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The problem at hand

The problem at hand

Consider a functionψ : Rn→ R and a random vector

X := (X1, . . . ,Xn)

of n one-period financial losses or insurance claims
on some probability space (Ω,A, P).

The Value-at-Risk (quantile) at levelα for the aggregate lossψ(X) can
be computed once we know the joint distribution of the vectorX, i.e.

F(x1, . . . , xn) = P[X1 ≤ x1, . . . ,Xn ≤ xn].

Unfortunately, the distribution function (df) of the random vectorX
is not completely determined by theFi ’s.
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The problem at hand

There are infinitely many distributions for the vectorX which are
consistent with the initial choice of the marginals.

Figure:Two different bivariate dfs havingN(0, 1)-marginals and the same
correlation

Which is the df giving the worst-possible Value-at-Risk (VaR)
for the random variableψ(X) ?
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The problem at hand

History of the problem

• Makarov (1981) provided the first result forn = 2;ψ = +

• Frank et al. (1987) restated Makarov’s result, using copulas

• Independently, Rüschendorf (1982) gave a more elegant proof of
the same theorem using duality

• Williamson and Downs (1990) found the solution in the presence
of partial information for non-decreasing functionsψ of two
random variables

• Embrechts and Puccetti (2005c) provided an approximation on
the real solution when no dependence information is available
andn ≥ 3.
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Value-at-Risk

Value-at-Risk for the aggregate loss

Definition
Forα ∈ [0, 1], theValue-at-Riskat probability levelα for ψ(X) is its
α-quantile, defined as VaRα(Y) := G−1(α), whereG is the df ofψ(X).
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Value-at-Risk

Searching for the worst-possible VaR means looking for

mψ(s) := inf {P[ψ(X) < s] : Xi v Fi , i = 1, . . . , n}.

Indeed, according to the definition of VaR, we have

VaRα(ψ(X)) ≤ m−1
ψ (α), α ∈ [0, 1].
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Copulas

The distribution ofψ(X) van be uniquely defined through the marginal
dfs and their interdependence,

which can be modeled by the concept ofcopula.

Definition
A copulais anyn-dimensional df restricted to [0, 1]n having standard
uniform marginals.

Given a copulaC and a set ofn marginalsF1, . . . ,Fn one can always
define a dfF onRn having these marginals by

F(x1, . . . , xn) := C(F1(x1), . . . ,Fn(xn)). (1)

Sklar’s theorem states conversely that we can always find a copulaC
coupling the marginals of a fixed dfF trough (1).
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Copulas

• independent marginals are merged by the

Π : [0, 1]n→ [0, 1];Π(u1, . . . , un) :=
n∏

i=1

ui

• comonotonic marginals are merged by the so-calledupper
Fréchet bound

M : [0, 1]n → [0, 1]; M(u1, . . . , un) := min{u1, . . . , un}

• countermonotonic marginals are merged by the so-calledlower
Fréchet bound

W : [0, 1]n → [0, 1]; W(u1, . . . , un) :=


n∑

i=1

ui − n+ 1


+

Any copulaC lies between the lower and upper Fréchet bounds:

W ≤ C ≤ M.
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Use of dependence information

Dependence information

By Sklar’s theorem, our problem can be equivalently expressed as

mψ(s) = inf
{
PC
[
ψ(X) < s

]
: C ∈ Cn

}
,

whereCn denotes the set of alln-dimensional copulas.

Putting a lower bound on the copulaC of the portfolio can be
interpreted as having partial information regarding the dependence

structure of our portfolio of risks.
If this is the case, the problem reduces to

mCL,ψ(s) : = inf
{
PC
[
ψ(X) < s

]
: C ≥ CL

}
.

If CL =W, then come back to our original problem.
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Main Result with Dependence Information

Main Result with Dependence information

When a lower copula-bound on the portfolio copula C is assumed
and n = 2

the problem at hand is fully solved.

This result goes back to Williamson and Downs (1990) for any
functionψ which is continuous and non-decreasing in each place.
Embrechts et al. (2003) state the same theorem also forn ≥ 3 but,

unfortunately, their proof contains a gap: the bound is correct but its
sharpness is not proved forn ≥ 3.

