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Abstract

Time series of financial asset values exhibit well known statistical features such as

heavy tails and volatility clustering. We propose a nonparametric extension of the

classical Peaks-Over-Threshold method from Extreme Value Theory to fit the time

varying volatility in situations where the stationarity assumption may be violated

by erratic changes of regime, say. As a result, we provide a method for estimating

conditional risk measures applicable to both stationary and nonstationary series. A

backtesting study for the UBS share price over the subprime crisis exemplifies our

approach.
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1 Introduction

In numerous applications, one is interested in statistically estimating extremal risk

measures based on time series observations. Typical examples include the estima-

tion of record values, return periods and high-level crossings and this in applications

ranging from climate research, over medicine and reliability to insurance and finance.

Classical Extreme Value Theory (EVT), through the Peaks-Over-Threshold (POT)

approach, yields a methodology for estimating such risk measures. From a mathe-

matical point of view, the POT method is based on Balkema and de Haan [1974] and

Pickands [1975]. The statistical theory was initially worked out by Davison and Smith

[1990] and Davison [1984a]. Although the techniques presented in this paper are ap-

plicable more widely, we focus attention on features present in financial (return) time

series. Banking offers a unique example where an extreme risk measure, Value-at-Risk

(VaR), is hardwired in the international regulatory framework referred to as the Basel

Accords; for a history on these accords, see Tarullo [2008]. The so-called Basel I 1/2

Accord stipulated in the mid nineties that larger international banks have to hold reg-

ulatory (risk) capital for the trading book based on a 99% VaR over a 10-day holding

period; for background reading, see Chapter 1 in McNeil et al. [2005]. The late-2000s

financial crisis has shown to the extreme how inadequately the regulatory framework

performed in times of crisis; for an early warning on this, see Dańıelsson et al. [2001]

and Donnelly and Embrechts [2010] for a review of the crisis with an actuarial slant.

In this paper we shall not discuss the issues underlying prudential regulation, nor

question the wisdom of VaR-based risk capital calculation; see however question 8 on

p41 of BCBS [2012]. Quantile based risk measures like VaR have been used in various

fields of applied science, especially in the realm of rare event estimation, and this with

great success. For the financial industry, they will further exist as an important tool

in Quantitative Risk Management (QRM). As a consequence, we need methodological
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research not only on VaR’s weaknesses (see McNeil et al. [2005]), but also on ways to

improve the statistical estimation of quantiles in general for times series. The current

paper addresses the latter, especially taking possible nonstationarity into account. We

present a technique for the statistical estimation of conditional risk measures applica-

ble to both stationary as well as nonstationary time series models. In order to achieve

this, we adapt the method from Sardy and Tseng [2004] taking common features of

financial time series into account. In particular, we combine the theory from the latter

paper with quantile estimating techniques coming from EVT. The new methodology

is illustrated in detail on UBS share price data and further exemplified on Nasdaq

and equity portfolio data. It is not our aim in this paper to settle the issue to use

specific stationary or nonstationary models for financial data, we side with Mikosch

and Stǎricǎ [2004] that frequent measurements over a long period of time are likely to

be nonstationary.

More formally, let {Vt}t∈N be a time series of values on a single financial asset or

a portfolio and denote the negative log-returns Zh,t = −(log Vt+h − log Vt) at time t

and horizon h. The conditional 100%VaR is defined as the α-quantile of the predictive

distribution,

VaRα(Zh,t) = inf
{
z ∈ R : FZh,t|Ht(z) ≥ 1− α

}
; (1)

here FZh,t|Ht denotes the distribution function of Zh,t conditional on the entire history

Ht of the underlying stochastic process up to time t (hence conditional risk measure-

ment). For a discussion on the difference between a conditional and unconditional

approach to the estimation of risk measures, see McNeil et al. [2005], Sections 2.1.2

and 2.3.6. The estimation of VaR is a topic of considerable interest to banking regula-

tion for which many approaches of varying sophistication have been derived; see Jorion

