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The problem at hand

Consider a functiop : R" — R and a random vector

X = (X, ..., Xn)

of n one-period financial losses or insurance claims
on some probability spac€(, P).

The Value-at-Risk (quantile) at levelfor the aggregate logg(X) can
be computed once we know the joint distribution of the vetore.
F(Xl,...,Xn) = P[Xl <Xy...,Xn < Xn]

Unfortunately, the distribution function (df) of the ramdoectorX
is not completely determined by tHg'’s.
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The problem at hand

There are infinitely many distributions for the veckwhich are
consistent with the initial choice of the marginals.

Figure: Two different bivariate dfs havini§y(0, 1)-marginals and the same
correlation

Which is the df giving the worst-possible Value-at-Risk Rya
for the random variable(X) ?
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the same theorem using duality
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The problem at hand

History of the problem

e Makarov (1981) provided the first result for= 2;y = +
e Frank et al. (1987) restated Makarov’s result, using capula

¢ Independently, Riischendorf (1982) gave a more eleganf pfo
the same theorem using duality

e Williamson and Downs (1990) found the solution in the pregen
of partial information for non-decreasing functiop®f two
random variables

e Embrechts and Puccetti (2005c) provided an approximation o
the real solution when no dependence information is aveilab
andn > 3.
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Value-at-Risk for the aggregate loss

Definition
Fora € [0, 1], the Value-at-Riskat probability levek for ¢(X) is its
a-quantile, defined as VaRY) := G 1(a), whereG is the df ofy(X).
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Value-at-Risk

Searching for the worst-possible VaR means looking for
my(s) = Inf{P[y(X) < : X -~ Fj,i=1,...,n}.
Indeed, according to the definition of VaR, we have

VaR, (¥(X)) < m;(a), @ € [0, 1].
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The distribution of4(X) van be uniquely defined through the marginal
dfs and their interdependence,
which can be modeled by the conceptcopula.
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which can be modeled by the conceptcopula.

Definition

A copulais anyn-dimensional df restricted to [Q]" having standard
uniform marginals.
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Copulas

The distribution of4(X) van be uniquely defined through the marginal
dfs and their interdependence,
which can be modeled by the conceptcopula.

Definition
A copulais anyn-dimensional df restricted to [Q]" having standard
uniform marginals.

Given a copulaC and a set oh marginalsF,.. ., F, one can always
define a dfF onR" having these marginals by

F(X1,....X%n) == C(F1(xa), ..., Fn(xn)). )

Sklar’s theorem states conversely that we can always fingpala®
coupling the marginals of a fixed & trough (1).
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¢ independent marginals are merged by the

IT:[0,1]" — [0, 1]; TI(ug, ..., Up) := n Uj
i=1

e comonotonic marginals are merged by the so-callgaper
Fréchet bound

M :[0,1]" = [0, 1]; M(ug, ..., Up) := Min{uy, ..., Un}

e countermonotonic marginals are merged by the so-calledier
Fréchet bound
+

W :[0,1]" — [0,1]; W(uy, ..., Uy) := lznl Uu-n+1
i=1

Any copulaC lies between the lower and upper Fréchet bounds:
W<C<M.
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Dependence information

By Sklar’'s theorem, our problem can be equivalently expéss

my(9 = inf {Bc [W(X) < §] : C e Gy,

where€,, denotes the set of attdimensional copulas.
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Dependence information

By Sklar’'s theorem, our problem can be equivalently expéss
my(S) = inf {Pc [y(X) < 5] : C € €y},
where€,, denotes the set of attdimensional copulas.

Putting a lower bound on the coputaof the portfolio can be
interpreted as having partial information regarding theehelence
structure of our portfolio of risks.
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[ ]
Use of dependence information

Dependence information

By Sklar’'s theorem, our problem can be equivalently expéss
my(S) = inf {Pc [y(X) < 5] : C € €y},
where€,, denotes the set of attdimensional copulas.

Putting a lower bound on the coputaof the portfolio can be
interpreted as having partial information regarding theehelence
structure of our portfolio of risks.

If this is the case, the problem reduces to

mc, 4 (9) - = inf {Pc[y(X) <s]: C> C}.
If CL = W, then come back to our original problem.
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Main Result with Dependence Information

Main Result with Dependence information

When alower copula-bound on the portfolio copula C is assumed
andn=2
the problem at hand isfully solved.

