
The AEP algorithm for the fast computation of the
distribution of the sum of dependent random

variables

Philipp Arbenz a, Paul Embrechts a, Giovanni Puccetti b,∗
aDepartment of Mathematics, ETH Zurich, 8092 Zurich, Switzerland

bDepartment of Mathematics for Decisions, University of Firenze, 50134 Firenze, Italy

Abstract

We propose a new algorithm to compute numerically the distribution function of the sum of d depen-
dent, non-negative random variables with given joint distribution.

Key words: Convolution, Distribution functions
AMS 2000 Subject Classification: 62E17, 65C20

1. Motivations and preliminaries

In probability theory, the exact calculation of the distribution function of the sum of d de-
pendent random variables X1, . . . , Xd is a rather onerous task. Even assuming the knowledge
of the joint distribution H of the vector (X1, . . . , Xd), one often has to rely on tools like Monte
Carlo and Quasi-Monte Carlo methods. All these techniques warrant considerable expertise
and more importantly need to be tailored to the specific problem under study. In this paper,
we introduce a numerical procedure, called the AEP algorithm, which accurately calculates

P[X1 +·· ·+Xd ≤ s], (1.1)

at a fixed real threshold s and only uses the joint distribution H without the need for any
specific adaptation.

∗ Corresponding author. Address: Dipartimento di Matematica per le Decisioni, via Lombroso 6/17, 50134 Firenze,
Italy. Tel. +39-055-4796824, fax +39-055-4796800.

Email addresses: philipp.arbenz@math.ethz.ch (Philipp Arbenz), embrechts@math.ethz.ch (Paul
Embrechts), giovanni.puccetti@dmd.unifi.it (Giovanni Puccetti).

Preprint submitted to Bernoulli 5 May 2009

Problems like the computation of (1.1) arise especially in insurance or finance when one
has to calculate an overall capital charge in order to offset the risk position Sd = X1 +·· ·+ Xd

deriving from a portfolio of d random losses with known joint distribution H . The minimum
capital requirement associated to Sd is typically calculated as the Value-at-Risk (i.e. quantile)
for the distribution of Sd , and this at some high level of probability. Therefore, the calculation
of a VaR-based capital requirement is equivalent to the computation of the distribution of Sd

(see (1.1)). For a internationally active bank, this latter task is required for example under the
terms of the New Basel Capital Accord (Basel II); see Basel Committee on Banking Supervision
(2006).

An area of applications in quantitative risk management where our algorithm may be par-
ticularly useful is stress-testing. In this context one often has information on the marginal
distributions of the underlying risks but wants to stress-test the interdependence between
these risks, a concept that enters here is that of copula. Especially in the context of the cur-
rent (credit) crisis, flexibility of the copula used when linking marginal distributions to a joint
distribution has no doubt gained importance. See for instance Embrechts (2009).

Though the examples treated in this paper are mainly illustrative, the dimension d (≤ 5),
the marginal assumptions, as well as the dependence structure (Clayton and Gumbel copula)
used are typical for risk management applications in insurance and finance. For more infor-
mation on this type of questions, see for instance SCOR (2008), Aas et al. (2007) and Bürgi
et al. (2008).

In the following, we will denote (row) vectors in bold-face, e.g. 1 = (1, . . . ,1) ∈ Rd , d > 1.
ek represents the k-th vector of the canonical basis of Rd and D = {1, . . . ,d}. Given a vector
b = (b1, . . . ,bd) ∈Rd and a real number h, Q(b,h) ⊂Rd denotes the hypercube defined as

Q(b,h) =
{
×d

k=1(bk ,bk +h] if h > 0,

×d
k=1(bk +h,bk] if h < 0.

(1.2)

For notational purposes, we set Q(b,0) =;. On some probability space (Ω,A,P), let the ran-
dom variables X1, . . . , Xd have joint d-variate distribution H . H induces the probability mea-
sure VH on Rd via

VH

[
×d

i=1(−∞, xi]
]
= H(x1, . . . , xd).

We identify with i 0, . . . , i N all the 2d vectors in {0,1}d , i.e. i 0 = (0, . . . ,0), i k = ek ,k ∈ D , and so
on, i N = 1 = (1, . . . ,1), where N = 2d −1. #i =∑d

k=1 ik denotes the number of 1 in the vector i ,
e.g. #i 0 = 0,#i N = d . The VH -measure of a hypercube Q(b,h),h > 0 can be easily calculated as

VH [Q(b,h)] =P [Xk ∈ (bk ,bk +h],k ∈ D] =
N∑

j=0
(−1)d−#i j H

(
b +hi j

)
. (1.3)

The case h < 0 is analogous. If necessary, (1.3) can be also expressed in terms of the survival
function H = 1−H . Moreover, S (b,h) ⊂Rd denotes the d-dimensional simplex defined as

S (b,h) =
{{

(x1, . . . , xd) ∈Rd : xk −bk > 0,k ∈ D and
∑d

k=1(xk −bk) ≤ h
}

, if h > 0,{
(x1, . . . , xd) ∈Rd : xk −bk ≤ 0,k ∈ D and

∑d
k=1(xk −bk) > h

}
, if h < 0.

(1.4)

Again S (b,0) = ;. We finally denote by λd the Lebesgue measure on Rd . For instance, the
Lebesgue measure of the simplex S (b,h) is given by

λd [S (b,h)] = |h|d
d !

. (1.5)

2

2. Description of the AEP algorithm for d = 2

Throughout the paper, we assume the random variables X1, . . . , Xd to be non-negative, i.e.
P[Xk ≤ 0] = 0,k ∈ D . The extension to random variables bounded from below is straightfor-
ward and will be illustrated below. We assume the knowledge of the joint distribution H of the
vector (X1, . . . , Xd) and define Sd = X1 +·· ·+Xd . Our aim is then to calculate

P[Sd ≤ s] =VH [S (0, s)] ,

and this at a fixed positive threshold s.
Due to (1.3), it is very easy to compute the VH -measure of hypercubes in Rd . The idea be-

hind the AEP algorithm is then to approximate the simplex S (0, s) by hypercubes. Before go-
ing to the general case, we first briefly illustrate our method for dimension d = 2.

As illustrated in Figure 1, the VH -measure of the simplex S 1
1 =S (0, s) can be proxied by the

VH -measure of the hypercube Q1
1 =Q(0,αs), with α ∈ [1/2,1). The error committed by using

this approximation can be expressed in terms of the measure of the three simplexes

S 1
2 = S ((0,αs), (1 − α)s), S 2

2 = S ((αs,0), (1 − α)s) and S 3
2 = S ((αs,αs), (1 − 2α)s).

Formally, we have

S (0, s) = (
Q1

1 ∪S 1
2 ∪S 2

2

)
\S 3

2 , for all α ∈ [1/2,1). (2.1)

Since α ∈ [1/2,1), the sets S 1
2 ,S 2

2 and Q1
1 are pairwise disjoint. Note also that S 3

2 ⊂Q1
1 . The

VH -measure of S (0, s) can thus be written as

VH [S (0, s)] =VH
[
Q1

1

]+VH
[
S 1

2

]+VH
[
S 2

2

]−VH
[
S 3

2

]
.

With the notation s1
2 = s2

2 = 1 and s3
2 =−1, we translate the equation above into

VH [S (0, s)] =VH
[
Q1

1

]+ 3∑
k=1

sk
2 VH

[
S k

2

]
. (2.2)

As a first approximation of VH [S (0, s)] we define the value

P1(s) =VH
[
Q1

1

]= H(αs,αs)−H(0,αs)−H(0,αs)+H(0,0).

Q1
1

S 1
2

S 2
2

S 3
2

αs

αs s0

s

Fig. 1. Decomposition (2.1) of the two-dimensional simplex S ((0,0), s).

3

Using (2.2), the error committed by considering P1(s) instead of VH [S (0, s)] can be expressed
in terms of the VH -measure of the three simplexes S k

2 defined above, i.e.

VH [S (0, s)]−P1(s) =
3∑

k=1
sk

2 VH

[
S k

2

]
. (2.3)

At this point, we can apply to each of the S k
2 ’s a decomposition analogous to the one given

in (2.2) for S 1
1 = S (0, s), in order to obtain a better approximation of their measures, and

hence of the measure of S 1
1 . The only difference between the first and the following step is

that we have to keep track whether the measure of a simplex has to be added to or subtracted
from the next approximation P2(s) of VH [S (0, s)]. The value sk

2 , associated to each simplex
S k

2 , indicates whether the corresponding measure is to be added (sk
2 = 1) or subtracted (sk

2 =
−1). The next approximation P2(s) will be defined such that the difference VH [S (0, s)]−P2(s)
is the sum of the VH -measures of a total of nine simplexes produced by the decompositions
of the three S k

2 ’s. The nine simplexes are then passed as input to the third iteration and so on.
Before formally defining the algorithm in arbitrary dimension d , it is important to remark

the following points:
– We will prove the set decomposition (2.1) to hold analogously in arbitrary dimension d for

every choice of α ∈ [1/d ,1). Unfortunately, the corresponding simplexes S k
n are in gen-

eral not disjoint for d > 2. This will imply a more complicated formula for the general VH -
measure decomposition.

