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Abstract. We discuss a relationship between the dynamical properties of a

maximal diagonalizable group A on certain arithmetic quotients and arithmetic

properties of the lattice. In particular, we consider the semigroup of all integer
quaternions under multiplication. For this semigroup we use measure rigidity

theorems to prove that the set of elements that are not divisible by a given

reduced quaternion is very small: We show that any quaternion that has a
sufficiently divisible norm is also divisible by the given quaternion. Restricting

to the quaternions that have norm equal to products of powers of primes from
a given list (containing at least two) we show that the set of exceptions has

subexponential growth.

1. Introduction

In this paper we discuss a relationship between the structure of orbits under
a maximal diagonalizable group A on certain arithmetic quotients X = Γ\G and
arithmetic properties of the lattice Γ.

1.1. Quaternion algebras. We start with the following special case that moti-
vated this work. Let D = Q[i, j, k] be the Hamiltonian quaternion algebra over Q.
Let S be a finite set of primes over which D splits, i.e. D ⊗ Qp ∼= Mat2×2(Qp) for
p ∈ S. (Equivalently, S consists of finitely many odd primes.) Let O = Z[i, j, k] ⊂
D. Recall also that there exists a canonical norm function N : D → Q. With this
we can define the two multiplicative semigroups

ΛO = O \ {0}
ΛO,S = {a ∈ O : N(a) is a product of powers of primes in S}

To state our theorem in this case we need a few notions. We say a ∈ ΛO divides
γ ∈ ΛO if there exists α, β ∈ ΛO with γ = αaβ. We say a ∈ ΛO is reduced if 1

pa /∈ O
for all primes p.

Theorem 1.1. Let D be the Hamiltonian quaternion algebra and let O = Z[i, j, k].
Let a ∈ ΛO be a reduced element of odd norm. Then there exists some odd M ≥
N(a) such that any γ ∈ ΛO with M | N(γ) is divisible by a.

We note that this stands in stark contrast with the case of the ring of integers
in a quadratic field extension where the norm function does not satisfy such a
property. E.g. if a is a prime in the ring of integers of a quadratic field extension
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such that N(a) = aā = p is a prime and a−1ā is not an integer, then a does not
divide any power of ā.

In the second theorem we will restrict our attention to ΛO,S for a finite set
of primes S as above. Notice that the above notion of divisibility automatically
restricts to the divisibility within ΛO,S , i.e. if γ = αaβ with a, γ ∈ ΛO,S then
also α, β ∈ ΛO,S . In this context we will use a few more definitions to express
our theorem (where we will use a more geometrical language motivated by the
associated buildings). Given some a ∈ ΛO,S we define the width of a as the minimal
exponent width(a) of the primes in S in the factorization of N(a). The condition
in the theorem below that width(γ) is sufficiently big is a geometric analogue of the
condition that the norm of γ is divisible by some product M of powers of primes
in S. Finally we define diam(a), the diameter of a ∈ ΛO,S , as the sum of the
exponents in the factorization of N(a).

Theorem 1.2. Let D be the Hamiltonian quaternion algebra and O = Z[i, j, k].
Let S be a finite set of nonarchimedean places over which D splits, and assume
|S| ≥ 2. Let a ∈ ΛO,S be a reduced element. Then for every ε > 0 there exists some
w = w(a, ε) so that

log
∣∣{γ ∈ ΛO,S : diam(γ) ≤ R,width(γ) ≥ w, a does not divide γ

}∣∣ < εR

for all sufficiently large R.

Let us note that if S = {p} contains only one prime, then the above claim cannot
hold. In fact, in this case the group obtained from ΛO,{p} modulo Q× contains a
free subgroup of finite index and once a has sufficient width the growth rate of all
elements that are not divisible by a is exponential.

In the case |S| ≥ 2 considered above the proof will rely on measure rigidity
for the action of a diagonalizable subgroup on a quotient of

∏
p∈S PGL2(Qp) by a

lattice derived from ΛO,S . In Theorem 1.1 a measure rigidity theorem on an adelic
quotient is used. The arguments behind the above theorem apply more generally,
even to lattices in groups that are non-compact over R. However, for this we have
to define more general notions of divisibility.

1.2. General definitions. Let G be an algebraic semisimple group defined over Q
of Q-rank zero, let S be a finite set of places of Q (containing ∞ when G(R) is not
compact), let G =

∏
σ∈S G(Qσ) be the QS -points of G (where QS =

∏
σ∈S Qσ),

let A =
∏
σ∈S Aσ < G be the product of the Qσ-points of some maximal Qσ-split

subtori for σ ∈ S, and let Γ be an arithmetic lattice in G with respect to the given
Q-structure. We will assume that G is split over Qσ for all σ ∈ S. The S-rank
of G is the sum of the Qσ-ranks of G(Qσ) (and equivalently of Aσ) for σ ∈ S and
equals, by our assumption, |S| times the absolute rank of G.

We shall now define several notions of divisibility for elements of Γ and show how
various results and conjectures on the structure of A-orbits in Γ\G when the S-rank
is at least 2 imply that for a given element δ ∈ Γ “most” elements of Γ are divisible
by δ. The above notions of divisibility in quaternion algebras and Theorem 1.2 will
be special cases of the following discussion.

To define the notion of divisibility we need to discuss when

(1) γ = αβ

with α, β, γ ∈ Γ will be called a factorization. For this we would like to have a notion
of complexity of elements of Γ and (1) is a factorization when the complexity of
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γ is (roughly) the sum of the complexities of α and β. This complexity will be
defined via a pseudo metric as follows. Let Kσ < G(Qσ) be a maximal compact
subgroup for each σ ∈ S and define K =

∏
Kσ < G. Then we have a generalized

Cartan decomposition G = KAK of G, this relies on our assumption that G is
split over Qσ, see [19]. For every root χφ : Aσ → Q×σ we define the logarithmic root
φ : Aσ → R given by φ(a) = log |χφ(a)|σ. For every σ ∈ S let Ψσ be the set of
logarithmic roots.

Definition 1.3. Define for g, h ∈ G their KAK-distance

d1(g, h) = d1(h−1g, e) =
∑
σ∈S

∑
φ∈Ψσ

|φ(aσ)|+.

Here e denotes the identity element, and a = (aσ)σ∈S denotes the diagonal element
in the Cartan decomposition h−1g = k1ak2 and

|x|+ =

{
x x ≥ 0,
0 x < 0.

We will show later in Section 2 that d1 is a pseudo metric on G. It is clear that
d1(·, ·) is left-invariant and symmetric so that d1(h, e) = d1(h−1, e) and

d1(αβ, e) ≤ d1(αβ, α) + d1(α, e) = d1(α, e) + d1(β, e).

Note that d1(k, e) = 0 for k ∈ K and d1 induces a metric on G/K which we shall
also denote by d1.

Definition 1.4. Fix κ ≥ 0. Given α, β, γ ∈ Γ with (1) we say that this is a κ-
factorization of γ if d1(γ, e) ≥ d1(α, e) + d1(β, e) − κ. Furthermore, we say that
α ∈ Γ κ-divides γ ∈ Γ if there exist β1, β2 ∈ Γ such that

γ = β1αβ2

and

(2) d1(γ, e) ≥ d1(γ, β1α) + d1(β1α, β1) + d1(β1, e)− κ =

d1(β2, e) + d1(α, e) + d1(β1, e)− κ
If κ = 0 we say simply that α divides γ.

Note that in the definition the last equality follows from the left invariance of
d1(·, ·). Equivalently we might say that γ = β1αβ2 is a κ-decomposition if the
discrete path from K to β1K to β1αK and finally to γK is almost geodesic in
G/K with respect to d1, i.e., the sum of the distances of these 3 steps is at most
d1(K, γK) + κ. If G(R) is compact we will take κ = 0, otherwise we shall always
assume κ > 0.

Definition 1.5. For an element a ∈ A we define its width, respectively diameter
to be1

width(a) = min{|φ(aσ)| :σ ∈ S, φ ∈ Ψσ},

diam(a) =
∑
σ∈S

∑
φ∈Ψσ

|φ(aσ)|

1We note that the definition of width and diameter as defined here but in the context of
Section 1.1 is bounded from above and below by multiplies of width and diameter as defined in

Section 1.1.
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For a general element g ∈ G we shall define its width, respectively diameter to be

width(g) = width(a)

diam(g) = diam(a) = d1(g, e)

where g = k1ak2 is the Cartan decomposition of g. We define the R-ball

BΓ
R = {γ ∈ Γ : diam(γ) < R}.

