k ≤ Cε̃2−2β

k R̃2
k , (108)

as long as k is large enough.

We notice that at scale R̃k the estimate (108) is sharp (as, even in the absence of bad cubes, the Wang-Wei
estimates do not allow to improve this). One can see (similarly as above) that this estimate can imply (103) at most

for ρ ≫ ε̃kR̃k. To go below this “critical threshold”—as required later in our proofs—we need to run a dichotomy
argument.
Step 3. Proof of (105).

Case 1. Assume that |B1(Z) ∩B3R̃k/4
(z̃k)| ≤ ε̃

− 1
4

k ; we claim that Nθ ≤ θ−1ε̃
1/4
k for θ ∈ ( 1

R̃k
, ε̃

1/2
k ].

Indeed, by assumption N 1

R̃k

≤ Cε̃
− 1

4

k ; since the property Nθ2 ≤ CNθ1 for 0 < θ1 < θ2 ≤ 1 is always true26, we

find that Nθ ≤ Cε̃
− 1

4

k for θ ∈ [ 1

R̃k
, ε̃

1/2
k ] as well, which using θ ≤ ε̃

1/2
k gives Nθ ≤ θ−1ε̃

1/4
k .

Then, choosing j1 with θj1 ≤ ε̃
1/2
k ≤ θj1−1 in (107), using Nθ ≤ θ−1ε̃

1/4
k instead of Nθ ≤ θ−1−β we findˆ

{d≤ε̃
1/2
k R̃k}∩B′

1
2
R̃k

(z̃′
k)

|H[g̃i]| ≤ CR̃kε̃
1/4
k log θj2 + Cε̃

2+ 1
5

k R̃2
k ≤ CR̃kε̃

1
5

k .

Since obviously B
ε̃
1/2
k R̃k

(z̄) ⊂ {d ≤ ε̃
1/2
k R̃k} ∩B′

1
2 R̃k

(z̃′k), we conclude (105) in this case.

Case 2. Assume we are not in Case 1, so that |B1(Z) ∩B3R̃k/4
(z̃k)| > ε̃

− 1
4

k instead; we claim that c ≤ R̃kε̃
2+ 1

4

k .

Indeed, by (59) with R = R̃k and n = 4, we deduce that
ε̃
−1/4
k

R̃k
≤ CH2

4R̃k
(z̃k), which combined with H2

4R̃k
(z̃k) ≤

2ε̃2k from Lemma 3.18 shows c ≤ R̃kε̃
2+ 1

4

k .

Then, computing as in (108) we directly obtain an extra factor ε̃
1/4
k in the second inequality, so that in particularˆ

{d≤ε̃
1/2
k R̃k}∩B′

1
2
R̃k

(z̃′
k)

|H[g̃i]| ≤ C(R̃kε̃
2+1/4
k )R̃kε̃

−β(2−γ)
k + Cε̃

2+ 1
5

k R̃2
k ≤ Cε̃

2+1/4−2β
k R̃2

k .

This gives (105) as before as long as 1/4− 2β ≥ 1/5, which is precisely the condition β ∈ (0, 1
40 ].

26This can be seen using first Lemma 5.4, which gives {B
5θ1R̃k

(z̃i)}Q1
i=1 with Q1 ≤ CNθ1 such that B

θ1R̃k
(Z ∩ B

R̃k
(z̃k)) ⊂⋃Q1

i=1B5θ1R̃k
(z̃i), and then enlarging these balls to cover B

θ2R̃k
(Z ∩B

R̃k
(z̃k)).
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7.3 Improvement for each layer

Proposition 7.8. Fix χ ∈ (0, 1
20 ], β ∈ (0, 1

40 ] and α ∈ (0, 1
40 ]. Given any z̄ ∈ BR̃k/8

(z̃k) ∩ Z, there are coefficients

ai ∈ Rn−1, bi ∈ R for every i ∈ {1, ...,K∗} such that, setting ℓi := ai · (x′ − z̄′) + bi, we have that

1

(ε̃χk R̃k)

 
B′

ε̃
χ
k
R̃k

(z̄′)

∣∣g̃i(x′)− ℓi
∣∣ dx ≤ Cε̃

1+χ/2
k , for every i ∈ {1, ...,K∗}, (109)

provided k is large enough.

We first need a standard lemma, which we prove in Appendix C.

Lemma 7.9 (Harmonic approximation). Let p > 1 and d ≥ 0. Given λ > 0, there exists δ = δ(λ, n, p, d) > 0
such that the following holds.

Let v ∈ C2(B′
1/δ), B

′
1/δ ⊂ Rn−1, be such that

ρ2
 
B′

ρ

|div(A∇v)| < δ and

 
B′

ρ

|v| ≤ ρd+1/2 for 1 ≤ ρ ≤ 1
δ ,

where A ∈ C1(B′
1/δ) and |A(x′)− 1| ≤ δ.

Then, ˆ
B′

1

|v − pd| dx ≤ λ,

where pd is a harmonic polynomial of degree ≤ d and such that ∥pd∥L1(B1) ≤ |B′
1|.

Proof of Proposition 7.8. We will show the existence of some C̄ ≥ 1 such that the following holds: Let z̄ ∈ B 1
4 R̃k

(z̃k).

Fix i ∈ {1, ...,K∗}. Then, we have the algebraic decay

min
ai∈B′

1, bi∈R

1

R

 
B′

R(z̄′)

∣∣g̃i(x′)− ai · (x′ − z̄′)− bi
∣∣ dx′ ≤ C̄ε̃k

(
R

R̃k

)1/2

, (110)

for all R ∈
[
ε̃χk R̃k,

1
8 R̃k

]
.

The desired statement immediately follows.

Let us denote Rl := 2−lR̃k. We assume that (110) holds for R = R1, R2, R3, . . . , Rl and we will show it holds
for R ∈ [Rl+1, Rl] as well, as long as l ≥ l0 for some l0 universal to be chosen, and 2−l ≥ ε̃χk . Notice that, up to
making C̄ larger depending only on l0, we can always assume the statement holds up to Rl0 indeed, since (ii) in
Proposition 7.4 shows that  

B′
1
4
R̃k

(z̃′
k)

∣∣g̃i(x′)− (z̃k)n
∣∣ dx ≤ Cε̃kR̃k . (111)

Denote h := g̃i(z̄
′ + x′) in what follows. By assumption, for every 1 ≤ m ≤ l there are am, bm such that

1

Rm

 
B′

Rm

|h− am · x′ − bm| ≤ C̄2−m/2ε̃k . (112)

By the triangle inequality,

|am − am+1|+
1

Rm
|bm − bm+1| ≤ C1C̄2

−m/2ε̃k, therefore |am − al|+
1

Rm
|bm − bl| ≤ C2C̄2

−m/2ε̃k.

Then, for l − l0 ≤ m ≤ l, (112) transforms into

1

Rm

 
B′

Rm

|h− al · x′ − bl| ≤ C3C̄2
−m/2ε̃k,

for some universal C3. If we define

h̃l(x
′) :=

h(Rlx
′)−Rl al · x′ − bl

C3C̄ε̃k2−l/2Rl
,

we get  
B′

2l−m

|h̃l| ≤
2−m/2Rm

2−l/2Rl
= 23/2(l−m), or

 
B′

ρ

|h̃l| ≤ C4ρ
3/2 for ρ ∈ (1, 2l0). (113)
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On the other hand, letting A = 1√
1+|∇h|2

, Proposition 7.6 and (iii) in Proposition 7.4 give that

1

(ε̃kR̃k)
R2

m

 
B′

Rm

|div(A∇h)| ≤ Cε̃
1
10

k , where |A(x′)− 1| ≤ ok(1) ,

which letting Ãl(x
′) := A(Rlx

′) and rescaling gives that

ρ2
 
B′

ρ

|div(Ãl∇h̃l)| ≤ Cε̃
1
10

k 23l/2 ≤ Cε̃
1
40

k , where |Ãl(x
′)− 1| ≤ ok(1) .

We have used that 23/2l ≤ (ε̃−χ
k )3/2 ≤ ε̃

− 3
40

k for χ ∈ (0, 1
20 ] and k large enough in the last inequality.

By Lemma 7.9 with d = 1, given λ > 0, for k and l0 large enough we have that
´
B′

1
|h̃l − a · x′ − b| ≤ λ, for some

a ∈ Rn−1 and b ∈ R. Scaling back, we have

1

Rl

 
B′

Rl

|h(x)− al · x′ − bl − C3C̄2
−l/2ε̃ka · x′ − C3C̄Rl2

−l/2ε̃kb| dx′ ≤ C4C̄2
−l/2λε̃k .

Denoting bl+1 := bl + C3C̄Rl2
−l/2ε̃k b and al+1 = al + C3C̄2

−l/2ε̃k a, we obtain

1

Rl

 
B′

Rl

|h(x)− al+1 · x′ − bl+1| dx′ ≤ C4C̄2
−l/2λε̃k.

We now choose λ small so that C4λ ≤ 1
32 , which in turn fixes l0, C̄, and a lower bound for k. We then get (110) for

R ∈ [Rl+1, Rl] as desired.

7.4 Preservation of mean oscillation

We can interpret Proposition 7.8 as saying that g̃i− li has average size O(ε̃
1+3χ/2
k R̃k) in Bε̃χk R̃k

(z̄′). We now show

that g̃i − li still has average size O(ε̃
1+3χ/2
k R̃k) in the much smaller ball Bε̃1+2χ

k R̃k
(z̄′).

