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Despite well-known shortcomings as a risk measure, Value-at-Risk (VaR) is still the industry and regula-
tory standard for the calculation of risk capital in banking and insurance. This paper is concerned with the
numerical estimation of the VaR for a portfolio position as a function of different dependence scenarios
on the factors of the portfolio. Besides summarizing the most relevant analytical bounds, including a dis-
cussion of their sharpness, we introduce a numerical algorithm which allows for the computation of reli-
able (sharp) bounds for the VaR of high-dimensional portfolios with dimensions d possibly in the several
hundreds. We show that additional positive dependence information will typically not improve the upper
bound substantially. In contrast higher order marginal information on the model, when available, may
lead to strongly improved bounds. Several examples of practical relevance show how explicit VaR bounds
can be obtained. These bounds can be interpreted as a measure of model uncertainty induced by possible
dependence scenarios.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction pricing tools and a complete risk factor mapping. And of course
Since the early nineties, Value-at-Risk (VaR) has established it-
self as a (if not the) key metric for the calculation of regulatory cap-
ital within the financial industry. Furthermore, VaR is increasingly
used as a risk management constraint within portfolio optimiza-
tion. Whereas books like Jorion (2006) prize VaR as the industry
standard, numerous papers have pointed out many of the (most
obvious) shortcomings of VaR as a risk measure; see for instance
McNeil et al. (2005) and the references therein, but also the recent
Basel Committee on Banking Supervision (2012), already referred
to as Basel 3.5. A very informative overview on the use of VaR tech-
nology within the banking industry is Pérignon and Smith (2010).
As so often, a middle-of-the-road point of view is advisable: there
is no doubt that the construction and understanding of the P&L dis-
tribution of a bank’s trading book is of the utmost importance. The
latter includes the availability of data warehouses, independent
Corporate Governance decisions may have a major impact on the
P&L, like for instance in the case of strategic decisions. In that
sense, VaR, as a number, is just the peak of the risk management
iceberg. Nonetheless, once the number leaves the IT system of
the CRO, all too often it starts a life of its own and one often forgets
the numerous warnings about its proper interpretation. Moreover,
once several VaRs are involved, the temptation is there to calculate
functions of them (like adding) forgetting the considerable model
uncertainty underlying such constructions; see Basel Committee
on Banking Supervision (2010) for a regulatory overview on risk
aggregation. A typical such example is to be found in the realm
of Operational Risk as defined under Basel II and III. Throughout
the paper we will use the latter as a motivating example and con-
sider the organization of an Operational Risk database in business
lines and risk types; for a background to this and for further refer-
ences, see for instance McNeil et al. (2005, Chapter 10). We want to
stress however that the quantitative modeling of Operational Risk
is just a motivating example where the techniques discussed in our
paper can be applied naturally. The results obtained are applicable
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much more widely and related questions do occur frequently in
banking and insurance.

To set the scene, consider the calculation of the VaR at a confi-
dence level a for an aggregate loss random variable L+ having the
form

Lþ ¼
Xd

i¼1

Li;

where L1, . . . , Ld, in the case of Operational Risk, correspond to the
loss random variables for given business lines or risk types, over a
fixed time period T. The VaR of the aggregate position L+, calculated
at a probability level a 2 (0,1), is the a-quantile of its distribution,
defined as

VaRaðLþÞ ¼ F�1
Lþ ðaÞ ¼ inffx 2 R : FLþ ðxÞ > ag; ð1Þ

where FLþ ðxÞ ¼ PðLþ 6 xÞ is the distribution function of L+. As a sta-
tistical quantity and for a typically close to 1, VaRa(L+) is a measure
of extreme loss, i.e. P(L+ > VaRa(L+)) 6 1 � a is typically small.

The current regulatory framework for banking supervision, re-
ferred to as Basel II (becoming Basel III), allows large interna-
tional banks to come up with internal models for the
calculation of risk capital. For Operational Risk, under the so-
called Loss Distribution Approach (LDA) within Basel II, financial
institutions are given full freedom concerning the stochastic mod-
eling assumptions used. The resulting risk capital must corre-
spond to a 99.9%-quantile of the aggregated loss data over the
period of a year; we leave out the specific details concerning
internal, external and expert opinion data as they are less rele-
vant for the results presented in this paper. Using the notation
introduced above, the risk capital for the aggregate position L+

is typically based on VaR0.999(L+). Concerning interdependence of
risks, no specific rules are given beyond the statement that expli-
cit and implicit correlation assumptions between loss random
variables used have to be plausible and need to be well founded;
in the case of Operational Risk, see Cope and Antonini (2008) and
Cope et al. (2009). For the sequel of this paper, we leave out sta-
tistical (parameter) uncertainty.

In order to calculate VaRa(L+), one needs a joint model for the
random vector (L1, . . . , Ld)0. This would require an extensive d-var-
iate dataset for the past occurred losses, which often is not avail-
able. Typically, only the marginal distribution functions Fi of Li

are known or statistically estimated, while the dependence struc-
ture between the Li’s is either completely or partially unknown.
This situation also often occurs in the analysis of credit risk data;
here the d could be viewed as the number of individual obligors,
industry or geographic sectors, say.

In standard practice, the total capital charge C to be allocated is
derived from the addition of the VaRs at probability level a = 0.999
for the marginal random losses Li, namely

VaRþa ðL
þÞ ¼

Xd

i¼1

VaRaðLiÞ ¼
Xd

i¼1

F�1
i ðaÞ:

Indeed, industry typically reports

C ¼ dVaRþa ðL
þÞ; 0 < d 6 1; ð2Þ

the value of d is often in the range (0.7,0.9) and reflects so-called
diversification effects. A capital charge based on (2) would imply
a subadditive regime for VaR, i.e.

VaRaðLþÞ ¼ VaRa

Xd

i¼1

Li

 !
6

Xd

i¼1

VaRaðLiÞ ¼ VaRþa ðL
þÞ: ð3Þ

The case d = 1 (no diversification) in (2) can be mathematically jus-
tified by the assumption of perfect positive dependence (which im-
plies maximal correlation) among marginal risks. Indeed, under this
so-called comonotonic dependence scenario, VaRaðLþÞ ¼ VaRþa ðL
þÞ;

see McNeil et al. (2005, Proposition 6.15). Practitioners criticize this
assumption as not being realistic, and remark that random losses
are not perfectly correlated in view of their heterogeneous nature.
Though the d = 1 maximal-correlation scenario is often considered
as highly conservative, the inequality in (3) is typically violated
for either very heavy-tailed losses, very skewed losses, or losses
exhibiting special dependencies. Such situations are no doubt pres-
ent in Operational Risk data; see for instance Moscadelli (2004),
Panjer (2006), Shevchenko (2011) and Bolancé et al. (2012). The
three standard classes of examples violating (3) and mentioned
above are to be found in McNeil et al. (2005, Examples 6.7, 6.22).

Based on the above example from the capital charge calculation
of Operational Risk it is clear that there exists considerable model
uncertainty underlying the diversification factor d, which for practi-
cally relevant models could well take values above the additive
case d = 1. It is exactly this kind of model uncertainty that the pres-
ent paper addresses. In the discussion below, we will now abstract
from the motivating Operational Risk example.

Recently, a number of numerical and analytical techniques have
been developed in order to calculate conservative values for VaRa(-
L+) under different dependence assumptions regarding the loss
random variables Li. In this paper we describe these methodologies
and give insight in the worst-case dependence structure (copula)
describing the worst-VaR scenario.

We summarize the main contributions of this paper:

� we introduce an algorithm which allows to calculate sharp
bounds for the VaR of possibly high-dimensional portfolio posi-
tions allowing for inhomogeneous portfolios with dimension d
in the several hundreds;
� we show that additional positive dependence information

added on top of the marginal distributions does not improve
the VaR bounds substantially;
� we show that additional information on higher dimensional

sub-vectors of marginals leads to possibly much narrower VaR
bounds, and
� we give the dependence structures (copulas) leading to worst-

case scenarios.

The main message coming from our paper is that currently a
whole toolkit of analytical and numerical techniques is available
to better understand the aggregation and diversification properties
of non-coherent risk measures such as Value-at-Risk.

We very much hope that our paper is both accessible to the aca-
demic researcher as well as to the more quantitative practitioner.
With this goal in mind, we have strived at keeping the technical
details to a minimum, stressing more the algorithmic, numerical
aspects of the results discussed. Of course, we will direct the reader
interested in more mathematical details to the relevant research
papers. We strongly believe that the results and techniques sum-
marized are sufficiently novel and will benefit the wider financial
industry.

With financial/actuarial applications in mind, and without loss
of generality, in almost all the examples contained in the paper
we use power law models for the marginal distributions of the
risks such as the Pareto distribution. In particular, we often use a
Pareto distribution with tail parameter h = 2 in order to represent
marginal risks with finite mean but infinite variance. This choice
is pedagogical and does not affect the computational properties
of the methodologies discussed.

In Section 2, we study the case where the marginal distribution
functions Fi of Li are fixed while the dependence structure (copula)
between the Li’s is completely unknown. In the homogeneous case
where the risk factors Li are identically distributed, a simple analyt-
ical formula allows to compute the worst-possible VaR for portfo-
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lios of arbitrary dimensions when the marginal distributions Fi are
continuous. For inhomogeneous portfolios having arbitrary margin-
als, a new numerical algorithm, see Section 2.2, allows to compute
best- and worst-possible VaR values in arbitrary dimensions; the
main limiting factors are computer memory and numerical accu-
racy to be obtained. We test the algorithm in an example with
d = 648.