[2007]. A well-known method can be found in RiskMetrics (Mina [2001]) for the esti-

mation of conditional quantiles, with the drawbacks of assuming Gaussianity and of
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modeling volatility with a convenient, but too simplistic, exponential-weighted moving

average (EWMA) method (RiskMetrics [1996]). The Gaussianity assumption is known

to often be strongly violated, particularly for a short horizon as the unconditional and

conditional distributions of financial time series are known to be heavy–tailed. More

accurate models have been developed for a better estimation of VaR. Two main ap-

proaches can be distinguished. The time series approach concentrates on modeling the

temporal features of {Vt}t∈N (e.g. volatility clustering and fat tails) with GARCH-type

and stochastic volatility models; see Shephard [1996] for a review. Both the normal

variance-covariance, as well as the Monte Carlo approach can be considered within this

framework. The extreme value approach uses results from EVT to focus on the tail

of the distribution in order to estimate the VaR, and this for instance in combination

with the historical simulation approach. Pérignon and Smith [2010] find that 73% of

the banks that report their VaR methodologies use historical simulation. This has led

to interesting quantitative risk management methodology as for instance summarized

in McNeil et al. [2005]. As an early example, Dańıelsson and de Vries [1997] tackle

the unconditional quantile estimation problem for stationary time series. Numerous

papers address the use of EVT for the estimation of the conditional distribution, ex-

amples are McNeil and Frey [2000], Brooks et al. [2005] and Chavez-Demoulin et al.

[2005]. By now, there exists a huge literature on the topic; see for instance Dańıelsson

[2011]. Finally, EVT offers a useful set of techniques for stress testing. A summary of

one-dimensional EVT is to be found in Embrechts et al. [1997].

An early criticism on the use of EVT for financial time series can be found in

Diebold et al. [1998] where nonstationarity, through regime switches, was stated as a

salient feature of markets under distress. In Mikosch and Stǎricǎ [2004], the authors

show how parameter switches in a GARCH environment may fool standard test for

long-range dependence. We want to show how a fairly straightforward adaption of the
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classical POT method in EVT can handle such nonstationarities. Classics on the topic

of regime switching in finance are Hamilton [1990] and Hamilton [1989]. For a recent

review, see Ang and Timmermann [2011]. In his thought-provoking, philosophical

discussion on The Market, Ayache [2010], Appendix 1, p. 449, writes: “Recalibration

means that any valuation model will virtually become stochastic and that the market

price of any contingency claim, no matter how exotic or complex, will virtually act

as a calibration input to the model. This imposes, as a pricing tool, a structure that

must be at once open and invariant. We believe the regime-switching model to be such

a one”. A further early criticism by RM practitioners on EVT, as applied to financial

risk management, concerns the possible slow-adaptiveness of the method to short-

time shocks in the series, i.e. the VaR estimates may not sufficiently closely follow the

dynamics of the series, especially in an after-shock phase. Our method adapts more

quickly and at the same time improves on statistical accuracy as exemplified through

backtesting.

As discussed in Dańıelsson [2011], volatility behavior like in Figure 1 can be ob-

served for wide classes of financial time series and this at various levels of sampling

frequency. Despite a clear conceptual distinction between periods of volatility clus-

tering of a stationary process and changing periods of high/low volatility due to non-

stationarity, the nature of the resulting extremes may not always be easy to find out.

In some cases, there is clear economic evidence for a regime switch; for instance at

the announcement of a merger or takeover, or an economic policy decision concerning

interest rates, or a rating update. For data related to economic crises, like the dot-com

bubble or subprime crisis, such a single causal event may not always be detectable.

We therefore want to allow for a wider spectrum of models around the classical POT

method and indeed develop an extreme-risk measurement tool applicable to a wide

class of both stationary as well as nonstationary time series.
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From a methodological point of view, we follow the POT method as described

in Davison and Smith [1990] and briefly reviewed in Section 2 where we also point

out the method’s limitations. In Section 3 we propose a Bayesian nonparametric

adaption of the POT method, relaxing the stationarity assumption. In the context

of applications to financial risk management, we derive a time adaptive estimation

and credible region construction of quantiles. The new methodology is backtested on

UBS share price data and further exemplified on Nasdaq and portfolio equity data.

We draw some conclusions in Section 4. Because of the potential relevance for finance

and insurance, throughout the paper, we refer to quantiles as VaRs being well aware

that there is much more to VaR-methodology than just quantile estimation. In the

current discussion on new capital guidelines for market risk (the so-called Basel III

Accord further extended in BCBS [2012]), the techniques of this paper belong to the

EVT-VaR and stressed-VaR toolkit.

2 Review of the Peaks-Over-Threshold method

2.1 A useful decomposition

The classical POT method considers observations Z1, . . . , ZT that are independent

and identically distributed (i.i.d.) from a distribution function FZ that belongs to

a wide class of continuous distributions; for a slightly wider class of model assump-

tions under which classical EVT works, see Embrechts et al. [1997]. In practice, the

i.i.d. assumption is often violated for financial time series, because of dependence or

nonstationarity. In Section 3 we therefore relax these assumptions.

