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The problem

Consider a function ψ : Rn → R and a random vector

X := (X1, . . . , Xn).

Fix marginals dfs Fi = P[Xi ≤ x], i = 1, . . . , n.

X is a portfolio of one-period financial losses or insurance
claims.

The distribution function of the random variable ψ(X) is not
completely determined by the Fi’s.

Which is the df giving the worst-possible Value-at-Risk (VaR)
for the random variable ψ(X)?
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History of the problem
• Makarov (1981) provided the first result for n = 2, ψ = +.

• Frank, Nelsen, and Schweizer (1987) restated Makarov’s result, us-
ing copulas.

• Independently, Rüschendorf (1982) gave a more elegant proof of
the same theorem using duality.

• Williamson and Downs (1990) introduced the use of dependence
information.

• Embrechts, Höing, and Juri (2003) gave the most general theorem,
stating sharpness of the bound in the presence of information for
non-decreasing functions ψ.

The latter paper however contains a gap in the main proof. We
revisit the proof and correct the statement of their main result.
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Definitions and Preliminaries
Definition 1. For α ∈ [0, 1], the Value-at-Risk at probability level
α of a random variable S is its α-quantile, defined as

VaRα(S) := inf{x ∈ R : G(x) ≥ α}.

where G is the df of S.

Searching for the worst-possible VaR means looking for

mψ(s) := inf{P[ψ(X) < s] : Xi v Fi, i = 1, . . . , n}. (1)

Indeed, according to Definition 1, we have

VaRα(ψ(X)) ≤ m−1
ψ (α), α ∈ [0, 1]. (2)
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Of course, every quantile of ψ(X) can be computed once we know

F (x1, . . . , xn) = P[X1 ≤ x1, . . . , Xn ≤ xn].

The latter is determined by the fixed marginal dfs and the
copula of the portfolio.

Definition 2. A copula is any n-dimensional df restricted to [0, 1]n

having standard uniform marginals.

Given a copula C and a set of n marginals F1, . . . , Fn one can
always define a df F on Rn having these marginals by

F (x1, . . . , xn) := C(F1(x1), . . . , Fn(xn)). (3)

Sklar’s theorem states conversely that we can always find a copula
C coupling the marginals of a fixed df F through (3).
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For example, if the marginals are merged by the copula

Π : [0, 1]n → [0, 1]; Π(u) :=
n∏

i=1

ui,

then the vector X has independent components, and we can cal-
culate the VaR under independence.

Any copulaC lies between the lower and upper Fréchet bounds
W,M : [0, 1]n → [0, 1];

W (u1, u2, . . . , un) : = (
n∑

i=1

ui − n+ 1)+,

M(u1, u2, . . . , un) : = min{u1, . . . , un}, namely

W ≤ C ≤M.
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Denote by µC the probability measure on Rn corresponding to
a copula C, and define:

σC,ψ(F1, . . . , Fn)(s) : = µC [ψ(X) < s],

τC,ψ(F1, . . . , Fn)(s) : =

sup
x1,...,xn−1∈R

C(F1(x1), . . . , Fn−1(xn−1), F−n (ψx̂−n(s))),

where ψx̂−n(s) := sup{xn ∈ R : ψ(x−n, xn) < s} for fixed
x−n ∈ Rn−1.

Hence we can write our problem as

mψ(s) = inf{σC,ψ(F1, . . . , Fn)(s) : C ∈ Cn},

where Cn denotes the set of all n-dimensional copulas.
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Dependence information

Putting a lower bound on the copula C of the portfolio can be
interpreted as having partial information regarding its

dependence structure.

mCL,ψ(s) := inf{σC,ψ(F1, . . . , Fn)(s) : C ≥ CL}
= inf{P[ψ(X) < s] : Xi v Fi, i = 1, . . . , n,

F ≥ CL(F1, . . . , Fn)}.

