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Abstract The problem of finding the best-possible lower bound on the distribution of
a non-decreasing function of n dependent risks is solved when n = 2 or a lower bound
on the copula of the portfolio is provided. In this paper we correct the statement and
the proof of this result, given in Embrechts, Héing, and Juri (2003). The problem gets
much more complicated in arbitrary dimensions when no information on the structure
of dependence of the random vector is available. In this case we provide a bound on
the distribution function of the sum of risks which we prove to be better than the one
generally used in the literature.

Key words copulas — dependent risks — dependency bounds — Fréchet bounds
JEL Classification G10
Mathematics Subject Classification (2000) 60E15, 60E05

1 Introduction

Consider a n-variate real function ) and a random vector X := (X1,...,X,). In this
paper we study the problem of finding the best-possible lower bound on the distribu-
tion function (df) of 1(X) when the marginal distributions of the individual risks X
are given and the structure of dependence of X is partially or completely unknown.
This problem has a long history. Makarov (1981), in response to a question formu-
lated by A.N. Kolmogorov, provided the first result for n = 2 and ¢ = +, the sum
operator. Some years later Frank et al. (1987) restated Makarov’s result, using the
well-known formulation of the problem based on copulas. Independently from this ge-
ometric approach, Riischendorf (1982) gave a much more elegant proof of the same
theorem using a dual result proved for a more general purpose. The dual approach of
Riischendorf was related to a much earlier issue, dating back to 1871: the so-called
Monge mass-transportation problem; in particular, he solved a special case of its Kan-
torovich version. A complete analysis of this kind of problems is given in Rachev and
Riischendorf (1998). The use of dependence information to tighten the bound on the
df of a two-dimensional portfolio firstly appeared in Williamson and Downs (1990),
where sharpness was proved for non-decreasing functionals ¢). Denuit et al. (1999)
extended the bound for the sum to arbitrary dimensions and provided some applica-
tions; see also Embrechts et al. (2002) for the relevance of these techniques within
quantitative risk management. Finally, Embrechts et al. (2003) gave the most general



theorem till now, stating sharpness of the bound in the presence of information for a
larger class of functions #. The latter article however contains a gap in the main proof;
in our paper, we revisit the proof and correct the statement of their main result. While
the problem can be considered fully solved if a lower bound on the copula of the vector
X is available, the search is still open in the no-information scenario forn > 2, even for
the case of the sum. In this case, a bound for the df of the sum of risks can be obtained
by the previously cited theorems, but it fails to be sharp whenever n > 2. Exploiting
the dual result of Riischendorf we give a better bound which, though not proved to be
sharp, improves considerably the previous estimate for the df of the sum of identically
distributed risks. Numerical computations of the bound are also provided.

1.1 Notation

We first fix some notation. Given a vector = (z1,--.,T,) € R™ we write _; :=
(z1,---,Ti_1,Tit1,---,Ty) to indicate the (n — 1)-valued vector obtained from z by
deleting the ¢-th component. The indicator function of the set B C R is the function

1:R—= R,
1 ifbe B,
15(b) :=
5(0) {0 otherwise.

Finally, for k& (possibly identical) real numbers s1,...,5%, Ugsy . 53 @ R = [0,1]
denotes the df of a random variable uniformly distributed on {s1, ..., sx}.

2 Definitions and preliminaries

In this section we introduce the main mathematical problem and recall some well-
known concepts about copulas.

2.1 Copulas as dependence structures

Let X4,..., X, ben real-valued random variables on some probability space (2,2, P),
with given dfs Fj(z) = P[X; < z],i = 1,...,n. The random vector X :=
(X1,...,Xy) can be seen as a portfolio of one-period financial or insurance risks.

For some function ¢ : R® — R, we consider the problem of bounding from below the
distribution function of the random variable 1 (X), over the class of possible dfs for X
having fixed marginals. In fact, we search for

my(s) = nf{P[Y(X) < s]: X; ~ F;,i=1,...,n}. 2.1

Of course, the df of 1(X) can be computed once the function F(z1, ..., z,) = P[X; <
Z1y...,Xn < @y] is known. The latter is uniquely defined through the marginal dfs
and their interdependence. The tool for modelling these dependencies is offered by the
concept of copula.