Considering the product of symmetric spaces and affine Bruhat-Tits buildings
associated with G we may identify the chosen Cartan subgroup of G with the prod-
uct of flats and apartments invariant under it and on which it acts by translations.
The geometric meaning of the width is the minimal width of the convex hull of the
origin and the point a, where a subset of A is convex if it coincides with the inter-
section of all the half spaces bounded by the singular hyperplanes which contain
the subset.

With the above notion of divisibility our main result Theorem 1.10 implies the
following results for division algebras that split over R.

Theorem 1.6. Let D be a division algebra of prime degree over a number field
K. Let S be a finite set of places of Q containing the infinite ones. We define
the group G by applying restriction of scalars to the quotient of D× by its center,
assume that G splits at all the places of S and that the S-rank of G is at least 2.

Let Γ = G
(
Z
[

1
p : p ∈ S \ {∞}

])
. Fix some α ∈ Γ then for every κ > 0 and ε > 0

there exists some width w = w(α, κ, ε) so that

log
∣∣{γ ∈ Γ : γ is not κ-divisible by α, diam(γ) ≤ R, width(γ) ≥ w}

∣∣ < εR

for all sufficiently large R.

Let us explicate the meaning of the lattice in the above theorem in the case
where K = Q. Choose some order OD < D in the division algebra D. By choosing
the representation of G correctly with respect to OD we can achieve that G(Z) =
O×D/{±1} and similarly

(3) Γ = G
(
Z
[

1
p : p ∈ S \ {∞}

])
=
(
OD
[

1
p : p ∈ S \ {∞}

])×
/Z
[

1
p : p ∈ S \ {∞}

]×
.

1.3. Rigidity properties of higher rank Cartan actions and divisibility.
Furstenberg [11] showed in 1967 that a closed ×2,×3-invariant subset of T = R/Z
must either be finite (consisting of rational points) or the whole space T. Fursten-
berg also asked about ergodic theoretic analogues of this topological theorem, which
was considered by several authors. An important insight towards this question is
due to Rudolph [18], who showed that a ×2,×3-invariant and ergodic probability
measure on T that has positive entropy for either of the two transformations must
be Lebesgue measure. Since then many analogues and generalizations have been
considered, we refer to [7] for a more detailed survey of the results and to [4] for
a survey of applications of these results. We would like to highlight two particu-
lar instances of generalizations to homogeneous spaces of the above phenomenon.
Unfortunately, in both of these our understanding is even less complete than for
the original setting given by Furstenberg; we have neither a topological theorem
nor a complete classification of the invariant measures. The following theorem is
contained in the work [13] of E. Lindenstrauss on the Quantum Unique Ergodicity
Conjecture by Rudnick and Sarnak.
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Theorem 1.7. Let Gi = SL2(Ki) where Ki is either R or Qp for i = 1, 2. Let
Γ < G = G1 × G2 be an irreducible lattice and set X = G/Γ. Furthermore, let
Ai < Gi be the maximal Ki-split torus and let A = A1 × A2. Suppose µ is an A-
invariant and ergodic probability measure on X for which some a ∈ A has positive
entropy hµ(a) > 0. Then µ is the Haar measure on X.

The same methods together with the methods of the work of J. Bourgain and
E. Lindenstrauss [3] gives also an adelic unique ergodicity theorem, see [13, 14].

Theorem 1.8. Let X = PGL2(Q)\PGL2(AQ) and let A be the full adelic diago-
nal subgroup of PGL2(AQ). Then the A-action has only one invariant probability
measure, namely the normalized Haar measure on X.

For the proof of Theorem 1.1 we will need a generalization of the above to
quotients defined by quaternion algebras, see Section 5.3.

The third generalization of the above phenomenon that we want to state is con-
tained in the work [6] of the first named author with A. Katok and E. Lindenstrauss
on the Littlewood conjecture in Diophantine approximation.

Theorem 1.9. Let G = SLp(R) for a prime2 p ≥ 3 and let Γ < G be a lattice so
that no diagonalizable element of Γ other than the identity has repeated eigenvalues.
Let X = Γ\G. Furthermore, let A be the diagonal subgroup in SLp(R). Suppose µ
is an A-invariant and ergodic probability measure on X for which some a ∈ A has
positive entropy hµ(a) > 0. Then µ is the Haar measure on X.

Similar to Theorem 1.7 the above theorem also generalizes to products of real
and p-adic groups, we refer to the discussion in Section 5.1 and [9].

We will prove that the above described rigidity properties imply the following
theorem for the notion of divisibility defined in Definition 1.4.

Theorem 1.10. Let G be an algebraic group defined over Q and let S be a finite
set of places of Q containing ∞ if G(R) is non-compact. Assume that G is split
over Qσ for all σ ∈ S. Let G =

∏
σ∈S G(Qσ), let A =

∏
σ∈S Ap be the product of

the Qσ-points of maximal Qσ-diagonalizable subgroups for all σ ∈ S, and let Γ be
an S-arithmetic lattice in G with respect to the Q-structure G. Suppose X = Γ\G
is compact and that the Haar measure of X is the only A-invariant and ergodic
probability measure on X with positive entropy for some element of A. Let κ > 0
if ∞ ∈ S respectively κ = 0 if ∞ 6∈ S. Then for every α ∈ Γ and ε > 0 there exists
some w = w(α, κ, ε) > 0 such that

(4) log
∣∣{γ ∈ Γ : γ is not κ-divisible by α, diam(γ) ≤ R, width(γ) ≥ w}

∣∣ < εR

for all sufficiently large R > 0.

As is conjectured by Furstenberg and Margulis [15] for the dynamical systems
considered above the closed A-invariant subsets should also be easy to describe:
Just like for ×2,×3 a closed invariant subset of X should be either a finite union of
periodic orbits or should be all of X. If this were known, the relationship between
dynamical properties and divisibility properties would give a better result.

2A similar theorem also holds for G = SLn(R) for an integer n ≥ 3, but in this more general
case other algebraic orbits of intermediate groups have to be allowed. We restrict ourselves to the

prime case, as in the general case our application to divisibility properties gives weaker results.
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Theorem 1.11. Let G be an algebraic group defined over Q and let S be a finite
set of places of Q containing ∞ if G(R) is non-compact. Assume that G is split
over Qσ for all σ ∈ S. Let G =

∏
σ∈S G(Qσ), let A =

∏
σ∈S Ap be the product of

the Qσ-points of maximal Qσ-diagonalizable subgroups for all σ ∈ S, and let Γ be
an S-arithmetic lattice in G with respect to the Q-structure G. Suppose X = Γ\G
is compact and that X and finite unions of compact periodic A-orbits are the only
A-invariant and closed subset of X. Let κ > 0 if ∞ ∈ S respectively κ = 0 if
∞ 6∈ S. Then for every α ∈ Γ there exists some c > 0 and w > 0 such that

(5)
∣∣{γ ∈ Γ : γ is not κ-divisible by α, diam(γ) ≤ R,width(γ) ≥ w}

∣∣ < cRq

where q is the S-rank of G.

In the proofs of the above theorems we will consider pieces of A-orbits in X =
Γ\G associated to lattice elements in Γ that are not divisible by α. The assumption
that the lattice elements are not divisible will translate to the statement that these
pieces do not visit a particular open subset Oα of X associated to α. In either case
we will derive a contradiction if there are indeed more lattice elements than allowed
in Theorem 1.10–1.11. We will show that exponential growth of the set in (4) would
give rise to an invariant probability measure on X with positive entropy, similarly
we will derive (5) from the assumption that the closed A-invariant set that consists
of all A-orbits disjoint from Oα must be a finite union of compact A-orbits.

1.4. Remark. Let us remark on the relation between the current paper and [10]
which concerns the distribution of cocompact A-orbits on Γ\G. The general phi-
losophy of the latter is similar to that of the present paper: Using the main result
of [6] it is shown that most A-orbits, respectively, elements of Γ satisfy certain
conjectures. However, here we consider, for the notion of divisibility, only pieces of
compact A-orbits (and we have no information on how large these pieces are when
compared with the full A-orbit). As a result the two papers use different orderings
of compact A-orbits. Here we use the geometric notion of diameter for elements
of Γ whereas in [10] an arithmetic notion of discriminant is introduced to order
compact A-orbits.

1.5. Acknowledgement. The authors thank Elon Lindenstrauss for discussions
concerning this project. We are also grateful to the Israel Institute for Advanced
Studies at the Hebrew University and the MSRI for the support during the special
semesters in Fall 2014 respectively Spring 2015.

2. Preliminaries

Let G be an algebraic semisimple group defined over Q, let S be a finite set
of places of Q (containing ∞ when G(R) is not compact), assume that G is split
over Qσ for every σ ∈ S, and let G =

∏
σ∈S G(Qσ) be the QS -points of G,

where QS =
∏
σ∈S Qσ. To show that the function d1 defined above is indeed a

quasi metric on G let us consider each factor Gσ = G(Qσ), σ ∈ S separately.