For a given high threshold u, the POT method is based on the decomposition of

the tail of FZ as

1− FZ(z) = P (Z > u){1− Fu(z)}, z ≥ u, (2)
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where the (conditional) excess distribution Fu is defined as

Fu(z) = P(Z ≤ z | Z > u), z ≥ u.

Letting Eu = {t ∈ {1, . . . , T} : Zt > u} be the set of indexes t for which Zt ex-

ceeds u, the POT method models the (random) number Nu = card(Eu) and the sizes

{Ws = Zts − u}ts∈Eu of all the extreme observations {Zts}ts∈Eu . For an appropriately

chosen threshold u, mathematical theory, in particular Leadbetter [1991], supports the

independent modeling of

• the number of exceedances Nu ∼ Poisson(λ) as the limiting distribution of the

sum of T Bernoulli random variables with success probability λ/T , and

• the excesses W1, . . . ,WNu , conditional on the number of exceedances Nu = nu,

as a sample from the generalized Pareto distribution (GPD)

G(w;σ, κ) =


1− (1 + κw/σ)−1/κ

+ , κ 6= 0,

1− exp(−w/σ), κ = 0,
(3)

where σ > 0, and the support is w ≥ 0 when κ ≥ 0 and 0 ≤ w ≤ −σ/κ when κ <

0. The domain of attraction of the GPD includes many common distributions

which can be classified based on their tail characteristics, or equivalently, on the

shape parameter κ. The useful distributions for financial applications are for

positive κ which corresponds to heavy-tailed (or power-tailed) distributions, e.g.

Pareto, Student t or Fréchet. The case κ = 0 corresponds to distributions whose

tail essentially decays exponentially, e.g. normal, gamma or lognormal, while

κ < 0 is for short-tailed distributions with a finite right endpoint, like uniform

or beta.

The choice of the threshold u is important, implying a balance between bias and
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variance. The threshold selection has a degree of arbitrariness in practice. On the

one hand, the smaller u, the more observations are used for inference (small variance).

On the other hand, mathematical theory (Leadbetter [1991]) suggests choosing a high

u for limiting results to apply (small bias). Graphical techniques for the choice of u

are for instance discussed in Smith [1987], Davison and Smith [1990] and Yang [1978].

Extensive simulation studies by the first author have shown that, in general, choosing

a threshold such that about 10% of the data are excesses can be recommended as an

initial choice. For this threshold selection, Chavez-Demoulin and Embrechts [2004]

show that small variations in the value of the threshold typically have little impact

on the estimation. A full POT application would include a sensitivity analysis across

several threshold values u.

2.2 Parametric estimation for i.i.d. data

The parameters of the Poisson(λ) and the GPD(σ, κ) can be estimated from the

number and size of exceedances in the time series. Letting g denote the density of the

GPD, the log-likelihood

l(λ, σ, κ;nu, w1, . . . , wnu) = log
(
P (Nu = nu)

nu∏
n=1

g(wn)
)

= nu log λ− λ− log nu!

−nu log σ − (1 + 1/κ)
nu∑
n=1

log(1 + κwn/σ)+

= l(λ) + l(σ, κ) (4)

splits into two parts. Estimation of λ and (σ, κ) can therefore be performed separately

by maximizing their respective likelihoods, leading to the estimates λ̂ = nu and σ̂, κ̂.

To find the local maximum of the log-likelihood l(σ, κ) requires numerical methods, for

instance using a Newton–Raphson method as discussed in Hosking and Wallis [1987].
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From the decomposition (2), the estimated distribution

F̂Z(z) = 1− (1− exp(−nu/T ))
(

1 + κ̂
z − u
σ̂

)−1/κ̂

+
(5)

leads to the estimated α-quantile or VaR at confidence level α, sufficiently close to 1:

V̂aRα(Z) = F̂−1
Z (α). (6)

The estimation of the parameters κ and σ of a generalized Pareto distribution is

regular if κ ≥ −1/2 in the sense that the score statistic is asymptotically normal; see

Davison [1984b], Davison [1984a] and Smith [1985]. Since heavy-tailedness is a feature

of many financial time series, κ is typically positive, so that confidence intervals for

VaR can be derived based on the asymptotic normality of the maximum likelihood

estimators using the delta method or the profile likelihood approach; see pp. 501 and

284 in McNeil et al. [2005].