Proposition 7.10 (Preservation of layer mean oscillation up to ε̃1+2χ
k R̃k). Fix χ ∈ (0, 1

20 ], β ∈ (0, 1
40 ] and

α ∈ (0, 1
40 ].

Then, we have  
B′

ε̃
1+2χ
k

R̃k

(z̄′)

|g̃i − ℓi| ≤ Cε̃
1+χ/2
k (ε̃χk R̃k) for all i ∈ {1, ...,K∗} , (114)

provided k is large enough.

Proof. We argue similarly to the proof of Proposition 7.8. We fix i ∈ {1, ..,K∗} in all of the proof. Let ai ∈ Rn−1, bi ∈
R be given by Proposition 7.8, so that setting ℓi := ai · (x′ − z̄′) + bi we have that 

B′
ε̃
χ
k
R̃k

(z̄′)

∣∣g̃i − ℓi
∣∣ dx ≤ Cε̃

1+χ/2
k (ε̃χk R̃k). (115)

Set w := (g̃i − ℓi)(z̄
′ + · ). To obtain (114), we will actually show that for some (tiny) β̄ > 0 and some C̄, we have

inf
c∈R

 
B′

r

|w − c| ≤ C̄ε̃
1+χ/2
k (ε̃χk R̃k)

(
r/(ε̃χk R̃k)

)β̄
for all r ∈ [ε̃1+2χ

k R̃k, ε̃
χ
k R̃k] . (116)

Then, a direct application of the triangle inequality and the geometric decay in (116) give that 
B′

r

|w| ≤ CC̄ε̃
1+χ/2
k (ε̃χk R̃k) for all r ∈ [ε̃1+2χ

k R̃k, ε̃
χ
k R̃k] (117)

as well, as desired.
Set rl := 2−l(ε̃χk R̃k), and assume that (116) holds for r = r1, r2, r3, . . . , rl. We will show it holds for r ∈ [rl+1, rl] as

well as long as l ≥ l0 and 2−l ≥ ε̃1+χ
k .

Now, under these assumptions27, we have cm ∈ R such that, for any 1 ≤ m ≤ l,

wm(x) := w(x)− cm satisfies

 
B′

rm

|wm| ≤ C̄2−β̄mε̃
1+χ/2
k (ε̃χk R̃k). (118)

27Up to making C̄ larger depending on l0, by (115) this will be the case.
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The triangle inequality shows then that |cl − cm| ≤ C1C̄2
−β̄mε̃

1+χ/2
k (ε̃χk R̃k) as well, where C1 depends on β̄. This

gives  
B′

rm

|wl| ≤ C2C̄2
−β̄mε̃

1+χ/2
k (ε̃χk R̃k) , (119)

which defining w̃l(x) :=
wl(rlx)

C2C̃0ε̃
1+χ/2
k (ε̃χk R̃k)2−β̄l

transforms (taking β̄ < 1
2 ) into 

B′
2l−m

|w̃l| ≤ 2β̄(l−m) , or

 
B′

ρ/2

|w̃l| ≤ ρ1/2 for ρ ∈ (1, 2l0). (120)

Likewise, Proposition 7.6 and (iii) in Proposition 7.4 give that

ρ2
 
B′

ρ

|div(Ãl∇h̃l)| ≤ Cε̃
1
10

k ε̃
−3χ/2
k 2β̄l ≤ Cε̃

1
80

k , where |Ãl(x
′)− 1| ≤ ok(1) .

We have used that ε̃
−3χ/2
k 2β̄l ≤ ε̃

−3/40
k (ε̃−2

k )β̄ ≤ ε̃
− 7

80

k up to choosing β̄ ∈ (0, 1
160 ] and k large enough in the last

inequality.
We can then apply Lemma 7.9 with d = 0 and obtain that for any λ > 0, as long as l0 and k are large enough

we have that
´
B′

1
|w̃l − c| dx ≤ λ, for some c ∈ R. Choosing λ small enough, after rescaling we conclude that (116)

holds for r ∈ [rl+1, rl] as well, concluding the proof.

7.5 Approximation by a single linear function – Proof of Proposition 3.20

Combining the previous results and the proximity of our graphs at small scales (21), we can now give:

Proof of Proposition 3.20 and Proposition 7.1. We will show Proposition 7.1, which is a strictly stronger result. To
simplify the notation, after a translation we can (and do) assume that z̄ = 0. We divide the proof into three steps.

Step 1. Improvement of the |bi|.
Here is where we will use (114). Let ρ = ε̃1+2χ

k R̃k. By (114) and the fact that g̃i ≡ gi in Ω2−γ , we deduce that

1

|B′
ρ|

ˆ
B′

ρ∩Ω2−γ

∣∣gi(x′)− ai · x′ − bi
∣∣ dx′ ≤ Cε̃

1+χ/2
k (ε̃χk R̃k), i ∈ {1, ...,K∗}. (121)

Now, by Lemma 6.3 we can bound (for k large enough)

1

|B′
ρ|

ˆ
B′

ρ∩Ω2−γ

∣∣gi(x′)∣∣ dx′ ≤ ok(1)ρ ≤ ε̃
1+χ/2
k (ε̃χk R̃k) for every i ∈ {1, ...,K∗};

intuitively, all of the graphs pass inside Bρ thanks to (21). Together with (121), then

1

|B′
ρ|

ˆ
B′

ρ∩Ω2−γ

∣∣ai · x′ + bi
∣∣ dx′ ≤ Cε̃

1+χ/2
k (ε̃χk R̃k) for every i ∈ {1, ...,K∗} as well. (122)

Restricting to either {ai · x′ > 0} or {ai · x′ < 0} in the integral immediately gives that∣∣bi∣∣ ≤ Cε̃
1+χ/2
k (ε̃χk R̃k) , (123)

as long as |B′
ρ ∩Ω2−γ | ≥ 0.9|B′

ρ|. But this is indeed true: Using (80) (and the notation there), by (31) we can bound

|{d ≤ ε̃2−γ
k R̃k} ∩B′

1
2 R̃k

(z̃k)| ≤ (ε̃2−γ
k R̃k)

3(Nε̃2−γ
k

)−1−β ≤ C(ε̃2−γ
k R̃k)

3(ε̃2−γ
k )−1−β = Cε̃

(2−γ)(2−β)
k R̃3

k , (124)

which for k large enough and γ ∈ (0, 14 ], β ∈ (0, 1
16 ], χ ∈ (0, 1

20 ] is strictly smaller than |B′
ρ| = cρ3 = cε̃

3(1+2χ)
k R̃3

k.

Step 2. Improvement of the |aj − ai|.
Let ρ = ε̃χk R̃k now; all of our next arguments will be at scale ε̃χk R̃k. By (39),

1

|B′
ρ|

ˆ
B′

ρ∩Ω2−γ

∣∣gi(x′)− ai · x′ − bi
∣∣ dx ≤ Cε̃

1+χ/2
k ρ, i ∈ {1, ...,K∗}. (125)

Given i < j we know that gj − gi > 0. Applying the triangle inequality and (125), and then Step 1,

1

|B′
ρ|

ˆ
B′

ρ∩Ω2−γ

(ai − aj) · x′ + (bi − bj) dx
′ ≤ Cε̃

1+χ/2
k ρ , thus

1

|B′
ρ|

ˆ
B′

ρ∩Ω2−γ

(ai − aj) · x′ dx′ ≤ Cε̃
1+χ/2
k ρ .
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Assuming that ai ̸= aj , setting A := B′
ρ ∩ { ai−aj

|ai−aj | · x
′ ≥ ρ

10} we find that

|A ∩ Ω2−γ |
|B′

ρ|
|ai − aj |

ρ

10
≤ 1

|B′
ρ|

ˆ
A∩Ω2−γ

(ai − aj) · x′ dx ≤ Cε̃
1+χ/2
k ρ , or

|A ∩ Ω2−γ |
|B′

ρ|
|ai − aj | ≤ Cε̃

1+χ/2
k .

Arguing exactly as in the end of Step 1, we see that |A∩Ω2−γ | ≥ 0.9|A| = c|B′
ρ| for k large enough, thus we conclude

that

|ai − aj | ≤ Cε̃
1+χ/2
k . (126)

Step 3. Conclusion.

Steps 1 and 2 show in particular that 1

ε̃χk R̃k

ffl
B′

ε̃
χ
k
R̃k

(ȳ′)
|ℓi − ℓ1| ≤ Cε̃

1+χ/2
k for every i ∈ {1, ...,K∗}, so that simply

setting ℓ := ℓ1 we see that (109) transforms into (79), showing Proposition 7.1. Since (by Proposition 7.4) we have
that gi ≡ g̃i in Ω2−γ , then (39) immediately follows, proving Proposition 3.20 as desired.

8 Conclusion of argument

For simplicity, let us fix χ = 1
20 , β = 1

40 and α = 1
40 in what follows.

8.1 Improvement of Allen–Cahn excess and density deficit

We want to transform the L1 bounds from Proposition 3.20 into L∞ ones, for which we first need:

Lemma 8.1 (Clean cylinder). There exists z̄ ∈ BR̃k/8
(z̃k)∩Z with the following property: There is some ȳ′ such

that

dist(ȳ′, [Z ∩BR̃k
(z̃k)]

′) = |ȳ′ − z̄′| = 1

2
ε̃χk R̃k .