A copula is a n-dimensional df restricted to [0,1]™ having standard uniform
marginals. For a formal definition of copula, we refer to Nelsen (1999). Given a copula



C and a set of m univariate marginals F, ..., F},, one can always define a df F' on R"
having these marginals by

F(x1,...,2,) = C(F1(21),-- ., Fn(zy))- 2.2)

Sklar’s theorem (see Sklar (1973, Th. 1)) states conversely that we can always find a
copula C coupling the marginals of a fixed df F' trough (2.2). For continuous marginal
dfs, this copula is unique. In our set-up it is convenient to identify the df F' of X with
the copula C' merging the given marginals into the df C(Fy (z1),. .., Fn(z,)). Denote
by ue the corresponding probability measure on R™ and define:

cow(Fry ..., Fa)(s) : = peld(X) < o

23
- / dC(Fi(@1), .., Fa(zn)), @3
{¥<s}
o (Fi,..., Fn)(s) : = sup  C(Fi(z1),...,
T1,.sTn—1€ER (24)

Fn—l(wn—l), FnT (11[);_" (S)))a

where ¢ (s) :=sup{z, € R: ¢(2_pn,zy) < s} for fixed z_, € R*"1
By the above discussion, problem (2.1) can be equivalently expressed as

my(s) = inf{oc 4 (Fi,...,Fn)(s) : C € €,} (2.5)

where €, denotes the set of all n-dimensional copulas.

2.2 Dependency information

If we don’t have the perfect knowledge of the copula C' coupling the fixed marginal
dfs of the portfolio X, the df of ¢(X) cannot be determined exactly and problem (2.5)
arises. However, it can be the case that partial information regarding C' is known.

Given two copulas C; and Cs, we say that C; > (resp. <) Cy if and only if
Ci(u) > (resp. <) Ca(u) for all w € [0,1]™. Using the properties of a copula it
can be easily shown that any copula C lies between the so-called lower and upper
Fréchet bounds W, M : [0,1]" — [0,1]; W (u1,...,un) := Oy ui —n + 1),
M(uq,...,up) := min{uy,...,u,}, namely W < C < M. A third copula of in-
terest is the product copula IT : [0,1]® — [0,1],II(u) := [];_, u; which represents
independence among coupled random variables.

The copula of a df F' contains all the dependency information of F'. Hence putting
a lower bound on the copula C' of the portfolio can be interpreted as having partial
information regarding its dependence structure. For instance, assuming that C' = M
characterizes the risks of our portfolio as comonotonic, i.e. as being increasing func-
tions of a common random variable. See Dhaene et al. (2002) for more details on
comonotonicity. Moreover, assuming that C' > II identifies the risks as positive lower
orthant dependent (PLOD); see Nelsen (1999, Def. 5.6.1).

If we assume that a lower bound on C' is known, we can reduce our search to

mcLW(s) = inf{Ucw(Fl, - ,Fn)(s) :C Z CL}
=inf{PY(X) <s]:X;w~ Fii=1,...,n,F > Cr(F,...,F,)}.
(2.6)



Note that myy,(t) = my(t), since assuming that C > W corresponds to the
situation in which we are completely ignorant about the dependence structure of the
random vector X. Obviously, mc, () > my(t) but we warn the reader that the last
inequality is often strict even for a non-decreasing function . Due to the fact that > is
not a complete ordering on €, letting C' > C'r, is not necessarily a prudent assumption.
In fact, for any C', # W, we neglet all copulas which are not comparable to C, with
respect to >. By doing so we possibly exclude the riskiest copula, i.e. the one possibly
solving (2.5).

Finally note that, contrary to M, W is not a copula for n > 2; this fact will play a
fundamental role in the next sections.

3 Main result with partial information

When partial information on the copula of a vector X is known, it is easy to find a
general lower bound on o ¢,y (F1, ..., Fyp)(s).

Theorem 3.1. Ler X = (X41,...,X,) be a random vector on R™ (n > 1) having
marginal distribution functions Fy, ..., F, and copula C. Assume that there exists a
copula Cg, such that C > Cp. If ¢ : R™ — R is non-decreasing in each coordinate,
then for every real s we have

O'Cﬂp(Fl, . ,Fn)(s) 2 TC'L,w(Fla . ,Fn)(s) (31)

Proof. First observe that for arbitrary € R", the uniform continuity of a copula C
implies that