If CL = W,

we are completely ignorant about the dependence structure of the
random vector X .
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Main result with partial information

When a lower bound on the copula of our portfolio is
assumed,

the problem at hand is fully solved.
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Theorem 1. Let X = (X1, . . . , Xn) be a random vector on Rn

(n > 1) having marginal distribution functions F1, . . . , Fn and
copula C. Assume that there exists a copula CL such that C ≥
CL. If ψ : Rn → R is non-decreasing in each coordinate, then for
every real s we have

σC,ψ(F1, . . . , Fn)(s) ≥ τCL,ψ(F1, . . . , Fn)(s). (4)

Theorem 2. Assume ψ is also right-continuous in its last argu-
ment. Define the copula Ct : [0, 1]n → [0, 1];

Ct(u) :=





max{t, CL(u)} if u = (u1, . . . , un) ∈ [t, 1]n;

min{u1, . . . , un}, otherwise,

where t = τCL,ψ(F1, . . . , Fn)(s). Then

σCt,ψ(F1, . . . , Fn)(s) = t. (5)



Embrechts and Puccetti 11 Bounds on Value-at-Risk

Some remarks on Theorem 1 and Theorem 2

• The proof of Theorem 2 provided in our paper is long and
laborious, but the elegant proof of the same theorem given
in Embrechts, Höing, and Juri (2003) contains a gap.

• Moreover, the correct statement of the theorem requires the
definition of the operator σ given in our paper.

• For applications of Theorem 2, including how to calculate nu-
merically the bound τCL,ψ(F1, . . . , Fn)(s), Embrechts, Höing,
and Juri (2003) is an excellent source.
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Main result without information on dependence

Consider now

CL = W.

The fact that the function W is not a copula for n ≥ 3 causes
problems.

Though the standard bound holds in arbitrary dimensions, when

n > 2 and CL = W,

it may fail to be sharp.
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Mutually exclusive risks

Consider a portfolio of mutually exclusive risks, i.e. risks that
can be positive at most one at a time.

In this specific case, of actuarial interest, we have that

the lower Fréchet bound W is a proper df

and the standard bound is then sharp for arbitrary n, even in the
no-info scenario.
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A dual formulation

In the no-info scenario, it is convenient to express our prob-
lem (1) by a duality result given in Rüschendorf (1982):

inf{P[ψ(X) < s] : Xi ∼ Fi, i = 1, . . . , n} =

1− inf{
n∑

i=1

∫
fidFi : fi are bounded functions on R s.t.

n∑

i=1

fi(xi) ≥ 1[s,+∞)(ψ(x1, . . . , xn))

for all xi ∈ R, i = 1, . . . , n}.
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Some remarks on the dual problem

The dual optimization problem is very difficult to solve.

Explicit results are known only for uniformly or binomially
distributed rvs.

Unfortunately, the solution in the case of the sum of uniform
marginals does not work in the general case, where

it may depend upon the marginals chosen.

This is much in contrast to the case of the copula Ct, which gave
the solution for all choices of F1, . . . , Fn.
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Main Result

We use the dual to provide a bound which is better (i.e. ≥) than
the standard one.

Theorem 3. Let F be a continuous df with non-negative support.
If Fi = F, i = 1, . . . , n, then for every s ≥ 0

m+(s) ≥ 1− n inf
r∈[0,s/n)

∫ s−(n−1)r

r
1− F (x)dx

s− nr . (6)

Remark 1. (i) For n = 2, this theorem gives the sharp bound
already stated.

(ii) This dual bound is strictly greater than the standard bound
for most dfs and thresholds of interest.

(iii) For n > 2, this bound can be easily calculated numerically.
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The assumptions under which Theorem 3 is valid are
considerable with respect to the setting of the previous

sections,

but still consistent with most dfs F and thresholds s of
actuarial/financial interest.

Under such assumptions, it is easy to show that, for s
large enough, the standard bound reduces to

τW,+(F, . . . , F )(s) = [nF (s/n)− n+ 1]+.
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Applications

How can we compare the quality of the dual bound with respect
to the standard bound generally used in the literature?