Proof. Using (80) and (31), we can bound

|{d ≤ 1

2
ε̃χk R̃k} ∩B′

1
2 R̃k

(z̃k)| ≤ (
1

2
ε̃χk R̃k)

3(N 1
2 ε̃

χ
k
)−1−β ≤ C(

1

2
ε̃χk R̃k)

3(
1

2
ε̃χk )

−1−β = Cε̃
(2−β)χ
k R̃3

k .

For k large enough this is strictly smaller than |B′
1
16 R̃k

(z̃k)| = cR̃3
k, thus {d > 1

2 ε̃
χ
k R̃k} ∩ B′

1
16 R̃k

(z̃k) ̸= ∅. This

clearly means that there is ȳ′ ∈ {d = 1
2 ε̃

χ
k R̃k} ∩ B′

1
16 R̃k

(z̃k) as well, and then we can choose some z̄ such that

|ȳ′ − z̄′| = d(ȳ′) = 1
2 ε̃

χ
k R̃k.

Our main result here is:

Proposition 8.2 (Improvement of total excess and density deficit). There exist z̄ and ȳ′ (given by Lemma 8.1)
such that the following holds. Let ℓ be given by Proposition 3.20 (applied with this z̄). Setting ȳ := (ȳ′, ℓ(ȳ′)), then—
for k large enough— ȳ ∈ Bε̃χk R̃k

(z̄). Moreover, we have:

• Height excess bound: H2
(ε̃χk R̃k)/64

(ȳ) ≤ Cε̃2+χ
k .

• Density deficit bound: K∗ − C

[
ε
1+4χ/3
k

θ

]2
≤ MθR̃k

(ȳ) ≤ K∗ for every θ ∈ [ε̃k, ε̃
χ
k/8].

Proof. The fact that ȳ ∈ Bε̃χk R̃k
(z̄) for k large enough follows easily from Proposition 3.20 and Lemma 6.3.

Step 1. Improvement of H.

From Proposition 3.20 and |ȳ′ − z̄′| = 1
2 ε̃

χ
k R̃k, for each i ∈ {1, ...,K∗} we have 1

(ε̃χk R̃k)

ffl
B′

1
2
ε̃
χ
k
R̃k

(ȳ′)
|gi − ℓ| ≤ Cε̃

1+χ/2
k .

Since B′
1
2 ε̃

χ
k R̃k

(ȳ′) is a (projected) good ball, by elliptic estimates (using (16) with R = 1
2 ε̃

χ
k R̃k) we can upgrade this

into

1

(ε̃χk R̃k)
|gi − ℓ| ≤ Cε̃

1+χ/2
k in B′

1
4 ε̃

χ
k R̃k

(ȳ′).

Set ȳn := ℓ(ȳ′); choosing an appropriate Euclidean frame, we can assume that ȳ = 0 and l ≡ 0 (up to restricting to
a smaller cylinder). Then

{u = 0} =

K∗⋃
i=1

graph gi ⊂ {|xn| ≤ ε̃
1+χ/2
k (ε̃χk R̃k)} in the cylinder C(ε̃χk R̃k)/6

.
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Using the second bullet in Lemma 4.9 (since c ≤ ε̃2kR̃k ≪ ε̃
1+χ/3
k (ε̃χk R̃k)) this can be upgraded to:

{|u| ≤ 0.9} ⊂ {|xn| ≤ Cε̃
1+χ/2
k (ε̃χk R̃k)} in C(ε̃χk R̃k)/8

.

We can then apply Lemma 4.4 with δ = ε̃
1+χ/2
k and λ = 1/4. Choosing χ > 0 small enough so that—since cR−1

k ≤ ε̃2k
by (60)—we have δ2 ≫ ε̃

(2−χ)(3/2)
k ≥ c(ε̃χk R̃k)

−2(1−λ), for k large, we find that H2
1
64 (ε̃

χ
k R̃k)

(ȳ) ≤ Cε̃2+χ
k .

Step 2. Largest cylinder.

Fix θ ∈ [ε̃k, ε̃
χ
k/8], and set ε̄k := ε̃

1+χ/3
k ≫ ε̃

1+χ/2
k . We want to consider a cylinder in BθR̃k

containing as much of

the area of our graphs as possible: Set Cθ := B′
aθR̃k

× [−ε̄k(ε̃χk R̃k), ε̄k(ε̃
χ
k R̃k)] (recall ), where

aθ =
√
θ2 − [ε̄kε̃

χ
k ]

2 = θ

√
1− [

ε̄kε̃
χ
k

θ
]2 , thus [aθR̃k]

2 + [ε̄k(ε̃
χ
k R̃k)]

2 = θ2R̃2
k .

Then, we see that ⋃
i

graph gi|B′
aθR̃k

⊂ {|xn| ≤ Cε̃
1+χ/2
k (ε̃χk R̃k)} ∩ Cθ ⊂ BθR̃k/8

.

Moreover, observe that

|B′
aθR̃k

| = |B′

θ

√
1−
[

ε̄kε̃
χ
k

θ

]2
R̃k

| = |B′
θR̃k

|
(
1−

[ ε̄kε̃χk
θ

]2)n−1
2

≥ |B′
θR̃k

|
(
1− C

[ ε̄kε̃χk
θ

]2)
. (127)

Step 3. Slicing argument—we show that each sheet of {u = 0}, xn = gi(x
′), forces a contribution of almost

|B′
aθR̃k

|
ωn−1

(with a quantified error) to the total A–C energy of u in BθR̃k
.

Let Λ := 1+3/4
4

√
2 log

(ε̃χk R̃k)

8 , and define for every i ∈ {1, ...,K∗} the “transition regions”

L−
i :=

{
(x′, xn) : x

′ ∈ B′
aθR̃k

, xn ∈ (gi(x
′)− Λ, gi(x

′))
}

and

L+
i :=

{
(x′, xn) : x

′ ∈ B′
aθR̃k

, xn ∈ (gi(x
′), gi(x

′) + Λ)
}
.

They are all contained in Cθ. The point is that, by (17), we know that gi+1 − gi ≥ Λ, thus L+
i ∩ L−

i+1 = ∅ for every
1 ≤ i < K∗ (eventually in k). This shows that the transition regions are all disjoint (for k large enough).
Fix i ∈ {1, ...,K∗}; applying Fubini and |∇u|2 ≥ u2xn

, we see that

σn−1E(u, L+
i ) =

ˆ
B′

aθR̃k

dx′
ˆ gi(x

′)+Λ

gi(x′)

dxn

[
|∇u|2

2
+W (u)

]
≥
ˆ
B′

aθR̃k

dx′
ˆ gi(x

′)+Λ

gi(x′)

dxn

[
u2xn

2
+W (u)

]
.

Define the 1D function fx′(t) := u (x′, gi(x
′) + t), t ∈ [0,Λ]. Then, letting t := xn − gi(x

′) in the integral,

σn−1E(u, L+
i ) ≥

ˆ
B′

aθR̃k

dx′
ˆ Λ

0

dt

[
( d
dtfx′)2(t)

2
+W (fx′(t))

]
.

Fixed x′, the inner integral is (up to a factor 1
σ0
) precisely the A–C energy in [0,Λ] of the 1D function fx′(t).

Moreover, fx′(0) = u(x′, gi(x
′)) = 0. Now, fx′(t) is not necessarily a solution to A–C in 1D; on the other hand,

letting κ = 3/4 and R =
(ε̃χk R̃k)

8 , its A–C energy is at least

P (κ,R) := inf

{
E1D

(
v,

1 + κ

4

√
2 logR

)
: v ∈ C1

c ([0,
1 + κ

4

√
2 logR]) and v(0) = 0

}
,

where we denote

E1D(v, r) =
1

σ0

ˆ r

0

1

2
(v′(t))2 +W (v(t)) dt ,

and the infimum is attained by a true 1D Allen–Cahn solution. In Proposition D.1, it is shown that P (κ,R) ≥
1
2 − CR−(1+κ), which since R̃k ≥ cε̃−2

k (by (60)) shows that P (κ,R) ≥ 1
2 − Cε̃

(2−χ)(1+κ)
k ≥ 1

2 − Cε̃3k.
Combined with the above and (127), we find that

ωn−1E(u, L+
i ) ≥

ˆ
x′∈B′

aθR̃k

P (κ,R) dx′ ≥
∣∣∣B′

aθR̃k

∣∣∣ [1
2
− Cε̃3k

]
≥ |B′

θR̃k
|
[
1

2
− C[

ε̄kε̃
χ
k

θ
]2
]
,
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so that

MθR̃k
=

ωn−1

|B′
θR̃k

|
E(u,B (ε̃

χ
k
R̃k)

8

) ≥ ωn−1

|B′
θR̃k

|

K∗∑
i=1

[
E(u, L−

i ) + E(u, L+
i )
]
≥ K∗ − C[

ε̄kε̃
χ
k

θ
]2

as desired.

8.2 A monotonicity-type formula: Density deficit controls growth of excess

Definition 8.3 (Weighted excess and density). Let fr,d : R → R and Gr,d : Rn → R be defined by

fr,d(t) :=
1

cdrd
e

−t2

r2 and Gr,d(x) := fr,d(|x|) , where cd = d

ˆ ∞

0

td−1e−t2 .