2.3 POT for time series

Within financial applications, the classical POT approach, as explained under Sec-

tions 2.1 and 2.2, is mostly applied to (transformed) time series data ignoring the finer

dependence structure. Temporal structures such as volatility clustering are however

of crucial importance. Although data declustering was already proposed in Leadbet-

ter et al. [1983], automatic cluster identification remains a difficult task and is often

arbitrary; see for instance Coles [2001]. Declustering can also cause late detection

of changes of regime when the process is nonstationary. To avoid declustering while

taking volatility clustering into account, McNeil and Frey [2000] propose a two step

procedure that combines a GARCH model to account for volatility and EVT to esti-

mate the tail of the innovation distribution of the GARCH model. In Chavez-Demoulin
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et al. [2005] a marked point process model for the exceedances of a high threshold,

with a self-exciting structure to describe the occurrence of clusters, is introduced. See

also Chavez-Demoulin and McGill [2012] and Embrechts et al. [2011].

2.4 An example: UBS data

Consider the daily UBS data in Figure 1 showing values of the UBS closing share

prices (top) and the corresponding negative log-returns (bottom) from the 27th of

June 2002 to the 18th of May 2010. The effect of the subprime crisis (2007-2009) can

clearly be seen. It is worth noting that the backtesting results for UBS’s own trading

book (99%, 1-day VaR) most clearly emphasize the failure of its internal quantitative

risk management tools. Rather than observing on average about 3 yearly violations of

the above VaR limit, the following numbers were stated in the corresponding annual

reports to the shareholders: 29 for 2007 and 50 for 2008 before returning to 4 for 2009.

For the UBS data, we apply the classical POT method to estimate the 99%VaR for

the horizon h = 1 day, treating for now the time series of log–returns as i.i.d. To apply

the POT method, at each time t we first determine the threshold u using the rule that

around 10% of the data are excesses up to this date. We then use the tools of Section 2.2

to estimate the unconditional distribution (5), calculate the 99%VaR estimate (6), and

compare it to the value realized the next day. A violation is said to occur when the

realized negative log–return is higher than the estimated VaR. Repeating this operation

from June 19, 2006 until May 17, 2010 is referred to as backtesting. For a more in

depth discussion on VaR-backtesting, see Bontemps [2013], Dańıelsson [2011], Chapter

8 and Gneiting [2011]. The latter paper puts risk measure backtesting into a statistical

decision theoretic framework referred to elicitability. Figure 2 plots these estimated

99% unconditional VaRs. Whereas we expect about 10 violations at the 99% level, we

observe 35, giving evidence for an under–estimation of VaR till about 2009. The main
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reason for this discrepancy is the increasing volatility starting around mid 2007 and

clearly visible in Figure 2; this feature is only marginally taken into account by the

classical POT method. The under–estimation period is followed by an over–estimation

curve that is not adaptive to the decreasing trend starting around 2009. This is due

to the fact that for the classical POT method, the past two years of data used in the

analysis are given the same weight in the estimation of the GPD parameters. It was

this fact that was early on stated as a criticism on classical EVT-VaR by practitioners.

In order to correct for this problem, numerous alternatives to classical EVT-VaR have

been introduced in the literature, typically involving a detailed (for instance GARCH

or stochastic volatility) modeling of the dynamics of the times series. Some of these

approaches will be briefly exemplified on the data examples in Section 3.4. In Section

3 we offer an alternative approach, which is both flexible and straightforward to put

into practice. The sampling period June 27, 2002 to May 18, 2010 for the UBS data

contains at least three rather different periods, call them regimes. These are the higher

volatility years 2003, 2008 and the rather persistent low-volatility period in between.

In his comparative VaR analysis of the S&P 500 over this period, Dańıelsson [2011]

p. 152, writes: “This suggests that there was a structural break at the onset of the

2007 crisis causing difficulties for all methods”, and further “The abrupt changes in

volatilities seen in 2003 and 2008 are likely to cause problems for most VaR models.

The models tried here clearly fail during those structural breaks”. From a VaR-based

regulatory point of view, this is a rather sobering conclusion.

3 Nonparametric Peaks-Over-Threshold method

The discussion is Section 2.4 clearly calls for adapting the POT method to a wider

class of models based on the conditional decomposition presented in Section 3.1 and
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mathematical foundations developed by Hüsler [1986] and Leadbetter [1991]. At the

end of Section 3.1 we briefly discuss alternative approaches.

To estimate the time varying conditional VaR in (1), our approach consists in de-

veloping a nonparametric POT method to fit the temporal evolution of the shape of

the tail of the conditional distribution, as opposed to assuming a fixed shape through-

out time. We develop in Section 3.2 a specific nonparametric fitting method capable

of capturing erratic changes in the structure of the tail of the distribution. Using

the smoothed estimates, we then predict future quantiles (VaR) and derive credible

regions in Section 3.3.