– Equation (2.2) depends on the choice ofα. We will study in Section 4 which is the best value
of α to use.

3. Description of the AEP algorithm for arbitrary d

Recall that in Section 1 we denoted with i 0, . . . , i N all the 2d vectors in {0,1}d , and N = 2d −1.
Let also α ∈ [1/d ,1). At the beginning of the n-th iteration (n ∈ N) the algorithm receives as
input N n−1 simplexes which we denote by S k

n = S (bk
n ,hk

n), for k = 1, . . . , N n−1. To each sim-
plex is associated the value sk

n ∈ {−1,1}, which indicates whether the measure of the simplex
has to be added (sk

n = 1) or subtracted (sk
n = −1) in order to compute an approximation of

VH [S (0, s)].
Each simplex S k

n is then decomposed via one hypercube Qk
n = Q(bk

n ,αhk
n) and N sim-

plexes S k
n+1 =S (bk

n+1,hk
n+1). In fact, we prove in Appendix A the rather technical fact that the

VH -measure of each simplex S k
n can be calculated as:

VH

[
S k

n

]
=VH

[
Qk

n

]
+

N∑
j=1

m j VH

[
S

N k−N+ j
n+1

]
, (3.1)

where the sequences bk
n ,hk

n and m j are defined by their initial values b1
1 = 0,h1

1 = s and

bN k−N+ j
n+1 = bk

n +αhk
n i j , hN k−N+ j

n+1 = (1−#i jα)hk
n , m j =


(−1)1+#i j if #i j < 1/α,

0 if #i j = 1/α,

(−1)d+1−#i j if #i j > 1/α,

(3.2)

4

and this for all j = 1, . . . , N and k = 1, . . . , N n−1. At this point we note that changing the value
b1

1 one can apply the algorithm to the case in which the random vector (X1, . . . , Xd) assumes
also negative values but is still bounded from below by b1

1.
We define the sequence Pn(s) as the sum of the VH -measures of the Qk

n , multiplied by the
corresponding sk

n , as

Pn(s) = Pn−1(s)+
N n−1∑
k=1

sk
nVH

[
Qk

n

]
=

n∑
i=1

N i−1∑
k=1

sk
i VH

[
Qk

i

]
, (3.3)

where P0(s) = 0 and the sk
n are defined by s1

1 = 1 and

sN k−N+ j
n+1 = sk

nm j , for all j = 1, . . . , N and k = 1, . . . , N n−1. (3.4)

We will see in the following that the sequence Pn(s) converges to VH [S (0, s)], under weak
assumptions on the distribution H . Moreover, note that Pn(s) is straightforward to calcu-
late via (1.3). The (N n−1) × N = N n simplexes S k

n+1, generated by (3.1) are then passed to
the (n +1)-th iteration in order to approximate their VH -measures with the measures of the
hypercubes Qk

n+1.
As a first step, to show that Pn(s) tends to VH [S (0, s)], we prove that the error committed

by considering Pn(s) instead of VH [S (0, s)] is given by the sum of the VH -measures of the
simplexes S k

n+1 passed to the (n +1)-th iteration, multiplied by the corresponding sk
n+1.

Theorem 3.1 With the notation introduced above, we have that

VH [S (0, s)]−Pn(s) =
N n∑
k=1

sk
n+1VH

[
S k

n+1

]
. (3.5)

Proof. We prove the theorem by induction on n. Note that (3.5) corresponds to (3.1) when
n = 1. Now assume by induction that

VH [S (0, s)] = Pn−1(s)+
N n−1∑
k=1

sk
nVH

[
S k

n

]
,

which, recalling (3.1), (3.3) and (3.4), yields

VH [S (0, s)] = Pn−1(s)+
N n−1∑
k=1

sk
nVH

[
Qk

n

]
+

N n−1∑
k=1

sk
n

(
N∑

j=1
m j VH

[
S

N k−N+ j
n+1

])

= Pn(s)+
N n−1∑
k=1

N∑
j=1

sk
nm j VH

[
S

N k−N+ j
n+1

]

= Pn(s)+
N n−1∑
k=1

N∑
j=1

sN k−N+ j
n+1 VH

[
S

N k−N+ j
n+1

]
= Pn(s)+

N n∑
k=1

sk
n+1VH

[
S k

n+1

]
. 2

We are now ready to give a sufficient condition for the convergence of the sequence Pn(s) to
VH [S (0, s)]. The idea of the proof is that if the total Lebesgue measure of the new N simplexes

S
N k−N+ j

n+1 , j = 1, . . . , N , generated by the simplex S k
n , is smaller than the Lebesgue measure

of S k
n itself, then, by assuming continuity of H , the error (3.5) will go to zero. Let us define

en =∑N n

k=1λd
[
S k

n+1

]
as the sum of the Lebesgue measure of the simplexes passed to iteration

n +1. We call volume factor f (α) the ratio between the sum of the Lebesgue measure of the
simplexes in two subsequent iterations, i.e. f (α) = en/en−1. Recalling the formula (1.5) for the
λd -measure of a simplex, we have that

5

N∑
j=1

λd

[
S

N k−N+ j
n+1

]
=

N∑
j=1

∣∣(1−#i jα
)

hk
n

∣∣d

d !
=

d∑
j=1

(
d

j

) ∣∣1− jα
∣∣d ∣∣hk

n

∣∣d

d !
.

Observing that the N simplexes S
N k−N+ j

n+1 , j = 1, . . . , N , are generated by the simplex S k
n , we

use the above equation to conclude that

f (α) = en

en−1
=

∑N n

k=1λd
[
S k

n+1

]
∑N n−1

k=1 λd
[
S k

n
] =

∑N n−1

k=1

∑N
j=1λd

[
S

N k−N+ j
n+1

]
∑N n−1

k=1 λd
[
S k

n
] =

∑N n−1

k=1

∑d
j=1

(d
j

) |1− jα|d ∣∣hk
n

∣∣d

d !∑N n−1

k=1 λd
[
S k

n
]

=
1
d !

∑N n−1

k=1

∣∣hk
n

∣∣d ∑d
j=1

(d
j

)∣∣1− jα
∣∣d

1
d !

∑N n−1

k=1

∣∣hk
n

∣∣d
=

d∑
j=1

(
d

j

)∣∣1− jα
∣∣d .

A sufficient condition for the convergence of the AEP algorithm can then be expressed in
terms of the volume factor f (α). We first assume H to be continuous with a bounded density.
Theorem 3.2 Assume that VH has a bounded density vH . If the volume factor satisfies f (α) < 1,
then

lim
n→∞Pn(s) =VH [S (0, s)] . (3.6)

Proof. Since VH has a density vH bounded by the positive constant c > 0, using (3.5) we have
that

|VH [S (0, s)]−Pn(s)| =
∣∣∣∣∣ N n∑
k=1

sk
n+1VH

[
S k

n+1

]∣∣∣∣∣=
∣∣∣∣∣ N n∑
k=1

∫
S k

n+1

sk
n+1d H

∣∣∣∣∣≤ N n∑
k=1

∣∣∣∣∣
∫
S k

n+1

sk
n+1cdλd

∣∣∣∣∣
≤ c

N n∑
k=1

∫
S k

n+1

∣∣∣sk
n+1

∣∣∣dλd = c
N n∑
k=1

∫
S k

n+1

dλd = c
N n∑
k=1

λd

[
S k

n+1

]
= cen .

We conclude by noting that, since en > 0 and en/en−1 = f (α) < 1 by assumption, en goes to
zero exponentially in n. 2

In order for (3.6) to hold, it is sufficient that vH is bounded on
⋃N n

k=1 S k
n+1 for n large enough.

Define the curve Γs as

Γs =
{

(x1, . . . , xd) ∈Rd :
d∑

k=1
xk = s

}
. (3.7)

The following theorem states that the L1-distance from the curveΓs of each point in
⋃N n

k=1 S k
n+1

is bounded by γn s, for some γ ∈ (0,1). This implies that this distance goes to zero in the limit as
n →∞. For Theorem 3.2 to hold, it is then sufficient to require that H has a bounded density
only in a neighborhood of Γs . We will discuss this assumption further in Section 8.
Theorem 3.3 If x ∈⋃N n

k=1 S k
n+1, then its L1-distance from the curve Γs is bounded by γn s, with

γ= max{1−α, |1−dα|} < 1.
Proof. We denote by bk,r

n and, respectively, i r
j for r ∈ D the d components of the vectors bk

n

and, respectively, i j . We prove by induction on n that

d∑
r=1

bk,r
n +hk

n = s, for all k = 1, . . . , N n−1 and n ≥ 1. (3.8)

For n = 1, the statement is true since there is only one simplex with b1
1 = 0 and h1

1 = s. Now
assume the statement holds for n. By (3.2), we have that, for all j = 1, . . . , N and k = 1, . . . , N n−1,

