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1. Introduction

In this paper, we introduce the GAEP algorithm (generalised AEP algorithm) in order to
compute P[¢(X) = 5], where X is a random vector in (0, 00)? and ¢ is a continuous
function, strictly increasing in each coordinate. The algorithm is based on the
decomposition of the set {x € (0, 00)? : p(x) = s} into a countable family of disjoint
hypercubes. The corresponding probability P[¢(X) = s] is then approximated by the
measure over these hypercubes.

The GAEP algorithm is similar in spirit to the AEP algorithm introduced by the same
authors in Ref. [1] for the case ¢(x) = 22:1 Xg. As the two algorithms are based on
different geometrical decompositions, GAEP is not a proper extension of AEP.

This paper is organised as follows. After some preliminaries in Section 2, we illustrate
GAEP in dimension two (d = 2) in Section 3. Section 4 extends GAEP to arbitrary
dimensions, its convergence being discussed in Sections 5—7. In Section 8, we test GAEP on
some examples, and, in Section 9, we compare and contrast it to its main competitors. Section
10 illustrates the differences between GAEP and AEP, while, in Section 11, we provide a
method to improve convergence rates in dimension three. Section 12 concludes the paper.

2. Notation and preliminaries

Fix d €N, d =2, and define N =29 We set Ry =[0,400) and R_ = (—o0,0].
Throughout the paper, (row) vectors are denoted in boldface, for example, e, € R? is
the kth standard unit vector, for k € D = {1, ....d}. We write iy, ...,iy for all the 2¢
vectors in {0,1}%, ie. iy =0=(0, ...,0), izy; =€,k €D, and iy =1=(1,...,1).
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By #i= ZZ:I ir, we denote the number of 1’s in the vector i, for example,

#i; = 0,#iy = d. We define the component-wise product between two vectors x =
d

1, ...,xgp)andy = (yy, ...,yq) € R” as

Xoy = (X1y1, ..., Xya) € R

For instance, xoe; = x;e; = (0, ...,0,x,0, ...,0). Let = denote the component-wise
order between vectors, i.e. X = y if and only if x; = y; forall k € D. The orders =, <, and
> are defined analogously.

On some probability space (), 2, [P), assume that the random vector X = (X1, ..., Xy)
has joint distribution H. Throughout the paper, we assume the marginal components X}, to
be non-negative, i.e. P[X; = 0] = 0 for all k € D. The extension to random vectors which
are component wise bounded from below is straightforward and will be illustrated in the
following. The joint distribution H induces the probability measure V on R? via

Val[{ye R’y =x}| =H(x), for all x€ R’
Forb € R’ andh € R? U [R{‘j_, we define the hypercube Q(b,h) C R as

{xeR:b<x=b+h}, if he R,

b,h) = 1
b, {xeR':b+h<x=b}, if heR”. 1
For h € Ri, the Vy-measure of Q(b,h) can be calculated easily as
N .
Vi[Qb,h)] =P[X € Qb h)] = > (~D)**H(b + heiy). )
=1

J

The case h € R? is analogous. As a special case of (2) for d = 2, the probability measure
of a rectangle Q(b,h) = (by,b; + h;] X (by, by + h,] can be written as

Vi [Qb,h)| = H(b1,by) — H(by + hy,by) — H(by, by + hy) + H(by + hy, by + ).

Let AV be the set of continuous functions ¢ : RY — R, which are strictly increasing in
each coordinate, and such that

lim (b +re) = +o0, and  lim (b +re;) = —co, for allb € R? and k € D.
[—+00 ——0

Throughout the paper, we assume that ¢ € A/ and fix s € R such that ¢(0) < s. Note
that if, on the contrary, ¢(0) = s, then for non-negative vectors X, we trivially have that
Ple(X) = 5] =0.

Forb € R? and p € R U Ri, we also define the quasi-simplex S(b, p) as

{xER":b<x=b+p,ex) =s}, if peRL

S(b,p) = 3

{XERd:b+p<XSb,QD(X)>S}, if peR?.