3.1 A time dependent conditional decomposition

For simplicity we denote the negative one-day log-returns Z1,t by Zt and occasion-

ally refer to these just as the returns. The conditional distribution FZt|Ht of Zt given

the history Ht of the process up to time t can then be decomposed in its upper tail as

P (Zt > z | Ht) = P (Zt > u | Ht)P (Zt − u > z − u | Zt > u,Ht) , (7)

for z > u and a threshold u. This decomposition requires the estimation of two time–

varying conditional probabilities on the right–hand side of (7). For an appropriately

chosen threshold u, the POT approach described in Section 2 and the theory of Hüsler

[1986] support the independent modeling of

• the weekly counts

Nu(l) ∼ Poisson(λw
l ) (8)

of returns above the threshold u during week l. The weekly Poisson parameters

λw
l may vary from week to week. More formally, let Eu(l) = {t ∈ [5(l − 1) +

1, . . . , 5l] : Zt > u} be the set of time indexes during trading week l when Zt
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exceeds the threshold u, then the weekly counts are Nu(l) = card(Eu(l)), and

• the sizes of exceedances

Ws ∼ GPD(σs, κs) (9)

at times s when a negative log–return exceeds the threshold u.

Since we are particularly interested in estimating the conditional VaR near the end of

the time series, we propose to choose the threshold u such that 10% of the data are

excesses during the last year of recording only, as opposed to during the entire period.

A noticeable difference with the classical POT approach is that the parameters

θt = (λt, σt, κt) of the Poisson and GPD distributions are allowed to vary with time.

This was for instance done parametrically in Davison and Smith [1990] to adapt to

seasonality, and nonparametrically with smoothing splines in Chavez-Demoulin and

Davison [2005]. The latter paper contains an application to environmental data, fit-

ting seasonal and slowly varying long-term climate factors. The methodology is ap-

plied in a more general financial context in Chavez-Demoulin and Embrechts [2004]

and in Chavez-Demoulin et al. [2013] for operational risk data in particular. Fur-

ther references on nonstationary models for the POT approach are to be found in

Chavez-Demoulin and Davison [2012].

3.2 Nonparametric Bayesian smoothing

To impose temporal smoothness in the evolution of the parameters of the Pois-

son and GPD models, we make the Bayesian assumption that the parameters are

realizations of independent hidden processes, an idea similar to the Kalman filter or

stochastic volatility models. Using Laplace innovations to model the hidden processes,

along with maximum a posteriori estimation, leads to smooth coefficient estimates with

occasional abrupt temporal changes, hence reflecting sudden changes of regimes; see
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Hamilton [1989] and Ang and Timmermann [2011]. The proposed estimator owes this

characteristics to the `1-penalty induced by the Laplace prior in the same spirit as

the lasso in Tibshirani [1996] for model selection; here the jumps will be selected by

the estimator and will reflect regime switches. We discuss this smoothing step of the

Poisson and GPD parameters in Sections 3.2.1 and 3.2.2, respectively.

3.2.1 Poisson parameters

As discussed in Section 3.1, the data nu(1), . . . , nu(L) are counts in {0, 1, 2, 3, 4, 5}

of the number of exceedances of returns in successive weeks 1, . . . , L = bT/5c. From

(8) they are assumed to be realizations of independent Poisson distributed random

variables with parameters (λw
1 , . . . , λ

w
L) that may change from week to week. The

corresponding log-likelihood is

l(λw
1 , . . . , λ

w
L;nu(1), . . . , nu(L)) =

L∑
l=1
{nu(l) log λw

l − λw
l }. (10)

The maximum likelihood estimates are simply λ̂w
l = nu(l), the weekly data, which

exhibit a high variance. In order to achieve a better bias–variance trade–off, we smooth

these estimates. Bayesian regularization consists in putting a prior distribution on the

temporal smoothness of the Poisson parameters. As it is often done with Poisson data,

see Nelder and Wedderburn [1972], we consider the parameters on a log-scale; hence we

model η = log λ as the realization of a temporal first order Markov process with Laplace

innovations ηw
l+1 | ηw

l = Laplace(ηw
l , γ1), where Laplace(η, γ) is the Laplace distribution

centered in η and the dispersion parameter γ1 > 0 reflects whether the changes are

abrupt and frequent (small γ1) or mild and rare (large γ1). The corresponding improper

joint prior is

π(ηw
1 , . . . , η

w
L) =

(
γ1

2

)L−1
exp(−γ1

L∑
l=2
|ηw
l − ηw

l−1|). (11)
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Using Bayes’ Theorem, the log-posterior distribution of ηw, given the Poisson counts

nu(1), . . . , nu(L), is

l(ηw
1 , . . . , η

w
L ;nu(1), . . . , nu(L)) =

L∑
l=1

(nu(l) ηw
l − exp ηw

l )− γ1

L∑
l=2
|ηw
l − ηw

l−1|.(12)