6

d∑
r=1

bN k−N+ j ,r
n+1 +hN k−N+ j

n+1

=
d∑

r=1

(
bk,r

n +αhk
n i r

j

)
+ (1−#i jα)hk

n =
d∑

r=1
bk,r

n +αhk
n

d∑
r=1

i r
j +hk

n −αhk
n#i j =

d∑
r=1

bk,r
n +αhk

n#i j +hk
n −αhk

n#i j =
d∑

r=1
bk,r

n +hk
n = s,

where the last inequality is the induction assumption. Due to (3.8), every simplex S k
n+1 gener-

ated by the AEP algorithm has the diagonal face lying on the curve Γs . As a consequence, the
L1-distance from Γs of each point in S k

n+1 is strictly smaller than the distance of the vector

bk
n+1, which is

∣∣hk
n+1

∣∣. For a fixed n and k = 1, . . . N n−1, we have that
∣∣∣hN k−N+ j

n+1

∣∣∣≤ γ ∣∣hk
n

∣∣ for all

j = 1, . . . , N . Hence

max
k=1,...,N n

∣∣∣hk
n+1

∣∣∣= γnh1
1 = γn s, with γ ∈ (0,1), (3.9)

where equality holds as, for every n ≥ 1, we have that
∣∣∣hN k−N+ j

n+1

∣∣∣= γ ∣∣hk
n

∣∣ for j = 1 or j = N . 2

4. Choice ofα

As already remarked, the AEP algorithm depends on the choice of the parameter α. It is
important to note that, in general, an optimal choice of α would depend on the measure VH .
In the proof of Theorem 3.2, we proved that

|Pn(s)−VH [S (0, s)]| ≤C f (α)n ,

where C is a positive constant. Since we want to keep our algorithm independent of the choice
of the distribution H , we suggest to use the α∗ which minimizes f (α), i.e.

α∗ = argminα∈[1
d ,1

) f (α) = 2

d +1
.

Some values of α∗, and the corresponding optimal volume factors f (α∗) are given in Table 1
for dimensions d ≤ 7.

d α∗ f (α∗) d α∗ f (α∗)

2 2
3

1
3 5 1

3
23
27

3 1
2

1
2 6 2

7 > 1

4 2
5

83
125 7 1

4 > 1

Table 1
Values for α∗ and f (α∗) for dimensions d ≤ 7.

We will show that using α∗ has several desirable consequences. First of all, when α = α∗
and the dimension d is odd, in the measure decomposition (3.1), a number of

(d
(d+1)/2

)
sim-

plexes have the corresponding coefficient m j equal to zero and can therefore be neglected,
increasing the computational efficiency of the algorithm. For example, in the decomposition
of a three dimensional simplex, the algorithm generates only 4 new simplexes at every itera-
tion with α=α∗, instead of the 2d −1 = 7 generated with any other feasible value of α. Hence,
for α=α∗, the number of new simplexes generated at each step is given by the function

7

fS (d) =
{

2d −1, if d is even,

2d −1− (d
(d+1)/2

)
, if d is odd;

(4.1)

see Section 5 for further details on this.
The choice α=α∗ will show to be convenient also because, as stated in the proof of Theo-

rem 3.3, we have that

[0,+∞)d ∩
(

N n−1⋃
k=1

S k
n

)
⊂S (0, (1+γn)s) \S (0, (1−γn)s) (4.2)

with γ= max{1−α, |1−dα|}. It is straightforward to see that α∗ also minimizes γ.
As illustrated in Table 1, Theorem 3.2 states the convergence of the sequence Pn(s) when

d ≤ 5. Various elements affect the speed at which Pn(s) converges. First of all, it is in general
always possible to put probability mass in a smooth way in a neighborhood of the curve Γs

in order to seriously affect the convergence rate of Pn(s). For the distributions of financial
and actuarial interest used in Section 6, the algorithm performs very well; slow convergence
is typically restricted to more pathological cases. We also have to consider that, for the same
distribution H , it is in general required to compute the distribution of Sd at different thresh-
olds s; see Section 6. Problems as described in Section 8 below may then occur only at a few
points s.

A more relevant issue is the fact that the memory required by the algorithm to run the n-th
iteration increases exponentially in n. At each iteration of the algorithm, every simplex S k

n
produces one hypercube and a number fS (d) of new simplexes to be passed to the following
iteration; see (4.1). The computational effort in the (n−1)-th step thus increases as O(fS (d)n).
While the dimensions d ≤ 5 are manageable, as reported in Section 6, the numerical complex-
ity for d ≥ 6 increases considerably and quickly exhausts memory of a standard computer.

Finally, choosing α=α∗ also allows to increase the accuracy of the AEP algorithm and, un-
der slightly stronger assumptions on H , will lead to convergence of AEP in higher dimensions,
as we discuss in Section 5 below.

We now give some examples of the first step (n = 1) of the measure decomposition (3.1)
obtained by choosing b = 0, s = 1,α=α∗, for d = 2,3:
– In the case d = 2, with α= 2/3, we obtain (see Figure 2):

VH [S ((0,0),1)] =VH [Q((0,0),2/3)]+VH [S ((0,2/3),1/3)]

+VH [S ((2/3,0),1/3)]−VH [S ((2/3,2/3),−1/3)] .

– In the case d = 3, with α= 1/2, we obtain (see Figure 3):

VH [S ((0,0,0),1)] =VH [Q((0,0,0),1/2)]+VH [S ((1/2,0,0),1/2)]

+VH [S ((0,1/2,0),1/2)]+VH [S ((0,0,1/2),1/2)]−VH [(1/2,1/2,1/2),−1/2)] .

5. An improvement of the numerical accuracy of the algorithm via extrapolation

In this section, we introduce a method to increase the accuracy of the AEP algorithm. This
method is based on the choice α = α∗ as discussed in Section 4. To this end, we will make
the stronger assumption that the joint distribution H has a twice continuously differentiable
density vH , with bounded derivatives. This will allow to approximate the density vH by its
linear Taylor expansion, providing a good estimate of the approximation error of AEP after a
number of iterations.

8

Fig. 2. The decomposition of a simplex by the AEP algorithm in the case d = 2.

Fig. 3. The decomposition of a simplex by the AEP algorithm in the case d = 3.

We first need two simple integration results. Denoting by Sd−1 a simplex in dimension (d −
1), for all s > 0, we have

∫
S (0,s)

xd d x =
∫ s

0

∫ s−xd

0
· · ·

∫ s−∑d
k=3 xk

0

∫ s−∑d
k=2 xk

0
xd ⊗d

k=1 (dxk)

=
∫ s

0
xd

∫ s−xd

0
· · ·

∫ s−∑d
k=3 xk

0

∫ s−∑d
k=2 xk

0
⊗d

k=1(dxk)

=
∫ s

0
xdλd−1 [Sd−1(0, s −xd)]dxd =

∫ s

0
xd

(s −xd)d−1

(d −1)!
dxd = sd+1

(d +1)!
.

Analogously, for all s > 0, we have

∫
Q(0,αs)

xd d x =
∫ αs

0

∫ αs

0
· · ·

∫ αs

0
xd ⊗d

k=1 (dxk)

=
∫ αs

0
xd

∫ αs

0
· · ·

∫ αs

0
⊗d

k=1(dxk) = (αs)d−1
∫ αs

0
xd dxd = 1/2(αs)d+1 .

We now compute the VH -measures of a hypercube and a simplex in the basic case in which
the distribution H has a linear density, i.e. vH (b+x) = a+∑d

k=1 ck xk , for x ∈S (0, s)∪Q(0,αs).
For all s > 0, we obtain

9

VH [S (b, s)] = a
∫
S (0,s)

dx +
d∑

k=1
ck

∫
S (0,s)

xk dx

= a
sd

d !
+ sd+1

(d +1)!

(
d∑

k=1
ck

)
= sd

d !

(
a + s

d +1

d∑
k=1

ck

)
, (5.1)

VH (Q (b,αs)) = a
∫
Q(0,αs)

dx +
d∑

k=1
ck

∫
Q(0,αs)

xk dx

= a(αs)d + 1

2

(
d∑

k=1
ck

)
(αs)d+1 = (αs)d

(
a + 1

2
αs

d∑
k=1

ck

)
. (5.2)

Thus, for a linear density vH , the ratio VH [S (b, s)]/VH [Q(b,αs)] can be made independent
from the parameters b, s, a and from the ck ’s by choosing α=α∗ = 2

d+1 , for which we have

VH [S (b, s)] = (d +1)d

2d d !
VH

[
Q(b,α∗s)

]
. (5.3)

With analogous computations, we obtain the same result for s < 0. The following theorem
shows that (5.3) analogously holds for any sufficiently smooth density, in the limit as the num-
ber n of iterations of the AEP algorithm goes to infinity.
Theorem 5.1 Assume that H has a twice continuously differentiable density vH , with all par-
tial derivatives of first and second order bounded by some constant D. Then, we have that

lim
n→+∞ max

k=1,...,N n−1

∣∣∣∣∣VH

[
S (bk

n ,hk
n)

]
− (d +1)d

2d d !
VH

[
Q(bk

n ,α∗hk
n)

]∣∣∣∣∣= 0. (5.4)

Proof. For a given bk
n , we can use Taylor expansion to find some coefficients a and ck ,k =

1, . . . ,d , depending on bk
n , such that

vH (bk
n +x) = a +

d∑
k=1

ck xk +
∑
|β|=2

Rβ(x)xβ for all x ∈B(bk
n), (5.5)

where B(bk
n) is a ball in Rd centered at bk

n such that B(bk
n) ⊃ S (bk

n ,hk
n)∪Q(bk

n ,α∗hk
n). Note

that in equation (5.5) we used multi-index notation to indicate that the sum in the last equa-
tion extends over multi-indices β ∈Nd . Using the assumption on the partial derivatives of vH ,
the remainder term Rβ(x) satisfies the inequality

∣∣Rβ(x)
∣∣≤ sup

x∈B(bk
n)

∣∣∣∣∣ 1

β!