Note that, if one or more of the components of h and p is equal to zero, then Q(b, h) and
S(b, p) are empty.
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As ¢ € N, there exists a unique vector p} € Ri such that
@(pjoey) =s, for all k € D. 4)

Figure 1 illustrates (3) and (1) as well as (4) for d = 2. Defining S} = S(O,p}) and
recalling that X is non-negative, (4) implies that

[F"[gD(X) = s] =Vy [SH

3. Description of the GAEP algorithm in dimension d = 2

We first illustrate the GAEP algorithm in the case d = 2. In Section 4, we will generalise it
to arbitrary dimensions d. In order to calculate P[¢(X) = s] = Vg[S }], we decompose S i
into a family of disjoint hypercubes, whose probability measures can be easily calculated
via (2).

Let h € RZ such that h < p!. For ease of notation, we write p = p} throughout this
section. As illustrated in Figure 2, the rectangle Q(0, p) C R? can be split into four disjoint
rectangles along the components of h as

Q(0,p) = Q(0,h) U O((h1,0), (p1 — hi, o))

)
U Q((07 hZ)a (h17p2 - h2)) U Q(h; P~ h)
A similar decomposition holds for the quasi-simplex S(0, p), for which we have
S(0,p) = S(0,h) U S((h1,0), (p1 — 1, o)) ©)

U S((0, ha), (h1, p2 — ha)) U S(h,p — h).
Note that S(0,h) = Q(0,h)\S(h, —h). By setting S| = S(0,p), Q] = Q(0,h), S, =
Sth,—h), S =S8((h,0),(p1 — hi, k), S5 =38(0,hy),(h1,p> — hy)), and S, =
S(h,p — h), we can reformulate (6) as

S| =(QN\SHUSUSUS;, (7

as illustrated in Figure 3. Note that either S; =0 (if ¢(h) > s) or Sg =0 (f o) =ys).

by +p4

by

Figure 1. Three quasi-simplexes S{ = 8(0,p}), Sby,p1), S(ba,p2) C R? and two hypercubes
Q(b3,p3), Q(by, ps) C R* with p}, p1, ps € R] and po, ps € R?. Thick and dashed lines indicate
closed and open boundaries of the sets, respectively.
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xr9 T2

0 x1 0 X1

Figure 2. An illustration of (5) in which the rectangle Q(0,p) C R? is decomposed into four
disjoint rectangles.

Since S’z’s are disjoint and S; c ol (7) translates into the decomposition
ValSt) = VilQl) ~ ValS + Vil + valS) 4 vals.  ®

As a first approximation of Vg[S }], we take the value P = VH[Q}]. This results in the
difference

4
Vi[Si] = Pr=)_nValS)),
=1

where 7§ € {—1, 1} indicates whether the measure Vy[S5] has to be added (3 = » =
73 = 1) or subtracted (7 = —1).

At this point, each of the S} can be further decomposed via (8) into a square and four
smaller quasi-simplexes, for a total of 4 squares and 16 quasi-simplexes. The measure of
the four squares so obtained is to be added or subtracted to P; in order to define a second
estimate P, of Vg[S %], so that the difference between P, and Vg[S {] will be given by the
measure of the remaining 16 quasi-simplexes. The latter are then decomposed again in the
following step of the algorithm. By iterating this procedure, we obtain a sequence P, of
estimates, which we will prove to converge to Vg[S %] under the regularity conditions
given in Section 5. In the general case, at each iteration of the algorithm, we restrict to
quasi-simplexes that turn out to be non-empty.

1 J
e ___ P W
T9 {:c c 2_; : (p(a:) = 5} | 9| : I
S B : . {zeRi: cp(mll) =s}
SS
1 | 2 |
% ' S; |
: [
. I b\ |
m N Qi SN .
0 71 0 L

Figure 3. Anillustration of the decomposition (7) for two different choices of h € RY U Ri. In the
left-hand side picture, we have ¢(h) > s and Sg = (), while, in the right-hand side picture, we have
¢o(h) < s and S; =0.
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4. Description of the GAEP algorithm in arbitrary dimensions

In this section, we state the two main results of the paper. First, we will extend the measure

decomposition (8) to arbitrary dimensions, by showing that the measure of an arbitrary

quasi-simplex can be decomposed into the measures of a hypercube and N = 2¢ smaller

quasi-simplexes. Then, we define a sequence P, that will be proved to converge to Vg[S } 1.
For p € RY URY, fix h € H(p), where

{xERd:OSXSp}, if pER‘fr,

TP = {xeR':p=x=0}, if peR.