We set

H̃2
r(e) :=

ˆ
Rn

(x · e)2
[
|∇u|2

2
+W (u)

]
Gr,n+1, M̃2

r :=
1

σn−1

ˆ
Rn

[
|∇u|2

2
+W (u)

]
Gr,n−1 .

Moreover, we denote H̃2
r := infe∈Sn−1 H̃2

r(e), H̃
2
r(e, x0) := H̃2

r(u(· − x0), e), and M̃2
r(x0) := M̃2

r(u(· − x0)).

The weighted versions are just as good for our purposes, up to a going to a slightly smaller scale:

Proposition 8.4 (Improvement of weighted excess and density deficit). There exists ȳ (given by Proposi-
tion 8.2) such that the following holds. Let χ♯ =

31
30χ. Then, we have

H̃2

ε̃
χ♯
k R̃k

(ȳ) ≤ Cε̃
2+χ♯/2
k and K∗ − ε̃

2+χ♯/2
k ≤ M̃

ε̃
χ♯
k R̃k

(ȳ) ≤ M̃∞ = K∗ (128)

for k large enough.

We will show this later. We first state the crucial monotonicity-type formula that will allow to propagate the
smallness of H̃ from scale ε̃

χ♯

k R̃k to the “original scale” Rk.

Theorem 8.5 (Density deficit controls excess growth). For any r > 0 and λ ∈ (0, 12 ), we have28

H̃r ≤ H̃λr + C| log(λ)|1/2(M̃r − M̃λr)
1/2 . (129)

Proof. It suffices to show that for every e ∈ Sn−1 and λ ∈ (0, 1), we have

H̃r(e) ≤ H̃λr(e) + C[1 + | log(λ)|1/2](M̃r − M̃λr)
1/2 . (130)

Up to choosing the right frame we can assume that e = en. Define P :=
[
|∇u|2

2 +W (u)
]
and Q :=

[
W (u)− |∇u|2

2

]
.

We will use the following:

• Kernel properties: ∇Gr,d = −2
r2 Gr,dx and r d

drGr,d = −x · ∇Gr,d − dGr,d .

• Pohozaev identity29: div(Px) = div((x · ∇u)∇u) + nP − |∇u|2.
• ∇x2n = 2xnen .

Step 1. Pohozaev–type computations.
Observe that

r
d

dr
H̃2

r(en) = r
d

dr

ˆ
x2nPGr,n+1 =

ˆ
x2nP (−x · ∇Gr − (n+ 1)Gr) .

Integrating by parts,

r
d

dr
H̃2

r(en) =

ˆ
∇x2n · xPGr,n+1 +

ˆ
x2ndiv(Px)Gr,n+1 − (n+ 1)

ˆ
x2nPGr

= 2

ˆ
x2nPGr,n+1 +

ˆ
x2n
[
div((x · ∇u)∇u)− P − |∇u|2

]
Gr,n+1

=

ˆ
x2nQGr,n+1 +

ˆ
x2ndiv((x · ∇u)∇u)Gr,n+1 .

28This result works for any A–C solution u : Rn → [−1, 1], and not just for the critical solution and n = 4.
29Proved via a standard computation using ∆u =W ′(u).
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Integrating the new divergence term by parts, relating Gr,n+1 and Gr,n−1, and using Cauchy–Schwarz we arrive
at

r
d

dr
H̃2

r(en) =

ˆ
x2n[Q+

2

r2
(x · ∇u)2]Gr,n+1 − 2

ˆ
xnGr,n+1(x · ∇u)un

=
c1
r2

ˆ
x2n[Q+

2

r2
(x · ∇u)2]Gr,n−1 − 2c2

ˆ
(xnunG

1/2
r,n+1)(

x · ∇u
r

G
1/2
r,n−1)

≤ C

ˆ
[Q+

2

r2
(x · ∇u)2]Gr,n−1 + C[

ˆ
x2nPGr,n+1]

1/2[

ˆ
1

r2
(x · ∇u)2Gr,n−1]

1/2 .

Now, analogous computations show that

r
d

dr
M̃r =

1

σn−1

ˆ
[Q+

2

r2
(x · ∇u)2]Gr,n−1 . (131)

In particular, M̃r is monotone nondecreasing by Lemma 2.1. Moreover, we see that

r
d

dr
H̃2

r(en) ≤ Cr
d

dr
M̃r + C[H̃2

r(en)]
1/2[r

d

dr
M̃r]

1/2 .

Step 2. Grönwall-type argument.
Given 0 < a < r, integrating we find that

H̃2
r(en) ≤ H̃2

a(en) + C[M̃r − M̃a] + C

ˆ r

a

[H̃2
r(en)]

1/2[
1

r

d

dr
M̃r]

1/2 =: Ar .

We then see that

d

dr
Ar = C

d

dr
M̃r + C[H̃2

r(en)]
1/2[r

d

dr
M̃r]

1/2 ≤ C
d

dr
M̃r + C[Ãr]

1/2[
1

r

d

dr
M̃r]

1/2 ,

thus dividing by A
1/2
r and using Ar ≥ C[M̃r − M̃a] we reach30

2
d

dr
A1/2

r ≤ C
d
drM̃r

A
1/2
r

+ C[
1

r

d

dr
M̃r]

1/2 ≤ C
d
dr [M̃r − M̃a]

[M̃r − M̃a]1/2
+ C[

1

r

d

dr
M̃r]

1/2 = 2C
d

dr
[M̃r − M̃a]

1/2 + C[
1

r

d

dr
M̃r]

1/2 .

Integrating and using Cauchy–Schwarz, we find that

A1/2
r −A1/2

a ≤ C[M̃r − M̃a]
1/2 + C[

ˆ r

a

1

s
ds]1/2[

ˆ r

a

d

ds
M̃sds]

1/2 = C[M̃r − M̃a]
1/2 + C log1/2 (r/a)[M̃r − M̃a]

1/2 .

Using that Hr(en) ≤ A
1/2
r and Ha(en) = A

1/2
a , we conclude that

H̃r(en) ≤ H̃a(en) + C[1 + log1/2 (r/a)](M̃r − M̃a)
1/2 ,

which putting a = λr gives (130).

We will now show Proposition 8.4. We first need a couple of lemmas.

Lemma 8.6 (Density properties). M̃r is monotone nondecreasing. Moreover, we have the layer cake-type formula

M̃r = −
ˆ ∞

0

dt tn−1f ′r,n−1(t)Mt , (132)

where −
´∞
0
dt tn−1f ′r,n−1(t) = 1.

Proof. We already discussed the monotonicity of M̃r (recall (131)). Moreover, we can compute

−
ˆ ∞

0

dt tn−1f ′r,n−1(t) = (n− 1)

ˆ ∞

0

dt tn−2fr,n−1(t) =
n− 1

cnrn−1

ˆ ∞

0

dt tn−2e
−t2

r2 =
n− 1

cn

ˆ ∞

0

dt tn−2e−t2 = 1 .

Finally, letting P :=
[
|∇u|2

2 +W (u)
]
, using polar coordinates and Gr,d(x) = fr,d(|x|) we can compute

ˆ
PGr,n−1 =

ˆ ∞

0

dt fr,n−1(t)

ˆ
∂Bt

P =

ˆ ∞

0

dt fr,n−1(t)
d

dt

ˆ
Bt

P = −
ˆ ∞

0

dt tn−1f ′r,n−1(t)
1

tn−1

ˆ
Bt

P ,

which gives precisely (132).

30We can assume that [M̃r − M̃a] > 0, as otherwise (131) forces u to be constant along rays, thus u ≡ u(0).

40



Lemma 8.7 (Height excess properties). We have

H2
r ≤ CH̃2

r . (133)

Moreover, given λ ∈ (0, 1) we have

H̃2
λr ≤ λ−(n+1)CH2

r + Ce−
1
2λM∞ . (134)

Proof. We clearly have the pointwise inequalities

1

rn+1
χBr

≤ CGr,n+1 and Gλr ≤ C
1

(λr)n+1
χBr

+ C
1

(λr)n+1
e−

|x|2

λ2r2 χBc
r
.

Integrating the first one we get (133). Integrating the second one we get

H̃2
λr ≤ λ−(n+1)CH2

r + Cλ−(n+1) 1

rn+1

ˆ
Bc

r

|x|2
[
|∇u|2

2
+W (u)

]
e−

|x|2

λ2r2 ,

which splitting the integral into dyadic scales and using that MR ≤ M∞ easily gives (134).

Proof of Proposition 8.4. Up to a translation we can assume that ȳ = 0. Taking λ = ε̃
1
30χ

k in (134), by Proposition 8.2
we find that

H̃2

ε̃
χ♯
k R̃k

≤ ε̃
−χ/6
k CH2

ε̃χk R̃k
+ Ce−ε̃

χ/60
k ≤ Cε̃

2+χ♯/2
k . (135)

It remains to estimate M̃
ε̃
χ♯
k R̃k

. Since −
´∞
0
dt tn−1f ′r,n−1(t) = 1 and Mt

t→∞−−−→ M∞, it is clear that

M̃∞ = − lim
r→∞

ˆ ∞

0

dt tn−1f ′r,n−1(t)Mt = M∞ = K∗ .