∂βvH (x)

∂xβ

∣∣∣∣∣≤ D, (5.6)

for all β with
∣∣β∣∣ = 2. Using (5.5), and recalling the expressions (5.1) and (5.2) for a linear

density and a positive hk
n , we calculate that∣∣∣∣∣VH

[
S (bk

n ,hk
n)

]
− (d +1)d

2d d !
VH

[
Q(bk

n ,αhk
n)

]∣∣∣∣∣=∣∣∣∣∣
(
hk

n

)d

d !

(
a + hk

n

d +1

d∑
k=1

ck

)
+

∫
S (0,hk

n)

∑
|β|=2

Rβ(x)xβd x

− (d +1)d

2d d !

((
αhk

n

)d
(

a + 1

2
αhk

n

d∑
k=1

ck

)
+

∫
Q(0,αhk

n)

∑
|β|=2

Rβ(x)xβd x

)∣∣∣∣∣ .

10

Choosing α=α∗, the previous expression simplifies to∣∣∣∣∣VH

[
S (bk

n ,hk
n)

]
− (d +1)d

2d d !
VH

[
Q(bk

n ,α∗hk
n)

]∣∣∣∣∣
=

∣∣∣∣∣
∫
S (0,hk

n)

∑
|β|=2

Rβ(x)xβd x − (d +1)d

2d d !

∫
Q(0,α∗hk

n)

∑
|β|=2

Rβ(x)xβd x

∣∣∣∣∣
≤

∣∣∣∣∣ ∑
|β|=2

∫
S (0,hk

n)
Rβ(x)xβd x

∣∣∣∣∣+ (d +1)d

2d d !

∣∣∣∣∣ ∑
|β|=2

∫
Q(0,α∗hk

n)
Rβ(x)xβd x

∣∣∣∣∣
≤ D

(∣∣∣∣∣ ∑
|β|=2

∫
S (0,hk

n)
xβd x

∣∣∣∣∣+ (d +1)d

2d d !

∣∣∣∣∣ ∑
|β|=2

∫
Q(0,α∗hk

n)
xβd x

∣∣∣∣∣
)

,

where the last inequality follows from (5.6). Using that∑
|β|=2

∫
S (0,s)

xβd x =
d∑

i=1

∫
S (0,s)

x2
i d x +2

∑
1≤i< j≤d

∫
S (0,s)

xi x j d x

= 2d sd+2

(d +2)!
+ 2d(d −1)sd+2

(d +2)!
= 2d 2sd+2

(d +2)!
,

and ∑
|β|=2

∫
Q(0,αs)

xβd x =
d∑

i=1

∫
Q(0,αs)

x2
i d x +2

∑
1≤i< j≤d

∫
Q(0,αs)

xi x j d x

= d (αs)d+2

3
+ 2d(d −1)(αs)d+2

4
= d(3d −1)(αs)d+2

6
,

we finally obtain ∣∣∣∣∣VH

[
S (bk

n ,hk
n)

]
− (d +1)d

2d d !
VH

[
Q(bk

n ,α∗hk
n)

]∣∣∣∣∣≤ A
∣∣∣hk

n

∣∣∣d+2
, (5.7)

where A is a positive constant depending only on the dimension d and the distribution H .
Note that in (5.7) we write hk

n in absolute value in order to consider the completely analo-
gous case in which hk

n is negative. Recalling from (3.9) that maxk=1,...,N n−1

∣∣hk
n

∣∣ = γn−1s, for

γ= |1−dα∗| = d−1
d+1 < 1, yields the theorem. 2

Equation (5.4) gives a local estimator of the mass of the simplex S (bk
n ,hk

n) in terms of the
volume of the corresponding hypercube Q(bk

n ,hk
n), which is straightforward to compute:

VH

[
S (bk

n ,hk
n)

]
≈ (d +1)d

2d d !
VH

[
Q

(
bk

n ,
2hk

n

d +1

)]
. (5.8)

In the case that the density vH is sufficiently smooth, it is then possible, after a number of
iterations of AEP, to estimate the right side of (3.5) by using the approximation (5.8). This pro-
cedure defines the estimator P∗

n (s) as

P∗
n (s) = Pn−1(s)+ (d +1)d

2d d !

N n−1∑
k=1

sk
nVH

[
Qk

n

]
. (5.9)

In what follows, the use of P∗
n (s) as an approximation of VH [S (0, s)] will be referred to as the

extrapolation technique. The following theorem shows that P∗
n (s) converges to VH [S (0, s)]

faster, and in higher dimensions, than Pn(s).

11

Theorem 5.2 Under the assumptions of Theorem 5.1, and for d ≤ 8, we have that

lim
n→+∞P∗

n (s) =VH [S (0, s)] .

Proof. Using (3.5) and (5.7) in the definition (5.9) of P∗
n (s), we obtain

E∗(n) = ∣∣VH [S (0, s)]−P∗
n (s)

∣∣
=

∣∣∣∣∣VH [S (0, s)]−Pn−1(s)− (d +1)d

2d d !

N n−1∑
k=1

sk
nVH

[
Qk

n

]∣∣∣∣∣
=

∣∣∣∣∣N n−1∑
k=1

sk
nVH

[
S k

n

]
− (d +1)d

2d d !

N n−1∑
k=1

sk
nVH

[
Qk

n

]∣∣∣∣∣
≤

N n−1∑
k=1

∣∣∣∣∣VH

[
S k

n

]
− (d +1)d

2d d !
VH

[
Qk

n

]∣∣∣∣∣≤ A
N n−1∑
k=1

∣∣∣hk
n

∣∣∣d+2 = Ae∗n−1, (5.10)

where, for the positive sequence e∗n =∑N n

k=1

∣∣hk
n+1

∣∣d+2
, we have that

e∗n
e∗n−1

=
∑N n−1

k=1

∑N
j=1

∣∣∣hN k−N+ j
n+1

∣∣∣d+2

∑N n−1

k=1

∣∣hk
n

∣∣d+2
=

∑N n−1

k=1

∑d
j=1

(d
j

)∣∣1− jα∗∣∣d+2 ∣∣hk
n

∣∣d+2

∑N n−1

k=1

∣∣hk
n

∣∣d+2

=
∑N n−1

k=1

∣∣hk
n

∣∣d+2 ∑d
j=1

(d
j

)∣∣1− jα∗∣∣d+2

∑N n−1

k=1

∣∣hk
n

∣∣d+2
=

d∑
j=1

(
d

j

)∣∣1− jα∗∣∣d+2 .

The theorem follows by noting that the factor f∗(d), defined as

f∗(d) =
d∑

j=1

(
d

j

)∣∣1− jα∗∣∣d+2 , (5.11)

is lower than 1 for d ≤ 8; see Table 2. In these dimensions, e∗n , and hence E∗(n), converge to
zero. 2

We remark that, due to Theorem 3.3, Theorem 5.2 remains valid also in the case H satisfies
the extra smoothness conditions on its first and second derivatives only in a neighborhood
of Γs . Moreover, under the assumptions of Theorem 5.1, it is possible to calculate an upper
bound for the error E∗(n) as a function of the number of evaluations performed by AEP. In-
deed, (5.10) can be rewritten as

E∗(n) ≤ A f∗(d)n . (5.12)

We now denote by M(n) the total number of evaluations of the joint distribution H performed
by AEP after the n-th iteration. M(n) (as well as the computational time used) is proportional
to the number of simplexes fS (d)n−1 passed to the n-th iteration. For all n ≥ 2, we have that

M(n) =
n−1∑
k=0

2d fS (d)k = 2d

fS (d)−1

(
fS (d)n −1

)≥ (
2d

fS (d)−1
−1

)
fS (d)n = B fS (d)n . (5.13)

B is a positive constant depending only on the dimension d . Combining (5.12) and (5.13) gives

E(n) ≤ A

(
M(n)

B

) ln f∗(d)
ln fS (d)

. (5.14)

Then (5.14) provides an upper bound on the AEP approximation error E∗(n) as a function

of the number of evaluations performed. The polynomial rate of convergence ln f∗(d)
ln fS (d) of this

12

bound depends only on the dimensionality d . In Table 2 we calculate this bound for dimen-
sions d ≤ 8. These numbers can be useful in order to compare the efficiency of AEP with
respect to other algorithms, such as Monte Carlo methods (see Section 7 and Table 11).

d 2 3 4 5 6 7 8 9

f∗(d) 0.0370 0.1250 0.2339 0.3580 0.4982 0.6556 0.8314 >1

fS (d) 3 4 15 21 63 92 255 385

ln f∗(d)
ln fS (d) -3 -1.5 -0.54 -0.34 -0.17 -0.09 -0.033 na

Table 2
Number fS (d) of new simplexes produced at each iteration, extrapolation error ratio f∗(d) as defined in (5.11), and
convergence rates of the AEP extrapolation error as a function of the number of evaluations performed by the algo-
rithm. For d = 9 convergence of AEP is not assured (na).