Under the restriction of the dependence structure to positive
dependence, possible improvements of the bounds are discussed
in Section 3. Finally, in Section 4, we consider a more general case
where extra information is known about sub-vectors of the mar-
ginal risks. In Sections 1.1,1.2,1.3,1.4 below we first gather some
definitions, notation and basic methodological tools, together with
some key references.

1.1. Fréchet classes

Denote L = (L1, . . . , Ld)0. The Value-at-Risk for the aggregate po-
sition L+ = L1 + � � � + Ld is certainly not uniquely determined by the
marginal distributions F1, . . . , Fd of the risks Li. In fact, there exist
infinitely many joint distributions on Rd which are consistent with
the choice of the marginals F1, . . . , Fd. We denote by FðF1; . . . ; FdÞ
the Fréchet class of all the possible joint distributions FL on Rd hav-
ing the given marginals F1, . . . , Fd. For a 2 (0,1), upper and lower
bounds for the Value-at-Risk of L+ are then defined as

VaRaðLþÞ ¼ supfVaRaðL1 þ . . .þ LdÞ : FL 2 FðF1; . . . ; FdÞg; ð4aÞ
VaRaðLþÞ ¼ inffVaRaðL1 þ . . .þ LdÞ : FL 2 FðF1; . . . ; FdÞg: ð4bÞ

The above definitions directly imply the VaR range for L+ given by

VaRaðLþÞ 6 VaRaðL1 þ � � � þ LdÞ 6 VaRaðLþÞ: ð5Þ

We refer to the bounds VaRaðLþÞ and VaRa(L+) as the worst-possible
and, respectively, the best-possible VaR for the position L+, at the
probability level a. When attained, the upper and lower bounds in
(4) are sharp (best-possible): they cannot be improved if further
dependence information on (L1, . . . , Ld)0 is not available. We call
any joint model for L�1; . . . ; L�d

� �0 with prescribed marginals
F1, . . . , Fd such that

VaRaðLþÞ ¼ VaRa L�1 þ � � � þ L�d
� �

a worst-case dependence or worst-case coupling. Analogously, any
joint model for L�1; . . . ; L�d

� �0 with the prescribed marginals such that

VaRaðLþÞ ¼ VaRa L�1 þ . . .þ L�d
� �

is a best-case dependence or best-case coupling. Of course, the choice
of wording best versus worst is arbitrarily and depends on the spe-
cific application at hand. Problems related to (4) with moment
information have always been relevant in actuarial mathematics.
One of the early contributors was De Vylder (1996); see also Hürli-
mann (2008a,b) for numerous examples from the realm of
insurance.

1.2. Copulas

To make this paper self-contained, we give a brief introduction
to some copula concepts that we will need in the following. The
reader not familiar with the theory of copulas is referred to Nelsen
(2006), McNeil et al. (2005, Chapter 5) and Durante and Sempi
(2010).

A copula C is a d-dimensional distribution function (df) on [0,1]d

with uniform marginals. Given a copula C and d univariate margin-
als F1, . . . , Fd, one can always define a df F on Rd having these mar-
ginals by

Fðx1; . . . ; xdÞ ¼ CðF1ðx1Þ; . . . ; FdðxdÞÞ; x1; . . . ; xd 2 R: ð6Þ
Sklar’s Theorem states conversely that we can always find a copula
C coupling the marginals Fi of a fixed joint distribution F through the
above expression (6). For continuous marginal dfs, this copula is un-
ique. Hence Sklar’s Theorem states that the copula C of a multivar-
iate distribution F contains all the dependence information of F.

A first example of a copula is the independence copula

Pðu1; . . . ;udÞ ¼ Pd
i¼1ui:

The name of this copula derives from the fact that the risk vector
(L1, . . . , Ld)0 has copula P if and only if its marginal risks Li are inde-
pendent. Under independence among the marginal risks, (6) reads
as

Fðx1; . . . ; xdÞ ¼ PðF1ðx1Þ; . . . ; FdðxdÞÞ ¼ F1ðx1Þ � � � � � FdðxdÞ:

Any copula C satisfies the so-called Fréchet bounds

max
Xd

i¼1

ui � dþ 1;0

( )
6 Cðu1; . . . ;udÞ 6 minfu1; . . . ;udg;

for all u1, . . . , ud 2 [0,1]. The sharp upper Fréchet bound

Mðu1; . . . ;udÞ ¼minfu1; . . . ;udg

is the so-called comonotonic copula, which represents perfect posi-
tive dependence among the risks. In fact, a risk vector (L1, . . . , Ld)0

has copula M if and only if its marginal risks are all almost surely
(a.s.) increasing functions of a common random factor. For a de-
tailed discussion of the concept of comonotonicity within quantita-
tive risk management we refer to Dhaene et al. (2002) and Dhaene
et al. (2006); see also McNeil et al. (2005, Section 6.2.2). The lower
Fréchet bound

Wðu1; . . . ;udÞ ¼ ½u1 þ � � � þ ud � dþ 1�þ

is also sharp. However, it is a well-defined copula only in dimension
d = 2. In this case, it is called the countermonotonic copula and rep-
resents perfect negative dependence between two risks. A risk vec-
tor (L1,L2)0 has copula W if and only if its marginal risks are a.s.
decreasing functions of each other.

The upper and lower Fréchet bounds are important for finding
optimal couplings in many optimization problems of interest in
quantitative risk management. For instance it is well known that
the maximal variance for the sum of risks with given marginals
is attained when the risks are comonotonic, that is when they have
copula C = M. Analogously, the minimal variance for the sum of two
risks with given marginals is attained when they are countermono-
tonic, C = W. These results derive from the classical Hoeffding–Fré-
chet bounds and can be seen as particular cases of a more general
ordering theorem; see Corollary 3 in Rüschendorf (1983).

1.3. Worst and best VaR

Sklar’s Theorem allows us to reformulate (4) as optimization
problems over Cd, the set of all d-dimensional copulas:

VaRaðLþÞ ¼ sup VaRa LC
1 þ . . .þ LC

d

� �
: C 2 Cd

n o
; ð7aÞ

VaRaðLþÞ ¼ inf VaRa LC
1 þ . . .þ LC

d

� �
: C 2 Cd

n o
: ð7bÞ

Here the vector LC
1 ; . . . ; LC

d

� �0
has the same marginal distributions

as (L1, . . . , Ld)0 and copula C. In general, it is difficult to evaluate
the bounds in (4) or in (7) in explicit form, especially when one
has to deal with d P 3 risks. This is related to the fact that in gen-
eral Value-at-Risk is non-subadditive. As a consequence, the
comonotonic copula M is in general not a solution to the
problem VaRaðLþÞ in (7a). Equivalently, the worst-VaR value
VaRaðLþÞ in (4) is not attained when all the risks are perfectly
positively dependent. Analogously, the countermonotonic copula
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W is in general not a solution to the problem VaRa(L+) in (7b) for
d = 2.

As already stated above, in the comonotonic case C = M, we have
that

VaRþa ðL
þÞ ¼ VaRa LM

1 þ � � � þ LM
d

� �
¼
Xd

i¼1

VaRaðLiÞ ¼
Xd

i¼1

F�1
i ðaÞ: ð8Þ

It is not difficult to provide examples of interest in quantitative risk
management where, for a copula C, necessarily C – M, we have that

VaRa LC
1 þ � � � þ LC

d

� �
>
Xd

i¼1

VaRaðLiÞ:

For instance, if the random losses L1, . . . , Ld are identically dis-
tributed like a symmetric h-stable distribution with h < 1, we have
that

VaRaðLP;þÞ ¼ VaRa LP
1 þ � � � þ LP

d

� �
¼ d1=hVaRaðL1Þ > d VaRaðL1Þ

¼ VaRa LM
1 þ � � � þ LM

d

� �
;

see Mainik and Rüschendorf (2010). Other examples in which inde-
pendence implies a larger VaR estimate than comonotonic depen-
dence can be found in Embrechts and Puccetti (2010b,
Section 5.3), Mainik and Embrechts (2013) and Section 2.3 below.

1.4. Complete mixability

When dealing with extremal values for Value-at-Risk, the ideas
of perfect positive and negative dependence, as represented by the
Fréchet bounds M and W, can be deceiving. Handling non-subaddi-
tive risk measures requires the knowledge of alternative depen-
dence concepts; complete mixability turns out to be such a
concept. It turns out to be highly useful towards the calculation
of VaR bounds.

Definition 1. A distribution function F on R is d-completely
mixable (d-CM) if there exist d random variables X1, . . . , Xd,
identically distributed as F, such that

PðX1 þ � � � þ Xd ¼ cÞ ¼ 1; ð9Þ

for some constant c 2 R. Any vector (X1, . . . , Xd)0 satisfying (9) with
Xi � F, 1 6 i 6 d, is called a d-complete mix. If F has finite first mo-
ment l, then c = ld.

Complete mixability is a concept of negative dependence. In
dimension d = 2 complete mixability implies countermonotonicity.
Indeed, a risk vector (L1,L2)0 is a 2-complete mix if and only if
L1 = k � L2 a.s, and this implies that its copula is the lower Fréchet
bound W (the converse however does not hold). In higher dimen-
sions, d P 3, a completely mixable dependence structure mini-
mizes the variance of the sum of risks with given marginal
distributions. In fact, a risk vector (L1, . . . , Ld)0 with identically dis-
tributed marginals is a d-complete mix if and only if the variance of
the sum of its components is equal to zero. Not all univariate dis-
tributions F are d-CM. As an example, it is sufficient to take F as the
two-point distribution giving probability mass p > 0 to x = 0 and
1 � p to x = 1. Since the only way to make L1 + L2 a constant is to
choose L2 = 1 � L1, F is not 2-CM for p – 1/2.