For the lower bound, using −
´∞
0
dt tn−1f ′r,n−1(t) = 1 again and the monotonicity of Mt, given 0 < a < r we can

estimate

K∗ − M̃r = −
ˆ ∞

0

tn−1f ′r,n−1(t)[K∗ −Mt]dt

≤ −
ˆ ∞

r

tn−1f ′r,n−1(t)[K∗ −Mr]dt−
ˆ r

0

tn−1f ′r,n−1(t)[K∗ −Mt]dt

≤ [K∗ −Mr]−
[ˆ a

0

+

ˆ r

a

]
tn−1f ′r,n−1(t)[K∗ −Mt]dt .

Bounding f ′r,n−1(t) ≤ C t
rn+1 in the integrals, taking r = ε̃

χ♯

k R̃k and a = ε̃kR̃k, and using the density lower bound
from Proposition 8.2, we reach

K∗ − M̃r ≤ [K∗ −Mr] + C(a/r)n+1 +
C

rn+1

ˆ r

a

tn[K∗ −Mt]dt

≤ (ε
1+4χ/3
k R̃k/r)

2 + C(a/r)n+1 +
C

rn+1

ˆ r

a

tn(ε
1+4χ/3
k R̃k/t)

2dt ≤ (ε
1+4χ/3
k R̃k/r)

2 + C(a/r)n+1 ,

thus K∗ − M̃r ≤ ε̃
2+χ♯/2
k .

8.3 Back to the original scale – Proof of Theorem 1.3

Proof of Theorem 1.3. Proving Theorem 1.3 is equivalent to showing that every K ∈ R+ is a subcritical density in
R4 (recall Definition 3.1). We assume then for contradiction that K∗ = sup{K > 0 subcritical density in R4} <∞.

By Proposition 3.6, there is then a stable solution u : R4 → (−1, 1) with M∞ = K∗ which is not 1D. Let Z(u)
be its bad set, defined in Definition 3.7; it is non-empty by Lemma 3.8.

Fix γ = 1
4 . Fix some χ ∈ (0, 1

20 ], β ∈ (0, 1
40 ] and α ∈ (0, 1

40 ].

Let Rk → ∞ and zk ∈ Z be given by Lemma 3.17, with associated ε2k = H2
4Rk

(zk) → 0 as k → ∞.

Let R̃k = θ̃kRk and z̃k ∈ Z ∩ BRk
(zk) be given by Lemma 3.18, where θ̃k ∈ (0, 1], and let ε̃k = θ̃

β◦(1+α)
k εk. Recall

that:

• we have R̃k → ∞ and H2
4R̃k

(z̃k) ≤ 2ε̃2k → 0 as k → ∞.

• moreover (30) and (31) hold.
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Combining Proposition 8.4 and the monotonicity (by Lemma 8.6) of M̃r, there is some ȳ ∈ B 1
2 R̃k

(z̃k) such that

K∗ − Cε̃
2+χ♯/2
k ≤ M̃r(ȳ) ≤ K∗ for every r ≥ ε̃

χ♯

k R̃k ,

with χ♯ =
31
30χ and for k large enough. Applying Theorem 8.5 with r = 4Rk and λr = ε̃

χ♯

k R̃k, and using Proposition 8.4
once again,

H̃4Rk
(ȳ) ≤ H̃

ε̃
χ♯
k R̃k

(ȳ) + C| log(λ)|1/2(M̃4Rk
(ȳ)− M̃

ε̃
χ♯
k R̃k

(ȳ))1/2 ≤ Cε̃
1+χ♯/4
k + C| log(λ)|1/2ε̃1+χ♯/4

k .

Now, we can easily beat the log factor, by using (for the first and only time) that β0 > 0: Since λ =
ε̃
χ♯
k R̃k

4Rk
= 1

4 θ̃kε
χ♯

k

and ε̃k = θ̃
β◦(1+α)
k εk, we find that | log(λ)|1/2ε̃χ♯/8

k → 0 as εk → 0. In particular, we deduce that

H̃4Rk
(ȳ) ≤ Cε

1+χ♯/8
k for all k large enough.

But then, since BRk
(zk) ⊂ B2Rk

(z̃k) ⊂ B4Rk
(ȳ), together with (133) we find that

εk = HRk
(zk) ≤ CH̃Rk

(z̃k) ≤ CH̃4Rk
(ȳ) ≤ Cε

1+χ♯/8
k for all k large enough.

Recalling once again that εk → 0 as k → ∞, for k large enough we get a contradiction.

8.4 Proof of Theorem 1.4

Proof of Theorem 1.4. Let uε : B1 ⊂ R4 → (−1, 1) and Λ be as in the statement, so that M1(uε) ≤ Λ. If uε were a
solution on all of R4 instead of just B1, since we now known that every density is subcritical in R4 we would easily
conclude by Theorem 3.2. The only difference is that we cannot directly use Lemma 2.3; nevertheless, the local
monotonicity formula with errors in [HT00, Proposition 3.4] gives universal C1, C2 such that

Mr(uε, x) ≤ C1Λ + C2 for every x ∈ B3/4 . (136)

Moreover, by Theorem 1.3 we know that K := C1Λ + C2 is a subcritical density. Then, up to using (136) in place
of (45) and (47), the rest of the proof of Theorem 3.2 follows exactly as written and gives the result.

Appendix

A The varifold theory for Allen–Cahn

A central insight of the classical theory is that stable solutions to ε-A–C converge, as ε ↓ 0, to stable integral
varifolds. We provide here in a restricted setting the most basic definitions and results underlying this convergence
(in particular, we do not deal with general varifolds, and we state simpler versions of known results whenever they
suffice).

Definition A.1 (Integral varifold). • Let Ω ⊂ Rn open. An integral (or integer rectifiable) varifold V is a
pair V = (Σ, θ), where Σ ⊂ Ω is an (n− 1)-rectifiable set, and θ : Σ → N is an Hn−1–integrable function. We
can naturally associate a weight measure ∥V ∥ to it by ∥V ∥(A) = 1

ωn−1

´
A∩Σ

θ dHn−1.

• We define its support via suppV := supp ∥V ∥. Its regular part reg V is defined as the set of all points x ∈ suppV
such that Σ is actually a smooth hypersurface in some open neighbourhood around x. In particular, reg V is
open. We define sing V = suppV \ reg V .

• We say that V is stationary in Ω if d
dt

∣∣
t=0

∥(Φt
X)♯V ∥(Ω) = 0, whereX is a smooth vector field with suppX ⋐ Ω,

Φt
X is its flow at time t, and (Φt

X)♯V = (Φt
X(Σ), θ ◦ Φ−t

X ). Moreover, it is called stable if its regular part is a

stable smooth minimal hypersurface, meaning that d2

dt2

∣∣
t=0

∥(Φt
X)♯V ∥(Ω) ≥ 0 for every X with suppX ⋐ reg V .

Definition A.2 (Allen–Cahn weight measure, [HT00]). Given a solution uε : Ω → [−1, 1] to ε-A–C, we define
the Allen–Cahn weight measure ∥Vε∥ on Ω via, given A ⊂ Ω,

∥Vε∥(A) :=
1

σn−1

ˆ 1

−1

√
2W (t)Hn−1({u = t} ∩A) dt .

We are using that, by Sard’s theorem, {u = t} is a smooth submanifold for almost every t.

As a motivation for the definition above, note that by the coarea theorem we can write

∥Vε∥(A) =
1

σn−1

ˆ
A

√
2W (uε)|∇uε| dx .
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Let a :=
√

2W (uε)
ε and b :=

√
ε|∇uε|. Using that 2ab = a2+ b2− (b−a)2 ≥ a2+ b2−|b2−a2| we readily deduce that

Eε(uε, A)−D(uε, A) ≤ ∥Vε∥(A) ≤ Eε(uε, A) ,

where D(uε, A) :=
1

σn−1

´
A

∣∣∣W (uε)
ε − ε|∇uε|2

2

∣∣∣ dx is a discrepancy term.

Huchinson and Tonegawa established a deep connection between stationary points of ε-A–C and integral station-
ary varifolds. The following is a partial statement of their results.

Theorem A.3 ([HT00]). Let uε : Ω → [−1, 1] be a sequence of solutions to the ε-A–C equation, with ε → 0, and
assume that Eε(uε,Ω) ≤ Λ. Define the A–C weight measures ∥Vε∥ as in Definition A.2.
Then, there is a subsequence uεk with εk → 0, and a stationary integer rectifiable varifold V , such that the following
hold:

• ∥Vεk∥ → ∥V ∥ as measures.

• D(uεk , A) → 0 for any A ⋐ Ω. In particular,

∥V ∥(Ω′) = lim
k

∥Vεk∥(Ω′) = lim
k

Eεk(uεk ,Ω
′) for any Ω′ ⋐ Ω with ∥V ∥(∂Ω′) = 0. (137)

• As ε→ 0,

{|uε| ≤ 0.9} converges locally in the Hausdorff distance sense to sptV. (138)

We now focus on stable solutions.

Remark A.4. In the stable case, rescaling Theorem 2.11 shows directly (and quantifies) the discrepancy decay.

Theorem A.5 ([Ton05]). In the setting of Theorem A.3, assume moreover that the uε are stable. Then, V is also
stable.
Assume now furthermore that Ω ⊂ R2, so that suppV is a union of straight segments. Then suppV is actually a
union of non-intersecting straight lines.