6. Applications

In this section we test the AEP algorithm on some risk vectors (X1, . . . , Xd) of financial and
actuarial interest. For illustrative reasons, we will provide the distribution H in terms of the
marginal distributions FXi and copula C of the vector (X1, . . . , Xd). For the theory of copulas,
we refer the reader to Nelsen (2006).

In Table 3 we consider a two-dimensional portfolio (d = 2) with Pareto marginals, i.e.

FXi (x) =P[Xi ≤ x] = 1− (1+x)−θi , x ≥ 0, i = 1,2,

with tail parameters θ1 = 0.9,θ2 = 1.8. We couple these Pareto marginals via a Clayton copula
C =CC l

δ
with

CC l
δ (u1, . . . ,ud) =

(
u−δ

1 +u−δ
2 +·· ·+u−δ

d −d +1
)−1/δ

, uk ∈ [0,1],k ∈ D.

The parameter δ is set to 1.2. For the above described portfolio, we compute the approxima-
tion Pn(s) (see (3.3)), at some given thresholds s and for different numbers of iterations n of
the algorithm. The thresholds s are chosen in order to have estimates in the center as well as in
the (heavy) tail of the distribution. For each n, we provide the computational time needed to
obtain the estimate on a Apple MacBook (2.4 GHz Intel Core 2 Duo, 2 GB RAM). We also pro-
vide the estimates obtained by using the estimator P∗

n (s) as defined in (5.9). For all iterations
n and thresholds s, in Table 3, we provide the differences Pn(s)−P14(s) or P∗

n (s)−P14(s). This
has been done in order to show the speed of convergence of the algorithm and the increase in
accuracy due to extrapolation. For a two dimensional vector, we see that all iterations after the
seventh leave the first eight decimal digits of the probability estimate unaltered, and this for
all the thresholds. The estimate P7(s), obtained in 1/100-th of a second, could be already con-
sidered reasonably accurate. We also note that extrapolation allows to increase the accuracy
of the estimates by two decimal digits on average, and this without increasing computational
time.

In Tables 4(d = 3) to 6(d = 5) we perform the same analysis for different Clayton-Pareto
models in which we progressively increase the number of random variables involved. In order
to keep the computational time needed for a single estimate reasonable we were forced to
take smaller number of iterations for the reference value, i.e. we choose n = 12 for d = 3, n = 7
for d = 4 and n = 6 for d = 5. AEP shows good convergence results for all dimensions d and

13

thresholds s under study. In higher dimensions d , the extrapolation technique still seems to
provide relevant extra accuracy. Memory constraints made estimates for d = 6 prohibitive. For
dimensions 2 ≤ d ≤ 5, Figure 5 shows that the average computational time needed by AEP to
provide a single estimate increases exponentially in the number of iterations n.

Note that Tables 3-6 give information only about the convergence of the algorithm to a
certain value, but do not say anything about the correctness of the limit, since we do not
have analytical methods to compute VH [S (0, s)] when the vector (X1, . . . , Xd) has a general
dependence structure C .

In practice, it possible to test the accuracy of AEP in particular cases when the Xi are inde-
pendent or comonotonic. Some test cases are analyzed in Tables 7(d = 2) to 9(d = 4), where
we still assume to have Pareto marginals, but coupled by a Gumbel copula C =CGu

γ in which
the parameter γ≥ 1 is allowed to vary. Formally, we have

CGu
γ (u1, . . . ,ud) = exp

(
−[

(− lnu1)γ+ (− lnu2)γ+ . . . (− lnud)γ
]1/γ

)
, uk ∈ (0,1],k = 1, . . . ,d .

In the above mentioned tables, the multivariate model varies from independence (γ = 1), to
comonotonicity (γ = +∞). In these two extreme (with respect to the dependence parameter
γ) cases we compare the analytical values for VH [S (0, s)] with their AEP estimates. Tables 3-6
show that the extrapolated estimator P∗

n (s) provides accurate estimates within a very reason-
able computational time. A comparison with alternative methods is discussed in Section 7.

The possibility of computing the value VH [S (0, s)] independently from AEP also allows
us to test more specifically the effect of extrapolation. For this, we consider two- and three-
dimensional vectors of independent Pareto marginals. Figure 4 shows the increase of accuracy
due to extrapolation. Therefore, under a smooth model for H (see Theorem 5.1), the extrapo-
lated estimator P∗

n (s) is to be preferred to Pn(s).
Of course, the AEP algorithm can be used to find estimates for the quantile function, i.e. for

the inverse of the distribution of the sum Sd . Such quantiles are especially useful in finance
and insurance, where they are generally referred to as Value-at-Risk (VaR) or return periods.
In Table 10 we calculate, by numerical inversion, VaR at different quantile levels α for two
different three-dimensional portfolios of risks. In order to calculate VaR values, we use root-
finding algorithms like the bisection method.

We finally remark that the choice of the copula families (Clayton, Gumbel) and marginal
distributions used in this section is purely illustrative and does not affect in any way the func-
tioning of AEP algorithm. The same performances were reached for vectors showing negative
dependence, as in the case of d Pareto marginals coupled by a Frank copula with negative
parameter.

7. A comparison with Monte Carlo, Quasi-Monte Carlo and quadrature methods

For the estimation of VH [S (0, s)], the main competitors of the AEP algorithm are probably
Monte Carlo and quasi-Monte Carlo methods. Given M points x1, . . . , xM in S (0, s), it is pos-
sible to approximate VH [S (0, s)] by the average of the density function vH evaluated at those
points, i.e.

VH [S (0, s)] =
∫
S (0,s)

d H(x) ' 1

M

M∑
i=1

vH (xi). (7.1)

If the xi ’s are chosen to be (pseudo)randomly distributed, this is the Monte Carlo (MC) method.
If the xi ’s are chosen as elements of a low-discrepancy sequence, this is the Quasi-Monte Carlo

14

n = 14 n = 7 n = 7∗ n = 10 n = 10∗ n = 13 n = 13∗

(ref. value, 4.87 sec.) (0.01 sec.) (0.01 sec.) (0.06 sec.) (0.06 sec.) (1.61 sec.) (1.61 sec.)

s = 1 0.315835041363400 -4.46e-09 -1.45e-11 -6.12e-12 3.33e-15 2.05e-15 1.24e-14

s = 100 0.983690398912818 -3.10e-10 1.83e-09 -1.30e-12 -1.29e-14 2.88e-14 2.94e-14

s = 10000 0.999748719228269 -6.62e-08 -4.13e-08 -5.28e-12 6.49e-11 7.83e-14 8.08e-14

s = 1000000 0.999996018907898 -1.63e-09 -1.22e-09 -5.34e-11 -3.83e-11 -1.81e-13 1.06e-13

Table 3
Values for Pn (s) and P∗

n (s) (starred columns) for the sum of two Pareto distributions with parameters θ1 = 0.9 and
θ2 = 1.8, coupled by a Clayton copula with parameter δ= 1.2. For all n < 14, we give the difference from the reference
value P14(s).

n = 12 n = 7 n = 7∗ n = 9 n = 9∗ n = 11 n = 11∗

(ref. value, 26.65 sec.) (0.02 sec.) (0.02 sec.) (0.41 sec.) (0.41 sec.) (6.65 sec.) (6.65 sec.)

s = 1 0.190859309168541 -2.28e-06 8.80e-07 -8.48e-08 3.36e-08 2.63e-09 1.84e-09

s = 100 0.983659546331932 -1.76e-05 1.14e-06 -6.51e-07 3.04e-07 -1.84e-08 1.45e-08

s = 10000 0.999748691148512 -1.70e-06 -1.10e-06 -3.69e-07 -2.21e-07 -4.66e-08 -1.18e-08

s = 1000000 0.999996018044029 -2.73e-08 -1.78e-08 -6.14e-09 -3.79e-09 -8.78e-10 -2.94e-10

Table 4
The same as Table 3 for the sum of three Pareto distributions with parameters θ1 = 0.9, θ2 = 1.8, θ3 = 2.6, coupled by
a Clayton copula with parameter δ= 0.4.

n = 7 n = 4 n = 4∗ n = 5 n = 5∗ n = 6 n = 6∗

(ref. value, 107.70 sec.) (0.03 sec.) (0.03 sec.) (0.47 sec.) (0.47 sec.) (7.15 sec.) (7.15 sec.)

s = 10 0.833447516734442 -6.31e-03 9.42e-05 -2.21e-03 3.71e-04 -6.04e-04 4.00e-04

s = 100 0.983412214152579 -1.61e-03 -4.95e-04 -7.14e-04 -1.54e-04 -2.45e-04 5.01e-05

s = 1000 0.997950264030106 -2.14e-04 -7.37e-05 -9.91e-05 -2.70e-05 -3.60e-05 3.68e-06

s = 10000 0.999742266243751 -2.69e-05 -9.30e-06 -1.25e-05 -3.42e-06 -4.54e-06 4.52e-07