Define

τC,ψ(F1, . . . ,Fn)(s) := sup
x1,...,xn−1∈R

C(F1(x1), . . . ,Fn−1(xn−1),F−n (ψ̂x−n
(s))).
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Main Result with Dependence Information

Theorem 1 (bound for general functionals ψ) Let X = (X1, . . . ,Xn)
be a random vector onRn (n > 1) having marginal dfsF1, . . . ,Fn and
copulaC. Assume that there exists a copulaCL such thatC ≥ CL. If
ψ : Rn→ R is non-decreasing in each coordinate, then, for every
α ∈ [0, 1], we have

VaRα(ψ(X)) ≤ τCL,ψ(F1, . . . ,Fn)−1(α). (2)

Theorem 2 (sharpness of the bound) Assumeψ is also continuous
andn = 2. Define the functionCt : [0, 1]2 → [0, 1] as follows:

Ct(u) :=


max{t,CL(u)} if u = (u1, u2) ∈ [t, 1]2,

min{u1, u2} otherwise,

wheret = τCL ,ψ(F1,F2)−1(α). ThenCt is a copula and it attains
bound (2), i.e. underCt we have

VaRα(ψ(X)) = t.
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Main Result with Dependence Information

Important Remark on the Theorems

• A priori assumptions such asC ≥ Π may lead to a critical
undervaluation of the portfolio risk since the componentwise
ordering in the classC2 is not complete.

Therefore, in the following we will restrict to the case in which we do
not assume any information on the copula of the portfolio, i.e.

CL =W.
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Main Result without Dependence Information

Main Result without information on dependence

Consider then

CL =W.

Though thestandardbound stated in Theorem 1 still holds
in arbitrary dimension, but when

n ≥ 3

it may fail to be sharp.
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Main Result without Dependence Information

In the no-information scenario, it is convenient to expressour
problem using a duality result given in Rüschendorf (1982):

mψ(s) = inf {P[ψ(X) < s] : Xi v Fi , i = 1, . . . , n}

= 1− inf

{ n∑

i=1

∫
fidFi : fi ∈ L1(Fi), i ∈ N s.t.

n∑

i=1

fi(xi ) ≥ 1[s,+∞)(ψ(x)) for all x ∈ Rn
}
.
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Main Result without Dependence Information

Some remarks on the dual problem

• The dual optimization problem seems to be very difficult to
solve;

• Explicit results are known only for uniformly or binomially
distributed risks;

• Unfortunately, the solution in the case of the sum of uniform
marginals does not work in the general case.
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Main Result without Dependence Information

Dual bounds

We use the dual problem to provide a bound which is better (i.e. ≥)
than thestandardone.

Theorem 3 (dual bound) Let F be a non-negative, continuous df.
If Fi = F, i = 1, . . . , n, then for everys≥ 0,

m+(s) ≥ 1− n inf
r∈[0,s/n)

∫ s−(n−1)r
r

(1− F(x))dx

s− nr
.

• For n = 2 this theorem gives the sharp bound already stated
• Thisdual bound is strictly larger than the standard bound for

most dfs and thresholdssof interest
• The theorem can be easily extended to consider

non-homogeneous portfolios, i.e. different marginal
distributions, see Embrechts and Puccetti (2005b).

P. Embrechts and G. Puccetti ETHZ Zurich, DMD Firenze

Bounding Risk Measures



Introduction Copulas Main Results Applications Conclusions and Extensions

Main Result without Dependence Information

Dual bounds

We use the dual problem to provide a bound which is better (i.e. ≥)
than thestandardone.

Theorem 3 (dual bound) Let F be a non-negative, continuous df.
If Fi = F, i = 1, . . . , n, then for everys≥ 0,

m+(s) ≥ 1− n inf
r∈[0,s/n)

∫ s−(n−1)r
r

(1− F(x))dx

s− nr
.

• For n = 2 this theorem gives the sharp bound already stated
• Thisdual bound is strictly larger than the standard bound for

most dfs and thresholdssof interest
• The theorem can be easily extended to consider

non-homogeneous portfolios, i.e. different marginal
distributions, see Embrechts and Puccetti (2005b).

P. Embrechts and G. Puccetti ETHZ Zurich, DMD Firenze

Bounding Risk Measures



Introduction Copulas Main Results Applications Conclusions and Extensions

Main Result without Dependence Information

Dual bounds

We use the dual problem to provide a bound which is better (i.e. ≥)
than thestandardone.

Theorem 3 (dual bound) Let F be a non-negative, continuous df.
If Fi = F, i = 1, . . . , n, then for everys≥ 0,

m+(s) ≥ 1− n inf
r∈[0,s/n)

∫ s−(n−1)r
r

(1− F(x))dx

s− nr
.