The latter is a general property and holds also in higher dimensions, as shown by Tonegawa and Wickramasekera:

Theorem A.6 ([TW12, Proposition 3.2]). In the setting of Theorem A.3, assume moreover that the uε are stable.
Assume that 0 ∈ Ω and spt∥V ∥ = C ∩ Ω, where C ⊂ Rn is a cone with n − 2 directions of translation invariance.
Then C is a hyperplane.

Remark A.7. Cones C with n − 2 directions of translation invariance are, choosing an appropriate Euclidean
coordinate frame, of the form C0 × Rn−2, where C0 ⊂ R2 is a union of half-lines intersecting at the origin. In other
words, they are unions of half-hyperplanes meeting along a common boundary.

The above are all the results we will use in the article. The following remark is in order:

Remark A.8. The motivation for showing Theorem A.6 in [TW12] is the following: Wickramasekera developed
a deep regularity theory for codimension 1 stable integral varifolds in [Wic14], which shows that they cannot have
branch points (i.e. flat singularities) as long as they do not have classical singularities31 either. In fact, such varifolds
need to be then of optimal regularity (i.e. as regular as in the case of area-minimisers). This theory can then (by
the property in Theorem A.6) be applied in particular to limits of stable A–C solutions, which shows:

Theorem A.9 ([TW12; Wic14]). In the setting of Theorem A.3, assume moreover that the uε are stable. Then,
sing V is empty if n ≤ 7, discrete if n = 8, and of Hausdorff codimension at least 8 if n ≥ 9.

We believe it is worth highlighting—as explained in Section 3.1—that our proof of Theorem 1.3 does not use the
powerful Theorem A.9.

B A self-contained theory for stable solutions

In our current arguments, the results from [HT00; TW12] are used only in two places:
The first instance is at the end of the proof of Theorem 3.2. There, we need to argue that a minimal hypersurface,

obtained as a C2,α limit of (the level sets of) stable ε-A–C solutions which satisfy the sheeting assumptions in balls

31V is said to have a classical singularity at x ∈ sing V if there is some r > 0 such that sptV ∩Br(x) is a C1,α perturbation of a union
of half-hyperplanes meeting along a common boundary.
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of radius one, is also stable. We appealed to Theorem A.5 for efficiency, but we could alternatively easily pass (11)
to the limit to recover the stability inequality for minimal hypersurfaces, using the C2,α convergence and the fact
that |II{u=u(x)}|2(x) ≤ A2(u)(x).

The second instance is in the proof of Propositions 3.9 and 3.10, where we used Theorems A.3, A.5 and A.6 to
provide a short and direct argument. We explain in what follows how to avoid their use completely.

The fact that K∗ ∈ N, which is obained in the proof of Proposition 3.9 via Theorem A.3, is not needed at that
point. We can instead proceed up until Section 6 without knowing thatK∗ is an integer, and only then—when proving
Proposition 3.19—deduce the integrality of K∗ in a straightforward way: By (77), we find a large “clean” ball with
Mδρ(x̄) = K∗ + ok(1). Moreover, applying Lemma 4.9, we find N ∈ N with Mδρ(x̄) = N + ok(1). Combining both
facts, obviously K∗ ∈ N. Such approach perfectly aligns with the “a-priori philosophy” that is present throughout
the work.

The other properties in Propositions 3.9 and 3.10 can be obtained (without appealing to [HT00; TW12]) as
follows:

Alternative proof of Propositions 3.9 and 3.10 (sketch). This alternative proof gives all the conclusions of Proposi-
tions 3.9 and 3.10 except the integrality of K∗ (which as explained above can be deduced later in our argument).

We adhere to the same notation and setup as in the original proof (Section 4.2). Repeating the argument from
Step 1 there, which does not use [HT00; TW12], we obtain:

K∗ − ω(
1

R
) ≤ M̃R(z) ≤ K∗ for all z ∈ Z , (139)

where ω is a dimensional modulus of continuity. Notice that M̃R is the weighted excess from Definition 8.3.
We then continue the proof verbatim, arguing by contradiction exactly as in the paragraph before Step 2—recall

that we put ũi(x) := ui(zi+Rix), and ũi is a solution of ε̃i-A–C with ε̃i =
1
Ri

. Letting Z(ui) denote the bad centers

of ui, set Z̃i :=
1
Ri

(Z(ui)− zi) ∩B1, the sequence of rescaled (and translated) bad sets.
Construction of a spine. Define the “minimal spine dimension”

d∗ := min
{
d ∈ [0, n] ∩N | lim inf

i→∞
min

L∈Gr(d,n)
sup
y∈Z̃i

dist(y, L) = 0
}
,

where Gr(d, n) denotes the Grassmannian of d-dimensional linear subspaces of Rn.
By definition of d∗ there exists a subsequence of (uil)l≥0 such that for all l we have:

• There is L ∈ Gr(d∗, n) such that supy∈Z̃il
dist(y, L) → 0 as l → ∞.

• There exist d∗ points in Z̃il , labeled y
1
l , y

2
l . . . , y

d∗
l , such that the gram determinant of the d∗ vectors is bounded

by below by the same positive number for all l.

By (139), combined with the monotonicity formula (see (131)) centered at 0 and at yjl , we obtain

ε̃il

ˆ
B2

(x · ∇ũil)2 = o(1) and ε̃il

ˆ
B2

((x− yjl ) · ∇ũil)
2 = o(1) as l → ∞ .

Given any e ∈ L ∩B4, which we can then write as a linear combination of the yjl , we deduce that

ε̃il

ˆ
B2

(e · ∇ũil)2 = o(1) and ε̃il

ˆ
B2

((x− e) · ∇ũil)2 = o(1) as l → ∞. (140)

From now on, M̃r will denote the natural rescaled version of the original density (exactly as in Remark 2.2). By the
above, we can then deduce (for instance, arguing as in [Sim18, pp. 116-118]):

Lemma B.1. Fix x and r > 0 such that B2r(x) ⊂ B1 \ L. Then, the following hold:

• Dilation invariance: M̃r(x) = M̃r(x+ λ(x− e)) + o(1) for any e ∈ L ∩B1 and λ ∈ (0, 1).

• Translation invariance: M̃r(x) = M̃r(x+ e) + o(1) for any e ∈ L ∩B1.

• Constancy in L: M̃r(0) = M̃r(e) + o(1) for any e ∈ L ∩B1.

Convergence to a hyperplane. To conclude, we need to deduce that—up to a subsequence—there are hyperplanes
Hi such that, given r > 0, for i large enough the following hold:

{|u| ≤ 0.9} ∩B1 ⊂ Br(Hi) and M̃r(ui, x) ≥ K∗ − o(1) for every x ∈ Hi ∩B1 . (141)

Notice that (140) implies d∗ < n: if we had d∗ = n, then (140) would imply ε̃il
´
B1

|∇ũil |2 = o(1) as l → ∞, which
readily gives a contradiction with lower density estimates. We distinguish then two cases d∗ = n− 1 and d∗ < n− 1.
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Case d∗ = n− 1. Let s > 0. By the third bullet in Lemma B.1 and M̃s(0) = K∗− o(1), we have M̃s(x) = K∗− o(1)
∀x ∈ L ∩B1. The second part of (141) follows.

To see the first one, let r > 0. It is easy to see (by a cover of L ∩ B1 with disjoint balls of different radii) that
E(ui, Br/2(L) ∩B1) ≥ K∗ − o(1). Assume there were some x ∈ {|ũil | ≤ 0.9} ∩B1/2 \Br(L) for contradiction; then

K∗ ≥ E(ũil , B1) ≥ E(ũil , Br/2(L) ∩B1) + E(ũil , Br/2(x) ∩B1) ≥ K∗ − o(1) + E(ũil , Br/2(x) ∩B1) ,

which (by lower density estimates around x, see Step 1 in the proof of Lemma 4.5) is a contradiction for ε̃il > 0
small enough.
Case d∗ < n − 1. By Theorem 3.4 we have the sheeting assumptions away from L (as the bad set is contained in
a o(1) tube around L). In particular, the sets {ũil = 0} enjoy C2,α estimates. By Arzelà–Ascoli—plus standard
covering and diagonal arguments—we obtain some subsequence (not relabeled) converging (in C2,α

loc (B1 \ L)) to a
smooth minimal surface Σ ⊂ B1 \ L (with ∂Σ ⊂ L ∪ ∂B1). By the argument at the beginning of the section, the
C2,α

loc convergence implies moreover that Σ is stable away from L.
The following is immediate from (4.10):

Lemma B.2. There is R0 such that the following holds: Let δ > 0. Let s, t be such that |s|, |t| ≤ 0.9. Then, given
x ∈ {ũil = s} ∩B1 \Bδ(L), we have—for l large enough—that {ũil = t} ∩BR0ε̃il

(x) ̸= ∅ as well.

In particular (by considering s = 0), we deduce that {ũil = t} also converges both in the C2,α and Hausdorff senses
to Σ in B1 \Bδ(L) (with a rate independent of t).

In particular, Σ must be nonempty: Otherwise, cover B1 ∩ Br(L) with ∼ r−d∗ balls of radius r > 0 small; the
contributions of these balls (using that M is bounded) to the total energy in B1 amount to at most Cr. Moreover,
by Lemma B.2, |u| ≤ 0.9 is contained in this cover (for ε̃il small enough), thus by Lemma 4.3 the energy of ũil decays
exponentially away from these balls. Making r small, the lower bound for the energy density in B1 (in fact, it is
almost K∗) yields a contradiction.