2.1. Cartan decomposition. Recall that Gσ admits a Cartan decomposition
Gσ = KσA

+
σKσ (see [19] and [16, Thm. 2.2.1(2)]), where Kσ is a maximal compact

subgroup of Gσ and A+
σ is a positive Weyl chamber inside the group of Qσ-points

of a maximal Qσ-split torus of Gσ. We distinguish between the cases where σ is
archimedean or not.



DIVISIBILITY PROPERTIES OF HIGHER RANK LATTICES 7

2.2. The quasi-metric for a Lie group. Suppose σ is archimedean. In this case
we can take Kσ to be a maximal compact subgroup of Gσ such that the adjoint
action of Kσ is orthogonal and the adjoint action of Aσ is self-adjoint with respect
to the innner product on the Lie algebra Lσ of Gσ derived by the Cartan killing
form and the Cartan involution, see [12, Sect. VI.2]. We note that if we take a wedge
power ∧nLσ of the Lie algebra of Gσ, then the inner product on Lσ induces an inner
product on ∧nLσ such that the induced actions of Kσ and Aσ are again orthogonal
respectively self-adjoint. Let us write ρ : Gσ → GL(∧nLσ) for the induced action.
Therefore, with respect to this inner product the action of any element of Kσ has
operator norm one and the common eigenspaces of the action of Aσ (the weight
spaces) are orthogonal with respect to each other. Observe that the orthogonal
decomposition of the Lie algebra into root spaces Lσ = Lσ,0 ⊕

⊕
φ∈Ψσ

Lσ,φ is
preserved by the adjoint action of Aσ. The restriction of aσ to Ls,σ is multiplication
by χφ(aσ). Moreover for aσ ∈ A+

σ for each positive root φ ∈ Ψ+
σ , |χφ(aσ)| ≥ 1 while

for all other roots the absolute value is at most 1. It follows that the operator norm
of the action of aσ on the wedge product ∧nLσ is ‖ρ(aσ)‖ =

∏
φ∈Ψ+

σ
|χφ(aσ)| where

n is the number of positive roots. Hence for gσ ∈ Gσ with gσ = k1ak2, k1, k2 ∈ Kσ,
a ∈ A+

σ we have ‖ρ(gσ)‖ = ‖ρ(a)‖ = exp(d1(gσ, e)). For any gσ, hσ ∈ Gσ we have
gσ = k1ak2, hσ = k3bk4 where a, b ∈ A+

σ , k1, k2, k3, k4 ∈ Kσ.

exp(d1(gσhσ, e)) = ‖ρ(gσhσ)‖ ≤ ‖ρ(gσ)‖‖ρ(hσ)‖ =

‖ρ(a)‖‖ρ(b)‖ = exp(d1(gσ, e)) exp(d1(hσ, e))

It follows from this that d1(gσhσ, e) ≤ d1(gσ, e) + d1(hσ, e) ≤ d1(gσhσ, gσ) +
d1(gσ, e). I.e., the triangle inequality holds.

2.3. The quasi-metric for a p-adic Lie group. Let σ be now a non-archimedean
place. Associated with Gσ there is an affine Bruhat-Tits building ∆σ. One has a
Cartan decomposition Gσ = KσA

+
σKσ so that there is an apartment Σ0 ⊂ ∆σ on

which Aσ acts by translations and a vertex O ∈ Σ0 fixed by Kσ. We may define
a metric on the vertices of ∆σ as follows: Given any two vertices P,Q ∈ ∆σ fix
an apartment Σ containing both. The apartment may be viewed as a Euclidean
space. Each root φ ∈ Ψσ may be viewed as a linear functional on Σ and the
collection of hyperplanes Lφ,k = {x ∈ Σ :φ(x) = k}, φ ∈ Ψσ, k ∈ Z partitions Σ
into its chambers. Consider the number of hyperplanes Lφk separating Q from P .

This defines a metric d̃(P,Q) on the vertices of ∆σ. Notice that this is exactly the
minimal length of a gallery of chambers from the vertex P to the vertex Q. Observe
also that this metric is invariant under the action of Gσ on ∆σ. To conclude that
d1 is indeed a quasi metric on Gσ observe that d1(g, e) = d̃(gO,O).

2.4. Diagonal subgroup. We note that we do not wish to switch from the whole
group Aσ of Qσ-points of the maximal torus to a finite index subgroup (as e.g. the
connected component for σ = ∞). Instead we consider the full diagaonlizable
subgroup, and define the positive Weyl chamber A+

σ by requiring |χφ(a)| ≥ 1 for all
positive roots φ ∈ Ψσ and all a ∈ A+

σ . This does not affect the algebraic statements
we made above but gives us slightly larger orbits for the action considered below.

We write Af =
∏
σ∈S\{∞}Aσ for the product of the diagonal subgroups at all

finite places and Kf =
∏
σ∈S\∞Kσ for the compact subgroup in the product Gf =∏

σ∈S\{∞}Gp of all non-Archimedean factors. Note that A∞ = A◦∞(A∞ ∩ K∞)

and that Af/(Af ∩Kf ) is isomorphic to Z|S\{∞}| rankG.



8 MANFRED EINSIEDLER AND SHAHAR MOZES

Recall that Ψσ denotes the set of logarithmic roots φ(a) = log |χφ(a)| on Aσ. We
also set ΨS =

⊔
σ∈S Ψσ, where we consider each φ ∈ Ψσ ⊂ ΨS extended trivially

from the Aσ (on which it was originally defined) to all of A.

2.5. The left-invariant metric on G and the metric on X. For σ =∞ we will
use a left-invariant metric d(·, ·) that is locally bi-Lipshitz to a Riemannian metric
on the connected component G◦∞ of G. We note that d1(g, e) ≤ cd(g, e) for some
absolute constant and for all g close to the identity.

For σ = p we will use any left-invariant metric on Gp with the property that Kp

is the unit ball of the identity element. Hence d1(g, e) = 0 for all g with d(g, e) ≤ 1.
On G =

∏
σ∈S Gσ we then use the product metric, which is again left-invariant

and denoted by d(·, ·). If now Γ < G is arithmetic lattice in G with respect to the
given Q-structure, then the above metric also induces a metric on X = Γ\G.

3. Divisibility and dynamics of A

In this section we provide the relationship between κ-divisibility and the behavior
of pieces of A-orbits attached to elements of Γ. We will use this together with
(measure) rigidity to show that there are few elements γ that are not κ-divisible by
a fixed α ∈ Γ.

We start by assigning to a given γ ∈ Γ a piece of an A-orbit.

3.1. Divisibility and open subsets of Γ\G. Let γ ∈ Γ be arbitrary and let
γ = kγaγk

′
γ be its Cartan decomposition (see [19]) in G = G(QS). We may assume

that a = aγ ∈ A belongs to the positive Weyl chamber, which shall be denoted by
A+. (I.e. a = (aσ)σ∈S and each aσ ∈ Aσ belongs to the positive Weyl chamber of
Aσ with respect to some fixed choice of positive roots.)

Using A+ we define a partial order on A by letting a1 ≤ a2 if a2a
−1
1 ∈ A+, so

that A+ = {a ∈ A : a ≥ e}. We shall call the set Sγ = {a ∈ A : e ≤ a ≤ aγ}
the shape of γ. Note that the width and diameter of γ as in Definition 1.5 are
determined by its shape Sγ . We shall attach to γ the subset ΓkγSγ of the A-orbit
ΓkγA.

We describe now how divisibility of γ by α can be interpreted in terms of the
piece of the A-orbit attached to γ and an open subset Oα.

Lemma 3.1. Let κ ≥ 0 with κ > 0 if G(R) is non-compact, and let α = kαaαk
′
α

be the Cartan decomposition of α. Then there is an open neighbourhood Oα of Γkα
with the following property. For any γ ∈ Γ let kγaγk

′
γ be the Cartan decomposition

of γ and define

S−αγ = {a ∈ A : e ≤ a ≤ aγa−1
α }

If ΓkγS−αγ intersects Oα then α κ-divides γ.

Proof. Note that kα = α(k′α)−1a−1
α . Let ε > 0 (chosen as a function of κ below).