The structure of dependence (copula) corresponding to com-
plete mixability is not so intuitive and, at the moment, does not
have an easy mathematical formulation like in the case of the
Fréchet bounds. We illustrate this with a discrete example.
We choose F to give mass 1/5 to any of the first five integers.
A 3-complete mix of F can be represented by the following ma-
trix, in which any row is to be seen as a vector in R3 having
probability mass 1/5:
1 5 3
2 3 4
3 1 5
4 4 1
5 2 2

2
6666664

3
7777775
:

Since the sum of each row in the above matrix is equal to k = 9
(note that the mean of F is equal to 3), F turns out to be 3-
completely mixable. It is useful to compare the above matrix
with the one representing comonotonicity among three
F-distributed risks:

1 1 1
2 2 2
3 3 3
4 4 4
5 5 5

2
6666664

3
7777775
:

In this latter case, the variance of the row-wise sums is maximized.
Some other examples of completely mixable distributions, as well
as an insight into the theory of complete mixability, are given in
Rüschendorf and Uckelmann (2002), Wang and Wang (2011) and
Puccetti et al. (2012). Interesting cases where the concept of com-
plete mixability plays an important role in the optimization prob-
lems (7) are the homogeneous case where the Li’s are identically
distributed with a continuous distribution having an unbounded
support and an ultimately decreasing density; see Puccetti and L.
Rüschendorf. (2013).

2. Computing the VaR range with given marginal information

In this section, we consider the case when the risk vector (L1-

, . . . , Ld)0 has given marginal distribution functions F1, . . . , Fd while
its dependence structure is completely unknown. Recently, some
new numerical and analytical tools have been developed to calcu-
late the VaR range in (5) under these assumptions. First, we study
the homogeneous case where the marginal risks are all identically
distributed. Then, we will consider the more general inhomoge-
neous framework in which the marginal distributions are allowed
to differ.

2.1. Identically distributed marginals

Throughout this section we assume that the marginal risks Li

are all identically distributed as F, that is F1 = � � � = Fd = F. In the case
d = 2, the calculation of the sharp VaR bounds in (4) reduces to a
simple formula if F satisfies some regularity conditions.

Proposition 2. In the case d = 2 with F1 = F2 = F, let F be a continuous
distribution concentrated on [0,1) with an ultimately decreasing
density on ð�xF ;1Þ, for some �xF P 0. Then

VaRaðLþÞ ¼ F�1ðaÞ and VaRaðLþÞ ¼ 2F�1 1þ a
2

� �
; ð10Þ

for all a 2 ½Fð�xFÞ;1Þ.
Remark 3.

1. If �xF ¼ 0, e.g. in the case F is Pareto distributed, that is
FðxÞ ¼ 1� ð1þ xÞ�h
; x > 0; ð11Þ
for some tail parameter h > 0, then the sharp bounds in (10) hold for
any level of probability a 2 (0,1).
2. For d = 2, the sharp bounds VaRaðLþÞ and VaRa(L+) are known for

any type of marginal distributions F1, F2. The slightly more



Fig. 1. Bivariate copula (left) and support (right) of the vector L�1; L
�
2

� �0 attaining the worst-possible VaR for L1 + L2 when L1 and L2 are both Pareto (2)-distributed.
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complicated formulas to compute the bounds in the general
case are given in Rüschendorf (1982, Proposition 1).

For a given a, a worst-case dependence vector L�1; L
�
2

� �
such that

VaRa L�1 þ L�2
� �

¼ VaRaðLþÞ is given by

L�2 ¼ L�1 a:s:; when L1 < F�1ðaÞ;
L�2 ¼ F�1 1þ a� F L�1

� �� �
a:s:; when L1 P F�1ðaÞ:

(

In Fig. 1, left, we show the copula of the risk vector L�1; L
�
2

� �0. In the
right part of the same figure, we show the support of the risk vector
L�1; L

�
2

� �0 when L�1 and L�2 are both Pareto (2)-distributed. The support
of a random vector X is the smallest closed set A such that
P(X R A) = 0. It is interesting to note the interdependence of L�1 and
L�2. In the upper (1 � a) part of their supports, the marginal risks
L�1 and L�2 are countermonotonic. This means that the variance of
the sum of the upper (1 � a) parts of their supports is minimized.
In the lower a-part of their supports, the marginal risks L�1 and L�2
are a.s. identical and hence comonotonic. This is however not rele-
vant since the interdependence in this lower part of the joint distri-
bution can be chosen arbitrarily; see Puccetti and L. Rüschendorf.
(2013, Theorem 2.1).

The case d = 2 is mainly pedagogical. The typical dimensions
used in practice may vary from d = 7 or 8 to 56, say, for the aggre-
gation of Operational Risk factors; see Moscadelli (2004), but may
go up to d in the several hundreds or even thousands for hierarchi-
cal risk aggregation models; see for instance Arbenz et al. (2012).
In the case d > 2, the sharp bound VaRaðLþÞ has been obtained only
recently in the homogeneous case under different sets of assump-
tions. For a distribution function F, define the dual bound D(s) as

DðsÞ ¼ inf
t<s=d

d
R s�ðd�1Þt

t FðxÞdx
ðs� dtÞ ; ð12Þ

where FðxÞ ¼ 1� FðxÞ. The dual bound D(s) in (12) is an upper
bound on the tail function of L+, that is

PðL1 þ � � � þ Ld > sÞ 6 DðsÞ;

see for instance Puccetti and L. Rüschendorf. (2013). This directly
implies that

VaRaðLþÞ 6 D�1ð1� aÞ ¼ inffs 2 R : DðsÞ > 1� ag: ð13Þ

The VaR bound D�1(1 � a) is numerically easy to evaluate indepen-
dently of the size d of the portfolio (L1, . . . , Ld)0. Under some extra
assumptions, we have that the inequality in (13) becomes an
equality.
Proposition 4 (Dual bound). In the homogeneous case Fi = F,
1 6 i 6 d, with d P 3, let F be a continuous distribution with an
unbounded support and an ultimately decreasing density. Suppose
that for any sufficiently large threshold s the infimum in (12) is
attained at some a < s/d, that is assume that
DðsÞ ¼
d
R b

a FðxÞdx
ðb� aÞ ¼ FðaÞ þ ðd� 1ÞFðbÞ; ð14Þ

where b = s � (d � 1)a, with F�1(1 � D(s)) 6 a < s/d. Then, for any suf-
ficiently large threshold a we have that

VaRaðLþÞ ¼ D�1ð1� aÞ: ð15Þ
Remark 5. The above proposition is a particular case of Puccetti
and L. Rüschendorf. (2013, Theorem 2.5) and goes back to a conjec-
ture made in Embrechts and Puccetti (2006b). We refer to the for-
mer paper and references therein for mathematical details in
addition to the following points:

1. Under the assumptions of Proposition 4, the infimum in (12) is
attained at a < s/d if and only if the first order condition (14)
holds. In order to calculate VaRaðLþÞ it is sufficient to compute
the function D(s) by solving numerically the univariate Eq.
(14) and hence to compute numerically its inverse D�1 at the
level (1 � a). The treatment of an arbitrary number of identi-
cally distributed risks is then made possible; see Fig. 2 and
Table 4.

2. For the Pareto distribution (11) with tail parameter h > 0 we
have that
VaRaðLþÞ ¼ D�1ð1� aÞ;
for any a 2 (0,1). Portfolios of Pareto distributed risks are studied
in Table 4.

3. The sharpness of the bound D�1(1 � a) in (15) can be stated
under different sets of assumptions for the distribution func-
tion F. To cite a most useful case, sharpness holds for distri-
butions F having a concave density on the interval (a,b). This
allows for instance to compute the sharp bound
VaRaðLþÞ ¼ D�1ð1� aÞ in case of Gamma and LogNormal dis-
tributions; see Fig. 2.

4. The Eq. (15) typically holds for distributions F and confidence
levels a standardly used in quantitative risk management, also
in the case of heavy tailed, infinite-mean models.

5. So far, there does not exist a method which allows to compute
VaRa(L+) analytically for d P 3.
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Fig. 2. VaRaðLþÞ (see (15)) and VaRþa ðL
þÞ (see (8)) for the sum of d = 1000 Gamma (3,1)-(left) and LogNormal (2,1)-(right) distributed risks.
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When the distribution F satisfies the assumptions of Proposition
4, a worst-case dependence vector L�1; . . . ; L�d

� �0 such that
VaRaðLþÞ ¼ VaRa L�1 þ . . .þ L�d

� �0 has been described in Wang et al.
(2013) and Puccetti and L. Rüschendorf. (2013). Here the concept
of complete mixability is crucial. The random vector L�1; . . . ; L�d

� �0
satisfies the following two properties:

(a) When one of the L�i ’s lies in the interval (a,b), then all the L�i ’s
lie in (a,b) and are a d-complete mix, i.e. for all 1 6 i 6 d,
Fig. 3.
mergin
a = 1 �
P L�1 þ � � � þ L�d ¼ sjLi 2 ða; bÞ
� �

¼ 1;
(b) For all 1 6 i 6 d, we have that
P Lj ¼ F�1
a� ðd� 1ÞFa� ðLiÞ
� �

jLi P b
� �

¼ 1; for all j – i;
where a⁄ = F�1(1 � D(s)) and Fa� ðxÞ ¼ ðFðxÞ � Fða�ÞÞ=Fða�Þ. Fða�Þ is
the distribution of the random variable Ya� ¼d ðL1jL1 P a�Þ. The
interdependence described by the two properties above can be
summarized as:
One of the identical two-dimensional projections of the d-variate copula
g the upper (1 � a) parts of the optimal risks L�i . In the figure, we have
D(s) and b = a/(d � 1). The gray area represents a completely mixable part.
if Li 2 ½a�; a� then Lj P b for some j – i;

if Li 2 ða; bÞ then
Xd

j¼1

Lj ¼ VaRaðLþÞ;

if Li P b then Lj 2 ½a�; a� for all j – i:

The two properties (a) and (b) determine the behavior of the
worst-case dependence only in the upper (1 � a) parts of the mar-
ginal supports where Li P a⁄, 1 6 i 6 d. Analogous to the case d = 2,
the interdependence coupling in the a lower parts of the marginal
supports can be set arbitrarily.

