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1. Introduction

In economics and finance multivariate problems are often of interest in

areas like risk management, asset pricing, portfolio allocation and forecast-

ing. There, the specification of financial variables’ multivariate distributions

is crucial for the computation of quantities related to their inter-dependence.

The prime example is the linear correlation, the perfect measure of depen-

dence for multivariate normal variables and to some extent for elliptical vari-

ables. However there is strong evidence that the univariate distributions of

many financial variables are non-normal and significantly fat-tailed. This

empirical fact often rules out the use of the multivariate normal distribu-

tion. In principle, there is no reason for different marginal variables to have

the same degree of fat-tailedness or even to have univariate distributions of

the same type. Moreover, most financial data exhibit skewness. This also

questions the use of elliptical distributions in other contexts.

Financial time-series are often modeled with GARCH type models. In

the multivariate GARCH literature there exist several models, like CCC-

GARCH, DVEC, matrix-diagonal GARCH, BEKK and principal components

GARCH.2

In all these models the conditional multivariate distribution is Gaussian

2For a survey on multivariate GARCH models see Bauwens et al. (2006).
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or Student-t. An alternative approach to overcome that distributional con-

straint is to use copula-GARCH models; see Jondeau and Rockinger (2006),

Fortin and Kuzmics (2002), Patton (2006a) and Patton (2006b).3 Cop-

ula based models allow complete freedom to combine different conditional

marginal distributions in a dependence structure.

By construction, the conditional variance of the univariate distributions

in a GARCH model is time-varying. Additionally, in the copula-GARCH

model the parameters of the dependence structure can also be time-varying.

This is potentially useful as there is evidence that asset’s dependence is time-

varying, a fact that has raised considerable interest in the dynamic behavior

of correlation between different risks as a function of time; see for instance

Boyer et al. (1999), Engle (2009), Longin and Solnik (2001), Loretan and

English (2000) and Loretan and Phillips (1994). Because of the fundamen-

tal importance of the notion of linear correlation in finance and insurance,

such dynamics may have a non-trivial impact on the pricing and hedging

of underlying instruments, or on the risk measurement of such positions.

As a consequence, a systematic modeling of the dynamic behavior of the

dependence structure underlying multivariate variables is of considerable im-

portance. This can be achieved with time-varying copula-GARCH models.

3Another possible alternative, which we opt not to pursue here, is to model regime

changes. In the context of time series analysis, see for instance Hamilton (1990).
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In the present article we present a time-varying copula-GARCH model.

We propose a specification for the dynamics of the dependence parameter

using the Fisher transformation in order to model the dynamic dependence

between Euro and Japanese Yen versus U.S. Dollar exchange rates. With

copula-GARCH models we allow for possibly different fat-tailed univariate

distributions. We look for the most appropriate copula family for both time-

invariant and time-varying copula models.

We compare the proposed model with two competing models: the dy-

namics proposed by Tse and Tsui (2002) and the BEKK model introduced

by Engle and Kroner (1995). We evaluate the estimated dependence paths

by comparing them with two benchmark non-parametric measures of depen-

dence: the realized correlation and Kendall’s tau. Finally we investigate six

time horizons ranging from hourly to daily. Our goal is to examine the con-

sistency of our findings across different time horizons. Theoretical properties

of time aggregation of univariate GARCH models can for instance be found

in Drost and Werker (1996) and Meddahi and Renault (2004).

The paper is organized as follows. In Section 2 we introduce the time-

varying specification for copula-GARCH models and its estimation method-

ology. In Section 3 we describe the data and the computation of the bivariate

returns on the Euro and Japanese Yen spot rates, both quoted against the

U.S. Dollar. These are deseasonalized bivariate returns at six time horizons
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from one hour to daily. The first step of the copula-GARCH modeling is

performed in Section 4. This consists of univariate GARCH filtering and con-

sequent specification tests. In Section 5 we estimate the time-varying depen-

dence paths using several dynamic copula models, including the time-varying

copula dynamics introduced by Tse and Tsui (2002) and the time-varying

correlation implied by a BEKK model. The evaluation of the estimated time-

varying dependence paths against realized correlation and Kendall’s tau is

given in Section 6. Our results are summarized in Section 7 which concludes

the paper.

2. The model specification and estimation

We proceed to the specification of the dynamic copula model starting by

introducing the general copula-GARCH type model.

2.1. The copula-GARCH type model

We denote the observed bivariate time series of the exchange rate returns

by (xt) = (x1t, x2t)
′, t = 1, . . . , T and model these data with a copula-AR-

GARCH4 specification as follows. Each of the returns’ univariate processes

4We considered also copula-ARMA-GARCH models but the moving average dynamics

is not significant for the FX data analyzed here.
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satisfies

Xit = µit + εit, µit = µi +
r∑

l=1

φil (Xit−l − µi) ,

εit = σitZit,

σ2
it = αi0 +

p∑

k=1

αikε
2
it−k +

q∑
j=1

βijσ
2
it−j, i = 1, 2,

(1)

where φil are autoregressive coefficients, the parameters αi0, αik and βij are

non-negative, and
∑

αik +
∑

βij < 1. The innovations Zit are independent of

(Xis)s≤t, have mean zero, unit variance, and bivariate distribution function

F with continuous univariate marginal distribution functions F1 and F2. The

bivariate innovations are characterized by a copula-based model

F (z1, z2; θt) = C(F1(z1), F2(z2); θt), (2)

where C is a copula function which, as long as the marginal distribution

functions are continuous, we know to exist uniquely by Sklar’s Theorem

(Sklar (1959)). We suppose the copula C is parameterized by the vector

θt ∈ Rq with q ∈ N.

A dynamic copula model

The search for the most appropriate dependence parameter dynamics

depends strongly on the interpretation that a specific (copula) dependence

parameter may have. We shall see in Section 5 that the Gaussian and the

t-copula yield the best models for the dependence structure of the Euro and
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Japanese Yen returns. For that reason we focus here on the dynamics for

these copulae parameters.

Let ρt be the correlation parameter of a Gaussian or t-copula at time t.

Given the coefficients α, β and γ, set

ρt = h−1(α + β sign(Z1t−1Z2t−1)|Z1t−1Z2t−1|1/2 + γh(ρt−1)), (3)

where h(·) is Fisher’s transformation

h(ρ) = log

(
1 + ρ

1− ρ

)
, −1 < ρ < 1,

Zit are the innovations in (1) and γ < 1. We use ρt as our dynamic corre-

lation parameter. Throughout the paper we call specification (3) the Fisher

dynamics. This specification ensures that ρt is between −1 and 1. As a con-

sequence of the regression-type dynamics of the innovations zit in (3), when

both innovations have the same sign we have a positive contribution to the

correlation. When innovations have opposite signs, a negative contribution

results. This agrees with evidence found by other authors that dependence is

stronger when returns have the same sign than when returns have opposite

signs; see for instance Jondeau and Rockinger (2006). We do not split the

dynamics in the case of both positive and both negative returns because,

according to the tests in Section 5, there is no evidence of asymmetry in the

dependence structure for these data.
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Specifications evolving from the vech-diagonal model introduced by Boller-

slev et al. (1988) typically assume a time-varying covariance dynamics similar

to the third line equation in (1), where ρt replaces σ2
it and εitεjt replaces ε2

it.