Now, passing (140) to the limit, Σ is conical and invariant in any direction e ∈ L. Thus, in an appropriate frame
Σ = C ×Rd∗ , where C ⊂ Rn−d∗ is a minimal cone which is smooth and stable outside the origin. We have then two
subcases:

Subcase 1: If d∗ ≤ n− 3 (thus 3 ≤ n− d∗ ≤ 7), C (and thus Σ) is a hyperplane by [Sim68].
Subcase 2: If d∗ = n− 2, C ⊂ R2 is a union of half-lines intersecting at the origin. We argue as follows:

Lemma B.3. There exists Uil ⊂ Bn−2
1 , with Voln−2(Uil) ≥ c0 > 0, such that for every x0 ∈ Uil and t with |t| ≤ 0.9

we have: Let Sy0,t := {x : (x, y0) ∈ {u = t}} ∩ B2
1 . Then Sy0,t ̸= ∅, and if x ∈ Sy0,t then {ũil = t} is a smooth

hypersurface around (x, y0). Moreover, |∇ũil | ≥ c
ε̃il

.

Proof. The fact that Sy0,t ̸= ∅ is immediate by applying Lemma B.2 around any point in Σ ∩ [B1 \ B 1
10
(L)] ∩ {y =

y0} ≠ ∅. Now, let Πn−2 denote projection onto {0} × Rn−2, and define Uil = Bn−2
1 \ Πn−2[BR0ε̃il

(Z̃i ∩ B4)], R0

universal to be chosen. By stability and Vitali, BR0ε̃il
(Z̃i∩B4) can be covered with at most Cε̃

−(n−3)
il

balls of radius

ε̃il . Projecting these balls, Voln−2(Πn−2[BR0ε̃il
(Z̃i ∩ B4)]) ≤ Cε̃

−(n−3)
il

ε̃n−2
il

= Cε̃il , which can be made arbitrarily
small as ε̃il → 0.

Fixing R0 (universal) large enough, for any y0 ∈ Uil we can apply Theorem 3.4 (appropriately rescaled) in
BR0ε̃il

(0, y0), thus (14) holds in BR0
2 ε̃il

(0, y0). This gives |∇ũil | ≥ c
ε̃il

as desired. In particular, if |t| ≤ 0.9, then

{ũil = t} is a smooth hypersurface around Sy0,t.

The rest is essentially the classical argument in [SS81, pp. 785-787]; we give a sketch of the proof, divided into
two main lemmas. We have:

Lemma B.4. Let σ > 0. Then, for all ε̃il > 0 small enough, we have

inf
t∈[−0.9,0.9], y0∈Uil

ˆ
Sy0,t∩B2

σ

|II{ũil
=t}| dH1 ≤ σ1/2.

Proof. By Holder’s inequality, Proposition 2.4 and the boundedness of M (on balls of radius σ), we easily see that

ε̃il

ˆ
B2

σ×Bn−2
1

A|∇ũil |2 ≤
(
ε̃il

ˆ
B1

A2|∇ũil |2
)1/2

(
ε̃il

ˆ
B2

σ×Bn−2
1

|∇ũil |2
)1/2

≤ Cσ1/2.
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On the other hand, by Lemma B.3 and the coarea formula, we can estimate

ε̃il

ˆ
B2

σ×Bn−2
1

A|∇ũil |2 ≥
ˆ
{|ũil

|≤0.9}∩(B2
σ×Uil

)

A|∇ũil | =
ˆ 0.9

−0.9

dt

ˆ
{ũil

=t}∩(Uil
×B2

σ)

A dHn−1

≥
ˆ 0.9

−0.9

dt

ˆ
Uil

dy0

ˆ
Sy0,t∩B2

σ

|II{ũil
=t}| dH1 ≥ inf

t∈[−0.9,0.9], y0∈Uil

ˆ
Sy0,t∩B2

σ

|II{ũil
=t}| dH1 .

On the other hand, we have:

Lemma B.5. Assume that Σ were not a hyperplane. Then,
´
Sy0,t∩B2

σ
|II{ũil

=t}| dH1 ≥ c > 0 for every ε̃il > 0 small

enough and t ∈ [−0.9, 0.9], y0 ∈ Uil .

Proof. By assumption, Σ is a union of half-planes intersecting at {0}2×Rn−2 and which form some angle. Moreover,
{ũil = t} is smoothly embedded and it converges in C1

loc to Σ away from {0}2 × Rn−2—thus, in particular, in
(B2

σ \B2
σ/2)×Bn−2

1 .

By elementary considerations, for ε̃il > 0 small enough there are then x1, x2 ∈ B2
σ \B2

σ/2, both belonging to the

same connected component of Sy0,t ∩ B2
σ, and such that |ν{ũil

=t}(x1, y0)− ν{ũil
=t}(x2, y0)| ≥ c; in other words, the

normal vector to {ũil = t} needs to rotate by a definite positive angle along some connected component of Sy0,t.
Let γ ⊂ Sy0,t ∩ B2

σ be a curve segment connecting (x1, y0) and (x2, y0). Since |II{u=t}| bounds any tangential
derivative of the normal vector ν{ũil

=t}, the fundamental theorem of calculus then gives

|ν{ũil
=t}(x1, y0)− ν{ũil

=t}(x2, y0)| =
ˆ
γ

d

dγ
ν{u=t} ≤

ˆ
Sy0,t∩B2

σ

|II{u=t}| .

Combining the two preceding lemmas we deduce that Σ must be a hyperplane, as otherwise fixing σ > 0 small
enough and then taking ε̃il > 0 small enough we get a contradiction.

Conclusion. In either of the cases d∗ = n−1 and d∗ < n−1, we found that Σ is a hyperplane. The first property
in (141) immediately follows, by Lemma B.2. To see the second one, let r > 0. Since Σ \ B2r(L) is connected, by
Lemma 4.9 we find some K ∈ N such that Mr(x) = K + o(1) for any x ∈ Σ \B2r(L). But then necessarily K = K∗:
This follows easily since M1(0) = K∗ + o(1), and (as we already saw) Bs(L) contributes at most Cs to the total
energy, which can be made arbitrarily small.

Given that also Mr(y) = K∗ + o(1) for any y ∈ L, we easily conclude (by combining different values of r) that
Mr(x) = K∗ + o(1) for any x ∈ Σ, which is precisely the second property in (141).

C Proofs of some known or standard results

Lemmas 4.2 and 4.3.

Proof of Lemma 4.2. This can be proved as in [Wan17, Remark 4.7]. Given a vector field X ∈ C1
c (Rn;Rn), multi-

plying (5) by X · ∇u and integrating by parts we getˆ [
|∇u|2

2
+W (u)

]
divX − (∇u)T ·DX · ∇u = 0 ,

or (adding |∇u|2
2 on both sides):ˆ [

divX −
∑

1≤i,j≤n

ui
|∇u|

uj
|∇u|

∂iX
j
]
|∇u|2 =

ˆ [
|∇u|2

2
−W (u)

]
divX .

We choose X = xnη
2en, gettingˆ [

η2 + 2xnηηn − un
|∇u|

un
|∇u|

η2 − 2
∑

1≤i≤n

ui
|∇u|

un
|∇u|

xnηηi

]
|∇u|2 =

ˆ [
|∇u|2

2
−W (u)

]
(η2 + 2xnηηn) .

The first and third terms add up to |∇e′nu|2η2. Moreover, the terms with i < n in the sum can be estimated by

2
∑
i<n

uiunxnηηi ≤
1

2

∑
i<n

[u2i η
2 + 4u2nx

2
nη

2
i ] ≤

1

2
|∇e′nu|2η2 + 2x2n|∇u|2|∇η|2 .
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Bringing all remaining terms to the right hand side and using |∇u|2
2 ≤W (u) by Lemma 2.1, we obtainˆ

|∇e′nu|2η2 ≤ 4

ˆ
x2n|∇u|2|∇η|2 + C

ˆ
W (u)|xnηηn|

as desired.

Proof of Lemma 4.3. Using Lemma 2.1, we can compute

∆(1− u2) = −2[|∇u|2 + uW ′(u)] ≥ −2[2W (u) + uW ′(u)] = −2(1− u2)[
1

4
(1− u2)− u2].

For |u| ≥ 0.85 we find that (1− u2) is a strong subsolution, i.e.

∆(1− u2) ≥ c(1− u2)

(we can actually put c = 1). By the maximum principle (using an exponential for comparison), this shows that

sup
Br(x)

1− u2 ≤ e−c0r in any B2r(x) ⊂ {|u| ≥ 0.85} ,

which immediately gives the bound for W (u); Lemma 2.1 then bounds the gradient term as well.

Lemma 7.9. We first need:

Lemma C.1 (W 1,1 estimate). Assume that v ∈ C2(B′
2R), B

′
2R ⊂ Rn−1. Set f := div(A∇v), where A ∈ C1(B′

2R)
and |A(x′)− 1| ≤ 1/2. Then, there exists C depending only on n such that

R

 
B′

R

|∇v| ≤ C

(
R2

 
B′

2R

|f |+
 
B′

2R

|v|

)
.

Proof of Lemma C.1. Since the estimate is scaling invariant we can (and do) assume that R = 1. Consider w which
solves {

div(Aw) = f in B′
2

w = 0 on ∂B′
2 .

