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Abstract

Mainly due to new capital adequacy standards for banking and insurance, an

increased interest exists in the aggregation properties of risk measures like Value-at-

Risk (VaR). We show how VaR can change from sub- to superadditivity depending

on the properties of the underlying model. Mainly, the switch from a finite to an

infinite mean model gives a completely different asymptotic behaviour. Our main

result proves a conjecture made in Barbe et al. [3].

Keywords: Value-at-Risk, subadditivity, dependence structure, Archimedean cop-

ula, aggregation.

1 Introduction

Based on the regulatory framework for banking and insurance supervision, the financial

industry has to come up with regulatory capital for several risk categories (market, credit,

insurance underwriting, claims reserving, operational, ...). An overview of the underlying

issues and further references can be found in McNeil et al. [17]. The quantile based Value-

at-Risk (VaR) is the main risk measure used in industry to quantify regulatory capital.

For instance, market risk has to be measured at a 99%-VaR with a 10-day holding period,

whereas for operational risk this is 99.9% and 1 year. Hence the regulatory capital for

operational risk corresponds to a one-in-1000-year event. In several papers the strengths

and weaknesses of VaR as a risk measure have been discussed; in Artzner et al. [2] and
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in various subsequent papers VaR is criticized for not being subadditive; see McNeil et

al. [17] for more details. However, the subadditivity axiom for risk measures is not flawless

either; see for example Rootzén-Klüppelberg [27], Dhaene et al. [7], Dańıelsson et al. [5]

or Heyde et al. [12]. The latter paper also contains a critical discussion on robustness of

risk measures and suggests for instance to replace tail conditional expectation (which is

a subadditive risk measure) by the more robust tail conditional median which is simply

VaR at a higher confidence level.

Though the present paper can be read context free, the main motivation comes from

recent discussions around the measurement of operational risk. Current insurance regu-

lation gives no clear guidance for quantification of operational risk. Larger international

banks, complying with international banking regulation, have to come up with a one-in-

1000-year VaR estimate under the so-called loss distribution approach (LDA). There is an

ongoing intensive discussion between practitioners, regulators and academics concerning

the appropriate way to estimate such a 99.9% quantile based capital charge. Influen-

tial papers from the regulatory side concerning several quantitative impact studies are

Moscadelli [20], de Fontnouvelle et al. [10] and Dutta-Perry [8]. The Moscadelli paper

relies heavily on extreme value theory (EVT) based modelling and also uses the tail

conditional median as a risk measure. The Dutta-Perry paper introduces the g-and-h dis-

tribution as a parametric model for operational risk severity data. These authors claim

that EVT methods may occasionally lead to unrealistically high capital charges. This is

mainly due to fitted infinite mean models; see Nešlehová et al. [23], Degen et al. [6] and

Böcker-Klüppelberg [4] for a discussion in the context of operational risk. Dańıelsson et

al. [5] discuss this issue from the point of view of multivariate regular variation.

Our paper contributes to this discussion by looking at dependent data using copula

methodology. Our main results are Theorems 2.3 and 2.5 which qualitatively highlight

the difficulties caused by switching from a finite to an infinite mean model. Theorem 2.3

solves an open problem posed in Barbe et al. [3].

Organisation. In Section 2 we define the model, state the main convergence results (see

Proposition 2.2 and Corollary 2.4), and provide a regime switching picture in Theorem

2.5. These statements are based on our main theorem, Theorem 2.3, which describes the
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basic behaviour of the limiting constants introduced in Proposition 2.2. In Section 3 we

present general properties of asymptotic VaR behaviour. Finally, the proofs of the main

results are given in Section 4.

2 A multivariate model and main results

Consider loss random variables X1, . . . , Xn, n ≥ 2, defined on some probability space

(Ω,F , P ). Our main focus is on the calculation of VaRp(X1 + · · ·+Xn), where p is a given

confidence level typically close to 1. The quantile risk measure VaRp(X) for a random

variable X and p ∈ (0, 1) is defined as:

VaRp(X) = inf{t ∈ R : P (X > t) ≤ 1− p}. (2.1)

We do not assume independence between the loss random variables. For modelling depen-

dence in loss data, the theory of Archimedean copulas is particularly useful; see McNeil

et al. [17] for details, definitions and further references.