In Fig. 3 we show a two-dimensional projection of the d-variate
copula merging the upper (1 � a) parts of the optimal risks L�i . In
practice, only two situations can occur: either one of the risks is
large (above the threshold b) and all the others are small (below
the threshold a), or all the risks are of medium size (they lie in
the interval (a,b)) with their sum being equal to the threshold
VaRaðLþÞ. This is a negative dependence scenario analogous to
the one underlying Fig. 1. In fact the worst-VaR scenario contains
a part where the risks are d-completely mixable, with the variance
of their sum being equal to zero.

For a risk vector (L1, . . . , Ld)0 it is of interest to study the super-
additivity ratio

daðdÞ ¼
VaRaðLþÞ
VaRþa ðL

þÞ

between the worst-possible VaR and the comonotonic VaR, at some
given level of probability a 2 (0,1). The value da(d) measures how
much VaR can be superadditive as a function of the dimensionality
d of the risk portfolio under study. For instance, for elliptically dis-
tributed risks it is well known that da(d) = 1 for any d P 1; see
McNeil et al. (2005, Theorem 6.8). A concept related to da(d) is
the so-called diversification benefit discussed in Cope et al.
(2009); for an earlier introduction of this concept, see Embrechts
et al. (2002, Remark 2).

Using Proposition 4, in Figs. 4 and 5, left, we plot the function
da(d) for a number of different homogeneous portfolios. In these
cases, da(d) seems to settle down to a limit in d fairly fast. We
denote

da ¼ lim
d!þ1

daðdÞ; ð16Þ
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whenever this limit exists. For large dimensions d one can then
approximate the worst-possible VaR value as

VaRaðLþÞ � daVaRþa ðL
þÞ ¼ ddaVaRaðL1Þ: ð17Þ

The result (17) equivalently means that the VaR of a homogeneous
risk portfolio can be da times larger than the VaR under the assump-
tion of comonotonicity.Below, we report numerical estimate for the
superadditivity constant da for some homogeneous risk portfolios of
interest in finance and insurance.For portfolios of LogNormal (2,1)-
distributed risks, we have d0.99 ffi 1.49 and d0.999 ffi 1.37; see Fig.4,
left.For portfolios of Gamma (3,1)-distributed risks, we have
d0.99 ffi 1.15 and d0.999 ffi 1.11; see Fig.4, right.For portfolios of Pareto
(2)-distributed risks, we have d0.99 ffi 2.11 and d0.999 ffi 2.03; see
Fig.5, left.In Fig.5, right, one can see how the limiting constant da de-
pends on the tail parameter h of the Pareto marginals:the smaller
the tail parameter h, the more superadditive the VaR of the sums
of the risks can be.It is also interesting that, in the examples studied,
the superadditivity ratio is larger for smaller levels of a.A figure
analogous to Fig.5 cannot be obtained analytically for the ratio
VaRþa ðL
þÞ=VaRaðLþÞ; see point 5 in Remark 5.For non-homogeneous

portfolios, the ratios above can be computed using the algorithm
presented in Section 2.2.Motivated by the figures presented in a
preliminary version of this paper, Puccetti and and Rüschendorf
(2012a) give an analytical proof of the limit in (16) under precise
mathematical conditions.Other papers studying the superadditivity
properties of risk portfolios are Mainik and Rüschendorf
(2010),Mainik and Embrechts (2013) and Mainik and Rüschendorf
(2012).

2.2. The rearrangement algorithm for VaR

If one drops the assumption of identically distributed risks, the
bounds given in (10) and (15) cannot be used. For d = 2, the sharp
bounds VaRa(L+) and VaRaðLþÞ can be calculated easily, also in the
inhomogeneous case, using Rüschendorf (1982, Proposition 1); see
also Puccetti and Rüschendorf (2012b, Theorem 2.7). In higher
dimension d P 3 the computation of the dual functional D(s) with
different marginal distributions may become numerically cumber-
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some. The numerical complexity of the dual bound D(s) typically
increases with the number of blocks of marginals with identical
distributions. For instance, if all the d marginal distributions are
different, the computation of dual bounds is manageable up to
small dimension d = 10, say. An example with d = 8 is illustrated
in Embrechts and Puccetti (2006a). However, it is possible to com-
pute the dual bound D(s) for relatively large dimensions d if the
inhomogeneous risks Li can be divided in n sub-groups having
homogeneous marginals within. In this case, the numerical com-
plexity of the dual bound D(s) only depends on n, and is indepen-
dent of the cardinality of each of the sub-groups of homogeneous
marginals. It is also important to remark that the sharpness of dual
bounds in dimension d P 3 has not been proved for inhomoge-
neous marginals.

For the computation of bounds on distribution functions
Puccetti and Rüschendorf (2012c) introduced a rearrangement algo-
rithm (RA) working well for dimension d 6 30. In this paper we
adapt and greatly improve this RA in order to compute the sharp
bounds VaRaðLþÞ and VaRa(L+) in the inhomogeneous case. While
the algorithm described in Puccetti and Rüschendorf (2012c) re-
quires a time-consuming numeric inversion for the computation
of VaR bounds, our modified version does not need any inversion
and also decreases the number of iterations needed to obtain
the final estimate by introducing a new termination condition
based on the accuracy of the final estimate. Our modifications
allow to apply the algorithm to high-dimensional inhomoge-
neous portfolios, even for dimensions d P 1000, say, which pre-
viously were well out of the range of numerical and analytical
methods. Examples using dimensionality in the several hun-
dreds are of particular interest in internal models built by
financial institutions in order to fullfil the Basel and Solvency
regulatory guidelines. An example where high dimensionality
really occurs is to be found in the hierarchical aggregation
model described in Section 5 in Arbenz et al. (2012), in use
at SCOR, which determines the total solvency capital require-
ments of insurance companies using the standard model of
QIS 5 by the European Insurance and Occupational Pensions
Authority (EIOPA). We are also aware that some reinsurance
companies have undisclosed internal models with d-values be-
tween 500 and 2000 marginal risks.

The RA can compute the worst and best VaR values in (4) with
excellent accuracy for any set of marginals Fi and large dimensions
d. In the following, we say that two vectors a;b 2 RN are oppositely
ordered if (aj � ak)(bj � bk) 6 0 holds for all 1 6 j,k 6 N. For a
(N 
 d)-matrix X define the operators s(X) and t(X) as

sðXÞ ¼ min
16i6N

X
16j6d

xi;j; tðXÞ ¼ max
16i6N

X
16j6d

xi;j;

the row-wise minimum, respectively maximum, of the row-sums of
X.

Rearrangement Algorithm (RA) to compute VaRaðLþÞ.

1. Fix a integer N and the desired level of accuracy � > 0.
2. Define the matrices Xa ¼ xa

i;j

� �
and Xa ¼ ð�xa

i;jÞ as
xa
i;j ¼ F�1

j aþ ð1� aÞði� 1Þ
N

� �
; �xa

i;j

¼ F�1
j aþ ð1� aÞi

N

� �
; ð18Þ
for 1 6 i 6 N, 1 6 j 6 d.
3. Permute randomly the elements in each column of Xa and Xa.
4. Iteratively rearrange the j � th column of the matrix Xa so that

it becomes oppositely ordered to the sum of the other columns,
for 1 6 j 6 d. A matrix Ya is found.

5. Repeat Step 4. until
sðYaÞ � sðXaÞ < �:
A matrix X⁄ is found.
6. Apply Steps 4–5 to the matrix Xa until a matrix X� is found.
7. Define
sN ¼ sðX�Þ and �sN ¼ sðX�Þ:
Then we have sN 6 �sN and in practice we find that
N!1 N!1
�sN ’ sN ’ VaRaðLþÞ: ð19Þ
Rearrangement Algorithm (RA) to compute VaRa(L+).

1. Fix a integer N and the desired level of accuracy � > 0.
2. Define the matrices Za ¼ ðza

i;jÞ and Za ¼ �za
i;j

� �
as
za
i;j ¼ F�1

j
aði� 1Þ

N

� �
; za

i;j ¼ F�1
j

ai
N

� �
; ð20Þ
for 1 6 i 6 N, 1 6 j 6 d.
3. Permute randomly the elements in each column of

Za and Za.
4. Iteratively rearrange the jth column of the matrix Za so that it

becomes oppositely ordered to the sum of the other columns,
for 1 6 j 6 d. A matrix Wa is found.

5. Repeat Step 4. until
tðZaÞ � tðWaÞ < �:
A matrix Z⁄ is found.
6. Apply Steps 4–5 to the matrix Za until a matrix Z� is found.
7. Define
tN ¼ tðZ�Þ and �tN ¼ tðZ�Þ:
Then we have tN 6 �tN and in practice we find that
N!1 N!1
�tN ’ tN ’ VaRaðLþÞ: ð21Þ
Remark 6. For mathematical details about the RA, we refer the
reader to Puccetti and Rüschendorf (2012c). Here we limit our
attention to the following, more practical points:

1. We call the interval ðsN;�sNÞ the rearrangement range for
VaRaðLþÞ. The length ð�sN � sNÞ of this interval depends on the
dimensionality d of the risk portfolio under study and on N,
the upper-tail discretization parameter. For sufficiently large
N, we also have that sN 6 VaRaðLþÞ. Analogous considerations
can be made for the rearrangement range ðtN;�tNÞ for VaRa(L+).
For sufficiently large N we have that �tN P VaRaðLþÞ.