Analogously to the case d =2 (see Figure 2), a hypercube Q(b,p) C R? can be
decomposed into N hypercubes along the components by + hy, k € D.

LEMMA 4.1. For an arbitrary hypercube Q(b,p) C R?, we have

N
Qb,p) = JQ(b+i;oh,ijop+ (1 - 2ij)°h) )
j=1
with the hypercubes on the right-hand side of (9) being disjoint.

Proof. Forj=1, ...,N, let the sets C; be defined as

Ci={xE€R":x; = b+ My for all k with (ij), =0,
Xx > by + by for all k with (i), = l}.

Since U]N:] i; = {0, 1}¢, we have that the family {C;,j=1,...,N} isapartition of RY, ie
CiNCj=0and UjN:l Ci= R?. Hence, we can write

N
b, p) = U (Qb,p)NC)

Ifp e Rﬁ (the case p € R? is analogous), then note that forallj =1, ..., N and k € D,
we have

bk, if (ij)k = Oa
(b+ijoh), = {bk e, i (=1, 10
I, if (i), =0,
(iop + (1= 2i)°h),= {pk — hi, if (i) = 1. (an

Thus, the result follows by observing that

Qb,p)NC = {x ER": by < x = by + Iy for all k with (i), =0
bi + b < x¢ = pi for all k with (i), = 1}
= Q(b+ijoh,ijep+ (1 —2i)°h). 0
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The set decomposition (9) translates into the measure decomposition given by the
following theorem.

THEOREM 4.2. Let vy, ...,vy € {0, l}d be defined as vi =1 and v, =1i; for
k=2,...,N.Letb € R‘, p € R UR?, and h € H(p). Then
N
Vi [Sb,p)] = Vi [Qb,W)] +> mVy[S(b+vjehijep+ (1 —2v)eh)],  (12)
j=1

where m;y = —land m; = +1forj=2,...,N.

Proof. First assume that ¢(b) = sand p € Ri. Defining the set A = {x € R?: o(x) < s}
and using (9), we can write

N
AN Q,p) =Sb,p) = J{ANQ(b+ijohijop+ (1 —2i)°h)}
j=1
N
:Us(b+ij°h,ijop+(1_2ij)°h). (13)
j=1

As the hypercubes on the right-hand side of (9) are disjoint, the quasi-simplexes on the
right-hand side of (13) are disjoint too. Thus, from (13), we get

N
Vi[Sh,p)] =Y Vu[S(b+ijeh,ijep+ (1 —2ijeh)]. (14)
j=1

Since i; = 0, we have
Vi[Sb +ijeh,ijop+ (1 —2ipeh)] = Vy[Sh,h)],

and we can write (14) as

N
Vi [S(b,p)] = Vi [S(b,h)] + Z Vi[S(b+i;oh,ijop + (1 —2ij)°h)]. (15)

J=2

Noting that S(b,h) = A N Q(b, h), and using the fact that Q(b,h) = Q(b 4+ h, —h), we
obtain

Vi [St, )] = Vi [A N Qb, )] = Vi [Qb, h)] — Vs [Q(b +h, —h) N A€]
= Vu[Q(b,h)] = Vx[Sb +1h,00p+ (1 —2-1)oh)]. (16)

Substituting (16) in (15), and recalling the definition of the v;’s, we finally get (12).
The case ¢(b)>s, p€eE R s analogous. The cases ¢@(b)=s, pE R, and

ob)>s, pE Ri, are trivial, because they imply V4[S(b,p)] =0 and Vy4[Q(b,h)] =

VulS(b+h, —h)]. O

Note that Theorem 4.2 holds for all measurable functions ¢ : R — R.
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The idea behind the GAEP algorithm is to apply the decomposition (12) recursively to
the non-empty quasi-simplexes on the right-hand side, starting with S{ = S(0,pl), p!
being the unique vector satisfying (4). Note that, by changing the conditions (4) and the
vector b{, the algorithm can be applied to the case in which the random vector X also takes
negative values but it is still bounded from below as, for example, P[X = bi] =1.