We define the two dfs FN , FN by

FN(x) : =
1

N

N∑

i=1

1[qr,+∞)(x),

FN(x) : =
1

N

N−1∑

i=0

1[qr,+∞)(x),

the jump points q0, . . . , qN being the quantiles of F defined by
q0 := inf supp(F ), qN := sup supp(F ) and qr := F−1( r

N
), r =

1, . . . , N − 1.
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It is straightforward that

FN ≤ F ≤ FN ,

from which it follows that

m+(s) ≤ m+(s) ≤ m+(s), (7)

where m+(s) and m+(s) are naturally defined as:

m+(s) : = inf{P[
n∑

i=1

Xi < t] : Xi v FN , i = 1, . . . , n}

m+(s) : = inf{P[
n∑

i=1

Xi < t] : Xi v FN , i = 1, . . . , n}.
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Given that FN is a (possibly defective) discrete df, m+(s) is
the solution of the following LP:

m+(s) = min
pj1,...,jn

N∑

j1=1

· · ·
N∑

jn=1

pj1,j2,...,jn1(−∞,t)(
n∑

i=1

qji) subject to





∑N
j2=1

∑N
j3=1 · · ·

∑N
jn=1 pj1,...,jn = 1

N
j1 = 1, . . . , N,

∑N
j1=1

∑N
j3=1 · · ·

∑N
jn=1 pj1,...,jn = 1

N
j2 = 1, . . . , N,

. . . ,
∑N

j2=1

∑N
j3=1 · · ·

∑N
jn−1=1 pj1,...,jn = 1

N
jn = 1, . . . , N,

0 ≤ pj1,...,jn ≤ 1 ji = 1, . . . , N,

i = 1, . . . , n.
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Figure 1: Range for P[X1 +X2 +X3 < s] for a Pareto(1.5,1)-portfolio.
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Some remarks on this plot

• The ranges for the true solutions have been calculated solving
the two LPs with N = 180 and by using ILOG CPLEX R© C
Callable Libraries (a powerful tool).

• Switching to n = 4 drastically lowers the quality of approxi-
mation to N < 60.

• The worst VaR does not occur under the comonotonicity as-
sumption, i.e. VaR is not a coherent measure of risk.
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Non-coherence of VaR for N (0, 1)-marginals

Let assume X1, X2 are N (0, 1)-distributed. Since the normal
distribution is symmetric, we can set

X2 = −X1

and obtain P[X1 +X2 = 0] = 1, i.e. m+(0) = 0.

The copula yielding the worst-possible VaR for the sum is then
the countermonotonic copula W , under which
X2 is a.s. a non-increasing function of X1.

Note that assuming comonotonicity between the marginals gives

σM,+(N (0, 1),N (0, 1))(0) = 1/2 > 0.
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VaRα(
∑3
i=1Xi), exact VaRα(

∑3
i=1Xi), upper bound

α independence comonotonicity dual standard

0.90 7.54 8.85 14.44 15.38

0.95 9.71 12.73 19.50 20.63

0.99 16.06 25.16 35.31 37.03

0.999 29.78 53.99 69.98 73.81

Table 1: Range for VaR for a Log-Normal(-0.2,1)-portfolio.
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VaRα(
P10
i=1 Xi) VaRα(

P100
i=1 Xi) VaRα(

P1000
i=1 Xi)

α dual standard dual standard dual standard

0.90 0.669 1.485 11.039 149.850 150.162 14998.500

0.95 1.353 2.985 22.227 229.850 301.823 29998.500

0.99 2.985 14.985 111.731 1499.850 1515.111 149998.500

0.999 68.382 149.985 1118.652 14999.850 15164.604 1499998.500

Table 2: Upper bounds for VaRα(
∑n

i=1 Xi) of three Pareto(1.5,1)
portfolios of different dimensions. Data in thousands.



Embrechts and Puccetti 26 Bounds on Value-at-Risk

Conclusions

The worst-possible VaR for a non-decreasing function of de-
pendent risks can be calculated when:

• some information on the copula of the portfolio is provided

• the portfolio is two-dimensional

When no dependency information is given, the problem gets
much more complicated and we provide a new bound which we
prove to be better than the standard one generally used in the lit-
erature.
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