In this setting we consider, for comparison with our model, the time-varying

correlation dynamics proposed by Tse and Tsui (2002). Tse and Tsui (2002)

define a dependence parameter ρt satisfying the equation:

ρt = (1− β − γ)ρ + βξt−1 + γρt−1 (4)

where β and γ are non-negative, β + γ ≤ 1, and

ξt =

∑m−1
h=0 z1t−hz2t−h√∑m−1

h=0 z2
1t−h

∑m−1
h=0 z2

2t−h

with m ≥ 2. In this paper we call specification (4) the Tse-Tsui dynamics.

In the empirical study we use the Gaussian and the t-copula models each

with Fisher dynamics and with Tse-Tsui dynamics.

Patton (2006b) introduces a model for the symmetrized Joe-Clayton cop-

ula parameters (upper and lower tail parameter), defined dynamically as

τt = Λ

(
ω + βτt−1 + α

1

10

10∑
j=1

|F1(z1t−j)− F2(z2t−j)|
)

(5)

where the logistic transformation Λ(x) = (1 + e−x)−1 keeps τt in its in-

terval domain (0, 1). In the same paper, the Gaussian copula correlation

parameter is modeled with dynamics similar to (5) where ρt replaces τt,

Φ−1(F1(z1t−j)).Φ
−1(F2(z2t−j)) replaces |F1(z1t−j) − F2(z2t−j)| and Λ̃(x) =
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(1 − e−x)(1 + e−x)−1 replaces Λ, where Φ represents the standard normal

distribution function.

The dynamics we propose for the correlation parameter differs from Tse

and Tsui (2002) because we use the Fisher transformation to ensure the

correlation estimates to be in [−1, 1] and because we only use one lag of

the past observations. The Patton (2006b) dynamics are based on ten past

observations. Additionally, we regress the Fisher transformed correlation

on the lagged Fisher transformed correlation while in Patton (2006b) the

transformed correlation is regressed on a non-transformed correlation.

The t-copula parameters are the degrees of freedom, ν, and the correla-

tion. We assume that the degrees of freedom are constant over time, as for

the univariate margins, and allow the correlation to be time-varying. Recall

that the innovations of the univariate or multivariate GARCH models, with

Student-t distributed innovations, have constant degrees of freedom even for

those multivariate GARCH models which allow for time-varying correlation.

A generalization of the procedure for time-varying νt is definitely possible for

the copula as well as for the margins.

2.2. Estimation

For a random sample (Z1,Z2, . . . ,ZT ), the distribution of Zt can be writ-

ten as

F (zt; α1,α2, θt) = C(F1(z1t; α1), F2(z2t; α2); θt)
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where we assume that each Fi is absolutely continuous with density fi; the

vectors αi parameterize the marginal distribution functions and the time-

varying parameter θt parameterizes the copula family.

Assuming that C has density c, given by

c(u1, u2; θ) =
∂2C(u1, u2; θ)

∂u1 ∂u2

, (u1, u2) ∈ [0, 1]2,

the density of Zt is given by:

f(zt; α1,α2,θt) = c(F1(z1t; α1), F2(z2t; α2); θt)f1(z1t; α1)f2(z2t; α2).

The log-likelihood function of the model is therefore given by

l(α1, α2,θt) =
T∑

t=p+1

(
log c(F1(z1t; α1), F2(z2t; α2); θt) +

2∑
i=1

log fi(zit; αi)

)
,(6)

with p as in (1).

Numerical maximization of (6) yields the maximum likelihood estimates

of the model. However, the optimization of the likelihood function with

possibly many parameters is numerically difficult and time consuming. It is

more tractable to estimate first the model parameters of the margins and then

the dependence model parameters using the estimates from the first step.

This two-step estimation procedure, also known as inference for margins (see

for instance Joe (1997)) has been used in semi-parametric modeling, as in

Andreou and Ghysels (2003), or in a full-parametric modeling context as

in Engle and Sheppard (2001), Patton (2006b) and Jondeau and Rockinger

10



(2006). The marginal log-likelihood functions

l(αi) =
T∑

t=p+1

log fi(zi,t; αi), i = 1, 2,

are independently maximized, yielding the estimates α̂1 and α̂2. The final

function to maximize is

l(θt) =
T∑

t=p+1

log c(F1(z1t; α̂1), F2(z2t; α̂2); θt). (7)

From this, estimates for the dependence parameter θt are obtained. Statisti-

cal properties of this estimation procedure are to be found in Chen and Fan

(2005), Joe (2005) and Patton (2006a).

3. Data

The data consist of observations of spot exchange rates for the U.S. dollar,

the Euro, and the Japanese Yen, covering the sample period October 1, 2000

until October 1, 2008, equally-spaced at sixty-minutes. The data set was

obtained from Olsen Financial Technologies GmbH. The sixty-minute prices

are obtained by linear interpolation between the average of the bid and ask

tick quotes immediately before and immediately after the sixty-minute time

stamps across the 24-hour day.

We compute the returns from prices of 1 U.S. dollar expressed in Euro and

Yen, this is, EUR/USD and JPY/USD. Sixty-minute returns are computed
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as the first difference of the logarithm of the sixty-minute prices. Analo-

gously, from the corresponding frequency equally-spaced logarithmic prices,

we compute two, four, eight, twelve hours and one day returns, yielding

twelve series in all.

High-frequency data is subject to market microstructure frictions. By

choosing sixty-minute prices as the highest frequency we achieve a compro-

mise between estimation bias originating in high-frequency bid/ask bounce

and variance which increases as the sampling frequency decreases.

We exclude all the returns from Friday 21:00 GMT until Sunday 21:00

GMT and Bank Holidays in order to simplify the inference and avoid mod-

eling weekend and Bank Holiday effects. After deleting these slow trading

activity days the data set consists of returns spanning 2, 016 days in total.

It is known that seasonal components, associated with working hours of

exchanges worldwide, distort the estimation of volatility models, in particular

GARCH type models as we use here.5 To overcome this problem we compute

the intraday seasonal pattern and use it to deseasonalize the sixty-minute

returns. We compute a seasonal factor corresponding to each sixty-minute

interval of the day as the average of the squared returns observed every day

5See for instance Martens et al. (2002).
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for that time interval,

s2
i =

1

T

T∑
t=1

x̃2
it i = 1, 2, . . . , 24,

where T is the number of days in the sample and x̃it is the raw return in the

ith interval of day t. The sixty-minute deseasonalized returns are computed

as

xit =
x̃it

si

i = 1, 2, . . . , 24 and t = 1, 2, . . . , T. (8)

We compute the deseasonalized returns for the other intraday frequencies

similarly to (8), where the corresponding seasonal factor is the sum of the

sixty-minute factors in that frequency time interval,

s̄2
i =

24/δ−1∑
t=0

s2
i 24/δ−t i = 1, . . . , δ,

where δ = 12, 6, 3, 2 for 2-hour, 4-hour, 8-hour and 12-hour return frequency

respectively. When clear from the context we refer to the deseasonalized

returns simply as returns.

4. The EUR/USD and JPY/USD univariate returns at different

time horizons

We first analyze the unconditional distribution of the returns at the sev-

eral time horizons. The modeling of the univariate dynamics and conditional

distribution follows. This section ends with model specification tests.
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4.1. Univariate modeling

Tables 1 and 2 contain summary statistics of the returns. Observe that

neither exchange rate returns shows a significant trend. The returns’ skew-

ness is mostly negative for the various time horizons although not revealing

strikingly asymmetric returns. At all time horizons, both series show excess

kurtosis higher than zero, corresponding to a normally distributed variable.