The parameter γ1 > 0 controls the amount of smoothing: choosing γ1 = +∞ leads

to the parametric estimate of a constant Poisson parameter λ̂w
1 = . . . = λ̂w

L =∑L
l=1 nu(l)/L, while choosing γ1 = 0 leads to the erratic maximum likelihood esti-

mates λ̂w
l = nu(l). A good bias–variance trade–off can be achieved by selecting the

smoothing parameter γ1 adaptively, for instance by minimizing the two–fold cross

validation estimate of the Kullback-Leibler distance between the true and estimated

Poisson likelihoods; see Sardy and Tseng [2004] for details. The information contained

in γ̂1 is valuable as it reflects whether the time series is rather stable (large γ1) or not

(small γ1). The estimated value of γ1 is used in Section 3.3 to derive a measure of

uncertainty of the estimated conditional VaR.

Computing the smooth maximum a-posteriori estimates of the temporal log-Poisson

parameters (ηw
1 , . . . η

w
L) that minimize the negative penalized log-likelihood is not trivial

because the function in (12), although convex, is not differentiable. The iterated dual

mode (IDM) algorithm, which is easy to implement, is guaranteed to converge in this

situation; see Sardy and Tseng [2004] for details. In the notation of Theorem 3 of Sardy

and Tseng [2004], we have the negative log-likelihood function g(λ) = −sλ + expλ,

its conjugate g?(u) = (s + u){log(y + u) − 1} and the conjugate to the Laplace prior

h?(w) = 0 if ‖w‖∞ ≤ γ1 and +∞ otherwise.
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3.2.2 Scale and shape parameters of the GPD

From (9), the sizes of exceedancesWs ∼ GPD(σs, κs) have time varying parameters.

Since the conditional distribution is typically heavy-tailed in finance, we expect the

shape parameter κs to be positive. We assume here that the shape parameter κs =

κ > 0 is not only positive but also constant over the entire period of the given time

series. By doing so, the procedure loses flexibility but gains stability at the estimation

stage for a better prediction of the conditional VaR. This assumption can be relaxed

when deemed important.

Similarly to the Poisson parameters, the scale parameters σs can be estimated

with some temporal smoothness. Assuming a first order Markov process with Laplace

innovations for ϕs = log σs leads to the following log-posterior distribution of ϕ:

l(ϕ1, . . . , ϕnu , κ;w1, . . . wnu) =
nu∑
s=1

(−ϕs − (1 + 1/κ) log{1 + κwsexp(−ϕs)})

−γ2

nu−1∑
s=1
|ϕs+1 − ϕs|, (13)

where nu = ∑L
l=1 nu(l) and γ2 plays the role of a smoothing parameter. To compute

the smooth maximum a-posteriori estimates of κ and ϕ1, . . . , ϕnu , again the IDM

algorithm can be employed.

3.3 Bayesian estimation of the conditional VaR

The nonparametric Bayesian smoothing of Section 3.2 leads to a Poisson parameter

estimated every week, and GPD parameters estimated at times of exceedances. To

obtain daily parameter estimates, we assume homogeneity within each week, so that

the daily intensities are λ̂t = λ̂w
l /5, for all days t in week l. For the daily scale

parameter of the GPD, we assume piecewise constant interpolation between days of
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exceedances, i.e.,

σ̂t = σ̂ti for ti ≤ t < ti+1, i = 1, . . . , nu. (14)

This interpolation scheme provides daily parameter estimates. So, given time series

measurements {Zt}t=1,...,T , the methodology described above leads to the model pa-

rameter estimates {θ̂t = (λ̂t, σ̂t, κ̂) : t = 1, . . . , T}, as well as two smoothing parameters

γ̂1 and γ̂2. Moreover the Bayesian first order Markov random field priors provide not

only point estimates up to time T , but also a measure of uncertainty by means of the

predictive distributions of:

• the weekly log-Poisson parameter ηw
L+1 | ηw

L ∼ Laplace(ηw
L , γ1). Given the es-

timated value of the Poisson parameter η̂w
L at week L, the distribution of the

Poisson parameter ηw
L+1 at week L+ 1 can therefore be estimated by

ηw
L+1 | ηw

L = η̂w
L ∼ Laplace(η̂w

L , γ̂1), (15)

and

• the daily log-scale parameter of the GPD

ϕT+1 | ϕT ∼


δϕT

with P (ZT < u)

