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L1. A New Risk Class

The New Accord (Basel II)

• 1988: Basel Accord (Basel I): minimal capital requirements against

credit risk, one standardised approach, Cooke ratio

• 1996: Amendment to Basel I: market risk, internal models, netting

• 1999: Several Consultative Papers on the New Accord (Basel II)

• to date: CP3: Third Consultative Paper on the

New Basel Capital Accord (www.bis.org/bcbs/)

• 2007+: full implementation of Basel II

c©2006 (Embrechts & Neslehova) 3



Basel II: What is new?

• Rationale for the New Accord: More flexibility and risk sensitivity

• Structure of the New Accord: Three-pillar framework:

Ê Pillar 1: minimal capital requirements (risk measurement)

Ë Pillar 2: supervisory review of capital adequacy

Ì Pillar 3: public disclosure
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Basel II: What is new? (cont’d)

• Two options for the measurement of credit risk:

− Standard approach

− Internal rating based approach (IRB)

• Pillar 1 sets out the minimum capital requirements

(Cooke Ratio, McDonough Ratio):

total amount of capital

risk-weighted assets
≥ 8%

• MRC (minimum regulatory capital)
def= 8% of risk-weighted assets

• Explicit treatment of operational risk
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Operational Risk

Definition:

The risk of losses resulting from inadequate or failed internal

processes, people and systems, or external events.

Remark:

This definition includes legal risk, but excludes strategic and

reputational risk.

Note:

Solvency 2
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Operational Risk (cont’d)

• Notation: COP: capital charge for operational risk

• Target: COP ≈ 12% of MRC (down from initial 20%)

• Estimated total losses in the US (2001): $50b

• Some examples

− 1977: Credit Suisse Chiasso-affair

− 1995: Nick Leeson/Barings Bank, £1.3b

− 2001: September 11

− 2001: Enron (largest US bankruptcy so far)

− 2002: Allied Irish, £450m
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Risk Measurement Methods for Operational Risk

Pillar 1 regulatory minimal capital requirements for operational risk:

Three distinct approaches:

1. Basic Indicator Approach

2. Standardised Approach

3. Advanced Measurement Approach (AMA)
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Basic Indicator Approach

• Capital charge:

CBIA
OP = α×GI

• CBIA
OP : capital charge under the Basic Indicator Approach

• GI: average annual gross income over the previous three years

• α = 15% (set by the Committee based on CISs)
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Standardised Approach

• Similar to the BIA, but on the level of each business line:

CSA
OP =

8∑
i=1

βi ×GIi

βi ∈ [12%, 18%], i = 1, 2, . . . , 8 and 3-year averaging

• 8 business lines:

Corporate finance (18%) Payment & Settlement (18%)

Trading & sales (18%) Agency Services (15%)

Retail banking (12%) Asset management (12%)

Commercial banking(15%) Retail brokerage (12%)
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Advanced Measurement Approach (AMA)

• Allows banks to use their internally generated risk estimates

• Preconditions: Bank must meet qualitative and quantitative

standards before being allowed to use the AMA

• Risk mitigation via insurance possible (≤ 20% of CSA
OP)

• Incorporation of risk diversification benefits allowed

• “Given the continuing evolution of analytical approaches for

operational risk, the Committee is not specifying the approach

or distributional assumptions used to generate the operational risk

measures for regulatory capital purposes.”

• Example: Loss distribution approach
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Internal Measurement Approach

• Capital charge (similar to Basel II model for Credit Risk):

C IMA
OP =

8∑
i=1

7∑
k=1

γik eik (first attempt)

eik: expected loss for business line i, risk type k

γik: scaling factor

• 7 loss types: Internal fraud

External fraud

Employment practices and workplace safety

Clients, products & business practices

Damage to physical assets

Business disruption and system failures

Execution, delivery & process management
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Loss Distribution Approach (LDA)
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LDA: continued

• For each business line/loss type cell (i, k) one models

LT+1
i,k : OP risk loss for business line i, loss type k

over the future (one year, say) period [T, T + 1]