We assume that ψ : [0, 1]→ [0,∞] is the generator of the Archimedean copula

Cψ(x1, . . . , xn) = ψ−1

(
n∑
i=1

ψ(xi)

)
. (2.2)

Note that in order to generate a true copula, ψ has to satisfy certain growth and regularity

conditions, in particular, ψ needs to be completely monotone to generate a copula for any

dimension n ≥ 2; see Kimberling [15], Nelsen [22], Joe [13] and Alink et al. [1]. The

condition of complete monotonicity can be relaxed if one only requires that ψ generates

a copula for a fixed dimension n; see McNeil-Nešlehová [18].

Given that these conditions are fulfilled, the following formula always defines an n-

dimensional distribution with marginals Fi and Archimedean copula Cψ

H(x1, . . . , xn) = Cψ(F1(x1), . . . , Fn(xn)) = ψ−1

(
n∑
i=1

ψ(Fi(xi))

)
. (2.3)

As has already been discussed in the literature (see for example Dańıelsson et al. [5] or

Nešlehová et al. [23]), the (sub- or super-)additivity properties of VaR depend on the

interplay between the tail behaviour of the marginal loss random variables and their

dependence structure. In the present paper, we investigate the properties of VaR in the

following specific model.
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Model 2.1 (Archimedean survival copula)

Assume that the random vector (X1, . . . , Xn) satisfies:

(a) All coordinates Xi have the same continuous marginal distribution function F . The

tail distribution F = 1 − F is regularly varying at infinity with index −β < 0,

i.e. F (x) = x−βL(x) for some function L slowly varying at infinity.

(b) (−X1, . . . ,−Xn) has an Archimedean copula with generator ψ, which is regularly

varying at 0 with index −α < 0.

For background on regular variation see Embrechts et al. [9]. Under the assumption of

n = 2, the additivity properties of VaR within this model have been analyzed in Alink et

al. [1] and Barbe et al. [3]. Our aim is to discuss the case n > 2. The following result

yields the basics for our analysis.

Proposition 2.2 Under the Model 2.1 we have for all dimensions n ≥ 2

lim
u→∞

1

F (u)
P

(
n∑
i=1

Xi > u

)
= qn(α, β), (2.4)

where the limiting constant qn(α, β) ∈ [nβ−1/α,∞) is given by the following integral rep-

resentation

qn(α, β) =

∫
Rn+

1{Pn
i=1 x

−1
i ≥1}

dn

dx1 · · · dxn

(
n∑
i=1

x−αβi

)−1/α

dx1 · · · dxn. (2.5)

Proof. Consider the transformation Xi 7→ −Xi. Then −Xi satisfies the assumptions of

Theorem 3.3 (Fréchet case) in Wüthrich [29]. Hence the existence of the limiting constant

qn(α, β) follows from limu→∞ F (u)/F (un) = nβ and Theorem 3.3 in Wüthrich [29]. The

integral representation (2.5) for qn(α, β) was then proved in Alink et al. [1], Theorem 2.2.

2
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Remarks.

• The proof of Proposition 2.2 strongly relies on the regular variation property of the

marginal distribution function F and of the generator ψ; see Alink et al. [1]. An

alternative proof can be based on Proposition 5.17 of Resnick [25] or Theorem 1 of

Resnick [26]. Indeed, this has recently been done in Barbe et al. [3] using the theory

of multivariate regular variation: the limiting constant in (2.5) can then be expressed

via the Radon exponent measure obtained in Theorem 1 of Resnick [26]. However,

the analysis of the limiting constant for general dependence structures turns out to

be rather difficult. Barbe et al. [3] derive some basic properties in their Proposition

2.2. In order to obtain specific asymptotic additivity properties one needs to switch

to explicit dependence structures; see also Barbe et al. [3], Section 3. Whereas we

restrict to Archimedean survival copulas, other approaches are possible that yield

results like Proposition 2.2 under alternative dependence structures.

• The case of the two-dimensional Archimedean copula is solved in Alink et al. [1]; as

we will see, the case n ≥ 3 is much more involved.

• Under the assumption (a) of Model 2.1, we immediately have the following results.

Independent case. If X1, . . . , Xn are i.i.d. then

lim
u→∞

1

F (u)
P

(
n∑
i=1

Xi > u

)
= n. (2.6)

This property is referred to as subexponentiality of F and holds for a wider class

of distribution functions; see Corollary 1.3.2 in Embrechts et al. [9]. We would

also like to note that numerical approximations based on (2.4) and (2.6) are often

bad. Indeed, in a slightly different context Mikosch-Nagaev [19] show that rates of

convergence for tail approximation of compound sums can be arbitrarily slow and

hence may numerically be very poor.