NC[XI S T1,-- -;anl S 'Tnfl;Xn < mn]
= lim po[Xi <z1,...,Xn-1 < Zp_1,Xn < 2y — 1/K]
k—o00
=C(Fi(z1),- .-, Fp1(zn-1), Jim Fo(zn —1/k))
=C(Fi(z1),- -, Fa1(@n1), F, (T0))-
Now fix (Z1,...,Zn—1) € R""! and assume that Z, := ¢)7__(s) is finite. Then
{Xl < I,. "7Xn71 < jnflaXn < i'n} C {¢(X) < S}
and hence
/J/C[w(X) < 5] ZNC[XI S T1,--- ;anl S i’nflaXn < i’n]
=C(Fi(%1),- .-, Fn1(Zn-1), Fy, (Zn))
>Cr(Fi(21),-- -, Foe1(@n-1), F, (V7 (5)))-
If Z,, = 400, then Y(Z_,,,z,) < s forall z, € R, and hence
pelp(X) < s] ZpclX1 < z1,..., Xno1 < Zpo1, Xy € R]
=C(F1(Z1),-- > Fn-1(Tn-1),1)
ZCL(Fl(.Q_Jl), Cee Fn—l(i'n—l)a Fn_(+00))
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Analogously, if Z,, = —oo then ¢¥(Z_,,, z,) > s for all z,, € R, so that

pe(X) < s] > 0=Cr(Fi(Z1),.--,Fn-1(Zn-1),0)
= CL(Fl(.'ffl), .. ,Fn_l(fn_l),F;(—OO)).

The theorem follows by taking the supremum over all (Z1,...,Z, 1) € R* L. O

We now prove that, if a lower copula-bound on C'is assumed, then there will always
be a copula attaining bound (3.1), i.e. that bound cannot be tightened.

Theorem 3.2. In the hypotheses of Theorem 3.1 assume 1 is also right-continuous in
its last argument. Define the function Cy : [0,1]™ — [0, 1] as follows:

Cy(u) = {max{t,CL(u)} ifu=(ug,...,u,) €[t1]"

min{uy,...,un} otherwise,
where t = 1c, (Fi1,...,Fy)(s). Then Cy is a copula and it attains bound (3.1), i.e.
¢, (F1,...,Fp)(s) =t. 3.2)

Proof. We prove the theorem in two steps.

Lemma 3.1. The function Cy is a copula.

Proof. According to Def. 2.10.6 in Nelsen (1999), we only have to show that C is n-
increasing on its domain. For this, if a = (a1,...,a,),b = (b1,...,by) are arbitrary
vectors in [0, 1]™, with a; < b;,4 € N := {1,...,n}, we have to show that

2 2
ST ()R Gy (uag, s - tng,) >0, (3.3)

=1 Jn=1
where u;1 = aj,u; = b; foralli € N. If F;(a;) > tforalli € N, then C¢(u) =
Cr(u) forevery u € []7, [a;, b;] and (3.3) follows from n-increasingness of C',.. Note
that we can always find a permutation o : N — N and m € N such that
Fray(as)) < < Fomy(ao(m)) <t < Fomy1)(@o(my1)) < -+
< Fa(n) (aa(n))'

We prove the Lemma for ¢ = Id, the identity function. By suitably exchanging sum-
mation indices in (3.3), the proof for a general o is obtained. Hence, we assume that

Fl(al) < <L Fm(am) <t< Fm+1(am+1) <-.-- < Fn(an)
Observe that
Ci(ui1,u2jy, - - -, Unj, ) = Fi(a1),
forj; =1,2,¢=2,...,n. Hence
2 2
Do D (F)EE R Gy ugy, - tng, ) =0,

jo=1 Jn=1



the last expression being the sum of an even number of terms, all equal in absolute value
but with alternate signs. Analogously, we have that

Ct(U12,UQ1, U3jz - - - ,unjn) = min{F1 (bl), Fg (ag)}

for j; = 1,2,4 = 3,...,n, and again

2 2
Z Z (—=1)" 95+ 4in O (wy, Uy , gy, - - - tnj, ) = 0.

ja=1 Jn=1

For k =1,...,m we can show that

Ce(U2, - -+, U(k—1)25 Ukl Ukt 1)jp1s - - Unjn) = min{1<rln<i}cl_1F,»(bi),Fk (ar)}

forallj; =1,2,s=k+1,...,n, and again

2 2

3 3 141 tin -
(—1) Jh+1 J Ct(ulg,...,u(k_l)z,ukl,uk+1jk+l,...,unjn) =0.
Jre+1=1 Jn=1

3.4)

By (3.4), the left-hand side of (3.3) reduces to

2 2
Z tee Z (—1)jm+1+m+j" Ct('u,lz, s Um2s U(mg 1) fpmgys e e ;unjn)- 3.5)