LT+1
i,k =

NT+1
i,k∑

`=1

X`
i,k (next period’s loss for cell (i, k))

Note that X`
i,k is truncated from below
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LDA: continued

Remark: Look at the structure of the loss random variable LT+1

LT+1 =
8∑

i=1

7∑
k=1

LT+1
i,k (next period’s total loss)

=
8∑

i=1

7∑
k=1

NT+1
i,k∑

`=1

X`
i,k

=
8∑

i=1

LT+1
i (often used decomposition)

• Check again the overall complexity of the (BL, RT) matrix
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L2. Insurance Analytics: an Essential Toolkit

Total Loss Amount

Denote by N(t) the (random) number of losses over a fixed period

[0, t] and write X1, X2, . . . for the individual losses. The aggregate

loss is

SN(t) =
N(t)∑
k=1

Xk

Remarks:

• FSN(t)
(x) = P (SN(t) ≤ x) is called the total loss df. If t is fixed,

we write SN and FSN
instead

• The random variable SN(t) is also referred to as random sum
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Compound Sums

Assume:

1. (Xk) are iid with common df G, G(0) = 0

2. N and (Xk) are independent

SN is then referred to as a compound sum. The pdf of N is denoted

by pN(k) = P (N = k), k = 0, 1, . . . and N is called a compounding

rv.

Proposition 1:

Let SN be a compound sum and the above assumptions hold. Then

FSN
(x) =

∞∑
k=0

pN(k)G∗k(x), x ≥ 0
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Proposition 2:

Let SN be a compound sum and the above assumptions hold. Then

the Laplace-Stieltjes transform of SN satisfies

F̂SN
(s) =

∫ ∞

0

e−sxdFSN
(x) =

∞∑
k=0

pN(k)Ĝk(s) = MN(Ĝ(s)), s ≥ 0

where MN denotes the moment-generating function of N .

Proposition 3:

Let SN be a compound sum and the above assumptions hold. If

E(N2) <∞ and E(X2
1) <∞, we have that

E(SN) = E(N)E(X1)

var(SN) = var(N)(E(X1))2 + E(N)var(X1)
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Compound Poisson Distribution

Example 1:

Consider N ∼ Poi(λ). Then SN is referred to as a compound

Poisson rv.

• The moment-generating function of N satisfies

MN(s) = exp(−λ(1− s)) and hence

F̂SN
(s) = exp(−λ(1− Ĝ(s)))

• Notation: SN ∼ CPoi(λ,G)

• If E(X2
1) <∞, the moments of SN are by Proposition 3

E(SN) = λE(X1) and var(SN) = λE(X2
1)
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Aggregation of Compound Poisson rvs

Suppose that the compound sums SNi
∼ CPoi(λi, Gi), i = 1, . . . , d

and that these rvs are independent. Then

SN :=
d∑

i=1

SNi
=

d∑
i=1

Ni∑
k=1

Xi,k

is again a compound Poisson rv, SN ∼ CPoi(λ,G) where

λ =
d∑

i=1

λi and G =
d∑

i=1

λi

λ
Gi

G is hence a mixture distribution. A simulation from G can be done

in two steps: first draw i, i ∈ {1, . . . , d} with probability λi/λ and

then draw a loss with df Gi.
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Binomial Loss Model

Example 2:

Suppose N ∼ Bin(n, p). SN is then called the (individual risk)

binomial model.

Consider a time interval [0, 1] and let Nn denote the total number of

losses in [0, 1] for a fixed n. Suppose further that we have a number

of potential loss generators that can produce, with probability pn, a

loss in each small subinterval ((k − 1)/n, k/n], k = 1, . . . , n.

Moreover, the occurrence of a loss in any particular subinterval is

not influenced by the occurrence of losses in other intervals and

npn → λ for a λ > 0 as n→∞.