Comonotonic case. If X1, . . . , Xn are comonotone then

lim
u→∞

1

F (u)
P

(
n∑
i=1

Xi > u

)
= nβ. (2.7)
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It turns out that qn(α, β) lies between these two extreme cases; see Lemma 3.1

below. Moreover, note that the case β = 1 plays a special role, since then the

limiting constants of the independent and the comonotonic case are the same.

2

The main difficulty is to determine how the limiting constant qn(α, β) behaves as a function

of α and β, respectively. For n = 2, the representation for the constant q2(α, β) yields

that for every α > 0, q2(α, β) is strictly increasing in β; see Theorem 2.5 in Alink et al. [1].

Moreover, we have:

(a) For β > 1, q2(α, β) is strictly increasing in α.

(b) For β = 1, q2(α, β) = 2.

(c) For β < 1, q2(α, β) is strictly decreasing in α.

Our main theorem extends the above result to the case n ≥ 3. It is proved in Section 4

and reads as follows:

Theorem 2.3 Take n ≥ 2 in the Model 2.1 setup.

(a) For β > 1, qn(α, β) is increasing in α.

(b) For β = 1, qn(α, β) = n.

(c) For β < 1, qn(α, β) is decreasing in α.

Remark. The decreasing/increasing property of the limiting constant is crucial for ob-

taining asymptotic superadditivity or subadditivity for VaR. Figure 1 gives the graph

α 7→ q3(β, α) for different β’s in dimension n = 3. Note that we cannot prove strict mono-

tonicity for n ≥ 3 though we believe this to hold. Theorem 2.3 proves the conjecture made

by Barbe et al. [3] in Remark 4.2, where it was stated that “a proof for the monotonicity

property remains elusive”.

2

An immediate consequence of Proposition 2.2 and regular variation of the marginals is

the following asymptotic VaR behaviour.
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Figure 1: Function α 7→ q3(β, α) for different β ≥ 0

Corollary 2.4 Under the Model 2.1 and the assumption n ≥ 2,

lim
p→1

VaRp (
∑n

i=1Xi)

VaRp (X1)
= qn(α, β)1/β, (2.8)

where qn(α, β) is defined in (2.5).

Combining Corollary 2.4 and Theorem 2.3 leads to our final result whose proof is found

in Section 4: it shows that in Model 2.1, VaR is superadditive or subadditive according

to the value of β with respect to 1.

Theorem 2.5 For n ≥ 2 and assuming Model 2.1 we have that:

(a) For all β > 1 and α > 0 there exists p0 > 0 such that for all p0 < p < 1

VaRp

(
n∑
i=1

Xi

)
<

n∑
i=1

VaRp (Xi) . (2.9)

(b) For all β < 1 and α > 0 there exists p1 > 0 such that for all p1 < p < 1

VaRp

(
n∑
i=1

Xi

)
>

n∑
i=1

VaRp (Xi) . (2.10)
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Theorem 2.5 gives the basic qualitative picture for the asymptotic VaR behaviour. It

clearly highlights the switch from subadditivity to superadditivity when moving from a

finite mean model (β > 1) to an infinite mean model (β < 1). The crucial property

for these results to hold is whether the limiting constant qn(α, β) is an increasing or

decreasing function in α. Note that this happens regardless the explicit choice of the

Archimedean dependence structure as long as the conditions of Model 2.1 (b) hold. In

other words, within Model 2.1, asymptotic super- or subadditivity of VaR is not driven

by the dependence structure but entirely by the marginals. This is a special property of

Model 2.1 and it would be wrong to think that this feature holds in greater generality.

3 Some properties of qn(α, β) for n ≥ 3

It follows from Corollary 2.4 that the asymptotic behaviour of VaR is determined by

the limiting constant qn(α, β). This section is devoted to the discussion of additional

properties of the latter constant; in particular, we address its monotonicity as a function

of β and its limiting behaviour in α and β, respectively. Our results complement those of

Barbe et al. [3].