Jm41=1 Jn=1

If there exists ¢ € {1,...,m} so that F;(b;) < t then, as before, (3.5) is zero because
Fi(a;) > t,i = m+ 1,...,n. If instead F;(b;) > ¢, foralli = 1,...,m, then
C; = C, on the summation arguments in (3.5) and hence

2 2
Z .. Z (=1)Im 1t O (g, oy U U 1) s - - Uni)

Jm41=1 Jn=1
= ucy [Ul < bl; sy Un < bm; U(m+1) € [am+17 bm+1]a ) U, € [an’bn]] > 0’

where (Uy,...,U,) «~ CL on [0,1]". Since a and b are arbitrary, the lemma follows.
O

We now turn to the proof of Theorem 3.2.
First note that, since min{us, ..., u,} yields the upper Fréchet bound, Cy > Cf.
Hence by Theorem 3.1 we have

JCt,l/}(FlaaFn)(s) >t (3.6)

and it remains to prove the converse inequality. Consider the set

B; :={z e R" : ¢(z) < s}.



Ift =1, (3.6) leads to o,y (F1,. .., Fp)(s) = 1 for every copula C > Cr. Consider
t € [0,1) and assume that B, is non-empty (otherwise o¢, . (F1, ..., Fp)(s) =0 =t).
For an arbitrary & = (%1, ...,%,) € Bs, ¥(%) < s and

'gb;\_n(S) =sup{zn € R:Y(T_pn,on) < s} > Ty.

If 7 (8) = &p, then Y(Z_p, %, + €) > s forall € > 0, and by right-continuity of 3
in its last argument, we obtain

$(&) = im (T p, Bn +€) 2 55
this contradicts the fact that # € B;. Hence ¢;__(s) > &y, and

F; (1%\_" (5)) = ue, [Xn < %A_n (3)] > pe, [Xn < jn] = Fn(%,),
which leads to

Cr(Fi(%1),...,Fn(Zn)) < CL(Fi(21),...,F, (W5_ (5))

sup  Cr(Fi(z1),...,Fr (W (s) =t. G7)

T1,..,p—1ER

IN A

From the definition of C}, (3.7) implies that, for any z € B,
Ce(Fi(z1), ..., Fn(zy)) = min{t, Fi(z1),. .., Fo(zn)} (3.8)
Note that for ¢t = 0, we have Co(F1(z1),. .., Fn(zy,)) =0, forall z € By and hence
0o, (F1,...,Fp)(s) =0.
We can then restrict to ¢ € (0, 1). Define now 2° = (%, ...,z%) by

.CL';? = Sup{mi E(ml) <t}7i: 1,...,”—1,
22 =43 (5) = sup{n € R: (22, 20) < 5.

Note that z{ is finite for¢ = 1,...,n — 1 because the F;’s are (non-defective) distribu-
tion functions on R and

xz; <z} = Fi(z;) < t,foralli=1,...,n—1. (3.9)
Moreover, right-continuity of the marginals implies that
xz; >z} = Fi(z;) > t,foralli=1,...,n—1. (3.10)

This claim also holds for ¢ = n. Indeed, suppose there exists z;, > &7, = 9z. (s) such

that F,(z!,) < t, and fix an arbitrary vector (z1,...,2,_1) € R*™ If z; < x¢ for
somei=1,...,n — 1then F;(z;) < t and

Cr(Fi(21),--., Fi(xi),..., F, (¢¥,_ ) <Cr(1

F,(sz) <t.

IA A



If instead z; > 2f foralli =1,...,n — 1, theny, < 1r. < = and

T

Cr(Fi(z1),..., Fy (v,_)) <CL(1,...,1,F; (z},))

Hence we have

t= sup  Cr(Fi(z1),..-,F, (¥, ) <t,

L1,y n—1E€ER
which is a contradiction and thus we can extend (3.10) to
x; >z} = Fi(z;) > t,foralli =1,...,n.

Combining (3.8), (3.9) and (3.12) we obtain, for all x € B,

Ci(Fi(21),-- -, Fu(zn))

3.11)

(3.12)

min{t,Fl(a:l), .- .7}7%,1((1,'1',1),}7‘1'4_1 (.'IZ'Z‘+1), .. ,Fn(.Z'n)} if ZT; Z mg
for somei € {1,...,n — 1},

min{t, F1 (z1),. ..