From the values obtained for the kurtosis we can see that, for both spot

rates, the unconditional univariate distributions are clearly heavy tailed for

shorter time horizons and become more thin tailed as the time horizon in-

creases. This feature has been found in the financial econometric literature;

see for instance Nekhili et al. (2002) where similar tail behavior was found

for the JPY/USD exchange rate returns.

The estimated linear correlation decreases as the time horizon decreases.

This feature is usually justified in the literature by the non-synchronicity

of trades. The fact that trades are not synchronized causes an increasing

downwards correlation bias as the time horizon shortens.

[Insert Table 1 here]

[Insert Table 2 here]

Concerning the conditional distributions, the Ljung-Box test statistics up

to the twentieth order indicate serial correlation; see Table 3. We test for the
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presence of conditional heteroscedasticity using the LM test introduced by

Engle (1982). The test statistics obtained reveal the presence of time-varying

conditional variance at all the time horizons.

[Insert Table 3 here]

The results obtained from the tests on the univariate return time se-

ries justify, in our discrete-time setting, modeling the time-varying volatility

with a GARCH specification assuming Student-t innovations. These model

assumptions are checked in Section 4.2 with the appropriate specification

tests. Tables 4 and 5 give the order of the models fitted and the correspond-

ing parameter estimates. Note that the t-distributions fitted at the two and

four hours time horizons may have infinite kurtosis (ν̂ < 4) and so the fourth

moment does not exist.

[Insert Table 4 here]

[Insert Table 5 here]

From the fitted AR-GARCH model parameters we recover the standard-

ized residuals or filtered returns ẑt for each univariate time series (x1, x2, . . . , xT ).

That is

ẑt = (xt − µ̂t)/σ̂t, t = 1, 2, . . . , T. (9)
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4.2. Model specification tests

Once the univariate models are selected and fitted, the dynamics and

the goodness-of-fit of our assumed Student-t density need to be checked. In

Table 6 we report the p-values of the Ljung-Box test and of the Anderson-

Darling goodness-of-fit test for a Student-t density.

[Insert Table 6 here]

The Ljung-Box test for the residuals indicates that there is no autocor-

relation at all time horizons except for the one hour EUR/USD and four

hour JPY/USD. For the squared values of the residuals we have that the two

hour EUR/USD and the one and eight hour JPY/USD time horizons fail the

autocorrelation test at a significance level of 5%.

Table 6 also reports the p-values of the Student-t model goodness-of-

fit test for the marginal distributions. The goodness-of-fit of the marginal

densities, according to the Anderson-Darling test, are not rejected at all time

horizons. The linear correlation between the residuals increases with the time

horizons as observed for the returns (Table 2).

5. The EUR/USD and JPY/USD dependence structure at differ-

ent time horizons

In order to fit the copula models we use the standardized residuals {(ẑ1t, ẑ2t) :

t = 0, . . . , T} defined in (9) together with the estimated degrees of freedom
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ν̂i from the marginal AR-GARCH modeling above; see Tables 4 and 5. These

data are used in equation (7) where Fi is the Student-t distribution assumed

for the GARCH innovations.

The copula families used in modeling the data are: Student-t, Frank,

Plackett, Gaussian, Gumbel and Clayton; for details on these classes see Joe

(1997), Embrechts et al. (2002) and Nelsen (2006). This choice of copula

models is partly based on previous analyses, tractability, flexibility and to

allow for a fairly broad class with respect to extremal clustering and possible

asymmetry. If there is asymmetry in the dependence structure we need a

copula able to model this feature. Of particular interest are the the upper

and lower tail dependence coefficients, as defined in McNeil et al. (2005) page

209. These range from zero in case of asymptotic independence, to one in case

of perfect asymptotic tail dependence. The Clayton copula family has lower

tail dependence ranging from asymptotic independence to perfect asymptotic

tail dependence. Hence, it is convenient to use the mixture Clayton with the

survival Clayton model to investigate the existence and asymmetry of upper

and lower tail dependence.

Denoting the Clayton copula family with parameter θ > 0 by CCl(·, ·; θ),

the mixture copula with vector parameter θ has a distribution function of

the form

C(u1, u2; θ) = θ3 CCl(u1, u2; θ1) + (1− θ3) CCl(u1, u2; θ2). (10)
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The AIC values in Table 8 allow us to rank the several models. The best

non-dynamic copula models are the Clayton mixture and the t-copula for

the one, two and four hour time horizons. For the remaining, longer, time

horizons the best non-dynamic models are the Placket and the t-copula.

The t-copula continues being the best when we introduce dynamics in the

model parameter. The second best dynamic model at all time horizons is

the Gaussian. The dynamics used with each copula parameter are listed in

Table 7. Further support for the t-based models is to be found in Breymann

et al. (2003), Daul et al. (2003), Demarta and McNeil (2005), Rosenberg and

Schuermann (2006), Pesaran et al. (2004) and Platen and Heath (2006).

[Insert Table 7 here]

For the Clayton mixture model defined in (10), we test the null hypothesis

H0 : θ1 = θ2 and θ3 = 0.5 versus the alternative HA : θ1 6= θ2 and θ3 6= 0.5. A

high p-value indicates that a three parameter asymmetric Clayton mixture is

not significantly better than its one parameter symmetric version. For the six

time horizons, from the one hour to the daily, we obtain as p-values 0.8211,

0.1166, 0.2004, 0.8148, 0.4208 and 0.3377 respectively. The p-values obtained

strongly favor the symmetric model at all time horizons. The estimated

coefficient of tail dependence corresponding to the Clayton parameter for

the six time horizons, from the one hour to the daily, are 0.4569, 0.4267,

0.4074, 0.4240, 0.4099 and 0.3956, respectively, around the middle of the tail
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coefficient range (0, 1).

It is not surprising that exchange rates show symmetric dependence in the

data, given that its definition is always against another currency. This fact

makes symmetric copula families to be potentially good models for exchange

rates dependence. This is not the case in other financial data, such as stock

returns for instance, where downside dependence is often stronger than upside

dependence.

In order to compare the relative performance of the dynamic models com-

pared to their non-dynamic versions, we perform a likelihood ratio test for

each model and time horizon. The test statistics and p-values obtained are

in Table 8.

[Insert Table 8 here]

The Gaussian and the t-copula dynamic models outperform their non-

dynamic versions at all time horizons. The dynamic Frank model is signif-

icantly better than the non-dynamic model at all time horizons except for

the eight hour one. The dynamic Clayton mixture outperforms at the eight

and two hour time horizons. The dynamic Gumbel beats the non-dynamic

Gumbel at the eight hour time horizon and the Clayton at one and two hours.

In summary, the Gaussian and the t-copula models stand out as the

best models consistently across all time horizons and their dynamic versions

always add significant modeling power. It is remarkable that at all time
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horizons the Gaussian and t-copula models with Fisher dynamics lead to a

better AIC than the Gaussian and t-copula models with Tse-Tsui dynamics.

The parameter estimates and asymptotic standard errors obtained for all

Student-t and Gaussian copula models are reported in Table 9 and Table 10.

These include the parameter estimates for the corresponding non-dynamic

model.

[Insert Table 9 here]

[Insert Table 10 here]

The estimate for α in the t-copula model with Fisher dynamics (3) can be

considered to be zero for two hours, twelve hours and daily returns. But

β and γ are definitely different from zero for both Gaussian and t-copula

models with Fisher and Tse-Tsui dynamics, at all time horizons. In other

words, the estimated correlation depends on the marginal returns and on the

correlation from the previous time period.