Define Õα = U1 ∩ (αU2a
−1
α ) to be the intersection of a ε-neighbourhood U1 of kα

intersected with the image αU2a
−1
α of an ε-neighbourhood U2 of (k′α)−1. If there

are no real factors of G, we let ε = 1 and U1 = U2 = K.
In any case, Õα is again a neighborhood of kα. Then let Oα = ΓÕα be the

projection in Γ\G. Suppose that for some γ = kγaγk
′
γ ∈ Γ we have

Γkγa1 ∈ ΓkγS−αγ ∩Oα for some a1 ∈ S−αγ .
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Then there exist u1 ∈ Õα ⊂ U1 and β1 ∈ Γ so that:

kγa1 = β1u1.

Furthermore, there exists u2 ∈ U2 with

u1aα = αu2.

We define β2 = (β1α)−1γ and a2 = (a1aα)−1aγ . Then

u2a2 = α−1u1a
−1
1 aγ = α−1β−1

1 kγaγ = α−1β−1
1 γ(k′γ)−1 = β2(k′γ)−1.

Observe that by the definition of S−αγ we have that a2 ∈ A+. Therefore the decom-
position

γ = kγaγk
′
γ = (kγa1u

−1
1 )(u1aαu

−1
2 )(u2a2k

′
γ) = β1αβ2

satisfies

d1(γ, e) = d1(aγ , e)

d1(β1, e) = d1(a1u
−1
1 , e) = d1(u−1

1 , a−1
1 ) ≤ d1(a1, e) + cε

for some absolute constant c > 0, resp. if there are no real factors for c = 0. Here we
used the definition of d1(·, ·), the left invariance of d1(·, ·), the triangle inequality,
and that u1 is ε-close to an element of K. Similarly,

d1(α, e) = d1(aαu
−1
2 , u−1

1 ) ≤ d1(u−1
2 , a−1

α ) + cε ≤ d1(aα, e) + 2cε

d1(β2, e) = d1(u2a2, e) ≤ d1(a2, e) + cε

Since aγ = a1aαa2 only involves elements of the positive Weyl chamber we have

d1(aγ , e) = d1(a1, e) + d1(aα, e) + d1(a2, e)

and hence we conclude that γ is κ = 4cε-divisible by α. Thus we set ε = 1 if there
are no real factors and ε = κ

4c otherwise. �

3.2. Counting non divisible elements of Γ and (ε,N)-separated points.
Every element γ ∈ Γ defines a shape Sγ ⊂ A as described in Section 3.1. When we
count the elements γ ∈ Γ which are not divisible by α we let the diameter of γ tend
to infinity but make no restrictions on the shape other than that the width should
be sufficiently big. However in a sense there are only polynomially many different
shapes for a given diameter. This is clear if all real factors of G are compact since
then Af/(Af ∩K) ∼= Zk for some k ∈ N. If some real factor of G is non-compact,
then we can take some regular element agrid ∈ A+ to “discretize” A+ or rather the
possible shapes within A+ as in the following lemma.

Lemma 3.2. Suppose for a given κ ≥ 0, α ∈ Γ, w > 0 and δ > 0 we have

|{γ ∈ Γ :α does not κ-divide γ, diam(γ) ≤ Rn, width(γ) ≥ w}| ≥ eδRn

for an unbounded sequence of values Rn. Then for any regular element agrid ∈
A+
∞ there is some sequence of shapes San (where an ∈ A+) with diamSan < Rn,

limn→∞ diamSan =∞ and width(San) ≥ w, for which

(6) |{γ ∈ Γ :α does not κ-divide γ, San ⊆ Sγ ⊆ Sanagrid}| ≥ eδRn/2

for large enough n.
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Note that the element agrid is used to define a “grid” in A∞ thus discretizing
things. To make this precise fix a basis of A+

∞ as follows. Let Ψ+
∞ be the collection

of simple positive roots of A∞ which form a basis of the group of characters of A∞.
For any φ ∈ Ψ+

∞ defined on a real simple factor Gσ take an element aφ ∈ A◦∞ ∩Gσ
which satisfies φ(aφ) > 0 but ψ(aφ) = 0 for ψ ∈ Ψ+

∞ \ {φ}. Then for any a ∈ A we
have

a = a∞af ∈ af
∏

φ∈Ψ+
∞

a
φ(a)
φ(aφ)

φ (A ∩K)

where a∞ and af are the archimedean and nonarchimedean parts of a. Assuming
the choice of aφ has been made such that

agrid =
∏

φ∈Ψ+
∞

aφ

we can simplify the notation and the mentioned grid now consists of sets of the
form:

D([af ],(`φ)φ) = af

{ ∏
φ∈Ψ+

S

a
`φ+rφ
φ : rφ ∈ [0, 1)

}
(A ∩K)

for various choices of [af ] ∈ Af/(Af ∩K) and `φ ∈ Z for all φ ∈ Ψ+
∞.

Proof. of Lemma 3.2. For a given diameter Rn there are polynomially many (with
respect to Rn) choices of [af ] with diameter less then Rn, and also polynomially

many choices of (`φ)φ∈Ψ+
∞
∈ N|Ψ

+
∞|

0 such that some element of the attached grid
element D([af ],(`φ)φ) has diameter less than Rn. This implies that for some choice
of grid elements Dn = D

([a
(n)
f ],(`

(n)
φ )φ)

we have exponential growth (with respect to

Rn) of those γ ∈ Γ considered with aγ ∈ Dn. Let an = a
(n)
f

∏
φ∈Ψ+

∞
a
`
(n)
φ

φ . Then
aγ ∈ Dn implies San ⊆ Sγ ⊆ Sanagrid , and the lemma follows. �

Recall the definition of topological entropy for a homeomorphism T : X → X of
a compact metric space. A finite set F ⊂ X is called (ε,N)–separated if for any
two f1, f2 ∈ F there exists 0 ≤ m < N such that

d(Tmf1, T
mf2) ≥ ε.

Let Sε,N be the maximal cardinality of an (ε,N)–separated set in X. The topolog-
ical entropy is defined by

htop(T ) = lim
ε→0

lim sup
N→∞

logSε,N
N

It is clear the the second limit exists since Sε,N is increasing for decreasing values
of ε. For the same reason we do not have to consider the limit as ε→ 0 if we only
want to show that topological entropy is positive. In fact, we will choose some small
enough ε > 0 and only consider the limit superior as N →∞. Therefore, after that
choice has been made we may consider ε as a constant and will not worry if other
quantities depend on it.

We will show next how exponential growth rate of non-divisible γ ∈ Γ as in
Lemma 3.2 implies positive topological entropy for some a ∈ A and a proper closed
A invariant subset. (In the next section we will make use of the (ε,N)–separated
set constructed and not just of the positive entropy which will be automatic.)
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The element a ∈ A for which we will get positive entropy will be one of the
singular basis elements aφ ∈ A. For the archimedean places we already defined aφ.
For a non-archimedean place σ ∈ S we again let Ψ+

σ be a set of simple positive
roots, and define similarly aφ ∈ Aσ to be an element with φ(aφ) > 0 and ψ(aφ) = 0
for ψ ∈ Ψ+

σ \ {φ}. We also define Ψ+
S =

⊔
σ∈S Ψ+

σ . Note, however, that in general

the group A∞〈aφ :φ ∈ Ψ+
S 〉(A∩K) will have finite index in A. So let b1, . . . , bp be a

set of coset representatives of A/A∞〈aφ :φ ∈ Ψ+
S 〉(A ∩K). We have now a “basis”

{aφ :φ ∈ Ψ+
S } of A, i.e., every a ∈ A can be uniquely written as:

a = mbi
∏
φ∈Ψ+

S

a
`φ
φ

where m ∈ A ∩ K, i ∈ {1, . . . , p}, `φ ∈ R for archimedean places and `φ ∈ Z for
non-archimedean ones. If a ∈ A+ and the width of a is sufficiently big (depending
on the choice of bj), then `φ ≥ 0 for all φ ∈ Ψ+

S . Moreover, there are some constants
c1, c2 > 0 such that minφ∈Ψ+

S
`φ ≥ c1width(a)− c2.

Let us now take a finite index torsion free subgroup Γ′ ⊂ Γ. Since we assume
exponential growth and we only have finitely many Γ′-cosets within Γ, we may
restrict to one coset without losing the exponential growth assumption. Therefore,
we may assume that for any two elements γ, β ∈ Γ from our list we have β−1γ ∈ Γ

′
.

Clearly Γ′∩K = {e} which implies that γK and βK are disjoint and have distance
≥ ρ (with a uniform ρ > 0) if γ 6= β are as above.