Table 5
The same as Table 3 for the sum of four Pareto distributions with parameters θ1 = 0.9, θ2 = 1.8, θ3 = 2.6, θ4 = 3.3,
coupled by a Clayton copula with parameter δ= 0.2.

n = 6 n = 3 n = 3∗ n = 4 n = 4∗ n = 5 n = 5∗

(ref. value, 92.91 sec.) (0.01 sec.) (0.01 sec.) (0.20 sec.) (0.20 sec.) (4.37 sec.) (4.37 sec.)

s = 10 0.824132635126808 -3.12e-02 3.89e-03 -1.55e-02 5.66e-04 -7.77e-03 1.46e-04

s = 100 0.983253494805448 -5.30e-03 5.07e-05 -2.86e-03 -3.57e-04 -1.54e-03 -1.90e-04

s = 1000 0.997930730055234 -6.72e-04 -5.23e-06 -3.66e-04 -5.29e-05 -1.99e-04 -2.83e-05

s = 10000 0.999739803851201 -8.45e-05 -7.22e-07 -4.61e-05 -6.67e-06 -2.51e-05 -3.57e-06

Table 6
The same as Table 3 for the sum of five Pareto distributions with parameters θ1 = 0.9, θ2 = 1.8, θ3 = 2.6, θ4 = 3.3,
θ5 = 4, coupled by a Clayton copula with parameter δ= 0.3.

15

γ= 1 (exact) γ= 1 γ= 1.25 γ= 1.5 γ= 1.75 γ=+∞ γ=+∞ (exact)

s = 1 0.2862004 0.2862004 0.3280000 0.3527174 0.3682522 0.4108029 0.4108027

s = 100 0.9898913 0.9898913 0.9895957 0.9894472 0.9893640 0.9891761 0.9891761

s = 1000 0.9989990 0.9989990 0.9989857 0.9989798 0.9989766 0.9989700 0.9989700

s = 10000 0.9999000 0.9999000 0.9998995 0.9998993 0.9998992 0.9998990 0.9998990

Table 7
Values for P∗

n (s) for the sum of two Pareto distributions with parameters θi = i , i = 1,2, coupled by a Gumbel copula
with parameter γ. The values in the first and in the last column are calculated analytically. The computational time
for each estimate in this table is 0.53 sec. with n = 12.

γ= 1 (exact) γ= 1 γ= 1.25 γ= 1.5 γ= 1.75 γ=+∞ γ=+∞ (exact)

s = 1 0.1709337 0.1709337 0.2348582 0.2743918 0.2994054 0.3667285 0.3666755

s = 100 0.9898380 0.9898380 0.9893953 0.9891754 0.9890526 0.9887811 0.9887760

s = 1000 0.9989985 0.9989985 0.9989812 0.9989734 0.9989692 0.9989604 0.9989606

s = 10000 0.9999000 0.9999000 0.9998994 0.9998992 0.9998991 0.9998988 0.9998988

Table 8
The same as Table 7 for the sum of three Pareto distributions with parameters θi = i , i = 1,2,3, coupled by a Gumbel
copula with parameter γ. The computational time for each estimate in this table is 6.65 sec. with n = 11.

γ= 1 (exact) γ= 1 γ= 1.25 γ= 1.5 γ= 1.75 γ=+∞ γ=+∞ (exact)

s = 1 0.1040880 0.1040713 0.1762643 0.2244387 0.2555301 0.3387648 0.3390320

s = 100 0.9898032 0.9896608 0.9892592 0.9890502 0.9889268 0.9886415 0.9885287

s = 1000 0.9989981 0.9989732 0.9989652 0.9989616 0.9989595 0.9989743 0.9989558

s = 10000 0.9999000 0.9998973 0.9998973 0.9998973 0.9998973 0.9998973 0.9998987

Table 9
The same as Table 7 for the sum of four Pareto distributions with parameters θi = i , i = 1,2,3,4 coupled by a Gumbel
copula with parameter γ. The computational time for each estimate in this table is 7.15 sec. with n = 6.

(a) (b)

α VaRα α VaRα α VaRα α VaRα

0.9 24.76 0.9999 3394.78 0.9 32.87 0.9999 112442.31

0.99 137.67 0.99999 17962.78 0.99 445.36 0.99999 1903698.40

0.999 700.20 0.999999 108190.96 0.999 6864.58 0.999999 32889360.00

Table 10
Value-at-Risk for: (a) a three dimensional portfolio with marginals F1 = Exp(0.2), F2 = Logn(µ = −0.5,σ2 = 9/2),
F3 = Pareto(1.2) and a Gumbel copula with γ = 1.3. (b) a three dimensional portfolio with Pareto marginals with
parameters θ1 = 0.8, θ2 = 1, θ3 = 2 and a Clayton copula with δ = 0.4. The computation of all VaR estimates needs
approximately 49 sec. with n = 10.

(QMC) method. A low-discrepancy sequence is a totally determinist sequence of vectors that
generates representative samples from a uniform distribution on a given set. With respect to
Monte Carlo methods, the advantage of using quasi-random sequences is that points can-
not cluster coincidentally on some region of the set. Randomization of a low-discrepancy se-
quence however often improves performance; see L’Ecuyer and Lemieux (2000) on this.

Over the recent years, various methods and algorithms have been developed in order to
reduce the variance of MC and QMC estimators and obtain probabilities of (rare) events with

16

0 2 4 6 8 10 12 14
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

n

Er
ro

r

without extrapolation
with extrapolation

0 2 4 6 8 10 12 14
10−12

10−10

10−8

10−6

10−4

10−2

100

n

Er
ro

r

without extrapolation
with extrapolation

Fig. 4. Error committed by the AEP algorithm with and without the use of extrapolation technique for two test port-
folios: two (left) and three (right) independent Pareto marginals with parameters θi = i , i = 1,2,3.

0 2 4 6 8 10 12 14 16

1 min

1 sec

0.01 sec

n

d=2

d=3

d=4

d=5

Fig. 5. AEP computational time (on a log-scale), as a function of the number of iterations n, for dimensions 2 ≤ d ≤ 5.

a reasonable precision and effort. For details on the theory of rare event simulation within MC
methods, we refer the reader to the monographs Asmussen and Glynn (2007), Glasserman
(2004), and McLeish (2005, 2008). For an introduction to Quasi-Monte Carlo methods and
recent improvements, we refer for instance to Niederreiter (1992) and L’Ecuyer and Lemieux
(2000). A comprehensive overview of both methods is given in Weinzierl (2000).

Using Central Limit Theorem arguments, it is possible to show that traditional MC, using
(pseudo) random numbers, has a convergence rate of O(M−1/2), and this independently of the
number of dimensions d . QMC can be much faster than MC with errors approaching O(M−1)
in optimal cases (see Morokoff (1998)), but the worst theoretic rate of convergence decreases
with the dimension d as O((log M)d M−1); see Niederreiter (1992). In applications to finance
and insurance, it is more common to get results closer to the best rate of convergence if the
density vH is smooth, i.e. having a Lipschitz-continuous second derivative. In this case, it is
possible to show that the convergence rate is at least O((log M)d M−3/2); see Caflisch et al.
(1997). In Table 11 we compare convergence rates of MC and QMC methods with respect
to the AEP rates (depending on d) as provided in Section 5. We thus expect a well-designed

17

QMC algorithm to asymptotically perform better than AEP under a smooth probability model
and for dimensions d ≥ 4. In this table, we considered only the dimensions d ≤ 5 which are
manageable from a computational viewpoint; see Section 6 on this.

d 2 3 4 5

AEP (upper bound) M−3 M−1.5 M−0.54 M−0.34

MC M−0.5 M−0.5 M−0.5 M−0.5

QMC (best) M−1 M−1 M−1 M−1

QMC (worst) M−1(log M)2 M−1(log M)3 M−1(log M)4 M−1(log M)5

Table 11
Asymptotic convergence rates of the AEP, standard MC and QMC methods.

Don McLeish kindly adapted an algorithm using a randomized Korobov low discrepancy
sequence to the portfolio leading to Table 3. The parameters for the sequence are those rec-
ommended in Gill and Lemieux (2007). The standard errors (s.e.) are obtained by indepen-
dently randomizing ten (part (a) of the table) and fifty (part (b) of the table) sequences with 1
million terms each, corresponding to M =1e07 (a) and M =5e07 (b). The average CPU times
are of course on a different machine (IBM Thinkpad 2.5 GHz Intel Core 2 Dual, 4 GB RAM).
In Table 12, we provide the comparison between QMC and AEP extrapolated estimates. The
results seem to be coherent with Table 11 above. For the same precision, AEP is much faster
than QMC in the two-dimensional example, and slightly slower for d = 4. Recall that, in higher
dimensions, programming a randomized Korobov rule is much more demanding than using
AEP.