The degrees of freedom estimated for the dependence structure is always

larger for the dynamic Student-t copula models than for the static t-copula

model, as can be seen from a comparison of the values listed in Table 9.

Hence, a non-dynamic modeling might induce a spurious heavier conditional

tail.

In contrast to multivariate GARCH models, with Gaussian or multivari-

ate Student-t conditional distribution, copula-GARCH models allow us com-
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plete freedom to choose different conditional marginal distributions. In the

case of the fitted Student-t copula models we compare the degrees of free-

dom estimated for each marginal conditional distribution (see Tables 4 and

5) and for the copula (see Table 9). For the daily time horizon, for instance,

we estimate ν̂ = 15.8 for the EUR/USD, ν̂ = 9.2 for the JPY/USD and

ν̂ = 8.4 for the t-copula with Fisher dynamics. Although for our data we

cannot conclude that the estimates are statistically different for most of the

time horizons, using three parameters for the degrees of freedom must surely

contribute to the excellence of the results in the specification tests.

For comparison with the copula-GARCH model we estimate the BEKK

model introduced by Engle and Kroner (1995). We model the conditional

mean of each return series using the same AR specification as in the marginal

modeling in Section 4. Then we estimate a bivariate BEKK model on the

residuals. We fit a BEKK model at each of the six time horizons assuming

(bivariate) Student-t innovations.

Table 11 lists the corresponding autocorrelation and goodness-of-fit tests.

All time horizons pass the autocorrelation test except the one hour time

horizon residuals. The one, two and eight hour squared residuals fail the

same test for both rates at the 5% level. Only the JPY/USD residuals for

time horizons four, eight and twelve hours pass the goodness-of-fit test for a

Student-t distribution. The other nine series fail the test.
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[Insert Table 11 here]

The goodness-of-fit results for the distribution of the residuals are sub-

stantially worse than for the copula-GARCH model (see Anderson-Darling

test results in Tables 6 and 11). The p-values for testing the Student-t distri-

bution are higher for the copula-GARCH model in ten out of twelve series.

The failure of the Student-t distribution might be due to the asymmetry

revealed by the estimated skewness (higher than for the original returns)

especially for the JPY/USD residuals; see Table 12. The existence of ex-

cess kurtosis in the AR-BEKK residuals is consistent with a heavy tailed

Student-t distribution.

[Insert Table 12 here]

We conclude that the copula-GARCH model is better specified than the

flexible BEKK model.

6. Evaluating and comparing the correlation estimates at different

time horizons

From the estimated parameters for the dynamic correlation models we

compute the time-varying estimated correlation for the Gaussian and Student-

t copula with Fisher dynamics (3) and Tse-Tsui dynamics (4), and for the

BEKK model for all time horizons. As a benchmark we use two nonparamet-

ric measures of dependence: Kendall’s tau coefficient and realized correlation.
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For all time horizons we compute rolling window estimates of Kendall’s

tau using a window size of 40 observations. Kendall’s tau at day t is computed

using the previous 39 pairs of EUR/USD and JPY/USD returns, and the

return pair at t itself. Since for our data the best performing copula models

belong to the elliptical family we transform Kendall’s tau estimates, τKendall,

into linear correlation, ρτ , using the relationship

τKendall,t =
2

π
arcsin ρτ,t, (11)

which is valid for elliptical distributions; see Lindskog et al. (2003). The lin-

ear correlation estimated from Kendall’s tau is plotted in Figure 1 together

with the dynamic Gaussian and Student-t copula with Fisher dynamics (3)

and daily frequency. Recall from Table 2 in Section 4 that the unconditional

constant correlation estimate is 0.43. In the period 2007-2008 we can observe

a significant drop in the correlation starting in the beginning of 2007, bot-

toming out in the third quarter with a consequent rise reaching the previous

levels during the second quarter of 2008. Events having different effects in

European and Japanese economies cause changes in the correlation between

the two exchange rates. A delay in the effect of the sub-prime crisis on the

Asian economies compared with the European can justify the decrease in the

correlation observed until mid-2007. After mid-2007 all FX markets, includ-

ing Euro and Japanese Yen, had suffered equal contagion from the crisis and

correlation between Euro and Yen returned to pre-crisis levels.
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[Insert Figure 1 here]

Given these results we can infer strongly that the conditional dependence

is time-varying and, consequently, that its dynamics should be modeled.

Clearly, assuming that the correlation is constant may cause substantial mis-

pricing and errors in risk measurement.

In order to formally evaluate and benchmark our nonlinear model cor-

relation estimates we follow Andersen et al. (2003). First, we evaluate the

correlation estimates obtained from the different models using the Kendall’s

tau estimates. We perform the regression

ρτ,t = b0 + b1ρmodel,t + ut,

to project the correlation, ρτ,t, obtained from Kendall’s tau using (11) onto

a constant and the various parametric model estimates, ρmodel,t.

We plot in Figure 2 the regression of the estimates of Kendall’s tau for the

daily filtered returns, computed according to (11), on the Tse-Tsui dynam-

ics, Fisher dynamics and BEKK model correlation estimates. From these

plots we can anticipate superior results for the Fisher dynamics with Gauss

and Student-t copula in the regression analysis. The regression of Kendall’s

tau transformed correlation on the Tse-Tsui dynamics and BEKK model

estimates are visibly weaker.

[Insert Figure 2 here]
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We report in Table 13 the numerical results from the evaluation regres-

sions. The results are consistent across models and time horizons. For all

models the regression R2 is highest for the four hours time horizon. For the

four, eight, twelve hour and daily time horizons the two models with Fisher

dynamics (Gaussian and t-copula) always have the highest R2. For the two

hour time horizon the two dynamic Gaussian copula models have the highest

R2. Finally the best R2 for the one hour time horizon is for the Gaussian

model with Tse-Tsui dynamics and for the BEKK model.

[Insert Table 13 here]

We further evaluate the correlation estimates from a different point of

view. We aggregate the model correlation estimates from the different time

horizons into daily and compare them with the daily realized correlation and

Kendall’s tau estimates. The day-t realized correlation is computed from the

hourly time horizon returns as

ρRC,t =

∑24
i=1 xit.yit√∑24

i=1 x2
it

∑24
i=1 y2

it

, t = 1, 2, . . . , T,

where xit is the hour i EUR/USD return of day t, and yit the JPY/USD

return for the same hour and day. With the model correlation estimates at

time horizon h, for h = 1, 2, 4, 8, 12 hours, we compute the day-t correlation
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estimate as

ρmodel,t,h =

∑24/h
i=1 ρi,t,h σEUR,i,t,h σJPY,i,t,h√∑24/h
i=1 σ2

EUR,i,t,h

∑24/h
i=1 σ2

JPY,i,t,h

, t = 1, 2, . . . , T,

where ρi,t,h is the time horizon h estimated correlation for time period i of

day t. For instance, ρ3,t,2 is the two hour time horizon correlation estimated

for 4–6am of day t. The σ2
EUR,i,t,h and σ2

JPY,i,t,h are the marginal variances

for the same time period, obtained from the univariate time series modeling.

In order to compare the correlation estimates obtained from the different

time horizons we use the regression

ρRC,t = b0 + b1ρmodel,t,h + ut. (12)

to project the realized correlation ρRC,t on a constant and on the model

estimates ρmodel,t,h. We also regress the daily Kendall’s tau correlation, ρτ,t,

on the daily model correlations obtained from the different time horizons as

in (12). The results are reported in Table 14.