Consider now different elements γ = kγaγk
′

γ , β = kβaβk
′

β ∈ Γ with β−1γ ∈ Γ′

of similar shape in the sense that Sa ⊆ Sγ ⊆ Saagrid and Sa ⊆ Sβ ⊆ Saagrid for
some a ∈ A+. We show that the points kγ and kβ are separated under the right

action of a in G if agrid is sufficiently small. In fact since both a−1
γ a and a−1

β a are

small, say of distance < ρ/3 to e,

kγa = γ(k′γ)−1a−1
γ a

and

kβa = β(k′β)−1a−1
β a

belong to different Γ-translates of a neighborhood of K and so have distance ≥ ρ/3.
We would like to have an element a ∈ A+ so that the set

{Γkγ :α does not κ-divide γ, Sa ⊆ Sγ ⊆ Saagrid}
contains a subset of exponential size which is (ε,N)-separated for the action of the
fixed element a. Since we do not know the shape Sa in advance we need to allow
different choices for this element a.

Lemma 3.3. Let κ ≥ 0, α ∈ Γ, w > 0 and δ > 0 be given. Suppose there is a
sequence an ∈ A+ with

a−1
α an = mnbin

∏
φ∈Ψ+

S

a
`φ(n)
φ

for which the sequence of diameters Rn of San is unbounded and the widths are at
least w such that the set

En = {kγ : γ ∈ Γ, α does not κ-divide γ, San ⊆ Sγ ⊆ Sanagrid}

has cardinality at least eδRn . Order the positive simple roots Ψ+
S = {φ1, φ2, . . . , φr}

and choose a sufficiently small ε > 0. Then there exists some j = jn ∈ {1, 2, . . . , r}



12 MANFRED EINSIEDLER AND SHAHAR MOZES

and a subset Fn ⊂ Γ\G of cardinality at least e
δ
rRn which is (ε,N)-separated for the

action of a = aφj and some N which is bounded from above and below by multiples
of Rn. There is a rectangle Tw (depending on j and w, invariant under A ∩ K)
transverse to the direction of the acting element a which has width w in all but this
direction such that FnTwa

m ∩Oα = ∅ for 0 ≤ m < N .

Proof. We claim that either the set ΓEn contains an (ε, `φ1(n))–separated subset

Fn of cardinality ≥ e
δ
rRn for the action of a = aφ1 , or ΓEna

`φ1 (n)

φ1
contains an

(ε, `φ2
(n))–separated subset of cardinality ≥ e

δ
rRn for the action of a = aφ2

, or

· · · , or ΓEn
∏r−1
i=1 a

`φi (n)

φi
contains an (ε, `φr (n))–separated subset Fn of cardinality

≥ e δrRn for the action of a = aφr .
If ΓEn already contains an (ε, `φ1(n))-separated subset Fn for a = aφ1 of car-

dinality ≥ e
δ
rRn then the first claim follows. Otherwise we can choose a subset

Kn ⊂ En of cardinality < e
δ
rRn such that for every f ∈ En there is some g ∈ Kn

with d(Γfam,Γgam) < ε for 0 ≤ m < `φ1(n). For each g ∈ Kn let En(g) be
the set of f ∈ En for which this holds. Clearly one of these sets has cardinality

|En(g)| ≥ e
r−1
r δRn . We define E

(1)
n = En(g)a`φ1 (n) and now ask whether ΓE

(1)
n

contains an (ε, `φ2(n))-separated subset Fn of cardinality ≥ e
δ
rRn for the action of

a = aφ2 . Repeating this argument we end up either with a proof of the claim or

a set E
(r−1)
n ⊂ En

∏r−1
i=1 a

`φi (n)

φi
of cardinality ≥ e

δ
rRn which consists entirely of

points that have stayed ε-close when each of the elements aφ1 , a2
φ1

, . . . , a
`φ1 (n)

φ1
,

a
`φ1 (n)

φ1
aφ2

, . . . ,
∏r−1
i=1 a

`φi (n)

φi
was applied. Either ΓE

(r−1)
n is (ε, `φr (n))-separated

for the action of aφr or there are two different points

f
(r−1)
1 = kγ

r−1∏
i=1

a
`φi (n)

φi
, f

(r−1)
2 = kβ

r−1∏
i=1

a
`φi (n)

φi
∈ E(r−1)

n

such that for any 0 ≤ j ≤ `φr (n) − 1 the points Γf
(r−1)
1 ajφr and Γf

(r−1)
2 ajφr are

ε-close. For sufficiently small ε > 0 (namely small enough in comparison to the
injectivity radius of Γ\G and each of the maximum expansion of the actions of aφj )

this implies that kγ
∏
φ∈Ψ+

S
a
`φ(n)
φ , kβ

∏
φ∈Ψ+

S
a
`φ(n)
φ are ε-close. Hence also kγan

and kβan are cε-close. Where c is a bound on the Lipschitz constant of multiplying
by aα and bin ∈ {b1, . . . , bp}. Moreover since both aγ and aβ are close to an (where
the distance is controlled by agrid) it follows that kγaγ and kβaβ are close. Hence
if we make sure that agrid and ε are small enough it will follow that β−1γ ∈ K.
Since we have passed to a torsion free lattice it follows that γ = β, a contradiction.

The last claim follows from Lemma 3.1. �

3.3. Periodic κ-divisibility. One can consider other notions of divisibility mo-
tivated geometrically by periodic orbits. In this case let γ ∈ Γ be a semisimple
element which is diagonalizable over QS , i.e., for which there exists some gγ ∈ G
so that g−1

γ γgγ = a ∈ A. We shall assume as we may that a ∈ A+ belongs to the
positive Weyl chamber. The periodic width and periodic diameter of γ are defined
via the shape Sγ = Sa. We shall attach to γ the subset ΓgγSa of the (often periodic)
A-orbit ΓgγA. We say that γ is periodic κ-divisible if the piece ΓgγSγ of the A-orbit
of Γgγ contains an element x = Γgγa1 with a1Sα ⊆ Sγ such that xSα is κ-close to
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the piece ΓgαSα of the A-orbit of the point associated to α, i.e. the piece associated
to γ shadows the one associated to α.

It is immediate that the above notion of periodic divisibility has the same dy-
namical interpretation in terms of the orbit visiting a particular open subset of
Γ\G associated to α. However, in this case we have to count conjugacy classes of
elements γ ∈ Γ that are conjugated to an element of A.

For simplicity we have discussed in the previous sections only the case of κ-
divisibility, but the whole discussion remains valid also for periodic κ-divisibility
(with the discussed changes in the orbit associated to γ and the open subset asso-
ciated to α).

4. Applying measure rigidity

In this section we are going to use the results of the previous section to prove
Theorem 1.10 and Theorem 1.11. In both cases we link the number of elements
that are not divisible by α to the structure of the set of all A-orbits that do not
visit the particular open subset Oα ⊂ X discussed in Lemma 3.1.

4.1. Proof of Theorem 1.10, assuming the classification of measures with
positive entropy. In Lemma 3.3 we have seen that (for a fixed w) exponentially
many counterexamples to the required divisibility property gives rise to “exponen-
tially many (ε,N)-separated points” for the dynamics of one of the singular elements
aφ. Therefore, if we assume by contradiction that the conclusion of Theorem 1.10
does not hold, then we get a sequence of finite sets Fn which are (ε,N)-separated

for one of the singular elements satisfying |Fn| > eδ
′Rn for some δ′ > 0. Passing

to a subsequence if necessary we may assume that we always consider the same
element aφ. As noted in Lemma 3.3 the length N of the time interval considered is

bounded in terms of Rn so that |Fn| > eδ
′′N for some δ′′ > 0. Moreover, this piece

of the orbit and its image under Tw (see Lemma 3.3) are disjoint to Oα. We now
use the variational principle, more precisely one part of its proof. Recall that the
variational principle asserts that for a homeomorphism T : X → X we have

htop(T ) = sup
µ

hµ(T )

where the supremum is taken over all T -invariant probability measures on X. By
virtue of the statement this also applies to T -invariant subsets Y ⊂ X. However
Y = X \Oα is not T -invariant. We observe however, that the proof of the direction
of the variational principle we need still applies (see for example [21]). Indeed the
proof consists of showing that a sequence of measures supported on the trajectory
from time 0 to time N of an (ε,N)-separated set give rise to a weak∗ limit whose
entropy is at least the growth rate of the sequence of (ε,N)-separated points that
were used. Since the (ε,N)-separated sets constructed as well as their trajectory up
to time N is outside of the set Oα the weak∗ limit measure µα satisfies µα(Oα) = 0.
Moreover (supp(µα))Tw is disjoint from Oα (see Lemma 3.3). Let

µα,W =
1

m(Tw)

∫
Tw

µαtdm(t)

be the average of the right translates by t ∈ Tw (using the Haar measure m on the
subgroup of A generated by Tw). By the above assertion supp(µα,W ) is disjoint from
Oα and has entropy which is bounded below by δ′ > 0. The upper semicontinuity
of entropy (see [8] and [6, Sect. 9]) implies that any weak∗ limit of any subsequence
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of these measures will still have positive entropy. As such a weak limit will be A-
invariant and give zero measure to Oα it contradicts the assumed measure rigidity
for the action A-action on Γ\G.