Now recall that
oc,w(Fiy..., Fn) = pc,[Bs]

and consider the following covering of B

B, CU",LUT

where
L:={zeR":z;>z}}NB,,i=1,...,n,
n
T :=[](~o00,2].
i=1
Hence

pe B <Y po ] + pe,[T] = pe,[T)

i=1

Frooi1(zn-1)} if £, > 22,

min{Fi(z1),..., Fo(zn)} ife; <xf,i=1,...,n.

for C} is constant along the i-th dimension on I;. If 2 = +oo0 then (z°,,,z,) € Bs

for all real x,,, and hence

pe,[T]

pe, X1 <z9,..., Xno1 <zl 4]

= lim po,[Xi<2f,...,Xp-1 <25 _1,Xn < 24)

-1
Tn—+00 n

= lim Cy(Fi(2Y),...,Fn_1(z0_1), Fn(zys)) < t.
n—>+400

T



If instead z2 is finite, observe that ¢(z°) = s by right-continuity of % in the last
argument, so it is sufficient to show that

pe, [T\ {z°}] = pe, [V {X i <22, X; < zf}] <t (3.13)
For P C {1,...,n} define
Ap :={X; <zl forie P,X; <zforie{l,...,n}\P}.
From elementary probability we have

po, [Uim {X i < 2%, X < 27}] = po, [V, Agiy)

n

= > waldpyl= Y pelAga)]

1<i1<n 1<iy <ia<n (3.14)
+ Z Ko, [A{’il,’iz,’is}] -t (_1)"+1p’ct [A{l,,n}]
1<i1<ip<iz<n

Observe that for every non-empty P
Ap = Ugen Nizy { X < 27 = (1/k)1p(0)},
hence
peulAp] = lim C(Fi(af = (1/k)1p(1)), .., Fa(as — (1/K)1p(n))).
IfPN{l,...,n — 1} # @ then Fj(z¢ — 1) < t for some i € {1,...,n — 1} and all

integers k; if instead n € P then (z°,,, 28 — %) € B; for all integers k by definition of
z7 . These facts lead to

po[Ap] = lim min{t, Fi(2{ = (1/K)1p(1), ... Fa(zs — (1/k)1p(n))}

= min{t, min Fi (7))}

We assume, without loss of generality, that F (2) < --- < F,_,(z%_4). Noting

n—1

that (3.11) implies that F,, (x2) >t > F,_ (2% _;), we can calculate (3.14):
po [T\ {u’}]

_ i F; (29) + min{t, F,, (z2)}

— (n ; 1) F(z9) — (n I 2) Ey(x3)—---— (1) F,_i(zh4)
(") (")) E e
— et (_1)"+1F17 (29).

Rearranging all the terms, we obtain



po [T\ {u’}]

:FI—(xg)Knal) n;1)+(n;1>__..+(_1)"1(2:1)]
)

X
o [(5)-(7+ ()] o
ez o) ()]

Recall that 37 (—=1)¢("}) = 0 for all integer n, hence (3.15) simplifies to

po [T\ {u’}] =1,
which completes the proof. O
Remark 3.1. There are several points worth noting regarding this theorem.

(1) Forn =2, C, = W and ¢(z) = x1 + 22 we get Proposition 1 in Riischendorf
(1982) and, in equivalent form, Theorem 1 in Makarov (1981) and Theorem 3.2
in Frank et al. (1987). In these papers, as well as in Embrechts et al. (2003), a
sharp upper bound on the df of (X)) is also given.

(i) The theorem cannot be strengthened to read

pe [p(X) <t]=  sup  C(F(21),--5 Fo1(2n1), Ful(d;_, (5))),

n
T1,..,Tn—1€ER

for o,y (F1,- .., Fn)(s+) := pc[¢(X) < s] may have no minimum over the set
¢,. Hence, contrary to Embrechts et al. (2003, p. 151), (2.3) is the correct way of
defining the operator o, if one wants to state Theorem (3.2) correctly. See Nelsen
(1999, p. 187) for more details in the case of the sum of risks.

(iii) Note that C} is not the unique copula attaining the bound ¢ for we can always
change it on [0, ¢]™ by substituting for the upper Fréchet bound any other copula
C>CrL.

(iv) The last part of the proof (from (3.13) on) is necessary only if all F;’s are discon-
tinuous at 2°. Indeed, if there exists F;,7 = 1,...,n — 1 which is continuous at
x?, then F;(z9) = t and

pe [T = pe,[X1 < 29,..., Xn <27 < pe, [Xi < 27] = Fi(27) = t.