[Insert Table 14 here]

The R2 for the realized correlation increases with the time frequency used to

compute the daily correlations, and this consistently for all the models. The

shorter the time horizon the higher the R2. For each time horizon the BEKK

model has the higher R2. The t and Gaussian models with Fisher dynamics

are the second best. Only for the one hour time horizon the second best R2
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model is the Gaussian with Tse-Tsui dynamics. The conclusion here is that,

when measured against the realized correlation, using shorter time horizons

improves the dynamic daily correlation estimates.

When regressing the daily rolling window Kendall’s tau correlation on the

daily correlations estimated from different time horizons, the results (see Ta-

ble 14) are still consistent across time horizons and models. The R2 is higher

when the correlations are estimated from longer time horizons. The highest

R2 is obtained from the t model with Fisher dynamics for all frequencies

except one and eight hours where the Gaussian model with Fisher dynamics

is better. The BEKK model has the lowest R2 for all time horizons except

for the eight hours where it ranks the second to last. When measured against

the Kendall’s tau correlation the results show no advantage in using shorter

time horizons for modeling the daily correlation. Across models the Fisher

dynamics perform consistently better than the Tse-Tsui dynamics and the

BEKK model.

Implications for the choice of sampling frequency resulting from regress-

ing the realized correlation are different to those resulting from regressing

Kendall’s tau. This may be due to the different conceptual nature of the

benchmark models.
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7. Conclusion

The contribution of the paper is threefold. First of all, we want to con-

tribute to the ongoing discussion between practitioners and academics in

order to advance the methodological basis for risk measurement technology.

There is a need to move beyond linear correlation and, through the notion

of copula, our paper contributes to this goal. Second, we propose a par-

simonious conditional dependence model, the copula with Fisher dynamics

model, taking dynamics in the dependence structure into account and use

it to analyze the dependence between Euro and Japanese Yen. Thirdly we

show the superiority of the proposed model compared to models previously

investigated in the literature.

Looking first at the univariate conditional distributions of the EUR/USD

and JPY/USD returns we conclude they are well described by a Student-t

distribution and this from hourly up to daily return frequencies. We observe

some tendency for the tail of the distribution to become heavier as the time

frequency increases.

To model dependence, comparing different copula models, the t-copula

performs best for the time-invariant models and the Gaussian and t-copula

models are the best for the time-varying models. Combining different copula

families and dynamic specifications we conclude that the dependence between

the EUR/USD and JPY/USD is time-varying. The best time-varying models
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(Gaussian and t-copula) are statistically better than the corresponding time-

invariant model. All these results are obtained consistently at all the time

horizons considered.

Testing for different upper and lower tail dependence revealed no asym-

metry, a natural feature of FX data.

We observe that the degrees of freedom of each Student-t margin and

copula are different at all the time horizons considered. We find a heavier tail

in the marginal exchange rates than in the dependence structure. Although

not always statistically significant, this observation raises concerns about

using a bivariate Student-t for the conditional distribution of the returns.

We find that the degrees of freedom estimated for the dynamic t-copula

model are significantly higher than for the time-invariant model. The time-

invariant model seems to overestimate the dependence tail heaviness.

The dependence paths estimated using the time-varying copula-GARCH

models have very high significance at all time horizons when compared to two

non-parametric measures of dependence: realized correlation and Kendall’s

tau.

We found a remarkable decrease in the dependence between the EUR/USD

and JPY/USD returns during the first three quarters of 2007 followed by an

increase till mid 2008 back to values observed before 2007. This decline in the

correlation was possibly the result of a delay in the effects of the sub-prime

29



crisis on the Japanese Yen compared with the effect on the Euro. Once both

currencies became equally influenced by the crisis their dependence went back

to pre-crisis values.

We conclude that the proposed copula with Fisher transformation dynam-

ics model is superior to alternative models previously tested in the literature

and that its use should be considered in preference to these models in future

work.
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Table 1: Summary statistics: mean and standard deviation

EUR/USD JPY/USD

Time horizon Mean Std. dev. Mean Std. dev.

1 hour -0.0143 0.9999 -0.0007 1.0000

2 hours -0.0154 1.0131 -0.0005 1.0147

4 hours -0.0175 1.0181 0.0032 0.9926

8 hours -0.0271 0.9970 -0.0064 0.9714

12 hours -0.0185 0.9476 0.0029 0.9546

1 day -0.0459 1.0212 0.0061 0.9903

Notes: Sample mean and standard deviation of the

EUR/USD and JPY/USD returns at the six time horizons.



Table 2: Summary statistics: skewness, kurtosis, and correlation

EUR/USD JPY/USD Linear

Time horizon Skewness Kurtosis Skewness Kurtosis correlation

1 hour -0.0624 6.854 -0.0838 7.493 0.3878

2 hours 0.0044 5.287 -0.0149 4.876 0.4040

4 hours -0.3074 7.391 -0.0641 3.066 0.4030

8 hours -0.0430 2.978 -0.1743 2.349 0.4088

12 hours -0.0433 2.244 -0.1211 2.080 0.4016

1 day 0.0703 0.711 -0.0967 1.070 0.4311

Notes: Sample skewness, excess kurtosis and linear correlation of the EUR/USD

and JPY/USD returns at the six time horizons.



Table 3: Ljung-Box (L-B) and ARCH LM (LM) tests

EUR/USD JPY/USD

Time horizon L-B p-value LM p-value L-B p-value LM p-value

1 hour 45.74 0.00 1 143.90 0.00 40.13 0.00 2 093.60 0.00

2 hours 48.04 0.00 556.70 0.00 55.30 0.00 820.54 0.00

4 hours 33.14 0.03 165.46 0.00 56.78 0.00 439.64 0.00

8 hours 35.53 0.01 172.03 0.00 33.95 0.02 257.78 0.00

12 hours 34.91 0.02 130.37 0.00 34.46 0.03 206.58 0.00

1 day 26.71 0.14 126.94 0.00 30.85 0.06 75.47 0.00

Notes: Ljung-Box (L-B) and ARCH LM (LM) test statistics up to the twentieth order for the

EUR/USD and JPY/USD returns at the six time horizons. The null hypothesis of no serial

correlation in returns is rejected at 5% level for all time horizons except for the daily. The null

hypothesis of no ARCH effects is rejected for all time horizons at the 5% level.



Table 4: Results from the univariate modeling of EUR/USD

Time horizon 1 day 12 hours 8 hours 4 hours 2 hours 1 hour

Constant, µ̂ -0.0476 -0.0116 -0.0153 -0.0119
(0.0209) (0.0068) (0.0047) (0.0033)

AR(1), φ̂1 – – -0.0220 – –
(0.0079)

AR(2), φ̂2 – – 0.0165 – –
(0.0076)

GARCH constant, α̂0 – – 0.0013 0.0197 0.0007 0.0007
(0.0058) (0.0006) (0.0003) (0.0002)

Lag 1 ε2, α̂1 – 0.0232 – 0.0196 0.0162 0.0753
(0.038) (0.0026) (0.0020) (0.0098)

Lag 2 ε2, α̂2 0.0587 – 0.0074 – – -0.0623
(0.0188) (0.0028) (0.0082)

Lag 1 variance, β̂1 0.9617 0.9763 0.9664 0.9813 0.9844 0.9866
(0.0071) (0.0037) (0.0078) (0.0025) (0.0021) (0.0022)

Degrees of freedom, ν̂ 15.8061 5.4046 5.1034 3.7330 3.7480 4.1117
(4.1700) (0.4550) (0.3284) (0.1266) (0.0881) (0.0713)

Notes: Maximum likelihood estimates and corresponding asymptotic standard errors (in

parentheses) obtained from fitting AR-GARCH models to the return series EUR/USD at

each time horizon.