At the beginning of the nth iteration (n € N), the algorithm receives, as input, a family

S, =8(b.,p,), tel, c{1,....N""}
of non- empty quasi-simplexes. As already remarked, for n = 1, we have I}, = {1} and

= &8(0,p}). Given a sequence of splitting points h!, € H(p'), t € I,, each quasi-
snnplex 8! is then decomposed into one hypercube and N quasi-simplexes via (12):

[S(btvpn)] = VH[Q(binh;)]

N
+ ijv,, [S(bL, +vjeh',ijop! + (1 —2v))oh!)]

= Viu[Q(b], 1)) +Zm/vﬂ (b )] €L, an)

where the sequences b’ and p/, are defined by their initial values b{ = 0 and p}, and by

b N = b+ vjohl, (18)
ph " =ijepl + (1 - 2v))°hi, (19)

forallj=1,...,N and t € I,. Recall from Theorem 4.2 that m; = —1 and m; = 1 for
j=72,...,N. At this point,

S(bly 1 Phyy), t € Liyy, with Ly = {r €{1, ... ,N"}: S(b},,,p,y,) # 0},

i.e. the family of non-empty quasi-simplexes obtained on the right-hand side of (17) is
passed to the (n + 1)th iteration of the algorithm.

As an example, we illustrate the first iteration of the algorithm in the case d = 3, where
we denote pj =p with 0 =h=p. For the simplex S { = S5(0,p), the measure
decomposition (12) gives

Vi [S80,p)] = Vy[Q0,h)] — Vg [Sth, —h)] + Vy[S((h1,0,0), (p1 — hi,h2,h3))]
+ Vu[S((0,72,0), (hi,p2 = ha, h3) )]
+ Vu[S((0,0,h3), (hi,ho,p3 — h3))]
+ Va[S((h1,h2,0), (p1 = h1,p2 = ha, h3))]
+ Va[S((11,0,h3), (p1 = h1,ha,p3 = h3))]
+Vu[S((0,h1,h2), (hi,p2 = ha,ps — h3))] + Vi [S(h,p — h)].

In Figure 4, we illustrate the case in which ¢(pcey) =5, kK € D (see condition (4)),
@(hi, hy,0) < s, @(hy,0,h3) < s, and (0, hy, h3) > s, leading to S; = S5 = 0. Therefore,
we have I} = {1} and I, = {1,2,3,4,5,6}. Note also that, in the 2D cases described in
Figure 3, we had I, = {1, 2,3} (left) and I, = {2, 3,4} (right).
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:3}

S5
Figure 4. An illustration of the decomposition (12) of S(0,p) C R? for some vector h € Ri.

In general, the set of indexes I,;, which identifies the quasi-simplexes S, # 0,
depends on the vectors h!,, 7 € I,, and on the function ¢, at each iteration of the algorithm.
Nevertheless, for a fixed n, the quasi-simplexes S, ,, 7 € I,;; are always disjoint (this
follows from the proof of Theorem 4.2).

Now, define the family Q' = Q(b!,h!), € 1, and the sequence P, as the sum of the

Vy-measures of all the Qs multiplied by the corresponding 7/, as

P,=P, 1+ ZT;VH[Q;] = iZTisz[Qﬁ], neN, (20)

€1, i=1 1€l
where Py = 0 and the sequence 7! is defined by its initial value 7} = 1 and by

AN =2 mj, for all j=1,...N and 1 €L, (1)

The value 7, € {—1, 1} indicates whether the measure of the quasi-simplex S’ has to be
added (7, = 1) or subtracted (7, = —1) in order to compute an approximation of Vy [S H

We now show that, at each iteration of the algorithm, the error committed by taking P,
as an approximation of Vg [8 1} can be expressed in terms of the measures of the non-

empty quasi-simplexes 8!, |, t € I,4 passed to the (n + 1)th iteration of the algorithm.