What is important to stress here is that in MC and randomized QMC methods similar to the
one applied in Table 12, the final estimates contain a source of randomness. Contrary to this,
the AEP algorithm is deterministic, being solely based on geometrical properties of a certain
domain. Moreover, the accuracy of MC and QMC methods is generally lost for problems in
which the density vH is not smooth or cannot be given in closed form, and comes at the price
of an adaptation of the sampling algorithm to the specific example under study. Recall that the
AEP algorithm does not require the density of the distribution H in analytic form nor has to
assume its smoothness overall its domain. Finally, the precision of MC methods depends on
the threshold s at which VH [S (0, s)] is evaluated: estimates in the (far) tail of the distribution
will be less accurate.

(a) AEP estimate QMC estimate QMC s.e. (b) AEP estimate QMC estimate QMC s.e.

s (n = 14, 4.87 sec.) (M =1e07, 6.6 sec.) s (n = 7, 107.70 sec.) (M =5e07, 95 sec.)

100 0.315835041363413 0.3158345 2.7e-06 101 0.833826902853978 0.83380176 3.6e-06

102 0.983690398912470 0.98369106 1.0e-06 102 0.983565803484355 0.98362452 9.0e-07

104 0.999748719228038 0.99974872 1.5e-07 103 0.997972831330699 0.997997715 2.3e-07

106 0.999996018907752 0.999996 4.0e-08 104 0.999745113409911 0.999748680 5.0e-08

Table 12
AEP and QMC (using Korobov sequence) estimates for VH [S (0, s)] for the sum of: (a) two Pareto distributions with
parameters θ1 = 0.9 and θ2 = 1.8, coupled by a Clayton copula with parameter δ = 1.2; (b) four Pareto distributions
with parameters θ1 = 0.9, θ2 = 1.8, θ3 = 2.6, θ4 = 3.3, coupled by a Clayton copula with parameter δ= 0.2. Computa-
tional times are also provided.

18

The re-tailoring of the rule to be iterated, from example to example, is common also to
other numerical techniques for the estimation of VH [S (0, s)] such as quadrature methods;
see Davis and Rabinowitz (1984) and Press et al. (2007) for a review. However, in the compu-
tation of multi-dimensional integrals as in (7.1), numerical quadrature rules are typically less
efficient than MC and QMC since they must be applied iteratively.

We are of course aware that a well-designed quadrature rule or a specific quasi-random se-
quence might perform better than AEP in a specific example, both with respect to accuracy
as well as computational effort. However, AEP provides very accurate estimates of the distri-
bution of sums up to five dimensions in a reasonable time and this without the need to adapt
to the probabilistic model under study. AEP can handle in a uniform way any joint distribu-
tion H , possibly in the form of its copula and marginals distributions. Because of its easiness
to use and the very weak assumptions upon which it is based, AEP offers a competitive tool
for the computation of the distribution function of a sum of up to five random variables. A
web-based, user-friendly version has been programmed.

8. Final remarks

In this paper, we introduce the AEP algorithm in order to compute numerically the distri-
bution function of the sum of d random variables X1, . . . , Xd with given joint distribution H .
The algorithm is mainly based on two assumptions: the random variables Xi are bounded
from below, and the distribution H has a bounded density in a neighborhood of the curve Γs

defined in (3.7). Under this last assumption, the sum Sd has to be continuous at the threshold
s where the distribution is calculated, i.e. P[Sd = s] = 0. When VH [Γs] > 0 instead, the algo-
rithm may fail to converge. As an example, take two random variables X1 and X2 with P[X1 =
1/2] = P[X2 = 1/2] = 1. Then, VH [S (0,1)] = 1 but the sequence Pn(1) alternates between 0
and 1. Similar examples for arbitrary dimension d can easily be constructed.

If H has at least a bounded density near Γs , then the convergence of the sequence Pn(s) to
the value VH [S (0, s)] is guaranteed. As already remarked, the speed of convergence may vary
depending on the probability mass of a neighborhood of Γs . Tools to increase the efficiency
of the algorithm are therefore much needed in these latter cases.

Open problems

The AEP algorithm has been shown to converge when d ≤ 5 if the joint distribution H of
the vector (X1, . . . , Xd) has a bounded density vH . Under some extra smoothness assumptions
for vH , convergence holds when d ≤ 8. All these conditions can be weakened to hold only in
a neighborhood of the curve Γs , and they are always satisfied in relevant financial/actuarial
applications.

Of course, the algorithm may converge also in higher dimensions, but we were not able to
give a proof of convergence in arbitrary dimensions. The main issue here is represented by the
fact the sequences Pn(s) and P∗

n (s) are not monotonic, and this because the sk
n ’s, as defined

in (3.4), may be positive as well as negative. Recall also that, due to memory constraints, we
were not able to run the algorithm for d > 5 and sufficiently large n. Moreover, we expect the
AEP convergence rates to be better than their upper bounds given in Table 2.

Apart from the study of convergence of AEP in higher dimensions, in future research we will
address also an extension of the algorithm to more general aggregating functionsψ(X1, . . . , Xd),

19

and the study of an adaptive (i.e. depending on H) and more efficient (in terms of new sim-
plexes produced at each iteration) decomposition of the simplexes.

Acknowledgments

The authors are grateful to Don McLeish for providing relevant comments on the paper
and the example illustrated in Table 11. Giovanni Puccetti would like to thank RiskLab and
the Forschungsinstitut für Mathematik (FIM) of the Department of Mathematics, ETH Zurich,
for its financial support and kind hospitality. Philipp Arbenz likes to thank SCOR for financial
support towards the final stages of writing this paper.

Appendix A. Proof of (3.1)

Recall that in Section 1 we denoted with i 0, . . . , i N all the 2d vectors in {0,1}d , with i 0 =
(0, . . . ,0), i k = ek ,k = 1, . . . ,d , and i N = 1 = (1, . . . ,1), where N = 2d −1. Recall also that #i de-
notes the number of 1s in the vector i , e.g. #i 0 = 0,#i N = d .
Theorem A.1 For any b ∈Rd , h ∈R and α ∈ [1/d ,1), we have that

VH [S (b,h)] =VH [Q(b,αh)]+
N∑

j=1
m j VH

[
S (b j ,h j)

]
,

where, for all j = 1, . . . , N ,

b j = b +αhi j , h j = (1−#i jα)h, m j =


(−1)1+#i j if #i j < 1/α,

0 if #i j = 1/α,

(−1)d+1−#i j if #i j > 1/α.

(A.1)

Note that (A.1) is equivalent to (3.1) under the notation introduced in Section 3. In order to
prove the above theorem, we need some lemmas. In the following δi j denotes the Kronecker
delta, i.e.

δi j =
{

0 if i 6= j ,

1 if i = j .

Lemma A.2 Fix i , j ∈ D with i 6= j . Then, for any h, s ∈Rwith hs ≥ 0 and b ∈Rd , we have that

S (b +he i , s)∩S (b +he j , s) =
 S (b +he j +he i , s −h) if |h| < |s| ,

; if |h| ≥ |s| .
Proof of ⊂. First assume 0 < s ≤ h. By definition (1.4), for a vector x ∈S (b +he i , s) we have

that

xk > bk +δi k h,k ∈ D and
d∑

k=1
(xk −bk −δi k h) ≤ s,

from which it follows that

x j ≤ b j + s − ∑
k 6= j

(xk −bk −δi k h) < b j + s ≤ b j +h,

20

i.e. x ∉S (b +he j , s). Now assume that 0 < h < s. For a vector x ∈S (b +he i , s)∩S (b +he j , s)
we have that

xk −bk > 0,k ∈ D with xi > bi +h and x j > b j +h. (A.2)

Again x ∈S (b +he i , s), therefore
∑d

k=1(xk − (bk +hδi k)) ≤ s. Subtracting h from both sides of
the last inequality, we obtain

d∑
k=1

(
xk − (bk +hδi k +hδ j k)

)≤ s −h. (A.3)

Equations (A.2) and (A.3) show that x ∈S (b +he j +he i , s −h). The case h, s < 0 is analogous.
Proof of ⊃. If 0 < s ≤ h, there is nothing to show. Suppose then 0 < h < s. For any fixed

x ∈S (b +he j +he i , s −h), (A.3) holds with xk − (bk +hδi k +hδ j k) > 0,k ∈ D . By adding hδ j k

in the sum on the left-hand side and h to the right-hand side of (A.3), we find that

d∑
k=1

(xk − (bk +hδi k)) ≤ s. (A.4)

Since (xk − (bk +hδi k)) is still positive for all k ∈ D , (A.4) shows that x ∈ S (b +he i , s). By a
similar reasoning, we also have that x ∈S (b +he j , s). The case h, s < 0 is analogous, the case
hs = 0 is trivial. 2

Lemma A.3 For any b ∈Rd , h ∈R and α ∈ (0,1) we have that

S (b,h) \Q(b,αh) =⋃d
k=1 S (b +αhek ,h −αh).