2. There does not exist an analytic proof that results (19) and (21)
hold for all initial configurations of the algorithm. Robert Weis-
mantel provided examples with Fj = U (0,1), the uniform distri-
bution, in which the sequences ð�sN � sNÞ and ð�tN � tNÞ do not
converge to zero. These examples are however based upon a
special choice of the starting matrix of the algorithm. Using
the randomization Step 3. we found the algorithm to provide
excellent approximations with moderately large values of N
for all marginal distributions typically used in quantitative risk
management. Also using this randomisation step, a proof of
convergence of the RA remains an open problem.

3. In Table 4, we check the accuracy of the RA for some Pareto (2)
risk portfolios for which we know, by Proposition 4, the exact
value of VaRaðLþÞ. This table also highlights the possibly large
difference between the comonotonic VaRþa ðL

þÞ and the worst-
possible VaRaðLþÞ. In Table 4 we use different dimensions d as
well as values of N which represent a good compromise
between computational time used and accuracy obtained. In
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order to perform all the computations in the remainder of the
paper we use an Apple MacBook Air (2 GHz Intel Core i7, 8 GB
RAM). Computation times can no doubt be dramatically
reduced on a more powerful machine.

4. As a numerical algorithm, the RA can be used with any type of
marginal distributions, including empirical distribution func-
tions. The figures in Table 4 are obtained for a homogeneous
portfolio so as to be able to check the accuracy of the RA via
the dual bound in Proposition 4. In general, if the evaluation
of quantile functions F�1

j in Step 2. is trivial both the accuracy
and the computation time of the RA are not affected by the type
of the marginal distributions used. If one instead has to evaluate
the quantile functions by numerical root finding algorithms,
this might be the most demanding point of the RA from a com-
putational point of view, as we show in Section 4.1. We thank
Marius Hofert for this comment.

The probabilistic idea behind the RA is easy. For a fixed
a 2 [0,1], the jth columns of the matrices Xa and Xa defined in
(18) represent two stochastically ordered N-point discretizations
of the (1 � a) upper parts of the supports of the marginal risk Lj.
The RA rearranges the columns of Xa into the matrix X⁄ in order
to find the maximal value sN such that the componentwise sum
of any row of X⁄ is larger than sN. Analogously, the RA rearranges
the columns of Xa into the matrix X� in order to find the maximal
value �sN such that the componentwise sum of any row of X� is lar-
ger than �sN . For N large enough we have that sN 6 VaRaðLþÞ ’ �sN as
a consequence of Puccetti and Rüschendorf (2012c, Theorem 3.1).
An analogous mechanism yields VaRa(L+).

We first illustrate the RA in an example with d = 3 Pareto mar-
ginals with identical tail parameters h = 2; the homogeneous case.
Then, we set N = 50 and compute VaRaðLþÞ for a = 0.99 via the RA.
The initial matrix Xa defined in (18) for a = 0.99 is shown in Table 1
(A). The j-th column of Xa represents a 50-point discretization of
the upper 1% of the support of the j-th marginal distribution. In
the same (A) part of the table, we also show the N-dimensional
vector of the row-wise sums of Xa, as well as the d-dimensional
vector having as components the aggregate sums of the columns
of Xa.

During the iteration of the algorithm (Steps 3–5), the elements
within each column of Xa are re-shuffled until a matrix X⁄ is found
with each column oppositely ordered to the sum of the others, see
Table 1 (B); we re-ordered (B) in ascending order with respect to
the row sums (final column). This rearrangement procedure of
the columns of Xa aims at maximizing the minimal component
of the vector of the row-wise sums of X⁄. Indeed, note how the
minimal component of the row-wise sums (27.0000) is increased
(to 44.7671) when passing from Xa to X⁄, while the column-wise
sums remain unchanged (the marginals are still the same). Com-
pared to Xa, the matrix X⁄ represents a different coupling (copula)
of the same marginals in which the variance of the marginal num-
bers (rows) is reduced. The minimal component of the vector of the
sums of the rows of X⁄ is s50 = 44.7671 and represents a lower
bound on VaRaðLþÞ. Performing an analogous rearrangement of
the column of the matrix Xa one finds �s50 ¼ 46:4111, which is in-
stead approximately an upper bound on VaRaðLþÞ. Note that the
estimates s50 and �s50 are actually random due to the randomization
occurring in Step 3. This random uncertainty becomes negligible
for values of N large enough. From the application of the RA de-
scribed above for N = 50 one obtains VaRaðLþÞ 2 ½44:77;46:41�. It
is sufficient to run the algorithm with N = 1.0e05 to obtain the first
two decimals of VaRaðLþÞ ¼ 45:99 in less than one second. Of
course, in this pedagogical case one could instantly obtain the ex-
act value VaRaðLþÞ ¼ 45:99 from Proposition 4. The power of the
RA is that it can be applied also to inhomogeneous portfolios of
risks and is able to compute numerically also VaRa(L+).

It is interesting to see that already for N = 50, the final matrix X⁄

in Table 1 (B) approximates the worst-case dependence for the
sum of continuous homogeneous marginals shown in Fig. 3. In Ta-
ble 1 (B) we have ordered the final RA-output matrix in function of
the last column. One can now easily check that basically two struc-
tures occur in the rows of X⁄: either all the components of a row
are close to each other, and sum up to a value which is just above
the threshold s50 = 44.7671 (rows 1–29), or one of them is large
and all the others are small (rows 30–50). Of course, this structural
dichotomy becomes much clearer when N increases and can also
be made precise and proved mathematically; see Section 2.1 above.

2.3. Application to Operational Risk data

As a more realistic example stemming from Operational Risk, we
study a risk portfolio where the marginal losses are distributed like a
Generalized Pareto Distribution (GPD), that is we assume that

FiðxÞ ¼ 1� 1þ ni
x
bi

� ��1=ni

; x P 0; 1 6 i 6 d: ð22Þ

For a GPD distribution, whenever ni P 1, E(Li) =1, and for 1/
2 6 ni < 1, E(Li) <1 but var (Li) =1. Moscadelli (2004) contains an
analysis of the Basel II data on Operational Risk coming out of the
second Quantitative Impact Study (QIS); see also Chapter 10 in
McNeil et al. (2005) for a discussion and further references. In this
case d = 8 and for the parameters of the GPD distributions we take
the values reported in Moscadelli (2004) for the losses in eight OR
business lines. The values for the parameters in the different busi-
ness lines are summarized in Table 2. Under these marginal
assumptions, the risk vector (L1, . . . , Ld)0 exhibits very heavy-tailed
behavior, with six out of eight losses Li following an infinite mean
marginal model. In the other two cases, where the mean is finite,
the loss distributions do not have finite variance. Note that we
use the parameter values of ni and bi from Moscadelli (2004) as a
matter of example and do not consider here the remaining extra
statistical issues underlying a full Operational Risk analysis for
which we refer to Frachot et al. (2004) and de Fontnouvelle et al.
(2005) and the various references to the Operational Risk literature
mentioned before.

In Table 3, we give the VaR range (5) as well as the estimates for
VaRþa ðL

þÞ (VaR under comonotonicity) and VaRa(LP,+) (VaR under
independence) versus the confidence level a. VaRa(LP,+) has been
computed via the approximation

PðLP;þ > xÞ �x!1P max
16i6d

Li > x
� �

: ð23Þ

The above formula is valid for iid subexponential random variables,
as explained in Embrechts et al. (1997, Section 1.3.2). It also holds
more generally whenever the underlying random variables are
independent with the heaviest tail being subexponential; see Lem-
ma A3.28 in Embrechts et al. (1997). The resulting approximation
goes under the name the largest loss approximation and has been
used in the Operational Risk literature; see for instance Böcker
and Klüppelberg (2010). In general, approximations of the type
(23) are numerically bad, except in the very heavy-tailed case, as
we have here. From a more applied point of view, concerning Oper-
ational Risk, (23) does indeed occur more frequently as such cases
like Nick Leeson (Barings Bank), Jérôme Kerviel (Société Générale)
and Kweku Adoboli (UBS) show. The recent scandal around the LI-
BOR-fixing yields another example of the general idea behind (23).

VaR figures in Table 3 clearly show that the VaR estimate
VaRþa ðL

þÞ is inadequate to capture the riskiness of the portfolio as



Table 1
(A): The matrix Xa defined in (18) for a = 0.99 and N = 50 (representing comonotonicity among the discrete marginals); (B): The matrix X⁄ derived as an output of the iterative
rearrangement of the columns of Xa. The rows of X⁄ are ordered accordingly to their sums. In this example we consider a discretization of d = 3 Pateto (2)-distributed risks.