This result goes back to Williamson and Downs (1990) for any
functionys which is continuous and non-decreasing in each place.
Embrechts et al. (2003) state the same theorem also#aB but,

unfortunately, their proof contains a gap: the bound isemmrbut its
sharpness is not proved for> 3.

Define

TC,(//(F].’ ey Fn)(s) = Sup R C(Fl(X]_), cees Fn—l(xn—l)a FE(W;_"(S)))
X15.e0sXn-1€
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Main Result with Dependence Information

Theorem 1 (bound for general functionalsy) Let X = (Xy, ..., Xn)
be a random vector dR" (n > 1) having marginal df§4, ..., F, and
copulaC. Assume that there exists a cop@asuch thatC > C,. If
¥ : R" — R is non-decreasing in each coordinate, then, for every
a € [0,1], we have

VaR, (X)) < 7o y(F1, ... Fn) (). 2

Theorem 2 (sharpness of the bound) Assumey is also continuous
andn = 2. Define the functior€; : [0, 1]> — [0, 1] as follows:

maxt, CL(u)} if u= (uy, w) € [t, 1%,
min{uy, Uy} otherwise,

Ct(U) = {

wheret = 7¢_,(F1, F,)"(@). ThenC; is a copula and it attains
bound (2), i.e. undeC; we have

VaR, (¥(X)) = t.
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Main Result with Dependence Information

Important Remark on the Theorems

e A priori assumptions such & > IT may lead to a critical
undervaluation of the portfolio risk since the componeséwi
ordering in the clas&? is not complete.

Therefore, in the following we will restrict to the case iniainwe do

not assume any information on the copula of the portfol@, i.
CL=W.
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Main Result without information on dependence

Consider then
CL=W.

Though thestandardbound stated in Theorem 1 still holds
in arbitrary dimension, but when

n>3

it may fail to be sharp.
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Main Result without Dependence Information

In the no-information scenario, it is convenient to exprass
problem using a duality result given in Ruschendorf (1982)

my(s) = inf{P[y(X) <s]: Xi -~ Fi,i=1,...,n}

= 1—inf {Z ffidFi f, e LY(F;),i e Nsit.
i=1
fi(X) > Ls+o0)((X)) for all x € R“}.

i=1
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Some remarks on the dual problem
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Main Result without Dependence Information

Some remarks on the dual problem

e The dual optimization problem seems to be veffidilt to
solve;
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Main Result without Dependence Information

Some remarks on the dual problem

e The dual optimization problem seems to be veffidilt to
solve;

o Explicit results are known only for uniformly or binomially
distributed risks;
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Main Result without Dependence Information

Some remarks on the dual problem

e The dual optimization problem seems to be veffidilt to
solve;

o Explicit results are known only for uniformly or binomially
distributed risks;

o Unfortunately, the solution in the case of the sum of uniform
marginals does not work in the general case.
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Main Result without Dependence Information

Dual bounds

We use the dual problem to provide a bound which is betterXj.e
than thestandardone.
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Main Result without Dependence Information

Dual bounds

We use the dual problem to provide a bound which is betterXj.e
than thestandardone.

Theorem 3 (dual bound) Let F be a non-negative, continuous df.
If F;=F,i=1,...,n, then for evens > 0,
T @ - Fg)dx

§>1-n inf =
m+( ) ref0,s/n) s—nr

P. Embrechts and G. Puccetti ETHZ Zurich, DMD Firenze

Bounding Risk Measures



Main Results

oooe

Main Result without Dependence Information

Dual bounds

We use the dual problem to provide a bound which is betterXj.e
than thestandardone.

Theorem 3 (dual bound) Let F be a non-negative, continuous df.
If F;=F,i=1,...,n, then for evens > 0,
T @ - Fg)dx

§>1-n inf =
m+( ) ref0,s/n) s—nr

e Forn = 2 this theorem gives the sharp bound already stated
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Dual bounds

We use the dual problem to provide a bound which is betterXj.e
than thestandardone.

Theorem 3 (dual bound) Let F be a non-negative, continuous df.
If F;=F,i=1,...,n, then for evens > 0,
T @ - Fg)dx

§>1-n inf =
m+( ) ref0,s/n) s—nr

e Forn = 2 this theorem gives the sharp bound already stated
e Thisdual bound is strictly larger than the standard bound for
most dfs and thresholdsof interest
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Main Result without Dependence Information

Dual bounds

We use the dual problem to provide a bound which is better¥j.e
than thestandardone.