For a fixed severity distribution, SNn is then a binomial model with

Nn ∼ Bin(n, pn) and converges in law to a compound Poisson rv

with parameter λ as n→∞.
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Over-dispersion

For compound Poisson rvs with N ∼ Poi(λ) we have that

E(N) = var(N) = λ

• Count data however often exhibit over-dispersion meaning that

they indicate E(N) < var(N)

• This can be achieved by mixing, i.e. by randomizing the parameter

λ
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Randomization

Other examples of mixing include:

• from Black-Scholes to stochastic volatility models (randomize σ)

• from Nd(µ,Σ) to elliptical distributions (randomize Σ); i.e. the

multivariate t distribution. Randomization of both µ and Σ leads

to generalized hyperbolic distributions

• mixing models for credit risk (randomizing the default probability)

• credibility theory in insurance (randomizing the underlying risk

parameter)

• Bayesian inference ...
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Poisson Mixtures

Definition: Let Λ be a positive rv with distribution function FΛ. A

rv N given by

P (N = k) =
∫ ∞

0

P (N = k|Λ = λ)dFΛ(λ) =
∫ ∞

0

e−λ λ
k

k!
dFΛ(λ)

is called a mixed Poisson rv with structure or mixing distribution FΛ.

A compound sum with a mixed Poisson rv as the compounding rv is

called a compound mixed Poisson rv.

Lemma: Suppose that N is mixed Poisson with structure df FΛ.

Then E(N) = E(Λ) and var(N) = E(Λ) + var(Λ), i.e. for Λ
non-degenerate, N is over-dispersed.
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Negative Binomial Distribution

Example 3: For Λ ∼ Ga(α, β), the mixed Poisson rv is negative

binomial, N ∼ NB(α, β/(β + 1)):

P (N = k) =
(

β

β + 1

)α( 1
β + 1

)k Γ(α+ k)
(β + 1)α+k

Further,

E(N) =
α

β
= E(Λ)

var(N) =
α(β + 1)

β2
=
α

β
+
α

β2
= E(Λ) + var(Λ)

Compounding leads to compound mixed Poisson rvs.

• Many more interesting models exist.
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Approximations

• The distribution of SN is generally intractable

Normal approximation for CPoi(λ,G):

FSN
(x) ≈ Φ

(
x− E(N)E(X1)√

var(N)(E(X1))2 + E(N)var(X1)

)
However, the skewness of SN is positive:

E(SN − E(SN))3

(var(SN))3/2
=
E(X3

1)√
λ

> 0

Translated-gamma approximation for CPoi(λ,G):
Approximate SN by k + Y where k is a translation parameter and

Y ∼ Ga(α, β). The parameters k, α, β are found by matching the

mean, variance and skewness.
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Example: Light-tailed Severities

Simulated CPoi(100,Exp(1)) data together with normal and

translated gamma approximations. The 99.9% quantile estimates are

also given.
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Example: Heavy-tailed Severities

Simulated CPoi(100,Pa(4, 1)) data together with normal and

translated gamma approximations. GPD approximation based on the

POT method is also performed.
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Panjer Class

• Recursive method for approximating SN in case the severity

distribution G is discrete and N satisfies a specific condition.

Panjer Class
The probability mass distribution of N belongs to the Panjer(a, b)
class for some a, b ∈ R if pN(k) = (a+ (b/k))pN(k − 1) for k ≥ 1

The only nondegenerate examples of distributions belonging to a

Panjer(a, b) class are

• binomial B(n, p) with a = −p/(1− p) and b = (n+ 1)p/(1− p)

• Poisson Poi(λ) with a = 0 and b = λ

• Negative binomial NB(α, p) with a = 1− p and b = (α− 1)(1− p)
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Panjer Recursion

For a discrete severity rv X1 we denote

gi := P (X1 = i) and si := P (SN = i)

Theorem: Suppose N satisfies the Panjer(a, b) class condition and

g0 = 0. Then s0 = pN(0) = 0 and, for k ≥ 1,

sk =
k∑

i=1

(
a+

bi

k

)
gisk−i.