Laplace(ϕT , γ2) with 1− P (ZT < u)

where δσ is the Dirac mass at σ. The decomposition between a Dirac and a

Laplace stems from the fact that the process is assumed constant between times

of exceedances (14), and has a Laplace innovation at a time of exceedance. Given

the estimated value of the GPD parameter at time T , the distribution of the GPD
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parameter ϕT+1 at time T + 1 can therefore be estimated by

ϕT+1 | ϕT = ϕ̂T ∼


δϕ̂T

with P̂ (ZT < u)

Laplace(ϕ̂T , γ̂2) with 1− P̂ (ZT < u).
(16)

Taking the best bias–variance trade–off estimates λ̂T and ϕ̂T at time T obtained by

smoothing the data up to time T , we insert from (15) and (16) the approximate

distribution of θT+1 | θT = θ̂T := (λ̂T , σ̂T , κ̂) in

V̂aRα(ZT ) = F−1
θT +1|θ̂T

(α), (17)

where, with a slight misuse of notation,

FθT +1|θ̂T
(z) = 1−

{
1− exp(−λT+1 | λ̂T )

}(
1 + κ̂

z − u
σT+1 | σ̂T

)−1/κ̂

. (18)

The conditional VaR at time T and horizon h is therefore a random variable whose

distribution depends on that of θT+1 | θ̂T . By generating θj
i.i.d.∼ θT+1 | θ̂T from the

predictive distributions, we can, by Monte Carlo simulation, estimate the distribution

of the conditional VaR at time T and provide a credible region for VaR. Just like in the

standard POT approach, alternative risk measures, like expected shortfall, can also

be estimated within this conditional set-up. At this point we want to emphasize that

in our terminology conditional VaR refers to VaR estimated in a conditional distribu-

tion set-up, see (17), and should not be confused with expected shortfall occasionally

referred to in the literature as conditional VaR (CVaR).
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3.4 UBS data: a nonparametric POT analysis

We now complete the preliminary backtesting study of Section 2.4 by including

the Nonparametric POT method (NPOT) discussed above. We apply successively

at each day T from June 19, 2006 until May 17, 2010 the NPOT on a past two-

year window. Figure 3 shows the estimated parameters λ̂T (upper), κ̂T (middle), σ̂T

(bottom). Interestingly, smooth temporal trends and local bursts can be observed in

the evolution of the parameters. The Poisson parameter λ for instance seems to follow

a succession of bursts of varying intensities and lengths. The shape parameter κ is

rather constant near zero (fairly short-tailed) with occasional bursts that can attain

0.3 (rather heavy-tailed). The scale parameter σ reveals an interesting pattern with a

noticeable increasing trend from 2008 till 2009 and a decreasing, somewhat stabilizing

one from 2010, highlighting the higher volatility during the subprime crisis.

The resulting estimated 99% conditional VaR with its 95% credible region (left of

Figure 4 ) provides a time-dependent risk measure that is sensitive to short and large

time scale volatility changes. This local adaptivity is beneficial for the nonparametric

POT method as revealed by the backtesting which no longer rejects the null hypothesis

that the conditional VaRs are correctly estimated.

It is also possible to estimate the conditional expected shortfall (ES) and give a

credible region for it by Monte Carlo simulation. The conditional ES at time T and

horizon h, a random variable whose distribution depends on that of θT+h | θ̂T (in (18)

for h = 1), can be estimated by

ÊSα(Zh,T ) = V̂aRα(Zh,T )
1− κ̂ + σ̂T+h − κ̂u

1− κ̂ .

Figure 4 plots the one-day conditional 99% ES (right panel) and its 95% credible

region for the period June 19, 2006 until May 17, 2010. The ES is always larger than
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the VaR as it defines the average loss when VaR is exceeded, also ES alleviates some

conceptual problems (e.g. possible non-subadditivity) inherent to VaR; see McNeil

et al. [2005].

For comparison, we also apply the two step method of McNeil and Frey [2000] ex-

tensively used by Fernandez [2004]: the two step method (CONDEVT) provides good

results (according to several backtesting procedures) when the stationarity assump-

tion seems to hold. The comparative backtesting results are presented for different

confidence levels in Table 1 for the UBS data from June 19, 2006 to May 17, 2010. We

have performed a similar NPOT analysis for the Nasdaq index over the period Jan-

uary 4, 1989 to April 10, 2003; see Table 2. The latter considers a longer time period

and hence allows for backtesting at the higher confidence level of 99.9%. The NPOT

method consistently provides observed numbers of violations closest to the expected

number.