Theorem 3 (dual bound) Let F be a non-negative, continuous df.
If F;=F,i=1,...,n, then for evens > 0,

T @ - Fg)dx

§>1-n inf =
m+( ) ref0,s/n) s—nr

e Forn = 2 this theorem gives the sharp bound already stated

e Thisdual bound is strictly larger than the standard bound for
most dfs and thresholdsof interest

e The theorem can be easily extended to consider
non-homogeneous portfolios, i.efldrent marginal
distributions, see Embrechts and Puccetti (2005b).
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Application 1

Application 1: Finding the real solution (homogeneous
portfolios)

Under the assumptions of Theoremh®ihogeneous portfolios), it is
easy to show that, f@large enough, the standard bound reduces to
w+(F,....F)(s = [nF(s/n) —n+1]".

Moreover, the dual bound can be easily calculated numsriakdo
for huge portfolios 1§ = 100000) by finding the zero-derivative points
of a real-valued function.

How can we compare the quality of the dual bound
with respect to the standard bound?
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Application 1

We define the two df§,, Fn by

N
1
En09 = 5 0, Hareo ()
i=1
_ 1 N-1
Fn(X) : =N 2 da. +o0)(X),
i=0

the jump pointsyp, . . ., gy being the quantiles df defined by

Oo : = infsuppE), gy := sup suppi) and
g :=Fr/N), r=1...,N-1
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Application 1

It is straightforward that
Fy <F <Fyp,
from which it follows that
m, (9) < m.(9) < M. (9),

wherem, (s) andm, (s) are naturally defined as:

n
m+(s):=inf{]P DX <t X -y =1,...,n},
i=1
n —
m(s)::inf{]P X <t :XimFN,izl,...,n}.
i=1
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Application 1

Given thatF is a (possibly defective) discrete df, (s) is the
solution of the following LP:

m,(s) = mm Z ZpMJZ dn (oot

/—\

n
Z q,l] subject to

11 ,,,,, J n =
H;LZN 1"'Zi:rllzlpj1 ..... in % j1=1,...,N,
D=1 Xjge1 " 2z Piredn =N J2= 10N,
g ZN | . , N
ji=1 &jo=1" in-1 1 Pitsenin N In AU \\ X
0<p,.jn<1 ji=1...,N,
i=1....n

The functionm, (s) is the solution of an analogous LP.
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Applications
0000e0000

— - independence
0.1F comonotonicity
— standard bound
—— dual bound
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[¢] 20 40 60 80 100 120 140 160 180 200

s

Figure:Range foiP[X; + X, + X3 < §] for a Pareto(1.5,1)-portfolio
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Some remarks on this plot
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Application 1

Some remarks on this plot

e The ranges for the true solutions have been calculatedngplvi
the two LPs withN = 180 and using ILOG CPLEX C Callable
Libraries (a powerful tool).
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Application 1

Some remarks on this plot

e The ranges for the true solutions have been calculatedngplvi
the two LPs withN = 180 and using ILOG CPLEX C Callable
Libraries (a powerful tool).

¢ Switching ton = 5 drastically lowers the quality of
approximation taN < 50.
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Application 1

Some remarks on this plot

e The ranges for the true solutions have been calculatedngplvi
the two LPs withN = 180 and using ILOG CPLEX C Callable
Libraries (a powerful tool).

¢ Switching ton = 5 drastically lowers the quality of
approximation taN < 50.

e The worst VaR does not occur under the comonotonicity
assumptions, i.e. VaR is not a coherent measure of risk.
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Non-coherence of VaR

VaR,(X1) + VaR,(X2) < VaR, (X1 + X2)
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Application 1

Non-coherence of VaR
VaR,(X1) + VaR,(X2) < VaR, (X1 + X2)

e X3, Xo independent but very skew
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Application 1

Non-coherence of VaR
VaR,(X1) + VaR,(X2) < VaR, (X1 + X2)

e X3, Xo independent but very skew
e X1, X2 independent but very heavy-tailed
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Application 1

Non-coherence of VaR
VaR,(X1) + VaR,(X2) < VaR, (X1 + X2)

e X3, Xo independent but very skew
e X1, X2 independent but very heavy-tailed
e X3, X2 -~ N(0, 1) but special dependence, see picture below.
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Application 1