Proof of ⊂. First assume h > 0. If x ∈ S (b,h) \ Q(b,αh) then xk > bk ,k ∈ D and
∑d

k=1(xk −
bk) ≤ h while, by definition (1.2), there exists a j ∈ D such that x j −b j > αh. For this j , it is
then possible to write

d∑
k=1

xk − (bk +δ j kαh) ≤ h −αh with xk − (bk +δ j kαh) > 0,k ∈ D, (A.5)

which yields x ∈⋃d
k=1 S (b +αhek ,h −αh).

Proof of ⊃. Let x ∈ ⋃d
k=1 S (b +αhek ,h −αh), meaning that there exists j ∈ D for which

x satisfies (A.5). It follows that x j > b j +αh (hence x ∉ Q(b,αh)) and
∑d

k=1(xk − bk) ≤ h −
αh +αh = h. Noting that (A.5) also implies xk > bk ,k ∈ D , we finally obtain that x ∈ S (b,h) \
Q(b,αh). The case h < 0 is analogous, while the case h = 0 is trivial. 2

Lemma A.4 For any b ∈Rd , h ∈R and α ∈ [1/d ,1) we have that

Q(b,αh) \S (b,h) =S (b +αh1,h −αdh)∩Q(b,αh).

Proof of ⊂. If α = 1/d , the lemma is straightforward. Choose then α ∈ (1/d ,1) and assume
h > 0. If x ∈ Q(b,αh) \ S (b,h), then xk > bk for all k ∈ D . Since x ∉ S (b,h), it follows that∑d

i=1(xi −bi) > h. Since xk ≤ bk +αh for all k ∈ D , we can write

d∑
k=1

(xk −bk −αh) > h −αdh with xk −bk −αh ≤ 0 for all k ∈ D. (A.6)

As h −dαh = h(1−dα) < 0 we conclude that x ∈S (b +αh1,h −αdh) and hence, by assump-
tion, x ∈S (b +αh1,h −αdh)∩Q(b,αh).

Proof of ⊃. Let x ∈S (b +αh1,h−αdh)∩Q(b,αh). Due to h−αdh < 0, it follows that (A.6)
holds, implying that

∑d
k=1(xk −bk) > h, i.e. x ∉S (b,h). The case h < 0 is analogous, while the

case h = 0 is trivial. 2

We are now ready to prove the main result in this appendix.

21

Proof of Theorem A.1. The case h = 0 is trivial. Suppose then that h 6= 0. From the general
property of two sets A,B that B = (A∪(B \ A))\(A \B), (A \B) ⊂ A∪(B \ A), and A∩(B \ A) =;,
it follows that

VH [S (b,h)] =VH [Q(b,αh)]+VH [S (b,h) \Q(b,αh)]−VH [Q(b,αh) \S (b,h)] . (A.7)

Using the notation S k = S (b +αhek ,h −αh), Lemma A.3 implies for the second summand
in (A.7) that

VH [S (b,h) \Q(b,αh)] =VH

[
d⋃

k=1
S k

]
=

d∑
k=1

(−1)k+1
∑

I⊂D,|I |=k
VH

[⋂
i∈I

S i

]
. (A.8)

Fix I ⊂ D , with I = {n1, . . . ,nk }, using iteratively Lemma A.2 yields

⋂
i∈I

S (b +αheni ,h −αh) =
{

S (b +αh
∑k

j=1 en j ,h(1−kα)) if kα< 1,

; if kα≥ 1.

Substituting this last expression in (A.8) implies

VH [S (b,h) \Q(b,αh)] =
∑

k∈D,
kα<1

(−1)k+1
∑

i r ∈{0,1}d ,
#i r =k

VH [S (b +αhi r ,h(1−kα))]

= ∑
i∈{0,1}d ,

0<#i<1/α

(−1)#i+1VH [S (b +αhi ,h(1−#iα))] . (A.9)

Using Lemma A.4 for the third summand in (A.7), we can also write that

VH [Q(b,αh) \S (b,h)] =VH [S (b +αh1,h −αdh)∩Q(b,αh)]

=VH [S (b +αh1,h −αdh)]−VH [S (b +αh1,h −αdh) \Q(b,αh)] .
(A.10)

Note that if α= 1/d the quantity in (A.10) is zero. We can hence assume that α 6= 1/d . Observ-
ing that Q(b,αh) = Q(b +αh1,−αh), and defining b̂ = b +αh1, α̂ = −α/(1−αd) > 1/d and
ĥ = h(1−αd) we can write

VH [S (b +αh1,h −αdh) \Q(b,αh)] =VH
[
S (b̂, ĥ) \Q(b̂, α̂ĥ)

]
.

Note that the right-hand side of the previous equation is empty if α̂≥ 1, i.e.α ∈ (1/d ,1/(d−1)].
At this point, equation (A.9) yields

VH [S (b +αh1,h −αdh) \Q(b,αh)] =
∑

i∈{0,1}d ,
0<#i<1/α̂

(−1)#i+1VH
[
S (b̂ + α̂ĥi , ĥ(1−#i α̂))

]
= ∑

i∈{0,1}d ,
0<#i<d−1/α

(−1)#i+1VH [S (b +αh(1− i),h(1−α(d −#i)))] .

Substituting î = 1− i (#î = d −#i) in the previous equation, we can equivalently write

VH [S (b +αh1,h −αdh) \Q(b,αh)] =
∑

î∈{0,1}d ,
1/α<#î<d

(−1)d−#î+1VH
[
S (b +αh î ,h(1−#îα))

]
.

(A.11)

22

Coherently with what remarked above, this last equation is null in the above mentioned case
in which α̂≥ 1. Recalling (A.10), and noting that

S (b +αh1,h −αdh) =S (b +αhi N ,h(1−#i Nα)),

we obtain

VH [Q(b,h) \S (b,αh)]

=VH [S (b +αhi N ,h(1−#i Nα))]−
∑

î∈{0,1}d ,
1/α<#î<d

(−1)d−#î+1VH
[
S (b +αh î ,h(1−#îα))

]
= ∑

î∈{0,1}d ,
1/α<#î≤d

(−1)d−#î VH
[
S (b +αh î ,h(1−#îα))

]
. (A.12)

Finally, recalling the definitions in (A.1), we substitute equations (A.9) and (A.12) into (A.7) to
obtain

VH [S (b,h)] =VH [Q(b,αh)]+
∑

i∈{0,1}d ,
0<#i<1/α

(−1)#i+1VH [S (b +αhi ,h(1−#iα))]

− ∑
î∈{0,1}d ,

1/α<#î≤d

(−1)d−#î VH
[
S (b +αh î ,h(1−#îα))

]

=VH [Q(b,αh)]+
N∑

j=1
m j VH

[
S (b j ,h j)

]
. 2

References

Aas, K., X. K. Dimakos, and A. Øksendal (2007). Risk capital aggregation. Risk Manage-
ment 9(2), 82–107.

Asmussen, S. and P. W. Glynn (2007). Stochastic Simulation: Algorithms and Analysis, Vol-
ume 57. New York: Springer.

Basel Committee on Banking Supervision (2006). International Convergence of Capital Mea-
surement and Capital Standards. Basel: Bank for International Settlements.

Bürgi, R., M. Dacorogna, and R. Iles (2008). Risk aggregation, dependence structure and diver-
sification benefit. In D. Rösch and H. Scheule (Eds.), Stress-testing for Financial Institutions.
Applications, Regulations and Techniques. London: Risk Books.

Caflisch, R. E., W. Morokoff, and A. Owen (1997). Valuation of mortgage-backed securi-
ties using brownian bridges to reduce effective dimension. Journal of Computational Fi-
nance 1(1), 27–46.

Davis, P. J. and P. Rabinowitz (1984). Methods of Numerical Integration. Orlando, FL: Academic
Press. Second edition.

Embrechts, P. (2009). Copulas: a personal view. Journal of Risk and Insurance, to appear.
Gill, H. S. and C. Lemieux (2007). Searching for extensible Korobov rules. J. Complexity 23(4-

6), 603–613.
Glasserman, P. (2004). Monte Carlo Methods in Financial Engineering. New York: Springer-

Verlag.
L’Ecuyer, P. and C. Lemieux (2000). Variance reduction via lattice rules. Management Sci-

ence 46(9), 1214–1235.

23

McLeish, D. L. (2005). Monte Carlo Simulation and Finance. Hoboken, NJ: John Wiley & Sons.
McLeish, D. L. (2008). Bounded relative error importance sampling and rare event simulation.

Preprint, University of Waterloo.
Morokoff, W. J. (1998). Generating quasi-random paths for stochastic processes. SIAM

Rev. 40(4), 765–788.
Nelsen, R. B. (2006). An Introduction to Copulas. New York: Springer. Second edition.
Niederreiter, H. (1992). Random Number Generation and Quasi-Monte Carlo Methods, Vol-

ume 63 of CBMS-NSF Regional Conference Series in Applied Mathematics. Philadelphia:
SIAM.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (2007). Numerical Recipes: the
Art of Scientific Computing. Cambridge: Cambridge University Press. Third Edition.

SCOR (2008). From Principle Based Risk Management to Solvency Requirements. Swiss Sol-
vency Test Documentation, SCOR, Switzerland.

Weinzierl, S. (2000). Introduction to Monte Carlo Methods. Eprint arXiv:hep-ph/0006269.

24