Table 5: Results from the univariate modeling of JPY/USD

Time horizon 1 day 12 hours 8 hours 4 hours 2 hours 1 hour

Constant, µ̂ – – – 0.0169 0.0111 0.0078
(0.0072) (0.0049) (0.0034)

AR(1), φ̂1 – – – – -0.0533 –
(0.0061)

GARCH constant, α̂0 0.0280 0.0088 – 0.0079 0.0045 0.0092
(0.0102) (0.0036) (0.0031) (0.0016) (0.0025)

Lag 1 ε2, α̂1 0.0624 – 0.0031 0.0347 0.0796 0.0356
(0.0103) (0.0004) (0.0055) (0.0106) (0.0051)

Lag 2 ε2, α̂2 – 0.0517 – – -0.0548 –
(0.0134) (0.0105)

Lag 1 variance, β̂1 0.9108 0.9480 0.9647 0.9600 0.9731 0.9568
(0.0143) (0.0085) (0.0051) (0.0076) (0.0049) (0.0072)

Degrees of freedom, ν̂ 9.2553 5.8374 4.3450 4.4333 3.7322 4.0833
(1.6769) (0.4944) (0.2921) (0.1794) (0.0854) (0.0749)

Notes: Maximum likelihood estimates and corresponding asymptotic standard errors (in

parentheses) obtained from fitting AR-GARCH models to the return series JPY/USD at

each time horizon.



Table 6: Properties of the copula-GARCH model residuals (filtered returns)

Time EUR/USD JPY/USD A-D test Linear

horizon zt z2
t zt z2

t EUR/$ JPY/$ correlation

1 hour 0.0063 0.1740 0.1361 0.0001 0.3242 0.1327 0.4198

2 hours 0.0489 0.0002 0.0479 0.2290 0.4471 0.1501 0.4298

4 hours 0.2085 0.2680 0.0016 0.2090 0.1069 0.1704 0.4244

8 hours 0.3894 0.8379 0.1257 0.0001 0.3044 0.1137 0.4091

12 hours 0.2622 0.1479 0.3806 0.4281 0.1105 0.5220 0.4253

1 day 0.7408 0.1560 0.1145 0.5418 0.6912 0.9918 0.4498

Notes: The first left four columns have the Ljung-Box autocorrelation test p-values up to

the order twelve for the EUR/USD and JPY/USD residuals, zt, and squared residuals, z2
t ,

at the six time horizons. Columns five and six have the p-values from the Anderson-Darling

(A-D) goodness of fit test. The null hypothesis is that the residuals follow a Student-t

distribution. The right column displays the linear correlation between the EUR/USD and

JPY/USD residuals.



Table 7: Dynamic copula parameter specification

Copula model Parameter specification

Clayton θt = α + β|z1t−1z2t−1|+ γθt−1 θt > 0

Frank θt = α + β|z1t−1z2t−1|+ γθt−1 θt ∈ R\{0}
Gauss/t Fisher ρt = h−1(α + β sign(z1t−1z2t−1)

√
|z1t−1z2t−1|+ γh(ρt−1)) −1 ≤ ρt ≤ 1

h(ρ) = log((1 + ρ)/(1− ρ))

Gauss/t Tse-Tsui ρt = (1− β − γ)ρ + βξt−1 + γρt−1 −1 ≤ ρt, ρ ≤ 1

ξt−1 =
∑2

h=1 z1t−hz2t−h/
√∑2

h=1 z2
1t−h

∑2
h=1 z2

2t−h β + γ < 1

Gumbel θt = α + β|z1t−1z2t−1|+ γθt−1 θt ≥ 1

Plackett θt = (1− α− β)θ + α|z1t−1z2t−1|+ βθt−1 θt, θ ≥ 0

Notes: Parameter dynamics assumed for the different copula models used on modeling the

EUR/USD and JPY/USD returns.



Table 8: Bivariate residuals modeling
Time Bivariate AIC Log-likelihood ratio

horizon model static dynamic statistic p-value
Clayton -7771.42 -9246.01 1478.59 0.00
Frank -8687.40 -10407.05 1723.65 0.00
Gaussian Fisher -9098.03 -12647.45 3553.42 0.00
Gaussian Tse-Tsui -9098.03 -11937.74 2841.71 0.00

1 hour Gumbel -9502.63 -9400.70 -99.92 1.00
Clay & s.Clay -10246.42 -5916.07 -4328.35 1.00
Plackett -9514.47 -9513.53 1.06 0.30
t Fisher -11200.68 -13972.26 2775.59 0.00
t Tse-Tsui -11200.68 -13895.25 2698.57 0.00
Clayton -4187.39 -4945.23 761.84 0.00
Frank -4577.34 -5543.39 970.04 0.00
Gaussian Fisher -4798.44 -6758.40 1963.96 0.00
Gaussian Tse-Tsui -4798.44 -6434.96 1638.52 0.00

2 hours Gumbel -5088.21 -4841.50 -242.70 1.00
Clay & s.Clay -5453.88 -6374.41 922.53 0.00
Plackett -5102.69 -5100.50 -0.19 1.00
t Fisher -6084.28 -7585.54 1505.27 0.00
t Tse-Tsui -6084.28 -7554.79 1474.51 0.00
Clayton -2186.47 -2183.67 1.20 0.55
Frank -2459.60 -3012.79 557.18 0.00
Gaussian Fisher -2479.79 -3632.71 1156.92 0.00
Gaussian Tse-Tsui -2479.79 -3442.02 964.23 0.00

4 hours Gumbel -2582.63 -2554.93 -23.70 1.00
Clay & s.Clay -2787.72 -2761.99 -23.72 1.00
Plackett -2736.84 -2734.44 -0.40 1.00
t -Fisher -3105.85 -3990.58 888.73 0.00
t Tse-Tsui -3105.85 -3939.56 837.71 0.00
Clayton -1003.97 -1006.14 6.17 0.05
Frank -1241.78 -1242.20 4.42 0.11
Gaussian Fisher -1209.32 -1709.24 503.92 0.00
Gaussian Tse-Tsui -1209.32 -1662.27 454.95 0.00

8 hours Gumbel -1217.20 -1220.23 7.03 0.03
Clay & s.Clay -1280.97 -1283.22 4.25 0.04
Plackett -1355.58 -1353.72 0.14 0.71
t Fisher -1422.60 -1825.00 406.40 0.00
t Tse-Tsui -1422.60 -1805.93 387.32 0.00
Clayton -707.36 -704.68 1.32 0.52
Frank -854.58 -850.52 -0.06 1.00
Gaussian Fisher -842.98 -1189.56 350.58 0.00
Gaussian Tse-Tsui -842.98 -1119.11 278.13 0.00

12 hours Gumbel -881.40 -878.38 0.98 0.61
Clay & s.Clay -922.55 -918.83 -1.72 1.00
Plackett -947.95 -945.77 -0.17 1.00
t Fisher -1029.84 -1295.02 269.18 0.00
t Tse-Tsui -1029.84 -1267.28 241.44 0.00
Clayton -390.52 -387.71 1.1886 0.55
Frank -512.61 -549.68 41.07 0.00
Gaussian Fisher -475.58 -600.16 128.58 0.00
Gaussian Tse-Tsui -475.58 -590.26 116.67 0.00

1 day Gumbel -467.69 -462.69 -0.99 1.00
Clay & s.Clay -494.47 -489.77 -2.70 1.00
Plackett -546.84 -543.09 -1.75 1.00
t Fisher -538.11 -633.83 99.71 0.00
t Tse-Tsui -538.11 -628.47 94.35 0.00

Notes: Bivariate copula models fitted to the residuals on EUR/USD and JPY/USD log-
returns at the six different time horizons. The table lists estimates and asymptotic standard
errors of parameters for the static and dynamic copula models.