(A) 1 2 3
P

(B) 1 2 3
P

1 9.00000 9.00000 9.00000 27.0000 1 13.43376 15.66667 15.66667 44.7671
2 9.10153 9.10153 9.10153 27.3046 2 12.86750 14.81139 17.25742 44.9363
3 9.20621 9.20621 9.20621 27.6186 3 15.66667 13.14214 16.14986 44.9587
4 9.31421 9.31421 9.31421 27.9426 4 14.43033 16.14986 14.43033 45.0105
5 9.42572 9.42572 9.42572 28.2772 5 15.22214 11.90994 17.89822 45.0303
6 9.54093 9.54093 9.54093 20.6228 6 13.74420 17.89822 13.43376 45.0762
7 9.66004 9.66004 9.66004 28.9801 7 19.41241 12.86750 12.86750 45.1474
8 9.78328 9.78328 9.78328 29.3498 8 20.32007 11.70001 13.14214 45.1622
9 9.91089 9.91089 9.91089 29.7327 9 18.61161 14.43033 12.13064 45.1726

10 10.04315 10.04315 10.04315 30.1295 10 13.14214 13.43376 18.61161 45.1875
11 10.18034 10.18034 10.18034 30.5410 11 16.14986 12.36306 16.67767 45.1906
12 10.32277 10.32277 10.32277 30.9683 12 11.12678 13.74420 20.32007 45.1910
13 10.47079 10.47079 10.47079 31.4124 13 11.70001 12.13064 21.36068 45.1913
14 10.62476 10.62476 10.62476 31.8743 14 11.50000 22.57023 11.12678 45.1970
15 10.78511 10.78511 10.78511 32.3553 15 21.36068 11.50000 12.36306 45.2237
16 10.95229 10.95229 10.95229 32.8569 16 14.81139 15.22214 15.22214 45.2557
17 11.12678 11.12678 11.12678 33.3803 17 12.60828 21.36068 11.30915 45.2781
18 11.30915 11.30915 11.30915 33.9274 18 14.07557 18.61161 12.60828 45.2955
19 11.50000 11.50000 11.50000 34.5000 19 17.89822 12.60828 14.81139 45.3179
20 11.70001 11.70001 11.70001 35.1000 20 11.30915 20.32007 13.74420 45.3734
21 11.90994 11.90994 11.90994 35.7298 21 11.90994 14.07557 19.41241 45.3979
22 12.13064 12.13064 12.13064 36.3919 22 17.25742 16.67767 11.50000 45.4351
23 12.36306 12.36306 12.36306 37.0892 23 12.13064 19.41241 14.07557 45.6186
24 12.60828 12.60828 12.60828 37.8248 24 16.67767 17.25742 11.70001 45.6351
25 12.86750 12.86750 12.86750 38.6025 25 12.36306 10.78511 22.57023 45.7184
26 13.14214 13.14214 13.14214 39.4264 26 10.78511 10.95229 24.00000 45.7374
27 13.43376 13.43376 13.43376 40.3013 27 22.57023 11.30915 11.90994 45.7893
28 13.74420 13.74420 13.74420 41.2326 28 10.95229 24.00000 10.95229 45.9046
29 14.07557 14.07557 14.07557 42.2267 29 24.00000 11.12678 10.78511 45.9119
30 14.43033 14.43033 14.43033 43.2910 30 25.72612 10.62476 10.47079 46.8217
31 14.81139 14.81139 14.81139 44.4342 31 10.62476 10.47079 25.72612 46.8217
32 15.22214 15.22214 15.22214 45.6664 32 10.47079 25.72612 10.62476 46.8217
33 15.66667 15.66667 15.66667 47.0000 33 10.32277 27.86751 10.18034 48.3706
34 16.14986 16.14986 16.14986 48.4496 34 27.86751 10.18034 10.32277 48.3706
35 16.67767 16.67767 16.67767 50.0330 35 10.18034 10.32277 27.86751 48.3706
36 17.25742 17.25742 17.25742 51.7723 36 9.91089 10.04315 30.62278 50.5768
37 17.89822 17.89822 17.89022 53.6947 37 10.04315 30.62278 9.91089 50.5768
38 18.61161 18.61161 18.61161 55.8348 38 30.62278 9.91089 10.04315 50.5768
39 19.41241 19.41241 19.41241 58.2372 39 9.78328 34.35534 9.66004 53.7987
40 20.32007 20.32007 20.32007 60.9602 40 34.35534 9.66004 9.78328 53.7987
41 21.36060 21.36068 21.36068 64.0820 41 9.66004 9.78328 34.35534 53.7987
42 22.57023 22.57023 22.57023 67.7107 42 9.42572 9.54093 39.82483 58.7915
43 24.00000 24.00000 24.00000 72.0000 43 39.82483 9.42572 9.54093 58.7915
44 25.72612 25.72612 25.72612 77.1784 44 9.54093 39.82483 9.42572 58.7915
45 27.86751 27.86751 27.86751 83.6025 45 49.00000 9.31421 9.20621 67.5204
46 30.62278 30.62278 30.62278 91.8683 46 9.31421 9.20621 49.00000 67.5204
47 34.35534 34.35534 34.35534 103.0660 47 9.20621 49.00000 9.31421 67.5204
48 39.82483 39.82483 39.82483 119.4745 48 9.00000 9.10153 69.71068 87.8122
49 49.00000 49.00000 49.00000 147.0000 49 69.71068 9.00000 9.10153 87.8122
50 69.71068 69.71068 69.71068 209.1320 50 9.10153 69.71068 9.00000 87.8122P

851.72901 851.72901 851.72901
P

851.72901 851.72901 851.72901
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VaRaðLP;þÞ > VaRþa ðL
þÞ;

a fact typically occurring when some of the marginal distributions
have infinite mean. For practice, the wide VaR range for values of
Table 2
Parameter values for the eight tail GPD-distributed risks following Moscadelli, 2004.
Note that Moscadelli, 2004 uses tail GPD marginal models instead of pure GPD
marginals as in (22).

Business line i ni bi

Corporate finance 1 1.19 774
Trading & sales 2 1.17 254
Retail banking 3 1.01 233
Commercial banking 4 1.39 412
Payment & settlement 5 1.23 107
Agency services 6 1.22 243
Asset management 7 0.85 314
Retail brokerage 8 0.98 124
a typically used, that is a = 0.99, 0.995, 0.999, should raise some
concerns. For the dimension d = 8 in the Moscadelli example, the
RA algorithm produces accurate estimate of VaRaðLþÞ and VaRa(L+)
in about 9 min with N = 2 
 106. The results in these examples im-
ply a considerable model uncertainty issue underlying VaR calcula-
tions for confidence levels close to 1.
Table 3
Estimates for VaRa(L+) for a random vector of d = 8 GPD-distributed risks having the
parameters in Table 2 and different dependence assumptions, i.e. (from left to right)
best-case dependence, comonotonicity, independence, worst-case dependence. Each
estimate for VaRa(L+) and VaRaðLþÞ has been obtained via the RA in about 9 min using
N = 2 
 106 and � = 0.1.

a VaRa(L+) VaRþa ðL
þÞ VaRa(LP,+) VaRaðLþÞ

0.99 1.78 
 105 5.14 
 105 7.08 
 105 2.56 
 106

0.995 4.68 
 105 1.22 
 106 1.68 
 106 5.96 
 106

0.999 4.38 
 106 9.33 
 106 1.28 
 107 4.34 
 107
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3. Positive dependence information

The worst-VaR copulas given in Section 2, Figs. 1 and 3, are of-
ten considered as unrealistic due to their minimal variance parts in
which the risks are countermonotonic (for d = 2) or completely
mixable (in the case d P 3). Of course, a positive dependence struc-
ture, as defined below, combined with the knowledge of the mar-
ginal distributions of (L1, . . . , Ld)0 will tighten the interval of
admissible VaRs in (5). However, assuming that the risks are posi-
tively dependent does not eliminate countermonotonicty and com-
pletely mixable parts from the worst-VaR scenarios and does not
necessarily lower the estimate of VaRaðLþÞ by much. This latter
point is the object of this section. We start by introducing a natural
concept of positive dependence.

Definition 7. The risk vector (L1, . . . , Ld)0 is said to be positively
lower orthant dependent (PLOD) if for all ðx1; . . . ; xdÞ0 2 Rd

PðL1 6 x1; . . . ; Ld 6 xdÞP
Yd

i¼1

PðXi 6 xiÞ ¼
Yd

i¼1

FiðxiÞ: ð24Þ

The risk vector (L1, . . . , Ld)0 is said to be positively upper orthant
dependent (PUOD) if for all ðx1; . . . ; xdÞ0 2 Rd

PðL1 > x1; . . . ; Ld > xdÞP
Yd

i¼1

PðXi > xiÞ ¼
Yd

i¼1

FiðxiÞ: ð25Þ

Finally, the risk vector (L1, . . . , Ld)0 is said to be positively orthant
dependent (POD) if it is both PLOD and PUOD.

For d = 2, conditions (24) and (25) are equivalent. However, this
is not the case for d P 3. In higher dimensions the PLOD and PUOD
concepts are distinct; see for instance Nelsen (2006, Section 5.7). If
(L1, . . . , Ld)0 has copula C, condition (24) can be equivalently ex-
pressed as C P P, the independence copula. Analogously, condition
(25) can be written as C P P, where C denotes the joint tail func-
tion of a copula C, also referred to as the survival copula; see Nel-
sen (2006, Section 2.6). Also note that POD implies positive
correlations, given that the second moments exist.

Under the addition of a positive dependence restriction, VaR
bounds for the sum of risks have been derived in Theorem 3.1 in
Embrechts et al. (2003); see also Embrechts et al. (2005), Mesfioui
and Quessy (2005), Rüschendorf (2005), and Puccetti and Rüschen-
dorf (2012b). We state this result here in the case of identical mar-
ginals using the same notation as in the so-called unconstrained
case, i.e. with no dependence information.