• For n = 2 this theorem gives the sharp bound already stated
• Thisdual bound is strictly larger than the standard bound for

most dfs and thresholdssof interest
• The theorem can be easily extended to consider

non-homogeneous portfolios, i.e. different marginal
distributions, see Embrechts and Puccetti (2005b).

P. Embrechts and G. Puccetti ETHZ Zurich, DMD Firenze

Bounding Risk Measures



Introduction Copulas Main Results Applications Conclusions and Extensions

Main Result without Dependence Information

Dual bounds

We use the dual problem to provide a bound which is better (i.e. ≥)
than thestandardone.

Theorem 3 (dual bound) Let F be a non-negative, continuous df.
If Fi = F, i = 1, . . . , n, then for everys≥ 0,

m+(s) ≥ 1− n inf
r∈[0,s/n)

∫ s−(n−1)r
r

(1− F(x))dx

s− nr
.

• For n = 2 this theorem gives the sharp bound already stated
• Thisdual bound is strictly larger than the standard bound for

most dfs and thresholdssof interest
• The theorem can be easily extended to consider

non-homogeneous portfolios, i.e. different marginal
distributions, see Embrechts and Puccetti (2005b).

P. Embrechts and G. Puccetti ETHZ Zurich, DMD Firenze

Bounding Risk Measures



Introduction Copulas Main Results Applications Conclusions and Extensions

Main Result without Dependence Information

Dual bounds

We use the dual problem to provide a bound which is better (i.e. ≥)
than thestandardone.

Theorem 3 (dual bound) Let F be a non-negative, continuous df.
If Fi = F, i = 1, . . . , n, then for everys≥ 0,

m+(s) ≥ 1− n inf
r∈[0,s/n)

∫ s−(n−1)r
r

(1− F(x))dx

s− nr
.

• For n = 2 this theorem gives the sharp bound already stated
• Thisdual bound is strictly larger than the standard bound for

most dfs and thresholdssof interest
• The theorem can be easily extended to consider

non-homogeneous portfolios, i.e. different marginal
distributions, see Embrechts and Puccetti (2005b).

P. Embrechts and G. Puccetti ETHZ Zurich, DMD Firenze

Bounding Risk Measures



Introduction Copulas Main Results Applications Conclusions and Extensions

Application 1

Application 1: Finding the real solution (homogeneous
portfolios)

Under the assumptions of Theorem 3 (homogeneous portfolios), it is
easy to show that, fors large enough, the standard bound reduces to

τW,+(F, . . . ,F)(s) = [nF(s/n) − n+ 1]+.

Moreover, the dual bound can be easily calculated numerically also
for huge portfolios (n = 100000) by finding the zero-derivative points

of a real-valued function.

How can we compare the quality of the dual bound
with respect to the standard bound?
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Application 1

We define the two dfsFN,FN by

FN(x) : =
1
N

N∑

i=1

1[qr ,+∞)(x),

FN(x) : =
1
N

N−1∑

i=0

1[qr ,+∞)(x),

the jump pointsq0, . . . , qN being the quantiles ofF defined by

q0 : = inf supp(F), qN := sup supp(F) and

qr : = F−1(r/N), r = 1, . . . ,N − 1.
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Application 1

It is straightforward that

FN ≤ F ≤ FN,

from which it follows that

m
+
(s) ≤ m+(s) ≤ m+(s),

wherem
+
(s) andm+(s) are naturally defined as:

m
+
(s) : = inf

P


n∑

i=1

Xi < t

 : Xi v FN, i = 1, . . . , n

 ,

m+(s) : = inf

P


n∑

i=1

Xi < t

 : Xi v FN, i = 1, . . . , n

 .
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Application 1

Given thatFN is a (possibly defective) discrete df,m
+
(s) is the

solution of the following LP:

m
+
(s) = min

pj1,...,jn

N∑

j1=1

· · ·

N∑

jn=1

pj1,j2,...,jn1(−∞,t)


n∑

i=1

qji

 subject to



∑N
j2=1
∑N

j3=1 · · ·
∑N

jn=1 pj1,...,jn =
1
N j1 = 1, . . . ,N,∑N

j1=1
∑N

j3=1 · · ·
∑N

jn=1 pj1,...,jn =
1
N j2 = 1, . . . ,N,

. . . ,∑N
j1=1
∑N

j2=1 · · ·
∑N

jn−1=1 pj1,...,jn =
1
N jn = 1, . . . ,N,

0 ≤ pj1,...,jn ≤ 1 j i = 1, . . . ,N,
i = 1, . . . , n.