Following Section 2.3 in Barbe et al. [3], we first reformulate the problem in polar

coordinates. Define x = (x1, . . . , xn)′ and

gα(x) =
dn

dx1 · · · dxn

(
n∑
i=1

xαi

)−1/α

=
n−1∏
i=0

(
1

α
+ i

)( n∑
i=1

xαi

)−1/α−n n∏
i=1

αxα−1
i . (3.1)

Use the transformation xi 7→ x
−1/β
i to obtain

qn(α, β) =

∫
Rn+

1nPn
i=1 x

1/β
i ≥1

o gα(x) dx. (3.2)

The function gα(·) is well-known and corresponds to the class of logistic distributions;

consider for instance the densities hm,c(w) in Kotz-Nadarajah [16] with ψk,c = 1.

On Rn
+ we now introduce the polar coordinate transformation

x 7→
(
|x|, x

|x|

)
, with |x| =

n∑
i=1

xi.
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Using this transformation we rewrite (3.2) as follows

qn(α, β) =

∫
[0,∞)×N+

1“Pn
i=1 w

1/β
i

”−β
≤r
ff r−2 gα(w) dr dw

=

∫
N+

(
n∑
i=1

w
1/β
i

)β

gα(w) dw, (3.3)

where N+ = {w ∈ Rn
+ : |w| = 1} is the unit simplex. This is exactly the integral

representation (20) in Barbe et al. [3]. The following lemmas contain some results which

are essentially known. We add short proofs where necessary.

Lemma 3.1 For all n ≥ 2 and α > 0 the following properties hold:

(a) gα(·)/n is a probability density on N+;

(b) qn(α, β) is strictly increasing in β;

(c) qn(α, 1) = n, and

(d) min{nβ, n} ≤ qn(α, β) ≤ max{nβ, n}.

Proof.

(a) See for instance Kotz-Nadarajah [16], formula (3.7).

(b) This was proved in Proposition 2.2 of Barbe et al. [3].

(c) This was proved in Proposition 4.1 of Barbe et al. [3].

(d) From (b) and (c) it is clear that qn(α, 1) is an upper bound on qn(α, β) for β < 1

and that qn(α, 1) is a lower bound on qn(α, β) for β > 1. The maximum and minimum

of n
(∑n

i=1w
1/β
i

)β
on N+ are given by max(nβ, n) and min(nβ, n), respectively. Hence,

since gα(·)/n is a probability density on N+, the proof of (d) is straightforward.

2

Lemma 3.2 For all n ≥ 2 and α > 0 we have

lim
β→0

qn(α, β) =

∫
N+

max {w1, . . . , wn} gα(w) dw =
n∑
k=1

(
n

k

)
(−1)k−1 k−1/α, (3.4)

and

lim
β→∞

qn(α, β)

nβ
=

∫
N+

n∏
i=1

w
1/n
i gα(w) dw. (3.5)
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Proof. Claim (3.5) as well as the first equality in (3.4) follow from Proposition 2.2 in

Barbe et al. [3]. Define |w|∞ = max {w1, . . . , wn}. Hence it remains to be shown that∫
N+

|w|∞ gα(w) dw =
n∑
k=1

(
n

k

)
(−1)k−1 k−1/α.

For this, note that∫
N+

|w|∞ gα(w) dw =

∫
[0,∞)×N+

1{1/|w|∞≤r}r
−2 gα(w) dr dw

=

∫
Rn+

1{|x|∞≥1} gα(x) dx =

∫
Bc∞(1)

gα(x) dx,

where Bc
∞(1) = {x ∈ R+

n : |x|∞ ≥ 1}. Choose a ∈ Rn
+ and define the set An = [a1,∞)×

. . .× [an,∞) ⊂ Rn
+. Then we have∫

An

gα(x) dx =

(
n∑
i=1

aαi

)−1/α

,

completing the proof.

2

Lemma 3.3 For all n ≥ 2 and β > 0 we have

lim
α→∞

qn(α, β) = nβ, (3.6)

and

lim
α→0

qn(α, β) = n. (3.7)

Proof. Claim (3.6) is proved in Proposition 4.1 of Barbe et al. [3]. The proof of (3.7)

is more involved; Barbe et al. [3] give a hint in their Section 3.1. We decided to give the

explicit arguments since one needs to distinguish the two cases β ≤ 1 and β > 1.

For β ≤ 1 we know that qn(α, β) ≤ qn(α, 1) = n; see Lemma 3.1. Moreover, from

Lemmas 3.1 and 3.2 we know that for all β > 0 and α > 0 we have

qn(α, β) ≥
n∑
k=1

(
n

k

)
(−1)k−1 k−1/α.