Proposition 8. In the homogeneous case Fi = F, 1 6 i 6 d, let F be a
distribution with decreasing density on its entire domain. If the risk
vector (L1, . . . , Ld)0 is PLOD then, for any fixed real threshold s, we have

VaRaðLþÞ 6 dF�1 ð1� aÞ
1
d

� �
: ð26Þ
Remark 9. In Embrechts et al. (2005), the bound (26) is given in a
slightly more complicated form for any set of marginal distribu-
tions. In the same reference, an analogous bound for VaRa(L+) is
given if the risk vector is assumed to be PUOD.

In the case d = 2 the inequality given in (26) is sharp. In Fig. 6,
left, we show the copula of a PLOD risk vector L�1; L

�
2

� �0 for which
VaRa L�1 þ L�2

� �
¼ VaRaðLþÞ. Even if the structure of dependence of

this vector is PLOD, its geometry is not so different if compared
to the optimal copula in the unconstrained case (Fig. 1, left). Again,
the copula of L�1; L

�
2

� �0 contains a countermonotonic part, in which
the risks are a.s. decreasing functions of each other. Thus, the
assumption of positive dependence does not eliminate the possibil-
ity of such optimal copulas. The reason for this is not to be found in
the concept of VaR but rather raises some questions about the
appropriateness of PLOD (PUOD) as a concept of positive (negative)
dependence.

Given the shape of the copula attaining the bound (26) under
additional positive dependence restrictions, one cannot expect an
essential improvement of the VaR bound given in the unconstrained
case when only the marginals of the Li’s are known. Indeed, in Fig. 6,
right, we plot VaRaðLþÞ (see (26)) and VaRþa ðL

þÞ (see (8)), for the sum
of two Pareto (2) distributions. The improvement of the bound given
by the additional information is negligible.

The situation gets more involved in higher dimensions (d P 3),
as the bound (26) fails to be sharp. The dual bound given in (15) for
the unconstrained case actually turns out to be better than (26)
with positive dependence information; this can be seen in Fig. 7.
This is not so suprising, as the dual bound given in (15) derives
from a different methodology based on the powerful tool offered
by the theory of mass transportation; see Embrechts and Puccetti
(2006b) on this. As a matter of fact, the bound (26) is not useful
for higher dimensions (d P 3) where the search for a sharp bound
with marginal and positive dependence information is still open.
However, we do not expect much improvement over the dual
bounds even for optimal ones in the positive dependence case.
Take for instance the problem of maximizing the covariance of
(L1,L2)0 when d = 2 and the marginals F1 and F2 are given. By Hoe-
ffding’s covariance representation formula, see McNeil et al.
(2005, Lemma 5.2.4), one has

CovðL1; L2Þ ¼
Z
ðFðx1; x2Þ � F1ðx1ÞF2ðx2ÞÞdx1dx2;

where F is the joint distribution of (L1,L2)0. It is clear that here the
PLOD constraint F(x1,x2) P F1(x1)F2(x2) does not help to improve
an upper bound on Cov (L1,L2).

Another example where positive additional information does
not lead to improved bounds is the problem of maximizing
the Expected Shortfall (ES) of a sum of risks with given marginal
distributions. Since the worst ES is attained under comonotonic
dependence, a restriction to PLOD/PUOD dependence will lead to
the same solution. For a definition and more details on the maximi-
zation of ES, see Section 6.1 in McNeil et al. (2005).

4. Higher dimensional dependence information

For a vector (L1, . . . , Ld)0 for which one only knows the marginal
distributions F1, . . . , Fd, we have (5). If one adds PLOD/PUOD infor-
mation on top of the knowledge of the marginals, the worst VaR in
(5) is only minimally affected. It is clear that in practice more
dependence information on the vector (L1, . . . , Ld)0 may be avail-
able. Such a case would be when specific assumptions on sub-vec-
tors of (L1, . . . , Ld)0 are made. One reason for this could be that the
individual risk factors may be grouped in economically relevant
sectors. This would lead to a narrowing of the range on VaRa(L1 + -
� � � + Ld) in (5).

Thus, we consider the case that not only the one-dimensional
marginal distributions of the risk vector are known, but also that
for a class E of sets J � {1, . . . , d}, the joint marginal distributions
FJ; J 2 E are fixed. In this case, we get the generalized Fréchet class

FE ¼ FðFJ ; J 2 EÞ

of all probability measures on Rd having sub-vector models FJ on RJ ,
for all J 2 E. W.l.o.g. we assume that

S
J2E J ¼ f1; . . . ;dg. Thus, we

have

FE � FðF1; . . . ; FdÞ;

that is FE is a sub-class of the class of all possible joint distributions on
(L1, . . . , Ld)0. The knowledge of higher dimensional joint distributions
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Fig. 7. VaRaðLþÞ in the unconstrained case (no info), under additional positive dependence information (PQD), and VaRþa ðL
þÞ (see (8)) for the sum of d = 3 (left) and d = 5

(right) Pareto (2) marginals.
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Fig. 6. Bivariate copula of the vector L�1; L
�
2

� �0 attaining the worst-VaR bound M�1(1 � a) under additional positive dependence restrictions (left). VaRaðLþÞ in the
unconstrained case (no info), under additional positive dependence information (PQD), and VaRþa ðL

þÞ (see (8)), for the sum of two Pareto (2) marginals (right). Note that the
first two curves are virtually identical.
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is in general not sufficient to determine the joint model of (L1, . . . , Ld)-
0. Nevertheless, having higher dimensional information restricts the
class of possible dependence structures and thus leads to improved
upper and lower bounds for the VaR of the joint portfolio.

In practice, loss event datasets often yield some insight into
bivariate distributions. Therefore we consider, for d even, a class
E of particular interest in actuarial applications: we set
E ¼ ff2j� 1;2jg : j ¼ 1; . . . ; d=2g, defining the Fréchet class

FE ¼ FðF12; F34; . . . ; Fd�1dÞ:

Hence, in this case, risk estimates on the global position L+ have to
be obtained based on distributional information for all two-dimen-
sional sub-vectors (L2j�1,L2j)0. Other examples of marginals classes E
have been treated in Puccetti and Rüschendorf (2012b) and
Embrechts and Puccetti (2010a).

Our aim is to find bounds for the tail risks

VaREaðL
þÞ ¼ supfVaRaðL1 þ . . .þ LdÞ : FL 2 FEg; ð27aÞ

VaREaðL
þÞ ¼ inffVaRaðL1 þ . . .þ LdÞ : FL 2 FEg; ð27bÞ
which improve the corresponding bounds VaRaðLþÞ and VaRa(L+)
defined in (4). If FL 2 FE , we have

VaRaðLþÞ 6 VaREaðL
þÞ 6 VaRaðLþÞ 6 VaREaðL

þÞ 6 VaRaðLþÞ: ð28Þ

A reduction method introduced in Puccetti and Rüschendorf
(2012b) allows to find reduced bounds VaREaðL

þÞ and VaREaðL
þÞ

using Proposition 4 and the RA introduced in Section 2.2.
The reduction method consists of associating to the risk vector
(L1, . . . , Ld)0 with FL 2 FE the random vector (Y1, . . . , Yn)0 defined
by

Yj ¼ L2j�1 þ L2j; j ¼ 1; . . . ;n; ð29Þ

where n = d/2. If we also denote by Hj the distribution of Yj, the risk
vector (Y1, . . . , Yn)0 has fixed marginals H1, . . . , Hn. Therefore, it is
possible to apply the techniques introduced in Section 2 to compute
the reduced VaR bounds:

VaRr
aðL

þÞ ¼ sup VaRaðY1 þ . . .þ YnÞ : FY 2 FðH1; . . . ;HnÞf g; ð30aÞ
VaRr

aðL
þÞ ¼ inffVaRaðY1 þ . . .þ YnÞ : FY 2 FðH1; . . . ;HnÞg: ð30bÞ
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Fig. 8. VaRaðLþÞ (see (5)) and VaRr
aðL

þÞ (see (30a)) for a random vector of d = 600 Pareto (2)-distributed risks with fixed bivariate marginals F2j�1,2j generated by a Pareto
copula with c = 1.5 (left) and by the independence copula (right).

Table 4
Estimates for VaRaðLþÞ and VaRa(L+) for random vectors of Pareto (2)-distributed risks. Computation times are for a single interval with � = 10�3.

a VaRa(L+) (RA range) VaRþa ðL
þÞ (exact) VaRaðLþÞ (exact) VaRaðLþÞ (RA range)

d = 8 N = 1.0e05 avg time: 5 s
0.99 9.00–9.00 72.00 141.67 141.66–141.67
0.995 13.13–13.14 105.14 203.66 203.65–203.66
0.999 30.47–30.62 244.98 465.29 465.28–465.30

d = 56 N = 1.0e05 avg time: 60 s
0.99 45.82–45.82 504.00 1053.96 1053.80–1054.11
0.995 48.60–48.61 735.96 1513.71 1513.49–1513.93
0.999 52.56–52.58 1714.88 3453.99 3453.49–3454.48

d = 648 N = 5.0e04 avg time: 40 min
0.99 530.12–530.24 5832.00 12302.00 12269.74–12354.00
0.995 562.33–562.50 8516.10 17666.06 17620.45–17739.60
0.999 608.08–608.47 19843.56 40303.48 40201.48–40467.92

Table 5
Estimates for VaRa(L+) for a random vector of d = 600 Pareto(2)-distributed risks
under different dependence scenarios: VaRþa ðL

þÞ ((L1, . . . , L600)0 has copula C = M);
VaRr

aðL
þÞ, (A): the bivariate marginals F2j�1,2j are independent; VaRr

aðL
þÞ, (B): the

bivariate marginals F2j�1,2j have Pareto copula with c = 1.5; VaRaðLþÞ: no dependence
assumptions are made.

a VaRþa ðL
þÞ VaRr

aðL
þÞ, (A) VaRr

aðL
þÞ, (B) VaRaðLþÞ

0.99 5400.00 8496.13 10309.14 11390.00
0.995 7885.28 12015.04 14788.71 16356.42
0.999 18373.67 26832.20 33710.30 37315.70
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Using the key fact that L1 + � � � + Ld = Y1 + � � � + Yn, Proposition 3.3 in
Puccetti and Rüschendorf (2012b) states that

VaRr
aðL

þÞ ¼ VaREaðL
þÞ and VaRr

aðL
þÞ ¼ VaREaðL

þÞ

for the particular class E introduced above. Therefore, we can re-
write (28) as

VaRaðLþÞ 6 VaRr
aðL

þÞ 6 VaRaðLþÞ 6 VaRr
aðL

þÞ 6 VaRaðLþÞ:

A reduction method similar to the one described above has also
been given in Puccetti and Rüschendorf (2012b) in the case of a gen-
eral marginal system E. The corresponding reduced bounds
VaRr

aðL
þÞ and VaRr

aðL
þÞ however may fail to be sharp.