Bounds on Value-at-Risk

VaR, (32, Xi), exact VaR, (32, Xi), upper bound

a independence comonoton.  dual standard
0.90 754 885 1444 1538
0.95 971 1273 1950 2063
0.99 1606 2516 3531 3703
0.999 2978 5399 6998 7381

Table:Range for VaR for a Log-Normal(-0.2,1)-portfolio.
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Application 1

Bounds on Value-at-Risk

VaR, (X1 X)) VaR, (X% Xi) VaR, (37°X)
a dual standard dual standard dual standard
0.90 0669 1485 11039 149850 150162 1499800
0.95 1353 2985 22227 229850 301823 2999800

0.99 2985 14985 111731 1499850 1515111 14999800
0999 68382 149985 1118652 1499850 15164604 1499998%00

Table:Upper bounds for VaR YL, Xi) of three Pareto portfolios of fierent
dimensions. Data in thousands.
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Application 2

Application 2: Operational Risk (non-homogeneous
portfolios)

The risk management of Operational Risk (OR) under the Ackdn
Measurement Approach is a typical example where one hasato de
with a multivariate portfolio of risks having fierent marginal
distributions; see Moscadelli (2004).
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Application 2

Problems with non-homogeneous marginals

Denuit et al. (1999) remark that, contrary the homogeneoesasio,
thestandard bounatan be rarely explicited analytically in practice.
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Application 2

Problems with non-homogeneous marginals

Denuit et al. (1999) remark that, contrary the homogeneoesasio,
thestandard bounatan be rarely explicited analytically in practice.

Embrechts and Puccetti (2005b) shows that the computation o
standard bounds can be reduced to the problem of finding ncetier
the root of a real-valued function, independently from tiveehsion
of the portfolio. This result holds for all portfolio of actial
relevance (continuous marginal distributions).
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Application 2

Problems with non-homogeneous marginals

Denuit et al. (1999) remark that, contrary the homogeneoesasio,
thestandard bounatan be rarely explicited analytically in practice.

Embrechts and Puccetti (2005b) shows that the computation o
standard bounds can be reduced to the problem of finding ncetier
the root of a real-valued function, independently from tiveehsion
of the portfolio. This result holds for all portfolio of actial
relevance (continuous marginal distributions).

Calculating the dual bounds, contrary to the homogenecsss, calls
for the use of sophisticated optimization algorithms; se¥Eechts
and Puccetti (2005b).
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Application 2
1
0.995-
0.99-
0.985-
!
1
0.98- i T
!
1
1
0.975- 1 T
! ~ — comonotonicity|
! — dual bound
- standard bound
4 6 8 10 12
s x10°

0.97
0 2

Figure:Bounds oriP’[ZiS:l Xi < g] using the OR portfolio given

in Moscadelli (2004), together with the comonotonic scenar
ETHZ Zurich, DMD Firenze
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Application 2

a comonotonic value dual bound standard bound

0.99 28924x 10 14778x 10°  2.6950x 10°
0.995 67034x 10* 3.3922x 10°  6.1114x 10°
0.999 48347x 10°P 2.3807x 10°  4.1685x 10°
0.9999 87476x 1(P 4.0740x 10"  6.7936x 10’

Table:Range for VaR (Z?:l Xi) for the OR portfolio given in Moscadelli
(2004).
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Application 2

Remark on the VaR table

e With respect to the standard one, the dual bouiiels an
evaluation of the risky position held that is prudential,reno
realistic and economically advantageous at the same time.
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Application 2

Remark on the VaR table

e With respect to the standard one, the dual bouiiels an
evaluation of the risky position held that is prudential,reno
realistic and economically advantageous at the same time.

e Though Frachot et al. (2004) among others consider even the
comonotonic OR scenario as over-conservative, there is no
mathematical reason to drop the worst-case bounds if orse use
VaR to evaluate the risk of the position held and no deperalenc
assumptions on the portfolio is explicitly made.
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Conclusions

The worst-possible VaR for a non-decreasing function oedepnt
risks can be calculated when the portfolidug-dimensional.
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[ ]
Conclusions

Conclusions

The worst-possible VaR for a non-decreasing function oedepnt
risks can be calculated when the portfolidug-dimensional.

When dealing with more than two risks, the problem gets muctem

complicated and we provide a new bound which we prove to erbet
than the standard one generally used in the literature.
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For a textbook treatment, see
A. McNeil, R. Frey and P. Embrechts
Quantitative Risk Management:
Concepts, Techniques and Tools.
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