4.2. Proof of Theorem 1.11, assuming the classification of closed invari-
ant sets. The main assumption in Theorem 1.11 is that proper A-invariant closed
subsets are finite unions of compact orbits (as is conjectured for many homogeneous
spaces). Using this we can derive the following lemma.

Lemma 4.1. Let X and A be as in Theorem 1.11. Let O ⊂ X be any proper
non-empty open subset. Then {x ∈ X : xA ⊂ X \ O} is the maximal A-invariant
subset of X \O, which is also closed. By the assumptions in the theorem there exists
a collection of finitely many periodic orbits y1A, . . . , y`A ⊂ X \O with

{x ∈ X : xA ⊂ X \O} = y1A ∪ · · · ∪ y`A.

Moreover, these periodic points satisfy, that for every ε > 0 there exists an3 m ∈ A+

such that for all shapes defined using an element aS ∈ A+ by

S = {a ∈ A : e ≤ a ≤ aS}

and all points x ∈ X with xS ⊂ X \ O there is a point y ∈ (y1A ∪ · · · ∪ y`A)
with d(xa, ya) < ε for all a ∈ S(m) = {a ∈ S : m ≤ a ≤ aSm−1}.

Proof. We note that Y = {x ∈ X : xA ⊂ X \ O} is clearly the maximal A-
invariant subset of X \ O, and that Y is closed since X \ O is closed and Y is
maximal. By the assumption there exist the finite list of periodic orbits as above.
We may assume that δ > 0 is sufficiently small so that y, y′ ∈ Y and d(y, y′) < δ
implies that y′ = ya for some a ∈ A with d(a, e) < δ. Below we may and will
assume that ε < δ is sufficiently small. In particular we will assume that both are
smaller than the injectivity radius of X so that g ∈ G, x ∈ X, and d(g, e) < δ
implies d(xg, x) = d(g, e).

Assume now that the second assertion of the lemma fails. Then for some ε > 0
and for every m ∈ A+ there exists a shape S and a point x ∈ X with xS ⊂ X \ O
so that y ∈ Y = (x1A ∪ · · · ∪ x`A) implies d(xa, ya) ≥ ε for some a ∈ S(m) = {a ∈
S : m ≤ a ≤ aSm

−1}. We claim that this implies that there exists some a′ ∈ S(m)

such that d(xa′, Y ) ≥ η for some fixed η > 0.
If d(xm, Y ) ≥ ε/100 we set a′ = m. If however, d(xm, ym) < ε/100 for some y ∈

Y , then we may choose y ∈ Y such that ym has minimal distance to xm, write xm =
ymg for some g ∈ G with d(g, e) < ε/100 and decompose g into a product g =
gAg−g+ where gA ∈ A ∩Bε/10, g− ∈ Bε/10 is contracted by every generic elements

of A+, and g+ ∈ Bε/10 is expanded by every generic elements of A+. By our

assumption there exists now some a ∈ S(m) with d(xa, ya) > ε. We may assume
that ε is sufficiently smaller than δ, so that by continuity there must exist also
some a′ ∈ S(m) with d(xa′, ya′) ∈ (ε, 1

2δ). We set a′′ = m−1a′ and may also assume
that d(ga′′, a′′) = d(xa′, ya′). However, this implies that d(g+a

′′, a′′) > ε/2 and
then also d(g+a

′′, a) > η for all a ∈ A and some constant η ∈ (0, ε) independent
of a. This in turn implies that d(xa′, yA) ≥ η, and so d(x′a′, Y ) ≥ η by our choice
of δ.

3The reader may think of S as a picture, m as the thickness of the frame and the claim as
saying that the painting is essentially periodic.
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Fix some increasing sequence of elementsm1 < m2, · · · ∈ A+ so that ∪i∈NA(mi) =
A where A(mi) := {a ∈ A : m−1

i ≤ a ≤ mi}. Let Si be the shape associated with
mi as in the above discussion. For every i there exists some x′i ∈ X \ O whose
distance to Y is bounded from below and for which x′iA(mi) ⊂ X \ O. Passing to
a converging subsequence x′in → x as n → ∞ and using the fact that A(mi) ↗ A
we obtain that xA ⊂ X \ O. Therefore, x ∈ Y \ (y1A ∪ · · · ∪ y`A) and we get a
contradiction to the choice of the periodic orbits. �

To deduce Theorem 1.11 from Lemma 4.1 we proceed somewhat similarly to
the proof of Theorem 1.10. Fix some α ∈ Γ and κ ≥ 0 with κ > 0 if G has an
Archimedean factor. Just as on page 11 we choose some torsion free sublattice Γ′ ⊂
Γ of finite index. It suffices to show the estimate∣∣{γ ∈ γ0Γ′ : γ is not κ-divisible by α, diam(γ) ≤ R,width(γ) ≥ w}

∣∣ < cRq

for each coset of γ0Γ′ and some absolute constant c. We note that Γ′ ∩K = {e}
which implies that γK and βK are disjoint and have distance ≥ ρ (with a uniform
ρ > 0) if γ 6= β ∈ γ0Γ′. We also assume that ρ is smaller than the injectivity radius
on X.

The main part of the above estimate comes simply from the possible choices
of shapes S ⊂ A of diameter less than R. If all G Archimedean factors of G are
compact, the number of such shapes is clearly bounded from above by a multiple
of Rq. If however, one factor of A is Archimedean, the number of shapes is infinite.
Hence in this case, one has to introduce (similar to Section 3.2) an element of
agrid ∈ A+

∞ = A+ ∩ G∞ to discretize the possible shapes within A. We may
assume that agrid is close to the identity so that a ∈ A+

∞ and e ≤ a ≤ agrid

implies d(a, e) < ρ/10.
Therefore, it suffices to show that

(7)
∣∣{γ ∈ γ0Γ′ : γ is not κ-divisible by α, Sa0 ⊆ Sγ ⊆ Sa0agrid}

∣∣ ≤ c
for some absolute constant independent of a0 ∈ A. By Lemma 3.1 there exists a
non-empty open subset Oα such that if ΓkγS−αγ intersects Oα then Γ is κ-divisible
by α.

We let ε = ρ/10 and apply Lemma 4.1 to the set Oα. We let Y = {x :
xA ⊂ X \ Oα} = y1A ∪ · · · ∪ y`A be the maximal A-invariant subset of X \ Oα
and assume that y′1, . . . , y

′
k ∈ Y are ε-dense. Let m be as in Lemma 4.1. Also

let x1, . . . , xK ∈ X be finitely many points such that for every x ∈ X there exists
some xi with d(xa, xia) < ε for all a ∈ Sm. We claim that c = kK2 satisfies (7) for
all a0 ∈ A+ with width(a0) sufficiently big so that m2 ∈ Sa0 .

To prove this bound we associate with every γ ∈ γ0Γ′ belonging to the set on the
left of (7) a triple (xi, y

′
j , xi′). The point xi is chosen with the above property of the

list x1, . . . , xK such that d(Γkγa, xia) < ε for all a ∈ Sm. The point y′j is chosen ε-
close to the point y ∈ Y obtained from Lemma 4.1, so that d(Γkγa, y

′
ja) < 2ε for

all a ∈ S(m)
a0 (since the action of A on Y is isometric). Finally, xi′ is chosen such

that d(Γkγa0m
−1a, xi′a) < ε for all a ∈ Sm.

If now two lattice elements γ, γ′ are associated with the same triple, then we
obtain

d(Γkγa,Γkγ′a) < 4ε
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for all a ∈ Sm ∪ S(m)
a0 ∪ a0m

−1Sm. As ρ = 10ε is less than the injectivity radius we
obtain from this

d(kγa0, kγ′a0) < 4ε.

Together with the restriction on the shapes of γ, γ′ this gives

d(kγaγ , kγ′aγ′) < 5ε = ρ/2,

or also d(γK, γ′K) < ρ/2, but then our choice of ρ implies γ = γ′.

5. Division algebras

5.1. The proof of Theorem 1.6. Let D be a division algebra of prime degree d
over a number field K. We define the group G = ResK|Q PD× as follows.