• For continuous severity distributions, discretization necessary

• Correction for g0 > 0 possible

• Estimation of sk far in the tail is more tricky
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Example

Simulated CPoi(100, LN(1, 1)) data together with the Panjer

recursion approximation. Normal, translated gamma and GPD

approximations are also performed.
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Further Topics

• SN can be looked upon as a process in time, SN(t). Instead of N

we then have the process {N(t), t ≥ 0} counting the number of

events in [0, t]. Interesting examples for N(t) are

− homogeneous Poisson process

− non-homogeneous Poisson process

− Cox or doubly stochastic Poisson process

• Of further interest is the surplus process Ct = u+ ct− SN(t) and

the corresponding ruin probability

ψ(u, T ) = Pu{ inf
0≤t≤T

Ct ≤ 0}

• Rare event simulation
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Homogeneous Poisson Process

Ten realizations of a homogeneous Poisson process with λ = 100.
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Mixed Poisson Process

Ten realizations of a mixed Poisson process with Λ ∼ Ga(100, 1).
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Ruin Probability

Recall ruin results for

ψ(u) := ψ(u,∞) = Pu{ inf
0≤t≤∞

Ct < 0}

• Cramér-Lundberg: “small claims”

ψ(u) < e−Ru, ∀u > 0

ψ(u) ∼ ε1e
−Ru, u→∞

• Embrechts-Veraverbeke: “large claims” with df G

ψ(u) ∼ ε2

∫ ∞

u

G(t)dt, u→∞
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Subexponential Distributions

Definition:

For X1, . . . , Xn positive iid random variables with common

distribution function FX, denote Sn =
∑n

k=1Xk and

Mn = max(X1, . . . , Xn). The distribution function FX is called

subexponential (denoted by FX ∈ S) for some (and then for all)

n ≥ 2 if

lim
x→∞

P (Sn > x)
P (Mn > x)

= 1

Examples:

• Pareto, Generalized Pareto, Lognormal, Loggamma, ...
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Ruin Process with Exponential Claims

20 simulations from the ruin process Ct, 0 ≤ t ≤ 1, with

(N(t)) ∼ HPois(100t) and X1 ∼ Exp(1).
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Ruin Process with Pareto Claims

20 simulations from the ruin process Ct, 0 ≤ t ≤ 1, with

(N(t)) ∼ HPois(100t) and X1 ∼ Pareto(2, 1).
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Ruin Process with Exponential Claims

20 simulations from the ruin process Ct, 0 ≤ t ≤ 1, with (N(t)) a doubly

stochastic Poisson process with a two-state Markov intensity process: HPois(10t)

and HPois(100t) with mean holding times 5 and 0.2, respectively, and

X1 ∼ Exp(1).
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Ruin Process with Pareto Claims

20 simulations from the ruin process Ct, 0 ≤ t ≤ 1, with (N(t)) a doubly

stochastic Poisson process with a two-state Markov intensity process: HPois(10t)

and HPois(100t) with mean holding times 5 and 0.2, respectively, and

X1 ∼ Pareto(2, 1).
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L3. The Capital Charge Problem within LDA
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Loss Distribution Approach (cont’d)

Choose:

• Period T

• Distribution of LT+1
i,k for each cell i, k

• Interdependence between cells

• Confidence level α ∈ (0, 1), α ≈ 1

• Risk measure gα

Capital charge for:

• Each cell: CT+1,OR
i,k = gα(LT+1

i,k )

• Total OR loss: CT+1,OR based on CT+1,OR
i,k
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Basel II proposal

• Period: one year

• Distribution: should be based on

− internal data/models
− external data
− expert opinion

• Confidence level: α = 99.9%, for economic capital purposes even
α = 99.95% or α = 99.97%

• Risk measure: VaRα

• Total capital charge:

CT+1,OR =
∑
i,k

VaRα(LT+1
i,k )