THEOREM 4.3. With the notation introduced above, we have

VilSl] = Pu= > 7 Vu[S,,]- (22)

t€l,

Proof. We proceed by induction on n. Recalling that 7] = 1 and Py = 0, (22) corresponds,
for n = 0, to the trivial equality Vg [S H =Vu [8 }] . Hence, we suppose that (22) holds for
some n € N. Substituting (17) in (22), and using (20), yields

Vi [‘SH =P+ Z n+1VH[ 2+1] Z Tt1 (Z m]VH I’J’j_zN-ﬁ-j])

1€ 141 IS P

- Pn+1 + Z Z n+1mJVH Sizv-tﬁ-ZN+j]

1€ L4 j=
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Recalling (21), we get

Vi [3” = Pui1 + Z Z gjerﬂVH nNizNH] = Puy1 + Z LAY [waz]’

t€l,,1 j= t€l,40

where the last equality follows from the fact that the simplexes S 42, tE L, are
empty. |

5. Convergence of the algorithm

In this section, we give sufficient conditions for the convergence of the sequence P,,
defined above, to the value Vg [SH First, in Lemma 5.1, we give a simple set
representation of P,. Recall that the set I,1; identifies the non-empty quasi-simplexes
Shi1s 1€ Ly, which are passed to the (n + 1)th iteration of the algorithm. We partition
the set I, into the families

I\ ={€l,:"

'y =41} and I, ={r€L, 7 ,=—1}L

LEmmA 5.1. For any n € N, we have that P, = Vy[B,], where

B, = 3] U 3f1+1 \ U Sn+1 (23)

el ,e[

Proof. Using induction, for a fixed n and all ¢ € I,,, we prove that

o c S, if
" Q(0,p)\S!, if 7

L
|

-I-l7

Then, the result easily follows from (22) and the fact that, for a fixed n, the S, ’s are
disjoint.

From its definition (3), a quasi-simplex S(b, p) lies in S { ifand only if p € R;. It lies
instead in Q(0, p))\S } if and only if p € R, . Therefore, we equivalently have to show
that, for a fixed n and all r € 1,

(24)

To this end, assume that (24) is true for a fixed n (for n = 1, it trivially holds) and choose

an arbitrary S'_,, t € L4y such that 7/, = +1 (the case 7/, = —1 is analogous). By
(21), there exist ' €1, and jE€ {1,...,N}, with 7. = TQJL_NJ” =1 mj Since
71,1 = +1, either (case I) fr’/ = —1 and mj —1 (in this case, j = 1) or (case 1I) T’ =1

and m; = +1 (in this case, j 7 1).
Case I 1f j = 1, using (19) we obtain p'., " = —h!'. Since it also holds that 7/ = —1,

using the induction assumption, we obtain that p’ € R; and finally (recall that
h € Hp) p V7 = —n! € RY.

n+1
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Case II. For j # 1, (11) yields
I3 . N —
(le‘/—NJrj) _ (hn)/w lf (l_])k 07
) ) =y, i =1
Since it also holds that 'r,i’ = +1, using the induction assumption, we obtain that p;' S R;
and finally pgil_Nﬂ eR;. O

A simple illustration of (23) in dimension d =12 is given by (7) and by the
corresponding Figure 3. Now, we use Lemma 5.1 to obtain bounds on P,,.

THEOREM 5.2. If @ € N, then, for all n € N, we have
PleX) = l,] = P, = P[e(X) = u,], (25)
where

— N o 1 _— 1
L, = mln{s,lrer%n ‘P(bn+1)} and u, = max{s,lrélla:igo(bnﬂ)}.

n+l1

Proof. Suppose that, for a quasi-simplex S, we have 7, = —1. Then (see (24))
p,.; = 0. Therefore, over the quasi-simplex S, the function ¢ € A attains its
maximum at b/, i.e.

max @(x) = (b))

XS0,

Using the above result and (23), we can write

B, C S] U S, C {x ERL: p(x) = max{s,tr&ax¢(b;+l)}},

€1,

which yields B, C {x € [R‘fr : ¢(X) = u,}. Recalling from Lemma 5.1 that P, = Vy[B,],
the right-hand side of (25) follows. Analogously, if 7, | = +1, we have that p, ,; = 0 and

n

inf @(x) = ¢(bj, ).