First recall that D ⊗K K̄ is isomorphic to Matd(K̄). We define D× to be the
algebraic group that goes under this isomorphism to GLd(K) — it is a K-group.
The center of D× corresponds to scalar matrices (and as such to the field K). Now
we let D× act on the vector space D⊗KK̄ via conjugation which defines the algebraic
group PD× as the image of this representation. Applying restriction of scalars we
obtain G = ResK|Q PD×. Notice also that G(Q̄) is isomorphic to the direct product

of [K : Q] copies of PGLd(Q̄).
We let S be a finite number of places of Q, including the infinite place. For each

place σ ∈ S we assume that G splits over Qσ, which means that G(Qσ) is isomorphic
to a direct product of [K : Q] copies of PGLd(Qσ) (and this forces K⊗Q Qσ to be

also isomorphic to Q[K:Q]
σ ). We make one exception to this splitting condition which

will become important in Section 5.2: if d = 2 we allow G(R) to be compact, in
which case we simply remove the infinite places from S.

We note that the Q-points of G can be identified with D×/K×. Assume for the
moment that K = Q, and take now an order OD ⊂ D. Using a basis of O over Z
in the representation of PD× it follows that PD×(Z) is isomorphic to O×D modulo

the center of D×. Similarly, we get (3).
As the conclusion of Theorem 1.6 is identical to the conclusion of Theorem 1.10,

it remains to justify the assumptions of Theorem 1.10.
By the Borel Harish-Chandra theorem Γ is a lattice in G = G(QS) since G is

semi-simple. If X = Γ\G is not compact, then Γ contains a nontrivial unipotent
element γ. We may represent γ as the equivalence class modulo the center of
some a ∈ D. Applying the Jordan decomposition of a in D× we obtain a = assau,
which forces the semi-simple part ass to belong to the center. It follows that au
is a nontrivial unipotent element of D. However, au − 1 would then be a nonzero
non-invertible element of the division algebra D. Therefore, X is compact.

By Theorem 1.9 the existence of A-invariant probability measures with positive
entropy other than the Haar measure on a quotient of SLd(R) by a lattice is ruled
out if the lattice does not contain any elements with repeated eigenvalues. The proof
of this theorem in [6] generalizes to allow for more general S-arithmetic quotients
that we consider in this section (see also [5] for the changes needed when going from
the real to the S-arithmetic setting).

More formally, this also follows from the general classification of positive entropy
measures for Cartan actions in [9]: in [9, Thm. 1.1] it is shown that an A-invariant
and ergodic probability measure µ is supported on a closed orbit ΓL(QS)g for
some g ∈ G and some reductive Q-subgroup L with the same S-rank as the ambient
group and whose center is Q-anisotropic. Let us assume for the moment G is over QS
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isomoprhic to SLd. This implies that if L is a proper subgroup of G then either L
is a torus (and the measure must have zero entropy) or the center of L has to be
nontrivial and all of its elements have repeated eigenvalues. In the latter case, the
center of L(QS) must intersect the lattice in a lattice. If the lattice does not contain
any elements with repeated eigenvalues, this forces the reductive Q-group L to be
equal to G. If the S-rank of G is greater or equal to 2 and entropy of µ is positive,
then [9, Thm. 1.1] shows that µ must be invariant under a finite index subgroup
of G(QS). Since SLd(QS) does not have any proper finite index subgroups, this
implies that µ must be the Haar measure.

We now generalize the above discussion to the case G = PD× considered in this
section and prove that the lattice in G = G(QS) does indeed not contain non-
trivial elements with repeated eigenvalues. Suppose that a ∈ D does not belong
to K. Then K(a) is a proper field extension of K. Considering D as a vector
space over K(a) it follows that [K(a) : K] divides dimKD. However, as the di-
mension of D equals d2 and we assumed that d is a prime, we obtain that a must
generate a field extension of degree d. In other words, the minimal polynomial
of a over K has degree d (with d distinct roots). Mapping a under the isomor-
phism from D ⊗K K̄ to Matd(K̄) this gives a matrix for which all eigenvalues are
different. Considering this element now as a lattice element in G(QS), which is
isomorphic to PGLd(QS)[K:Q], we obtain a tuple of equivalence classes of matri-
ces where the representatives have non-repeating eigenvalues. Just as in the dis-
cussion above this implies using [9, Thm. 1.1] that any A-invariant and ergodic
probability measure µ with positive entropy must be invariant under a finite index
subgroup of G = G(QS) ∼= PGLd(QS)[K:Q]. As any finite index subgroup must
contain SLd(QS)[K:Q], and SLd(QS)[K:Q] ·A = PGLd(QS)[K:Q] it follows that µ must
once more equal the Haar measure on G. Therefore, Theorem 1.10 applies and
gives Theorem 1.6.

5.2. Quaternion algebras and finitely many primes. We will now prove Theo-
rem 1.2 as a corollary of Theorem 1.6. Let D = Q[i, j, k] be the Hamiltonian quater-
nion algebra over Q. Let O = Z[i, j, k] and let S be a set of primes with |S| ≥ 2 such
that D splits over Qp (i.e. D ⊗Q Qp is isomorphic to Mat2×2(Qp), which happens
precisely for all odd primes).

By (3) (which we explained above) the group of units of D[ 1
p : p ∈ S] modulo the

units of Z[ 1
p : p ∈ S] gives an irreducible lattice in the algebraic group PD×(QS)

(where we do not include ∞ in S since PD×(R) is compact).
We wish to explicate the injection from D into Mat2×2(Qp) for some fixed

prime p ∈ S. For this we are going to use a solution ε, η ∈ Zp of the equa-
tion ε2 + η2 = −1. By Hensel’s lemma it suffices to solve ε2 + η2 = −1 in Z/(p).
If −1 is a quadratic residue modulo p then take η = 0. Otherwise we should find
a solution to −η2 = ε2 + 1 which clearly exists since not all elements of Z/(p)

are quadratic residues. Using these two p-adic integers we map i to

(
ε η
η −ε

)
, j

to

(
0 1
−1 0

)
, and k = ij to the corresponding product, which gives the homomor-

phism

γ = a+ bi+ cj + dk 7→ ι(γ) =

(
a+ bε− dη bη + c+ dε
bη − c+ dε a− bε+ dη

)
.
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It is easy to check that the norm of γ ∈ D equals the determinant of its image.
If γ ∈ O, then clearly ι(γ) ∈ Mat2×2(Zp).

We claim furthermore, that ι(γ) ∈ Mat2×2(Zp) implies that a, b, c, d ∈ Zp. This
follows from viewing the map ι as a linear transformation with determinant 4.
This also implies that a reduced γ ∈ ΛO is mapped to a reduced matrix (i.e. an
integral matrix such that not all entries are divisible by p). It follows that the map
γ 7→ [ι(γ)] is an injective map from {γ ∈ ΛO : γ is reduced} into

∏
p∈S PGL2(Qp).

Let γ ∈ ΛO,S . In Theorem 1.2 the width (diameter) of γ is defined as the
minimum (sum) of the exponents when writing N(γ) as a product of powers of
elements of S. In Theorem 1.6 and the proof in Section 5.1 the width (diameter)
of [ι(γ)] is defined as in Definition 1.5. To compare these two definitions fix some p ∈
S. Note that there is (up to sign) only one root φp for the diagonal subgroup

of PGL2(Qp). If γ is reduced, the KAK decomposition of ι(γ) must equal

(
pe 0
0 1

)
for some e ≥ 0 since ι(γ) is also reduced. This implies that φp([ι(γ)]) = e log p
where e is the exponent of p in N(γ). This shows that the two definitions of width
(and diameter) are bounded by multiples of each other.

Observe that the above discussion implies also that the notions of divisibilities
defined in sections 1.1 and 1.2 coincide. It follows from Theorem 1.6, using the
injectivity of the map from the collection of reduced quaternions into the associated
lattice in

∏
p∈S PGL2(Qp), that:

Theorem 5.1. Let D be the Hamiltonian quaternion algebra and O = Z[i, j, k].
Let S be a finite set of nonarchimedean places over which D splits, and assume
|S| ≥ 2. Let a ∈ ΛO,S be a reduced element. Then for every ε > 0 there exists some
w = w(a, ε) so that

log
∣∣{γ ∈ Λred

O,S : diam(γ) ≤ R,width(γ) ≥ w, a does not divide γ
}∣∣ < εR

for all sufficiently large R, where Λred
O,S denotes the reduced quaternions in ΛO,S.