− possible reduction due to correlation effects
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Basel II Proposal: Summary

• Marginal VaR calculations

VaR1
α, . . . ,VaRl

α

• Global VaR estimate

VaR+
α = VaR1

α + · · ·+ VaRl
α

• Reduction because of “correlation effects”

VaRα < VaR+
α

• Further possibilities: insurance, pooling, ...
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Coherence and VaR

VaRα is in general not coherent:

1. skewness

2. special dependence

3. very heavy-tailed losses

VaRα is coherent for:

• elliptical distributions
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Skewness

• 100 iid loans: 2%-coupon, 100 face value, 1% default probability

(period: 1 year):

Xi =
{

−2 with probability 99%

100 with probability 1% (loss)

• Two portfolios L1 =
100∑
i=1

Xi, L2 = 100X1

• VaR95%(L1)︸ ︷︷ ︸
VaR95%

 
100P
i=1

Xi

! > VaR95%(100X1)︸ ︷︷ ︸
100P
i=1

VaR95%(Xi)

(!)
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Special Dependence

• Given rvs X1, . . . , Xn with marginal dfs F1, . . . , Fn, then one can

always find a copula C so that for the joint model

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn))

VaRα is superadditive:

VaRα

(
n∑

k=1

Xk

)
>

n∑
k=1

VaRα(Xk)

• In particular, take the “nice” case

F1 = · · · = Fn = N(0, 1)

c©2006 (Embrechts & Neslehova) 47



Special Dependence
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Very Heavy-tailedness

• Pareto: take X1, X2 independent with P (Xi > x) = x−1/2, x ≥ 1
then for x > 2

P (X1 +X2 > x) =
2
√
x− 1
x

> P (2X > x)

so that

VaRα(X1 +X2) > VaRα(2X1) = VaRα(X1) + VaRα(X2)

• Pareto-type: similar result holds for X1, X2 independent with

P (Xi > x) = x−1/ξL(x),

where ξ > 1, L slowly varying

• For ξ < 1, we obtain subadditivity - WHY?
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Several reasons:

• (Marcinkiewicz-Zygmund) Strong Law of Large Numbers

• Argument based on stable distributions

• Main reason however comes from functional analysis

In the spaces Lp, 0 < p < 1, there exist no convex
open sets other than the empty set and Lp itself.

Hence as a consequence 0 is the only continuous linear functional

on Lp; this is in violent contrast to Lp, p ≥ 1

• Discussion:

− no reasonable risk measures exist

− diversification goes the wrong way
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Definition:
An Rd-valued random vector X is said to be regularly varying if

there exists a sequence (an), 0 < an ↑ ∞, µ 6= 0 Radon measure on

B
(
Rd\{0}

)
with µ(Rd\R) = 0, so that for n→∞,

nP (a−1
n X ∈ ·) → µ(·) on B

(
Rd\{0}

)
.

Note that:

• (an) ∈ RV ξ for some ξ > 0

• µ(uB) = u−1/ξµ(B) for B ∈ B
(
Rd\{0}

)
Theorem: (several versions – Samorodnitsky)

If (X1, X2)′ ∈ RV −1/ξ, ξ < 1, then for α sufficiently close to 1,

VaRα is subadditive.
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Phase Transition of Value-at-Risk

Theorem:
Assume that X = (X1, X2) is a rv such that

• Xi ∼ F for all i where F is continuous and F ∈ RV −β, β > 0

• −X has an Archimedean copula with generator ψ which is regularly

varying at 0 with index −δ < 0

then there exists a constant q2(δ, β)such that

VaRα(X1 +X2) ∼ (q2(δ, β))1/βVaRα(X1), α→ 1

• Behavior of q2(δ, β) with respect to β and δ, respectively
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L4. Marginal VaR Estimation

LDA revisited

• Recall: VaRi,k
α is a Value-at-Risk of a compound sum

LT+1
i,k =

NT+1
i,k∑

l=1

X l
i,k

• Tasks:

− Suitable model for the severity Xi,k

− Suitable model for the frequency NT+1
i,k

− Estimation of VaRi,k
α
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Some OpRisk Data
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• P (L > x) ∼ x−1/ξL(x)
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Stylized Facts

• Stylized facts about OpRisk losses:

− Loss amounts show extremes

− Loss occurence times are irregularly spaced in time

(reporting bias, economic cycles, regulation, management interactions,

structural changes, . . . )

− Non-stationarity (frequency(!), severity(?))