This implies that

lim inf
α→0

qn(α, β) ≥ lim
α→0

n∑
k=1

(
n

k

)
(−1)k−1 k−1/α = n.
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Hence for β ≤ 1 we have

lim
α→0

qn(α, β) = n lim
α→0

∫
N+

(
n∑
i=1

w
1/β
i

)β

gα(w)/n dw = n. (3.8)

Observe that gα(w)/n is a probability density on N+ for all α > 0 and that the right-hand

side of (3.8) is independent of β ≤ 1. Moreover,
(∑n

i=1w
1/β
i

)β
takes its maxima in the

corners of N+ for β < 1 (i.e. in C = {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}) and(
n∑
i=1

w
1/β
i

)β

= 1 for w ∈ C.

This immediately implies that gα(w)/n converges to a point measure on C for α → 0,

giving weight 1/n to each corner of N+ using a symmetry argument; this corresponds to

the independent case. Having a uniform distribution in the corners of N+ also proves the

claim for β > 1. This completes the proof.

2

4 Proofs of the results from Section 2

In order to prove our main result, Theorem 2.3, we need to introduce supermodular

ordering and present some related results.

4.1 Stochastic Ordering

Definition 4.1 A function f : Rn → R is supermodular if for all x,y ∈ Rn

f(x ∧ y) + f(x ∨ y) ≥ f(x) + f(y). (4.1)

Here ∧ and ∨ denote the componentwise minimum and maximum, respectively. In statis-

tical physics, condition (4.1) is often referred to as the FKG lattice condition; see Newman

[24] and Fortuin et al. [11].

From Kemperman [14], it follows that a function f : Rn → R is supermodular if

and only if f(. . . , xi, . . . , xj, . . .) is supermodular in all pairs (xi, xj); see also Wei-Hu [28].
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Theorem 2.5 in Müller [21] implies that, if f is twice differentiable, then it is supermodular

if and only if

∂2

∂xi ∂xj
f(x) ≥ 0 for all x = (x1, . . . , xn)′ ∈ Rn and 1 ≤ i < j ≤ n. (4.2)

Definition 4.2 A random vector X = (X1, . . . , Xn) is said to be smaller than a random

vector Y = (Y1, . . . , Yn) in supermodular ordering if for all supermodular functions f :

Rn → R we have

Ef(X) ≤ Ef(Y).

Write X ≤sm Y and FX ≤sm FY (where FX and FY denote the distribution functions of

X and Y, respectively).

From Theorem 3.2 in Müller [21] it follows that the supermodular ordering for random

vectors is preserved under coordinatewise increasing transformations. This immediately

implies that the supermodular property X ≤sm Y only depends on the supermodular

ordering of the copulas of X and Y. This means that

X ≤sm Y ⇐⇒ CX ≤sm CY, (4.3)

where CX and CY are the copulas of X and Y, respectively. We now choose as an example

a specific Archimedean copula ψα(t) = t−α − 1 for α > 0. Then

Cα(u1, . . . , un) =

(
n∑
i=1

u−αi − (n− 1)

)−1/α

is the so-called Clayton copula with parameter α. Observe that the generator ψα(t) of

the Clayton copula is regularly varying in 0 with index −α < 0.

Lemma 4.3 Assume that X and Y have a Clayton copula with respective parameters

αX > 0 and αY > 0. Then

αX < αY =⇒ X ≤sm Y.

Proof. Because of (4.3), it remains to be shown that the Clayton copulas Cα are ordered

with respect to α. With Theorem 3.1 in Wei-Hu [28] it suffices to prove that

(−1)k−1 ∂k

∂tk
ψαX ◦ ψ−1

αY
(t) ≥ 0 for all k ≥ 1 and t > 0, (4.4)
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as well as ψαX ◦ ψ−1
αY

(0) = 0 and ψαX ◦ ψ−1
αY

(∞) =∞. However, since

ψαX ◦ ψ−1
αY

(t) = (1 + t)αX/αY − 1,

(4.4) is easily verified for αX < αY . This completes the proof.

2

4.2 Proof of Theorem 2.3

The proof of Theorem 2.3 essentially uses a relationship between expectations (and thus

characterizations of supermodular ordering) to tail probabilities, in particular, the fact

that for any random variable Z and u ∈ R,

E (Z − u)+ =

∫ ∞
0

P (Z > u+ y) dy. (4.5)

To simplify notation in the proofs below, we define sn(x) =
∑n

i=1 xi for x ∈ Rn.