3.5 Portfolio of International Equity Indexes

We finally consider an application of NPOT to a hypothetical portfolio of interna-

tional equity indexes analyzed in McNeil et al. [2005], Chapter 2. At any one day t

the portfolio value Vt is standardized to have weights 30% FTSE100, 40% S&P 500

and 30% SMI. The portfolio is assumed to have domestic currency sterling (GBP) and

consequently has currency exposure to US dollar (USD) and Swiss franc (CHF). The

value of the portfolio is therefore influenced by five risk factors: three log–index values

and two log-exchange rates.

We calculate VaR estimates at the 95% and 99% levels for all trading days in the

years 1999 to 2003 using NPOT. From the backtesting results reported in Table 3 we

conclude that, also in this case, the NPOT method performs well.
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4 Discussion

The Nonparametric Peaks-Over-Threshold method (NPOT) is an important exten-

sion of the classical POT model to situations where financial asset values may follow

a nonstationary process. Comparing and contrasting the new method to existing ones

on financial market data shows that the proposed method provides a realistic model

for the extremal behavior of financial time series. Backtesting results confirm a rather

precise and adaptive estimation procedure for high-quantile based risk measures (VaR,

ES) for financial time series. Moreover, credible regions can be derived, which provide

financial analysts with a valuable measure of uncertainty. The method proposed can

be applied to other time series data for which high quantiles need to be tracked. This

may be of particular interest to, for instance, climate change studies for environmental

data.

One may ask what would be the “value” for an investor or for a financial insti-

tution of the improved extreme-quantile (expected shortfall) estimates. Although we

have written the paper more from a defensive regulatory framework point of view,

clearly it would be possible to embed the new methodology into a portfolio tracking

or optimization exercise. We have not done so yet. In the words of the Ang and Tim-

mermann [2011] “Regime switching models can match narrative stories of changing

fundamentals that sometimes can only be interpreted ex-post, but in a way that can

be used for ex-ante real-time forecasting, optimal portfolio choice, and other economic

applications”. A combination of our results with those from the latter paper may prove

useful in the context of an investor’s optimal portfolio choice. We will return to these,

and related issues in future publications.
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Appendix: Figures and Tables
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Figure 1: UBS data. The upper graph shows the UBS closing share prices from the
27th of June 2002 to the 18th of May 2010. The lower panel shows the negative
log-returns.
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Figure 2: UBS data, negative log–returns. Estimated 99% Value-at-Risk (line) using
the classical unconditional POT method from June 19, 2006 until May 17, 2010.
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Figure 3: UBS data. Estimated parameters λ̂t (upper), κ̂t (middle), σ̂t (bottom) from
June 19, 2006 until May 17, 2010.
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Figure 4: UBS data. Estimated 99% conditional VaR (left panel) using NPOT and
its 95% credible region. Estimated 99% conditional ES (right panel) using NPOT and
its 95% credible region.
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NPOT CONDEVT
95% 99% 99.5% 95% 99% 99.5%

Expected 49.25 9.85 4.9 49.25 9.85 4.9
Observed 56 6 2 33 3 0
p-value 0.30 0.26 0.26 0.01 0.02 0.01

Table 1: UBS data. Backtesting results from June 19, 2006 until May 17, 2010.
Expected number of violations, number of violations observed using NPOT and CON-
DEVT (McNeil and Frey [2000]), and p-values from the binomial test.

NPOT CONDEVT
99% 99.5% 99.9% 99% 99.5% 99.9%

Expected 36 18 3 36 18 3
Observed 35 12 1 19 9 9
p-value 0.93 0.19 0.28 0.01 0.04 0.01

Table 2: Nasdaq data. Backtesting results from January 4, 1989 to April 10, 2003.
Expected number of violations, number of violations observed using NPOT and CON-
DEVT (McNeil and Frey [2000]), and p-values from the binomial test.

1999 2000 2001 2002 2003
Trading days 260 259 260 260 260
95% cond. VaR
Expected 13 12.95 13 13 13
Observed 10 16 17 20 11
p-value 0.47 0.38 0.25 0.06 0.67
99% cond. VaR
Expected 2.6 2.59 2.6 2.6 2.6
Observed 3 2 1 3 1
p-value 0.74 1 0.52 0.74 0.52

Table 3: Portfolio of International Equity Indexes. Backtesting results. Expected and
observed numbers of violations of the 95% and 99% conditional VaR from NPOT and
corresponding binomial test p-values for the years 1999 to 2003.