• Large losses are of main concern

• Repetitive versus non-repetitive losses

• However: severity is of key importance
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Peaks-over-Threshold Method

• Distribution of the exceedances

• Distribution of the inter-arrival times
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Peaks-over-Threshold Method (POT)

X1, . . . , Xn iid with distribution function F satisfying

F (x) = x−1/ξL(x), ξ > 0 and L slowly varying

• Excess distribution: asymptotically Generalized Pareto (GPD)

P (X − u > y|X > u) ∼
(

1 + ξ
y

β(u)

)−1/ξ

, u→∞

ß POT-MLE estimation of tail probabilities and risk measures

F̂ (x) =
Nu

n

(
1 + ξ̂

x− u

β̂

)−1/ξ̂

, x > u

V̂aRα = u+
β̂

ξ̂

(( n
Nu

(1− α)
)−ξ̂ − 1

)
, α “close” to 1
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Threshold Choice

Application of POT based estimates requires a choice of an

appropriate threshold u

• Rates of convergence: very tricky

- No generally valid convergence rate

- Convergence rate depends on F , in particular on the slowly

varying function L, in a complicated way and may be very slow

- L is not visible from data directly

ß Threshold choice is very difficult. Trade-off between bias and

variance usually takes place.

• Diagnostic tools:

- Graphical tools (mean excess plot, shape plot,...)

- Bootstrap and other methods requiring extra conditions on L
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Basel II QIS 2002 Data

• POT Analysis of Severities: P (Li > x) = x−1/ξiLi(x)

Business line ξ̂i
Corporate finance 1.19 (*)

Trading & sales 1.17

Retail banking 1.01

Commercial banking 1.39 (*)

Payment & settlement 1.23

Agency services 1.22 (*)

Asset management 0.85

Retail brokerage 0.98

* means significant at 95% level

ξ̂i > 1: infinite mean

• Remark: different picture at level of individual banks
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Issues Regarding Infinite Mean Models

• Reason for ξ > 1?

• Potentially:

− wrong analysis

− EVT conditions not fulfilled

− contamination, mixtures

• We concentrate on the latter:

Two examples:

Ê Contamination above a high threshold

Ë Mixture models

• Main aim: show through examples how certain data-structures can

lead to infinite mean models
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Contamination Above a High Threshold

Example 1: Consider the model

FX(x) =

1−
(
1 + ξ1x

β1

)−1/ξ1

if x ≤ v,

1−
(
1 + ξ2(x−v∗)

β2

)−1/ξ2

if x > v,

where 0 < ξ1 < ξ2 and β1, β2 > 0.

• v∗ is a constant depending on the model parameters in a way that

FX is continuous

• VaR can be calculated explicitly:

VaRα(X) =

{
1
ξ1
β1

(
(1− α)−ξ1 − 1

)
if α ≤ FX(v),

v∗ + 1
ξ2
β2

(
(1− α)−ξ2 − 1

)
if α > FX(v).
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Shape Plots
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Easy case: v low Hard case: v high
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Finite Mean Case
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Careful: similar picture for v low and ξ1 � ξ2 < 1
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Contamination above a high threshold (cont’d)

• Easy case: v low

− Change of behavior typically visible in the mean excess plot

• Hard case: v high

− Typically only few observations above v

− Mean excess plot may not reveal anything

− Classical POT analysis easily yields incorrect resuls

− Vast overestimation of VaR possible

c©2006 (Embrechts & Neslehova) 65



Mixture Models

Example 2: Consider

FX = (1− p)F1 + pF2,

with Fi exact Pareto, i.e. Fi(x) = 1− x−1/ξi for x ≥ 1 and

0 < ξ1 < ξ2.