Since 1/2 ≤ A(x′) ≤ 3/2 is bounded and uniformly elliptic, [LSW63, Theorem 5.1] shows that

∥w∥L1(B2) + ∥∇w∥L1(B2) ≤ C∥f∥L1(B2) .

Moreover, v −w satisfies div(A∇(v −w)) = 0, therefore (applying Cauchy–Schwarz, the Caccioppoli inequality, and
De Giorgi–Nash–Moser estimates)

∥∇(v − w)∥L1(B′
1)

≤ C∥∇(v − w)∥L2(B′
1)

≤ C∥v − w∥L2(B′
3/2

) ≤ C∥v − w∥L1(B′
2)
.

Bounding ∥v−w∥L1(B′
1)

≤ ∥v∥L1(B′
1)
+ ∥w∥L1(B′

1)
≤ ∥v∥L1(B′

1)
+ ∥f∥L1(B′

2)
, and adding up the gradient estimates for

w and v − w above, we conclude the result.

Proof of Lemma 7.9. We argue by compactness/contradiction. Suppose that the statement is not true; then, there
are sequences vk, Ak satisfying the previous hypotheses for δk ↓ 0 but such that the conclusion fails for a certain
λ > 0.
Applying Lemma C.1 rescaled to the ball of radius ρ we see that ρ

ffl
B′

ρ
|∇vk| ≤ ρd+1/2, for 1 ≤ ρ ≤ 1

2δk
. We can then

apply Rellich–Kondrachov, deducing then that a subsequence (not relabeled) of the vk converges strongly in L1
loc,

and weakly in W 1,1
loc , to some v∞, and with growth bound

ffl
Bρ

|v∞| dx ≤ ρd+1/2.

Now, for any φ ∈ C2
c (Rn−1), the previous together with |Ak(x

′)− 1| ≤ δk → 0 give thatˆ
v∞∆φ = lim

k

ˆ
vk∆φ = lim

k

ˆ
∇vk∇φ = lim

k

ˆ
Ak∇vk∇φ = lim

k

ˆ
div(Ak∇vk)φ = 0 ,

thus v∞ is smooth and harmonic by the Weyl Lemma.
By the standard Liouville-type theorem for harmonic functions in Rn−1 with polynomial growth, v∞ must be a
harmonic polynomial pd of degree ≤ d. Moreover, from the growth bound with ρ = 1 we see that ∥pd∥L1(B′

1)
≤ |B′

1|.
Since vk → v∞ = pd in L1(B′

1), this gives a contradiction for k large enough.
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D Asymptotic behaviour of 1D periodic Allen–Cahn solutions

Let α ∈ [0, 1] and

P (α,R) := inf

{
E
(
v, [0,

1 + α

4

√
2 logR]

)
: v ∈ C1

c ([0,
1 + α

4

√
2 logR]) and v(0) = 0

}
.

Proposition D.1. There are universal constants C > 0 and R0 > 1 such that P (α,R) ≥ 1
2 − CR−(1+α) for every

R ≥ R0.

Considering

P (R) := inf
{
E (v, [0, logR]) : v ∈ C1

c ([0, logR]) and v(0) = 0
}
, (142)

so that P (α,R) = P (R
1+α
4

√
2), it suffices to show:

Proposition D.2. There are universal constants C > 0 and R0 > 1 such that P (R) ≥ 1
2 − CR−2

√
2 for every

R ≥ R0.

This should be read as: Any function with v(0) = 0 needs to accumulate almost as much A–C energy as the 1D
solution ϕ in long intervals. Indeed, we have:

Lemma D.3. P (R) ≤ 1
2 .

Proof. The monotone 1D solution ϕ is a competitor in (142), and it has E(ϕ, [0,∞)) = 1
2 , since E(ϕ, (−∞,∞)) = 1

and ϕ is antisymmetric.

We argue in several steps.

Lemma D.4. There is R0 > 1 such that, if R > R0, the following hold:
The infimum in (142) is attained by an A–C solution v ∈ C1

c ([0, logR]), satisfying v(0) = 0, v′(0) > 0, and
v′(logR) = 0. Moreover, v is the restriction of a (not renamed) global, periodic A–C solution v : R → (−1, 1) with
quarter-period T

4 = logR. Furthermore, v is nondecreasing in [0, T4 ].

Proof. It is elementary to see that there is an v which attains the infimum. Since v solves a minimisation problem,
with zero Dirichlet condition at 0 and no constraint at logR, we get that v(0) = 0 and v′(logR) = 0. Moreover,

v′(0) ̸= 0 (as otherwise v ≡ 0, but then P (R) =
´ logR

0
W (0) = 1

4 logR, which is a contradiction for R large enough
with Lemma D.3), so that v′(0) > 0 up to perhaps considering −v instead.

Since v is a minimizer of the A–C energy in [0, logR] among all functions with v(0) = 0 and v′(0) > 0, and since
the potential W is decreasing in [0, 1] and W (1) = 0, we obtain that:

• v is nondecreasing in [0, logR] (as otherwise the smallest nondecreasing function above v would have less
energy).

• v ≤ 1 (as otherwise the function min(v, 1) would have less energy).

Moreover, a symmetrisation by hand alternating even and odd reflections (using that v′(logR) = 0) immediately
shows that v can be extended periodically, with quarter period T

4 = logR for some k ∈ N.

Lemma D.5. In [0, T4 ], v
′ =

√
2W (v)− 2λ for some λ ∈ (0, 14 ), so that v coincides with the solution to{

u′′λ =W ′(uλ)

uλ(0) = 0 and u′λ(0) =
√

1
2 − 2λ.

(143)

Moreover, v has amplitude Cλ :=
√
1− 2

√
λ, attained at T

4 .

Proof. Since

d

dt

(
v′2 − 2W (v)

)
= 2v′v′′ − 2v′W ′(v) = 0

and v′ > 0 in [0, T4 ), v
′ =

√
2W (u)− 2λ for some λ ∈ R in this interval. Since |v′| ≤

√
2W (v) by Lemma 2.1, λ > 0.

If λ = 0 we would get v = ϕ, but ϕ′ never vanishes; since |W | ≤ 1
4 we deduce that λ ∈ (0, 1/4). Moreover, since v

attains its maximum max v at T
4 and v′(T4 ) = 0, we see that 0 =

√
2W (max v)− 2λ, which since W (v) = 1

4 (1− v2)2

shows that max v = v(T/4) =
√
1−

√
4λ.
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We will also need the following

Lemma D.6. We have

P (R) ≥ 1

2
− 1

σ0

ˆ 1

Cλ

√
2W (s) ds.

Proof. Recall that Tλ

4 = logR. By a2 + b2 ≥ 2ab and coarea, we can bound

P (R) =
1

σ0

ˆ Tλ
4

0

[
1

2
|∇uλ|2 +W (uλ)

]
≥ 1

σ0

ˆ Tλ
4

0

|∇uλ|
√
2W (uλ) =

1

σ0

ˆ Cλ

0

√
2W (s) ds ,

which since σ0 =
´ 1

−1

√
2W (s) ds = 2

´ 1

0

√
2W (s) ds gives

P (R) ≥ 1

2
− 1

σ0

ˆ 1

Cλ

√
2W (s) ds .

We can now prove Proposition D.2.

Proof of Proposition D.2. Let δ = δλ be such that Cλ = uλ(Tλ/4) = 1− δ. We want to see that δ is small.
Recall that u′λ =

√
2W (uλ)− λ. Dividing by

√
2W (uλ)− λ, integrating from 0 to Tλ

4 , and setting s = u(r) gives

Tλ
4

=

ˆ Tλ
4

0

u′(r)√
2W (u(r))− 2λ

dr =

ˆ 1−δ

0

ds√
2W (s)− 2W (1− δ)

, (144)

where we used that (since u′λ(Tλ/4) = 0) we have 2λ = 2W (uλ(Tλ/4)) = 2W (1− δ).
Changing variables s −→ 1− s, bounding 2− s ≥ 2− δ, and changing variables s −→ δs, we can estimate

T

4
=

1√
2

ˆ 1−δ

0

ds√
W (s)−W (1− δ)

=
2√
2

ˆ 1

δ

ds√
(2− s)2s2 − (2− δ)2δ2

≤
√
2

2− δ

ˆ 1

δ

ds√
s2 − δ2

=

√
2

2− δ

ˆ 1/δ

1

ds√
s2 − 1

.

Therefore, since 1√
s2−1

= 1
s +O( 1

s2 ) for s ≥ 2, we conclude that

T

4
≤

√
2

2− δ

ˆ 1/δ

2

ds

s
+O(1) ≤ 1√

2
log

1

δ
+O(1) .

Since T/4 = logR, exponentiating on both sides we deduce that δ ≤ CR−
√
2.

Now that we have bounded δ, since

P (R) ≥ 1

2
−
ˆ 1

Cλ

√
2W (s) ds,

it remains to estimate
´ 1

Cλ

√
2W (s) ds. From

√
2W (s) = 1√

2
(1− s2) ≤ C(1− s) for s ∈ [0, 1], we deduce that

ˆ 1

Cλ

√
2W (s) ds ≤ C

ˆ 1

Cλ

(1− s) ds =
C

2
(1− Cλ)

2 =
C

2
δ2 ≤ CR−2

√
2,

and the proposition follows.
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