Assume now that Theorem 1.2 does not hold. Then there exists some ε > 0 such
that for every w > 0 there is an increasing sequence Rn →∞ so that

log
∣∣{γ ∈ ΛO,S : diam(γ) ≤ Rn,width(γ) ≥ w, a does not divide γ

}∣∣ > εRn

To each quaternion γ ∈ ΛO,S we associate a pair of integers ψ(γ) =
(
N(γ), N(ρ(γ))

)
called its shape pair where ρ(γ) ∈ ΛO,S is the unique reduced quaternion so that
γ = ρ(γ) ·

∏
p∈S p

ep . Observe that for a given diameter R there are polynomially
many possible shape pairs associated to quaternions whose diameter is at most R.
Hence if Theorem 1.2 fails we have some sequence of shape pairs (xn, yn) so that
log |Dn| > εR/2 where

Dn =

{
γ ∈ ΛO,S :

diam(γ) ≤ Rn,width(γ) ≥ w,
a does not divide γ, ψ(γ) = (xn, yn)

}
.

We may choose for each γ ∈ Dn some reduced τ(γ) = ρ(γ) · γ′ where ρ(γ) is the
reduced part of γ and γ′ is a (reduced) quaternion such that γ = ρ(γ) · γ′ · γ′. We
recall that any reduced γ = x1x2 = y1y2 ∈ O with x1, x2, y1, y2 ∈ O and N(x1) =
N(y1) odd, then x1 = ωy1 for some unit ω of O (cf. [17]). Therefore, for γ1, γ2 ∈ Dn

such that γ1 6= ωγ2 for all the eight units ω of O it follows that τ(γ1) 6= τ(γ2). Note
also that the width of τ(γ) is at least half the width of γ. Finally observe that since
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a does not divide γ ∈ Dn it also does not divide τ(γ) and we get a contradiction
to Theorem 5.1.

5.3. Quaternion algebras, the proof of Theorem 1.1. We are going to need
the following generalization of Theorem 1.8.

Theorem 5.2. Let D = Q[i, j, k] be the Hamiltonian quaternion algebra. Let
X = PD×(Q)\PD×(AQ)/M∞,2, where M∞,2 = PD×(R×Q2) and let

A =
⋃

2,∞/∈S finite

(∏
p∈S

Ap ×
∏

3≤p/∈S

(Ap ∩Kp)
)

be the restricted direct product of the diagonal subgroups Ap of PD×(Qp) ∼= PGL2(Qp)
for all odd primes p, where Kp is the maximal compact open subgroup PD×(Zp) ∼=
PGL2(Zp). Then the A-action has only one invariant probability measure on X,
namely the normalized Haar measure on X.

The proof of Theorem 5.2 is essentially the same as the proof of Theorem 1.8,
but unfortunately the above theorem does not exist in the literature in this form.
Roughly speaking the invariance under the diagonal subgroup at all odd primes
can be used to prove that the measure must have positive entropy. In the proof
of Theorem 1.8 in [14] entropy for the real diagonal flow is used, which has to be
replaced in the proof of Theorem 5.2 by say the 3-adic diagonal flow. A detailed
proof will appear together with some generalizations in the paper [2].

As A is amenable and X is compact, unique ergodicity has immediate conse-
quences regarding density of orbits.

Corollary 5.3. Let X and A be as in Theorem 5.2. Let O ⊂ X be a non-empty
open subset. Then there exists a compact subset F ⊂ A such that for every x ∈ X
the set xF intersects O nontrivially.

Proof. Let Fn < A be a sequence of Følner sets and suppose that the corollary fails
for each of the sets Fn. Then there exists for every n some xn such that xnFn is
disjoint to O. Let µn be the push-forward of the Haar measure of A restricted to Fn
under the map a ∈ Fn 7→ xa. We normalize µn to be a probability measure. By
Tychonoff-Alaoglu there exists a weak∗ limit point µ, which will be an A-invariant
probability measure on X (since the latter is compact). By Theorem 5.2 µ = mX is
the Haar measure on X, which contradicts our construction of the sequence µn. �

Proof of Theorem 1.1. Let α ∈ O be a reduced element of odd norm. Let S0 be
the set of odd primes that divide N(a). We recall that α ∈ ΛO,S0

gives rise to a

lattice element [α] = [ι(α)] ∈ PD×(Z[1/p : p ∈ S0]). We also recall from the last
section that if [α] divides [γ] for some other reduced γ ∈ ΛO,S0

, then α divides γ
in O.

By Lemma 3.1 there exists some nontrivial open subset

Oα ⊂ XS0 = PD×(Z[1/p : p ∈ S0])\PD×(QS0)

such that any reduced γ ∈ ΛO,S0 with a nonempty intersection

Oα ∩
(
PD×(Z[1/p : p ∈ S0])k[γ]S

−[α]
[γ]

)
satisfies that [α] divides [γ] (and so α divides γ).
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Since for any odd N there exists some reduced γ ∈ O with N(γ) = N it follows
that the projection map πS0 from

X = PD×(Q)\PD×(AQ)/M∞,2 ∼= PD×(Z[1/p : p ∈ S0])\PD×
(
QS0
×

∏
3≤p/∈S0

Zp
)

to PD×(Z[1/p : p ∈ S0])\PD×(QS0
) is well-defined and onto. Using it we define

the open subset O = π−1
S0
Oα ⊂ X. We now apply Corollary 5.3 and find some

compact subset F ⊂ A such that xF ∩O is nonempty for all x ∈ X. By definition
of the restricted direct product there exists now some set of odd primes S ⊃ S0

such that
F ⊂ AS =

∏
p∈S

Ap ×
∏

3≤p/∈S

(Ap ∩Kp).

Furthermore, there exists some integer M ′ which is a product of powers of primes
in S such that for any reduced γ ∈ ΛO,S with M | N(γ) we have that some translate

of F is contained in S−[α]
[γ] . This implies that4

PD×(Q)k[γ]

(
S−[α]

[γ] ×
∏

3≤p/∈S

(A ∩Kp)
)

intersects O nontrivially, or equivalently(
PD×(Z[1/p : p ∈ S])k[γ]S

−[α]
[γ]

)
∩
(
PD×(Z[1/p : p ∈ S])π−1

S,S0
Oα
)

is nonempty. Here πS,S0
denotes the projection map

PD×(Z[1/p : p ∈ S])\PD×(QS)→ PD×(Z[1/p : p ∈ S0])\PD×(QS0
).

By Lemma 5.4 this implies that α divides γ.
To summarize we have found some odd M (which is a product of powers of

primes in S) such that γ ∈ ΛO,S reduced and M | N(γ) implies that α | γ. If γ ∈ O
is now arbitrary with M2 | N(γ) and odd norm, we denote the reduced part of γ
by ρ(γ). We may also find some reduced γ′ ∈ O such that ρ(γ) · γ′ is reduced
and γ = ρ(γ) · γ′ · γ̄′. Clearly M | N(ρ(γ)γ′) so that the above implies α | ρ(γ)γ′

and so also α | γ.
In case N(γ) is even, we claim that γ = γ′η where γ′ has odd norm and the norm

of η is a power of 2. With the claim and the above, the theorem follows quickly.
To prove the claim, let γ = a + bi + cj + dk. We may assume a, b, c, d are not all
even, for otherwise we may simply use as our initial η the appropriate power of 2.
By looking at N(γ) modulo 8 we see that N(γ) is at most divisible by 4 and either
two or all of the coefficients are now odd. By multiplying by a unit on the right
we may assume that a is odd. We also assume that b is odd (the other cases are
similar). Now multiply

(a+ bi+ cj + dk)(1 + i) = (a− b) + (a+ b)i+ (c− d)j + (c+ d)k =

= (a′ + b′i+ c′j + d′k)2 = (a′ + b′i+ c′j + d′k)(1− i)(1 + i),

and note that a′, b′, c′, d′ are integers. Dividing by (1+i) we have shown that we can
split γ into γ′ and η where N(γ′) = 1

2N(γ). If necessary we repeat the argument
(once). �

It remains to prove the following lemma.

4Here we extend k[γ] in some way to an element of PD×(
∏
p≥3 Zp).
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Lemma 5.4. Let Oα be the set from Lemma 3.1 for some reduced α ∈ ΛO,S0

as in the above proof. Replacing S0 by S ⊃ S0 the set π−1
S,S0

Oα also satisfies the

conclusion of Lemma 3.1 for all [γ] with γ ∈ ΛO,S reduced.

Proof. As PD×(R) is compact, we may set κ = 0 in the discussion of Section 3.1.
Let us write KS for the maximal compact open subgroup of PD×(QS) for any finite
set S of odd primes.

As noted in the proof of Lemma 3.1 the open set Oα may be chosen in our case
as PD×(Z[1/p : p ∈ S0])

(
KS0

∩ [α]KS0
a−1

[α]). With this choice

π−1
S,S0

Oα = PD×(Z[1/p : p ∈ S])
(
KS ∩ [α]KSa

−1
[α]),

since at the primes p ∈ S \ S0 we have [α] ∈ Kp and the component of a[α] at p
equals the identity. The lemma follows from Lemma 3.1. �
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