• Asymptotically, the tail index of FX is ξ2

• VaRα can be obtained numerically and furthermore

− does not correspond to VaRα of a Pareto distribution with

tail-index ξ∗

− equals VaRα∗ corresponding to F2 at a level α∗ lower than α
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• Classical POT analysis can be very misleading:

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
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VaR for Mixture Models

α VaRα(FX) VaRα(Pareto(ξ2)) ξ∗

0.9 6.39 46.42 0.8

0.95 12.06 147.36 0.83

0.99 71.48 2154.43 0.93

0.999 2222.77 105 1.12

0.9999 105 4.64 · 106 1.27

0.99999 4.64 · 106 2.15 · 108 1.33

Value-at-Risk for mixture models with p = 0.1, ξ1 = 0.7 and

ξ2 = 1.6.

c©2006 (Embrechts & Neslehova) 68



Including Frequencies

The POT method can be embedded into a wider framework based

on Point processes

• iid case: exceedance times follow asymptotically a homogeneous

Poisson Process

• Extensions: several possibilities

− Including the severities: marked Poisson process

− Non-stationarity: non-homogeneous Poisson processes

− Over-dispersion: doubly stochastic processes

− Short-range dependence: clustering
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VaR Estimation for Compound Sums

Proposition:

Let X,X1, X2, . . . be iid with FX ∈ S. If for some ε > 0,∑∞
n=1(1 + ε)nP (N = n) <∞ (satisfied for instance in the

important binomial, Poisson and negative binomial cases), then

lim
x→∞

P (
∑N

i=1Xi > x)
1− FX(x)

= E(N).

Approximation of VaR:

VaRα

(
N∑

i=1

Xi

)
∼ VaRα∗(X), α∗ = 1− 1− α

EN
, α→ 1
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Marginal VaR Estimation

Approximative method

1. Estimate the excess distribution of severities using POT

2. Calculate

V̂aRα(LT+1
i,k ) = u+

β̂

ξ̂

( n(1− α)
NuE(NT+1

i )

)−ξ̂

− 1


Monte Carlo methods

1. Choose a distribution for severities and a process for frequencies

(evt. jointly)

2. After a large number of simulations, estimate the VaR of the

compound sum via the POT-MLE method
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POT-MLE VaR Estimate

VaR99.9% of a GPD(ξ, 1) rv. as a function of ξ ∈ (0, 1.5)

• Small changes in ξ lead to considerable changes in VaR
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Marginal VaR Estimate: Issues

• V̂aRα is an exponential function of ξ and therefore very sensitive

to ξ̂

• Confidence intervals for V̂aRα widen rapidly with increasing α and

decreasing sample size

• Fazit 1: for very high levels (99.9% or 99.97%) there is typically

substantial uncertainty and variability in the VaR estimate due to

the lack of data

• Fazit 2: Issues far in the tail call for judgement

• ξ̂ > 1 is an issue!
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L5. Global VaR Estimation

Recall:

• Global VaR estimate

VaR+
α = VaR1

α + · · ·+ VaRl
α

• Reduction because of “correlation effects”

VaRα < VaR+
α

• In general, VaR+
α is not the upper bound!
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Bounds on VaR

Find optimal bounds for

VaRT+1
l,α ≤ VaRT+1

α

(
d∑

k=1

LT+1
k

)
≤ VaRT+1

u,α

given marginal VaR’s and dependence information

Solution:

• Fréchet Problem

• Mass Transportation Problem
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Example 1: Comonotonic Case

Recall:

LT+1
1 , . . . , LT+1

d are comonotonic if there exists a rv Z and

increasing functions fT+1
1 , . . . , fT+1

d , so that

LT+1
i = fT+1

i (Z), i = 1, . . . , d

• If LT+1
1 , . . . , LT+1

d are comonotonic VaR is additive

VaRT+1
α

(
d∑

k=1

LT+1
k

)
=

d∑
k=1

VaRT+1
k,α
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Example 2: No Dependence Information