(3

If instead F, is continuous at 2, then pc, [ X, = %] = 0 and

MCt[T] = l’LCt[Xl S .'Eg,...,Xn S mgb]
:MCt[Xlgm({a"'aXn—l Smo Xn<.’1,'%]

n—1»

= lim min{¢, Fi(x7),...,Fo_1(z5_1), F, (z,)} < t.

o
Tpn—Tf,

10



To this extent our theorem generalizes Theorem 3 in Williamson and Downs
(1990), where the case of multiple discontinuities was excluded. Note however
that the theorem in Williamson and Downs (1990) holds for dfs on R (defective
dfs) also.

(v) The hypothesis of right-continuity in the last argument of the function %) is nec-
essary to prove sharpness of the bound. Take for instance n = 2,X; v~ F} =
U{07%71},X2 w By = U{O,l,l} and ’(ﬁ(.’L‘l,ZL'Q) = 1{z121,w2>1}. Note that

0 ifz; <1,
1{z,>1} otherwise,

P, 32) = {

is not right-continuous. We have

~ +oo ifz; <1,
1) =
Vo (1) {1 otherwise,

and then 7w (Fy, F2)(1) = sup,,calFi(e1) + Fy (¥5,(1) — 1]+ =
Theorem 3.2 we should have that

Wi

. By

iz [0(X1, X2) < 1] = 2,

3
but this is impossible because it is evident that 1)(X;, X») = 0 (< 1) P-a.s. for
every probability measure " having F and F3 as marginals. The reader can verify
that the theorem works with 9(21,%2) = 1{4,51,2,>1}. Finally, one can easily
check that defining T,y (F1, F3)(1) := sup,, cg[Fi(z1) + F2(¢7, (1)) — 1]t in
the above example does not lead to a more general result.

The proof of Theorem 3.2 provided in this paper is rather long and technical, but
the elegant proof of the same theorem given in Embrechts et al. (2003) contains a gap.
First of all note that, as we said in Remark 3.1 (ii), the correct statement of the theorem
requires the definition of the operator ¢ as given in (2.3). In Embrechts et al. (2003),
and using our notation, the authors state that

In particular pc, assigns mass ¢ to any set [0, ug] X - -+ X [0, u,] such
that C, (u1, . .. ,u,) = t, whence pc,[{Cp <t} =1t...

From this the theorem follows easily. This claim is not correct, since, even in the
simplest case of two uniformly distributed risks and C, = W, we have that pc, [{IWW <
t}] = 1 forevery t € [0, 1]. Hence the correct statement is

In particular pc, assigns mass ¢ to any set [0, u1] X -+ - X [0, u,] such
that Cr (uq, . .., u,) = t, whence pc,[{Cr <t} >t...

This does not yield the theorem and a new proof is then required.
For applications of Theorem 3.2, including how to calculate numerically the bound
for every choice of Fi, ..., F,, and Cp, see Embrechts et al. (2003).

11



4 Main result without information on dependence

The bound in (3.1) holds in arbitrary dimensions. However, when n > 2 and we have
no information regarding the dependence structure of the portfolio (vector) X, it may
fail to be sharp. In fact, when n > 2 and we take W as lower bound instead of C'r, the
function C; defined in Theorem 3.2 fails to be a copula.

4.1 Mutually exclusive risks

Actually, there is an important special case when the lower Fréchet bound is a proper
df and hence sharpness of the bound still holds, also in the no-information scenario. In
fact, Theorem 3.7 in Joe (1997), based on a previous result by Dall’ Aglio (1972), gives
a necessary and sufficient condition for W(F1y, ..., F,) to be a df having marginals
Fy, ..., F,.

Theorem 4.1. Whenn > 2, W(Fy,...,F,) is a df on R™ if and only if one of the
following conditions holds:

1) Yi, Fi(zi) <1lforallz € R"s.t. 0 < Fy(z;) < 1,i=1,...,n,
() Yr, Fi(z;)) >n—1forallz € R" 5.t. 0 < Fj(z;) < 1,i=1,...,n.

An example of non-negative risks which satisfy one of the conditions of the above
theorem and have df W can be found in Dhaene and Denuit (1999). They form the class
of so-called mutually exclusive risks, those risks that can be positive at most one at a
time. In this special case, the bound stated in Theorem 3.1 is sharp for arbitrary finite
n.