The functionm+(s) is the solution of an analogous LP.
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Application 1
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Figure:Range forP[X1 + X2 + X3 < s] for a Pareto(1.5,1)-portfolio
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Some remarks on this plot

• The ranges for the true solutions have been calculated solving
the two LPs withN = 180 and using ILOG CPLEX© C Callable
Libraries (a powerful tool).

• Switching ton = 5 drastically lowers the quality of
approximation toN < 50.

• The worst VaR does not occur under the comonotonicity
assumptions, i.e. VaR is not a coherent measure of risk.
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Non-coherence of VaR

VaRα(X1) + VaRα(X2) < VaRα (X1 + X2)

• X1,X2 independent but very skew
• X1,X2 independent but very heavy-tailed
• X1,X2 v N(0, 1) but special dependence, see picture below.
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Bounds on Value-at-Risk

VaRα(
∑3

i=1 Xi), exact VaRα(
∑3

i=1 Xi), upper bound

α independence comonoton. dual standard

0.90 7.54 8.85 14.44 15.38
0.95 9.71 12.73 19.50 20.63
0.99 16.06 25.16 35.31 37.03
0.999 29.78 53.99 69.98 73.81

Table:Range for VaR for a Log-Normal(-0.2,1)-portfolio.
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Bounds on Value-at-Risk

VaRα(
∑10

i=1 Xi) VaRα(
∑100

i=1 Xi) VaRα(
∑1000

i=1 Xi)

α dual standard dual standard dual standard

0.90 0.669 1.485 11.039 149.850 150.162 14998.500
0.95 1.353 2.985 22.227 229.850 301.823 29998.500
0.99 2.985 14.985 111.731 1499.850 1515.111 149998.500
0.999 68.382 149.985 1118.652 14999.850 15164.604 1499998.500

Table:Upper bounds for VaRα(
∑n

i=1 Xi) of three Pareto portfolios of different
dimensions. Data in thousands.
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Application 2: Operational Risk (non-homogeneous
portfolios)

The risk management of Operational Risk (OR) under the Advanced
Measurement Approach is a typical example where one has to deal

with a multivariate portfolio of risks having different marginal
distributions; see Moscadelli (2004).
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Problems with non-homogeneous marginals

Denuit et al. (1999) remark that, contrary the homogeneous scenario,
thestandard boundcan be rarely explicited analytically in practice.

Embrechts and Puccetti (2005b) shows that the computation of
standard bounds can be reduced to the problem of finding numerically
the root of a real-valued function, independently from the dimension

of the portfolio. This result holds for all portfolio of actuarial
relevance (continuous marginal distributions).

Calculating the dual bounds, contrary to the homogeneous case, calls
for the use of sophisticated optimization algorithms; see Embrechts

and Puccetti (2005b).
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Figure:Bounds onP[
∑8

i=1 Xi < s] using the OR portfolio given
in Moscadelli (2004), together with the comonotonic scenario.
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α comonotonic value dual bound standard bound

0.99 2.8924× 104 1.4778× 105 2.6950× 105

0.995 6.7034× 104 3.3922× 105 6.1114× 105

0.999 4.8347× 105 2.3807× 106 4.1685× 106

0.9999 8.7476× 106 4.0740× 107 6.7936× 107

Table:Range for VaRα
(∑8

i=1 Xi

)
for the OR portfolio given in Moscadelli

(2004).
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Remark on the VaR table

• With respect to the standard one, the dual bound offers an
evaluation of the risky position held that is prudential, more
realistic and economically advantageous at the same time.

• Though Frachot et al. (2004) among others consider even the
comonotonic OR scenario as over-conservative, there is no
mathematical reason to drop the worst-case bounds if one uses
VaR to evaluate the risk of the position held and no dependence
assumptions on the portfolio is explicitly made.
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Conclusions

The worst-possible VaR for a non-decreasing function of dependent
risks can be calculated when the portfolio istwo-dimensional.

When dealing with more than two risks, the problem gets much more
complicated and we provide a new bound which we prove to be better
than the standard one generally used in the literature.
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Extensions

Extensions
• Other portfolio functionsψ;
• Multivariate marginals; see Embrechts and Puccetti (2005);
• Other risk measures; see Embrechts et al. (2005).
• For a textbook treatment, see

A. McNeil, R. Frey and P. Embrechts
Quantitative Risk Management:

Concepts, Techniques and Tools.

Princeton UP, 2005,
http://www.pupress.princeton.edu/titles/8056.html
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