Take LT+1
i = Li, i = 1, . . . , d = 8 and

FL1 = · · · = FLd
= Pareto(1, 1.5)

• Comonotonic case:

V aR0.999

(
8∑

i=1

Li

)
=

8∑
i=1

VaR0.999(Li) = 0.79

• Unconstrained upper bound:

VaR0.999

(
8∑

i=1

Li

)
≤ 1.93
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Example 3: No Dependence Information

FL1 6= · · · 6= FLd
is more difficult

Bounds on VaR using the OpRisk portfolio given in Moscadelli(2004)
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Correlation

Correlation:

Correlation (linear, rank, tail) is one-number summary: ρ, τ , ρS ...

• Careful: linear correlation does not exist for ξ > 0.5

• Linear correlation is typically small for heavy tailed rvs

• Knowledge of correlation (linear, rank, tail...) is sufficient for

individual models, but totally insufficient in general
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Correlation

Upper and lower bound on linear correlation ρ(L1, L2) for L1 ∼ Pareto(2.5) (left)

and L1 ∼ Pareto(2.05) (right) and L2 ∼ Pareto(β)
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Copulas

Copula:

With LT+1
i ∼ Fi the joint distribution can be written as

P (LT+1
1 ≤ l1, . . . , L

T+1
d ≤ ld) = C(F1(l1), . . . , Fd(ld))

The function C is known as copula and is a joint distribution on

[0, 1]d with uniform marginals

• A copula and marginal distributions determine the joint model

completely

• However: there are not enough OpRisk data: one year of loss data

comprises to a single observation of (LT+1
1 , . . . , LT+1

d )
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Dynamic Dependence Models

In order to use the data at hand, we need a dynamic model for the

compound processes.

Consider:

d = 2 : Lk =
Nk(T )∑
i=1

Xi,k, k = 1, 2

and

1. make (Xi,1) and (Xi,2) dependent, i ≥ 1

2. make {N1(t) : t ≤ T} and {N2(t) : t ≤ T} dependent

3. combination of both
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Dependent Counting Processes

• Various models for dependent counting processes {N1(t) : t ≤ T}
and {N2(t) : t ≤ T} exist:

− Common shock models

− Point process models

− Mixed Poisson processes with dependent mixing rvs.

− Lévy Copulas

• So far, there is no general dependence concept

• It is not clear how to quantify dependence between processes

• It is less transparent how the dependence structure of the frequency

processes affects the dependence structure of the compound rvs
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One Loss Causes Ruin Problem

Question: how do the marginal severities affect the global loss?

• based on Lorenz curve in economics

− 20 – 80 rule for 1/ξ = 1.4

− 0.1 – 95 rule for 1/ξ = 1.01
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Proposition 1

For L1, . . . , Ld iid and subexponential we have for

L = L1 + · · ·+ Ld that

P (L > x) ∼ dP (L1 > x), x→∞
Proposition 2

Suppose in addition that Li =
∑Ni

k=1Xi,k where Ni ∼ Poi(λi) are

independent. Furthermore, for i = 1, . . . , d, Xi,k’s are iid with

P (Xi > x) = x−1/ξihi(x), hi slowly varying

If ξ1 > · · · > ξd, we have that

P (L > x) ∼ cP (X1 > x)
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Discussion

• Tail issues:

− robust statistics

− scaling

− mixtures

• Infinite mean: industry occasionally uses

− constrained estimation to ξ < 1

− estimate under the condition of a finite upper limit

c©2006 (Embrechts & Neslehova) 86



Discussion (cont’d)

• Aggregation issues:

− adding risk measures across a 7× 8 table

− reduction because of “correlation effects”

• Data issues:

− impact of pooling

− incorporation of external data and expert opinion

− credibility theory
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