4.2 Non-negative continuous and identically distributed risks

Throughout the rest of the paper we will consider C, = W. In this situation, the
bound (3.1) is no longer sharp if n > 2, and it is convenient to express (2.5) by a
duality result given in Riischendorf (1982):

n
my(s) =1 —inf { z / fidF; : f; are bounded measurable functions on R s.t.
i=1

Zfz(x,) > 15 400)(W(21,- .., 7)) forallz; € R,i = 1,...,n}.
i=1

4.1)

This dual optimization problem is very difficult to solve. The only explicit results
known in the literature are given in Riischendorf (1982) for the case of the sum of
marginals being all uniformly or binomially distributed. Unfortunately, the depen-
dence structure which solves (4.1) in the case of the sum of uniform marginals does
not work in the general case, where the solution may depend upon the marginals cho-
sen. This is in contrast to the case of the copula C'y, which satisfies (3.2) for all choices
of F1, ..., Fy. For that reason, below we restrict our attention to ¢)(z) = Y., #; and
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set all marginal dfs equal to a common df F', which we assume to be non-negative and
continuous. In this situation (4.1) reads as

My (s) =1 —inf {n / fdF : f bounded measurable function on R s.t.
(4.2)

Zf(m,) > 1[5 400) (Z m,) forall z; € [0, 4+00)",i = 1,...,n}.

i=1 i=1

It is easy to show that the bound stated in (3.1), which we call standard bound in the
following, reduces to

w+(F,...,F)(s) = [nF(s/n) —n+1]" 4.3)

for every s > nF1! (w
For the numerical example given in Section 5 we obtain that (4.3) holds when s > 4.39
(resp. 12.26) for a Log-Normal(—0.2, 1) (resp. I'(3, 1)) df. Since every Pareto density
is decreasing in its domain, (4.3) is valid for every non-negative s in case of a Pareto
portfolio; this example is for instance relevant for the measurement of operational risk,
as can be seen from Moscadelli (2004).

We use (4.2) to provide a bound which is better (i.e. >) than the standard one ((4.3)).

), a2} = inf{x > 0 : F' is decreasing on [z, +0o0)}.

Theorem 4.2. Let F' be a non-negative, continuous df. If F; = F,i = 1,...,n, then
for every s > 0,

s—(n—1)r
1—F(z))d
m4(s) >1—n inf J: ( @) u

44
r€[0,s/n) s —nr 4

Proof. Forr € [0,s/n] define f, : R — R as follows:

0 ifx<r,
fr@)=q¢ 5L ifr<z<s—(n—1)r,
1 otherwise.

We prove that f; is an admissible fupction in (4.2). Since fr is non-negative, it is
sufficient to show that we have > | fr(2;) > 1when Y. | z; > s. Ifz; > s — (n—
1)r forsome ¢ = 1,...,n, this trivially follows, so take z1,...,2, € [0,5s — (n — 1)z]
with Y7 | @; > s. Define

I={i<n:z;>r}, I:={1,...,n}\I

and observe that we have

Zwi > S—Z.’L‘i > s—#(I)r.

el iel

13



By definition of £, it follows that

— ; T e @i — (#Dr
izzlfr(xz Zfrxz _ZS—TLT_ ES—HT

i€l icl
— (@#D+@#D)r
= s—nr =
The theorem follows by checking that
/f dF fs (n—1)r F(.’L‘)d.’L‘
" s—nr
and taking the infimum over all r € [0, s/n). O

Remark 4.1. (i) Note that

s—(n—1)r
lim {1 _ nfr (1—F(z))dz

r—s/n s—nr

} =nF(s/n)—n+1,

hence it follows that (4.4) is greater or equal than the standard lower bound given
in (4.3) (and hence in (3.1)) for every threshold s at which (4.3) is valid. In
Section 5 we actually show that (4.4) is strictly greater than (4.3) in several cases
of interest.

(ii) Forn = 2, (4.4) gives the sharp bound already stated in (3.1).

(iii) For m > 2, the infimum in (4.4) can be easily calculated numerically by finding
the zero-derivative point of its argument in the specified interval.

The assumptions under which Theorem 4.2 is valid, though considerable with re-
spect to the setting of the previous sections, are consistent with most dfs F' and thresh-
olds s of actuarial/financial interest. In fact, such a difference in generality of results
implicitly shows that the assumption in Theorems 3.1 and 3.2 of a non-trivial lower
bound on the copula C of the portfolio is very strong.

5 Numerical results

In this section we numerically compare the dual bound (4.4) with the standard
bound (4.3).