Proof of Theorem 2.3 (b), case β = 1. This was proved in Proposition 4.1 of Barbe

et al. [3].

Proof of Theorem 2.3 (a), case β > 1. Because of Proposition 2.2 it suffices to

show the assertion for one specific model that satisfies the assumptions of Model 2.1. We

choose two random vectors X and Y as follows: −X and −Y have a Clayton copula with

parameters 0 < αX < αY and identical marginals F with index of regular variation at

infinity given by β > 1, and show that qn(αX , β) ≤ qn(αY , β) for β > 1. Proposition 2.2

implies that for this choice,

qn(αX , β) = lim
u→∞

1

F (u)
P (sn (X) > u)

and

qn(αY , β) = lim
u→∞

1

F (u)
P (sn (Y) > u) .

The function x ∈ Rn 7→ sn(x) is convex and supermodular; by preservation of convex-

ity, so is the function x 7→ (sn(x)− u)+. It then follows by Lemma 4.3 and (4.5) that for

any positive u (see also Theorem 3.1 in Müller [21])∫ ∞
0

P (sn(X) > u+ y) dy ≤
∫ ∞

0

P (sn(Y) > u+ y) dy. (4.6)
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Dividing both sides of this inequality by F (u), the left-hand side becomes∫ ∞
0

P (sn(X) > u+ y)

F (u+ y)

F (u+ y)

F (u)
dy,

which, by Proposition 2.2 and Karamata’s theorem (see Theorem A3.6 in Embrechts et

al. [9]), converges to qn(αX , β)/(β − 1) as u tends to infinity. Consequently, (4.6) implies

qn(αX , β) ≤ qn(αY , β).

2

Proof of Theorem 2.3 (c), case β < 1. We use the same (explicit) model and the

same notations as in the proof of part (a), but this time we choose identical marginals

with β < 1. Hence, the marginal distributions have an infinite mean, which means that

the previous proof breaks down for the lack of integrability of the function y 7→ F (u+ y).

The trick is then to use truncation. For this purpose, note that for any real number z

and positive real numbers u, v

z ∧ (u+ v) = z ∧ u+ ((z ∧ (u+ v))− u)+ .

Consequently, using (4.5), we have for any random variable Z

E (Z ∧ (u+ v)) = E (Z ∧ u) +

∫ ∞
0

P (Z ∧ (u+ v) > u+ y) dy

= E (Z ∧ u) +

∫ v

0

P (Z > u+ y) dy. (4.7)

The function x ∈ Rn 7→ − (sn(x) ∧ (u+ v)) is convex and supermodular for any positive

real numbers u, v. Hence it then follows by Lemma 4.3 and (4.7) that for any positive u, v

0 ≤ E (sn(X) ∧ (u+ v))− E (sn(Y) ∧ (u+ v))

= E (sn(X) ∧ u)− E (sn(Y) ∧ u)

+

∫ v

0

P (sn(X) > u+ y) dy −
∫ v

0

P (sn(Y) > u+ y) dy. (4.8)

Choose ε > 0. By Proposition 2.2 we then have that for all sufficiently large u and for

any positive v the difference of the integrals in (4.8) is at most

(1 + ε) qn(αX , β)

∫ v

0

F (u+ y)dy − (1− ε) qn(αY , β)

∫ v

0

F (u+ y)dy.

As v tends to infinity, the integral
∫ v

0
F (u + y)dy tends to infinity, and therefore (4.8)

forces (1 + ε) qn(αX , β) − (1 − ε) qn(αY , β) to be nonnegative. The result then follows

because ε was arbitrary.

2
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4.3 Proof of Theorem 2.5

Proof of Theorem 2.5. For β > 1 and α > 0 we know from the proofs of Proposition

4.1 in Barbe et al. [3], Lemma 3.3 and Theorem 2.3 that qn(α, β) < nβ. Hence choose

ε ∈ (0, nβ/qn(α, β)− 1). From Corollary 2.4 we know that there exists p0 = p0(α, β) > 0

such that for all p > p0 we have

VaRp (sn(X)) ≤ ((1 + ε)qn(α, β))1/β VaRp (X1)

< nVaRp (X1) =
n∑
i=1

VaRp (Xi) .

The claim for β < 1 follows analogously from the fact that qn(α, β) > nβ; see proofs of

Proposition 4.1 in Barbe et al. [3], Lemma 3.3 and Theorem 2.3. This finishes the proof.

2
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