We illustrate how to calculate the bounds in (30) in three
examples. First we assume the bivariate distributions F2j�1,2j,
1 6 j 6 n to be identical and generated by coupling two Pareto
marginals having tail parameter h > 0 by a Pareto copula with
parameter c – 0. The bivariate Pareto copula with parameter
c > 0 is given by

CPa
c ðu;vÞ ¼ ðð1� uÞ�1=c þ ð1� vÞ�1=c � 1Þ�c þ uþ v � 1:

Under these assumption, the bivariate distribution function F12 is
given by

F12ðx1; x2Þ ¼ 1þ ðð1þ x1Þh=c þ ð1þ x2Þh=c � 1Þ�c � ð1þ x1Þ�h

� ð1þ x2Þ�h
; ð31Þ

while the n = d/2 random variables Yj defined in (29) are identically
distributed as

HðxÞ ¼ PðYj 6 xÞ ¼ PðY1 6 xÞ ¼ PðL1 þ L2 6 xÞ; j ¼ 2; . . . ;n:

Here, we have that

HðxÞ ¼
Z x

0
F2jx1 ðx� x1ÞdF1ðx1Þ; ð32Þ

where we denote by F2jx1 the conditional distribution of (L2jL1 = x1).
For this example, the conditional distribution F2jx1 is available in
closed form and

F2jx1 ðxÞ ¼ 1� ð1þ x1Þh=cþhðð1þ xÞðh=cÞ þ ð1þ x1Þðh=cÞ � 1Þ�c�1
:



Table 6
Estimates for VaRa(L1 + � � � + Ld) for random vectors of Pareto-distributed risks with different tail parameters. The vector of tail parameters are h = (2,3)0 (first portfolio),
h = (2,2.5,3,3.5, 4)0 (second portfolio) and h = (2, 2.125, . . . , 4, 4.125)0 (third portfolio). Under the additional dependence scenario, the bivariate marginals F2j�1,2j of the risk vector
have Pareto copula with c = 1.5. For the computation of each reduced bound we set N = 5.0e04, � = 10�3.

n d Comp. time VaR0.999(L+) (RA range) VaRr
0:999ðL

þÞ (RA range) VaRþ0:999ðL
þÞ (exact) VaRr

0:999ðL
þÞ (RA range) VaR0:999ðLþÞ (RA range)

2 8 8 min 30.47–30.62 54.84–55.40 158.49 226.09–226.10 277.27–277.28
5 50 28 min 30.47–30.62 54.87–55.44 652.92 1024.35–1024.58 1152.64–1152.90

18 648 1.8 h 339.90–339.97 341.09–341.22 7373.01 11415.23–11446.26 12643.78–12678.12

Table 7
Estimates for VaRa(L+) for a random vector of d = 8 GPD-distributed risks having the parameters in Table 2 and different dependence assumptions, i.e. (from left to right) best-case
dependence, best-case under additional information, comonotonicity, independence, worst-case under additional information, worst-case dependence. Under the additional
dependence scenarios, the random losses L2j�1,2j of the risk vector are assumed to be independent. Each estimate of VaRr

aðL
þÞ and VaRr

aðL
þÞ in this table has been obtained in 2.5 h

via the RA by setting N = 105 and � = 10�1.

a VaRa(L+) VaRr
aðL
þÞ VaRþa ðL

þÞ VaRa (LP,+) VaRr
aðL
þÞ VaRaðLþÞ

0.99 1.78 
 105 2.26 
 105 5.14 
 105 7.08 
 105 2.06 
 106 2.56 
 106

0.995 4.68 
 105 5.36 
 105 1.22 
 106 1.68 
 106 4.82 
 106 5.96 
 106

0.999 4.38 
 106 4.72 
 106 9.33 
 106 1.28 
 107 3.56 
 107 4.34 
 107
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Since the risk vector (Y1, . . . , Yn)0 is homogeneous, we can apply the
dual bound methodology introduced in Proposition 4 to compute
VaRr

aðL
þÞ via (30a). In Proposition 4, we simply use n = d/2 (the

number of the Yr’s) instead of d and set F = H.
In Fig. 8, we plot the unconstrained sharp VaR bound VaRaðLþÞ

and the reduced bound VaRr
aðL

þÞ for a random vector of d = 600
Pareto(2)-distributed risks under the marginal system described
above. In the left figure the parameter of the Pareto copula is set
to c = 1.5. This implies a strong positive dependence between con-
secutive marginals. In the right figure we assume instead that the
marginals are pairwise independent. The higher dimensional infor-
mation reduces the conservative estimate of VaR in both cases, the
larger reduction occurring in the case of the bivariate indepen-
dence constraints. Recall that the calculation of the bound
VaRr

aðL
þÞ in a homogeneous setting is independent of the dimen-

sionality n of the risk vector (Y1, . . . , Yn)0, confirming that the dual
bound methodology is very effective for homogeneous settings. In
Table 5 we compare the estimates for VaRa(L1 + � � � + Ld) in the case
of a homogeneous portfolio of Pareto(2) marginals and under dif-
ferent dependence scenarios.

In order to compute the improved bounds in (30) for inhomoge-
neous portfolios, one has to rely on the RA. We assume to have a
portfolio of d = 2n2 Pareto distributed risks, divided into n
sub-groups of 2n risks. Risks within the same sub-group are as-
sumed to be homogeneous, but risks in different sub-groups may
have a different Pareto tail parameter. Within the ith group,
1 6 i 6 n, we assume that each risk is Pareto (hi)-distributed and
that the bivariate distributions F2j�1,2j, 1 6 j 6 n are of the form
(31). A vector h = (h1, . . . , hn)0 then gives a full description of the
marginals of the risk portfolio. The copula parameter is set to
c = 1.5 in each of the sub-groups. In Table 6, we give RA ranges
for VaRr

aðL
þÞ and VaRr

aðL
þÞ, as well as for VaRaðLþÞ and VaRa(L+)

for different values of n, and at the quantile level a = 0.999. In Ta-
ble 6, computation times are indicated for the computation of the
reduced bounds VaRr

aðL
þÞ and VaRr

aðL
þÞ. These times are in general

larger when compared to the homogeneous case with the number
of marginal distributions d = n2. Indeed, in order to apply the RA to
the marginals Hj, one has to compute the quantiles of the distribu-
tion H in (32) which in general is a more time consuming operation
especially considering that one has to handle different tail param-
eters. If one has an efficient procedure to obtain these latter quan-
tiles, then the RA computation times of the reduced VaR intervals
are approximately the same as in the homogeneous case with
d = n2 marginal distributions.
4.1. Application to Operational Risk data

As an example we consider again the Operational Risk applica-
tion introduced in Section 2.3. Thus, we assume to have a portfolio
of d = 8 GPD distributed risks with the parameters as in Table 2.
The random losses are here divided into four sub-groups of two
risks. Risks within the same sub-group are assumed to be indepen-
dent, i.e. we assume that the bivariate distributions F12, F34, F56, F78

have copula P. The subdivisions into subgroups is arbitrary and it
is used here just to illustrate the narrowing of the worst-case, best-
case VaR range. A related pair-copula construction is given in
Hobæk Haff et al. (2010). In Table 7, we give RA ranges for
VaRr

aðL
þÞ and VaRr

aðL
þÞ, as well as for VaRaðLþÞ and VaRa(L+) for dif-

ferent quantile levels a. In this case, the computation of high quan-
tiles of the convolution of two subexponential distributions is
computationally demanding and a single reduced VaR estimate
in Table 7 requires 2.5 h.
4.2. Conclusions

To summarize, the same techniques introduced in Section 2,
where one only knows the marginal distributions of the risk vector
(L1, . . . , Ld)0 can be applied to the case where higher dimensional
information is available. In order to use the reduction method
one only needs to have the conditional distribution function Fijx1

available in closed form, for any x1 2 R. This conditional distribu-
tion is typically available for bivariate models derived from contin-
uous marginals and a continuous copula, but it might be difficult to
compute for higher dimensional sub-groups of marginals.

Worst-case dependence structures for the problems (27) are in
general not available. However, some approximation results given
in Embrechts and Puccetti (2010a, Section 5) indicate that they still
contain a completely mixable component.

Our final message here is that additional constraints on the risk
vector (L1, . . . , Ld)0 like positive or higher dimensional information
knowledge added on top of the knowledge of the marginals will
not help to avoid completely mixable dependence structures like
the one illustrated in Figs. 1, 3 and Table 1. Completely mixable
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dependence structures will always arise from (un)constrained
optimization problems having VaR as objective function.
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