Table 9: Estimates for the t-copula models
Time Parameter Estimates ( ˆs.e.)

horizon non-dynamic t Fisher t Tse-Tsui
ν̂ 4.6369 (0.1223) ν̂ 6.1284 (0.2026) 6.0224 (0.1964)

1 hour ρ̂ 0.4209 (0.0041) α̂ 0.0005 (0.0002) –
β̂ 0.0338 (0.0021) 0.0095 (0.0006)
γ̂ 0.9893 (0.0007) 0.9908 (0.0006)

ν̂ 4.0779 (0.1385) ν̂ 5.2857 (0.2222) 5.1875 (0.2151)
2 hours ρ̂ 0.4312 (0.0058) α̂ 0.0008 (0.0004) –

β̂ 0.0447 (0.0034) 0.0137 (0.0010)
γ̂ 0.9862 (0.0011) 0.9860 (0.0012)

ν̂ 4.2469 (0.2080) ν̂ 5.8504 (0.3728) 5.6622 (0.3530)
4 hours ρ̂ 0.4450 (0.0080) α̂ 0.0030 (0.0011) –

β̂ 0.0746 (0.0071) 0.0236 (0.0023)
γ̂ 0.9756 (0.0027) 0.9735 (0.0030)

ν̂ 5.4654 (0.4531) ν̂ 8.0167 (0.9059) 7.9486 (0.9093)
8 hours ρ̂ 0.4431 (0.0111) α̂ 0.0087 (0.0032) –

β̂ 0.1042 (0.0142) 0.0401 (0.0055)
γ̂ 0.9601 (0.0066) 0.9458 (0.0086)

ν̂ 4.5832 (0.4116) ν̂ 6.5264 (0.7888) 6.088 (0.6963)
12 hours ρ̂ 0.4520 (0.0137) α̂ 0.0061 (0.0033) –

β̂ 0.0923 (0.0161) 0.0279 (0.0050)
γ̂ 0.9663 (0.0070) 0.9663 (0.0071)

ν̂ 6.1866 (0.9520) ν̂ 8.4611 (1.6871) 8.3670 (1.6592)
1 day ρ̂ 0.4821 (0.0178) α̂ 0.0089 (0.0056) –

β̂ 0.0922 (0.0190) 0.0400 (0.0097)
γ̂ 0.9618 (0.0093) 0.9406 (0.0168)

Notes: Parameter estimates and asymptotic standard errors for the three t-copula
models, non-dynamic, with Fisher transformation dynamic correlation and with Tse-
Tsui dynamic correlation, fitted to the hourly up to daily returns on EUR/USD and
JPY/USD rates.



Table 10: Estimates for the Gaussian copula models
Time Parameter Estimates ( ˆs.e.)

horizon non-dynamic Gauss Fisher Gauss Tse-Tsui
ρ̂ 0.4141 (0.0034) α̂ 0.0006 (0.0002) –

1 hour β̂ 0.0326 (0.0018) 0.0121 (0.0008)
γ̂ 0.9895 (0.0006) 0.9875 (0.0009)

ρ̂ 0.4244 (0.0048) α̂ 0.0012 (0.0004) –
2 hours β̂ 0.0442 (0.0030) 0.0179 (0.0013)

γ̂ 0.9859 (0.0010) 0.9808 (0.0016)
ρ̂ 0.4310 (0.0068) α̂ 0.0034 (0.0010) –

4 hours β̂ 0.0727 (0.0062) 0.0293 (0.0025)
γ̂ 0.9755 (0.0024) 0.9670 (0.0033)

ρ̂ 0.4267 (0.0096) α̂ 0.0090 (0.0029) –
8 hours β̂ 0.0987 (0.0122) 0.0474 (0.0056)

γ̂ 0.9609 (0.0058) 0.9376 (0.0087)
ρ̂ 0.4358 (0.0117) α̂ 0.0091 (0.0037) –

12 hours β̂ 0.1034 (0.0161) 0.0372 (0.0064)
γ̂ 0.9597 (0.0076) 0.9541 (0.0095)

ρ̂ 0.4612 (0.0159) α̂ 0.0105 (0.0058) –
1 day β̂ 0.1031 (0.0186) 0.0497 (0.0102)

γ̂ 0.9559 (0.0097) 0.9282 (0.0178)

Notes: Parameter estimates and asymptotic standard errors for the three Gaus-
sian copula models, non-dynamic, with Fisher transformation dynamic correla-
tion and with Tse-Tsui dynamic correlation, fitted to the hourly up to daily
returns on EUR/USD and JPY/USD rates.



Table 11: Properties of the AR-BEKK model residuals
Time EUR/USD JPY/USD A-D test
horizon zt z2

t zt z2
t EUR/USD JPY/USD

1 hour 0.0092 0.0000 0.0001 0.0000 0.0000 0.0000
2 hours 0.0505 0.0003 0.1915 0.0070 0.0009 0.0489
4 hours 0.1873 0.2105 0.0733 0.7100 0.0002 0.2289
8 hours 0.2752 0.0002 0.7899 0.0107 0.0106 0.1264
12 hours 0.2919 0.1796 0.1956 0.4111 0.0105 0.1695
1 day 0.7459 0.0939 0.1069 0.7605 0.0003 0.0000

Notes: The first four left columns have the Ljung-Box autocorrelation tests p-
values up to the order twelve for the EUR/USD and JPY/USD residuals, zt, and
squared residuals, z2

t , at the six time horizons. Columns five and six have the p-
values from the Anderson-Darling (A-D) goodness of fit test. The null hypothesis
is that the residuals follow a Student-t distribution.



Table 12: Skewness, kurtosis, and correlation of the AR-BEKK model residuals
EUR/USD JPY/USD Linear

Time horizon Skewness Kurtosis Skewness Kurtosis correlation
1 hour -0.1218 6.897 -0.1625 6.255 0.0142
2 hours -0.0248 4.702 -0.1773 5.056 0.0210
4 hours -0.2767 5.892 0.0152 5.365 -0.0165
8 hours -0.0794 2.066 -0.2988 2.981 -0.0174
12 hours -0.0272 1.576 -0.3870 2.355 -0.0084
1 day 0.0594 0.362 -0.3462 1.776 -0.0134

Notes: Sample skewness and kurtosis of the EUR/USD and JPY/USD returns
at the six time horizons. The right column displays the linear correlation between
the EUR/USD and JPY/USD residuals.