5.1 Computing numerically the best-possible bound

When the exact value is not available, a good approximation for m 4 (s) can be found
by solving two linear problems (LPs). We follow Williamson and Downs (1990) in
defining the two dfs

N—

1
En(z - N Z [47,400) (), F' =N < L, +o0) (@
1=

,..
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the jump points gg, . . ., g are the quantiles of F defined by ¢o := inf supp(F), qn :=
supsupp(F) and ¢, :== F~'(%),r = 1,...,N — 1. In the applications to follow we

will always take ¢g = 0 and gy = +o0. We have Fy < F < Fy, from which it
follows that, for every real s

00t (Ens- - Ex)(5) < 00,4 (B, .., F)(5) < 00,1 (Fay..., Fy)(s).

Therefore
m, (s) <my(s) <my(s), (5.1

where m | (s) and 772 (s) are naturally defined as:

m, (s): 1nf{ lZX <t]:X,~mEN,i:1,...,n},
m4(8) : 1nf{ [ZX <t]:XimFN,i:1,...,n}.

Given that F'; is a (possibly defective) discrete df, m, (s) is the solution of the
following LP:

m,(s) = m1n Z ijmz, in L(=00,4t) (Z ji) subject to
.71 1 Jn=1

E —12 'E%:1pj1,---,jn
Z 1= 1213 =1 --Zjnzlpjlv---:j'n

y N N &N .
E]‘l:l Zj2:1"'Zj,,_1:1pj1,---,jn =5 Jn=1..,N
Osp]&,...,jn 51 lelaaN
i1=1,...,n

jlzl,...7N
ja=1,...,N, (5.2)

2= 2=

2|

\

The function 724 (s) is the solution of an analogous LP. Since for N tending to infinity
the dfs F and F 5 converge to the original df F, calculating m_ (s) with any given
level of accuracy is a matter of solving (5.2) and the corresponding LP for 4 (s)
with N large enough. Unfortunately, that is not a trivial task. The dimension of the
two LPs is N™ rows (variables) per nIN columns (constraints) and, while the length
of the interval [m, (s), 4 (s)] asymptotically decreases as 1/N, the computational
time and the memory needed to solve the two LPs increase exponentially. Finally note
that a numerical solution will truncate F'; at a certain finite value. The software used
automatically sets this upper limit so that (5.1) is maintained.

5.2 Plots of the best-possible bound

In this section we illustrate the quality of the estimate of the sharp bound on
oc,y(Fi,...,Fy) provided by the dual bound (4.4). Some dfs of actuarial and financial
interest are considered for F'. In Figure 5.1, standard ((4.3)) and dual ((4.4)) bounds for
a portfolio of three Pareto-distributed risks are given. It is relevant to note that the dual
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bound is strictly greater than the standard one, in accordance with Remark 4.1 (i). Most
importantly, the dual value always falls within the range [m | (s), 7 (s)], which we plot
for some thresholds of interest. This range has been calculated by setting N = 180.
The two linear problems have been solved using ILOG CPLEX® C Callable Libraries.
Note that switching to n = 4 drastically lowers the quality of approximationto N < 60.
In Figure 5.1, the values of uc[X1 + X2+ X3 < s] in case of independent (C' = II) and
comonotonic (C' = M) scenarios are also given. For the calculation of the distribution
of the sum of comononotic random variables note that, in case of a common marginal F',
we have that py [} X; < s] = F(s/n), while the convolution is computed by iter-
ated conditioning, i.e. pr [y 1, X; < 8] = [dF (z,) ... [dF (z2)F (s — > i, ;).
In Figures 5.2 and 5.3 we do the same for Log-Normal and I" portfolios. We remark
that the time of computation of (4.4) is not affected by the dimension of the portfolio.

1

09

0.8

0.7+

0.6

0.5F

0.4

0.3F

0.2r-

— - independence

0.1 comonotonicity [
—— standard bound
—— dual bound

0 1 1 1 1 1 1 1 I I
0 20 40 60 80 100 120 140 160 180 200

S
Figure 5.1: Range for P[X; + X3 + X5 < s] for a Pareto(1.5,1)-portfolio under inde-

pendence and comonotonic scenarios. We also give the standard ((4.3)) and dual ((4.4))
bounds. Numerical bounds for the true value of m_(s) are also given.
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Figure 5.2: The same as Figure 1 for a Log-Normal(-0.2,1)-portfolio.
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Figure 5.3: The same as Figure 1 for a I'(3,1)-portfolio.
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6 Conclusions

The problem of finding the best-possible lower bound for the distribution of a non-
decreasing function of dependent risks is solved when some information on the depen-
dence structure of the portfolio is provided or the portfolio is two-dimensional. The
problem gets much more complicated in arbitrary dimensions when no information on
the copula of the random vector is given. In this case we provide a new bound which
we prove to be better than the standard one generally used in the literature.
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