Table 13: Model evaluation on estimating correlation for different time horizons
b0 b1 R2

1 hour
Gauss Fisher -0.075 (0.001) 1.161 (0.002) 0.775
Gauss Tse-Tsui -0.015 (0.001) 1.256 (0.003) 0.780
t Fisher -0.059 (0.001) 1.221 (0.003) 0.748
t Tse-Tsui -0.081 (0.001) 1.177 (0.003) 0.737
BEKK -0.051 (0.001) 1.128 (0.002) 0.800

2 hours
Gauss Fisher -0.090 (0.001) 1.193 (0.003) 0.817
Gauss Tse-Tsui -0.025 (0.001) 1.272 (0.003) 0.838
t Fisher -0.074 (0.001) 1.158 (0.003) 0.814
t Tse-Tsui -0.099 (0.001) 1.224 (0.004) 0.793
BEKK -0.041 (0.001) 1.106 (0.003) 0.814

4 hours
Gauss Fisher -0.111 (0.001) 1.246 (0.003) 0.894
Gauss Tse-Tsui -0.033 (0.001) 1.290 (0.004) 0.883
t Fisher -0.098 (0.001) 1.214 (0.003) 0.894
t Tse-Tsui -0.141 (0.002) 1.318 (0.004) 0.870
BEKK -0.058 (0.002) 1.155 (0.004) 0.843

8 hours
Gauss Fisher -0.140 (0.002) 1.326 (0.006) 0.886
Gauss Tse-Tsui -0.045 (0.003) 1.279 (0.007) 0.824
t Fisher -0.126 (0.002) 1.283 (0.005) 0.885
t Tse-Tsui -0.160 (0.003) 1.369 (0.007) 0.849
BEKK -0.065 (0.003) 1.131 (0.007) 0.804

12 hours
Gauss Fisher -0.134 (0.003) 1.288 (0.007) 0.884
Gauss Tse-Tsui -0.070 (0.003) 1.347 (0.008) 0.856
t Fisher -0.124 (0.003) 1.258 (0.006) 0.892
t Tse-Tsui -0.185 (0.004) 1.396 (0.008) 0.865
BEKK -0.051 (0.004) 1.112 (0.008) 0.807

Daily
Gauss Fisher -0.136 (0.006) 1.315 (0.012) 0.848
Gauss Tse-Tsui -0.073 (0.007) 1.286 (0.016) 0.759
t Fisher -0.164 (0.006) 1.341 (0.011) 0.865
t Tse-Tsui -0.201 (0.008) 1.422 (0.015) 0.801
BEKK -0.021 (0.008) 1.053 (0.016) 0.668

Notes: Quality assessment of the competing models using
the regression of the transformed Kendall’s correlation on
the dynamic copula models correlation estimates.



Table 14: Model evaluation on estimating daily correlation using data from different fre-
quencies

ρτ,t = b0 + b1ρmodel,h,t + ut ρRC,t = b0 + b1ρmodel,h,t + ut

b0 b1 R2 b0 b1 R2

1 hour
Gauss-Fisher 0.061 (0.008) 1.006 (0.017) 0.632 -0.036 (0.010) 1.072 (0.023) 0.517
Gauss Tse-Tsui 0.121 (0.007) 1.066 (0.019) 0.610 0.029 (0.009) 1.131 (0.025) 0.610
t Fisher 0.073 (0.008) 1.064 (0.018) 0.619 -0.023 (0.010) 1.131 (0.025) 0.503
t Tse-Tsui 0.038 (0.008) 1.062 (0.017) 0.654 -0.034 (0.011) 1.069 (0.024) 0.477
BEKK 0.136 (0.009) 0.848 (0.019) 0.486 -0.047 (0.009) 1.124 (0.019) 0.612

2 hours
Gauss Fisher 0.067 (0.007) 0.969 (0.016) 0.640 -0.008 (0.011) 0.980 (0.023) 0.466
Gauss Tse-Tsui 0.138 (0.007) 0.980 (0.018) 0.588 0.054 (0.010) 1.018 (0.024) 0.453
t Fisher 0.077 (0.007) 0.945 (0.015) 0.644 0.004 (0.011) 0.952 (0.022) 0.465
t Tse-Tsui 0.050 (0.008) 1.014 (0.016) 0.643 -0.010 (0.011) 0.993 (0.024) 0.442
BEKK 0.149 (0.008) 0.800 (0.017) 0.501 0.009 (0.009) 0.962 (0.020) 0.516

4 hours
Gauss Fisher 0.099 (0.008) 0.872 (0.016) 0.587 0.026 (0.011) 0.878 (0.022) 0.425
Gauss Tse-Tsui 0.167 (0.007) 0.867 (0.018) 0.533 0.088 (0.010) 0.888 (0.024) 0.400
t Fisher 0.108 (0.008) 0.850 (0.016) 0.588 0.035 (0.011) 0.855 (0.022) 0.425
t Tse-Tsui 0.076 (0.008) 0.930 (0.017) 0.580 0.012 (0.012) 0.912 (0.024) 0.399
BEKK 0.148 (0.008) 0.784 (0.017) 0.514 0.047 (0.010) 0.853 (0.021) 0.438

8 hours
Gauss Fisher 0.082 (0.008) 0.972 (0.018) 0.578 0.024 (0.012) 0.941 (0.026) 0.387
Gauss Tse-Tsui 0.171 (0.008) 0.874 (0.021) 0.467 0.092 (0.011) 0.895 (0.027) 0.348
t Fisher 0.093 (0.008) 0.938 (0.018) 0.572 0.033 (0.011) 0.912 (0.025) 0.387
t Tse-Tsui 0.090 (0.009) 0.952 (0.021) 0.500 0.019 (0.013) 0.948 (0.028) 0.353
BEKK 0.127 (0.008) 0.847 (0.017) 0.544 0.049 (0.011) 0.861 (0.023) 0.403

12 hours
Gauss Fisher 0.033 (0.007) 1.013 (0.014) 0.705 0.030 (0.012) 0.858 (0.025) 0.360
Gauss Tse-Tsui 0.092 (0.007) 1.034 (0.016) 0.653 0.087 (0.012) 0.859 (0.027) 0.320
t Fisher 0.031 (0.006) 1.011 (0.013) 0.745 0.038 (0.012) 0.836 (0.024) 0.362
t Tse-Tsui -0.014 (0.007) 1.113 (0.015) 0.712 0.012 (0.014) 0.896 (0.028) 0.327
BEKK 0.098 (0.007) 0.872 (0.014) 0.635 0.066 (0.011) 0.785 (0.022) 0.370

Daily
Gauss Fisher -0.136 (0.006) 1.315 (0.012) 0.848 -0.047 (0.015) 0.975 (0.030) 0.330
Gauss Tse-Tsui -0.073 (0.007) 1.286 (0.016) 0.759 -0.005 (0.015) 0.966 (0.032) 0.304
t Fisher -0.164 (0.006) 1.341 (0.011) 0.865 -0.065 (0.016) 0.989 (0.031) 0.333
t Tse-Tsui -0.201 (0.008) 1.422 (0.015) 0.801 -0.095 (0.017) 1.055 (0.034) 0.312
BEKK -0.021 (0.008) 1.053 (0.016) 0.668 -0.020 (0.014) 0.902 (0.027) 0.348

Notes: Quality assessment of the competing models using the daily transformed Kendall’s correlation
and realized correlation. The daily correlation estimates are obtained from the copula modeling at
different time horizons. The non-parametric estimates are then projected on the parametric estimates.



Figure captions:

Figure 1: Time-varying cross-correlations estimated by Kendall’s tau and by the time-
varying copula-based models Student-t and Gaussian both with Fisher transform for the
daily returns on the EUR/USD and JPY/USD spot rates.

Figure 2: Regression of the estimates of Kendall’s tau for the filtered returns, computed
according to (11), on the dynamic copula-GARCH and BEKK correlation estimates.
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