XES, 1

Recalling that b}, & S, , when p),, =0, we obtain that ¢(b], ) < ¢(x) for all
x € 8!, ,. Using again (23), it follows that

{x ERL: g(x) = min{s, mingo(b;H)}} c SN\ U S)1 C By,
t€Lf

t
Z‘EI;H»I

which yields {x € Ri :o(x) = 1,} C B, and, consequently, the left-hand side of (25). O

Figure 5 illustrates Theorem 5.2 for the first two iterations of the algorithm in the case
d = 2. Now, we define the sequence D,,, n € N, as

D, = max{s — l,,u, — s} = max ’qo(b;H) - s|. (26)

The following lemma will turn out to be useful in the remainder of the paper.
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[ 3 cR? : = [ cR? : =
B R IR N U
{w €R? {o(x) = s}
SRS U S
TPl L N .
0 2! x1 0 2 ] z1
{x eRL :p(x) =11} 1 {z e R : p(x) = lo} 1

Figure 5. An illustration of Theorem 5.2 for d = 2, n = 1 (left), and n = 2 (right). The dark grey
area identifies the sets B; = Q] (left) and B, = (Q] U Q3 U Q3 U Q5)\Q; (right). We set hj = 0,
thus Q‘z1 = (. The circles indicate where ¢ attains either its maximum or its minimum.

LEMMA 5.3. If ¢ € N, then, for all n € N, we have

P, — VS]] = Pls — D, < @(X) = s+ D,].

Proof. From (25) and (26), we have that
P, = PleX) = u,] = Ple(X) = 5+ D,].
Since D, = 0, we obtain

P, — VS| = Ple(X) = 5+ D,] — Ple(X) =< s]
=Pls<eX)=s5+D,] =P[s—D, < oX)=s+D,].

Analogously, we can write

P, = VulSi1 = Ple(X) = s — D,] — Ple(X) = 5]
=-Pls—D,<pX)=s5]1=-Pls—D, < oX)=s+D,].

Recall the definition of D,, in (26).

THEOREM 5.4. Assume that X is absolutely continuous and lim,—«D, = 0. Then

limP, = P[e(X) = 5] = Vy[S]].

Proof. If lim,—«D,, = 0, and ¢(X) is continuous, then the theorem follows from Lemma
(5.3). Therefore, it is sufficient to show that P[o(X) = s] = 0, for all s € R. Fix some
sE€R,andlet]’y = {x € R? : o(x) = s}. Since ¢ € N/, foreachy € R, there exists a
unique zy € R such that ¢(yi,...,ys-1,zy) =s. It is easy to see that I'y=
{01, oo Ya-1,29) 1Y € R?!'} can be written as a countable union of sets with
(Hausdorff) dimension d — 1, see [2] (pp. 54—59). Hence, the Lebesgue measure of Iy is
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zero. As X is absolutely continuous, Vg is absolutely continuous with respect to the
Lebesgue measure. Thus, Vg[I';] = P[e(X) = 5] = 0. O

Note that, in Theorem 5.4, the assumption of absolute continuity of X cannot be
dropped. As a counterexample, take d =2 and X = (U, 1 — U), where U is a random
variable uniformly distributed on [0, 1]. For the function ¢(x) = x; + x,, we have that X is
continuous, while P[¢(X) = 1] = 1. In this case, and depending on the sequence h/,, the
sequence P, may fail to converge.

6. The choice of A : the bisection rule

Assuming the continuity of ¢(X), convergence of the GAEP algorithm is guaranteed by
Theorem 5.4 whenever the sequence D, goes to zero. Of course, the (speed of)
convergence of the sequence D, depends on the choice of the vectors {h),r € I,,} at each
iteration. The aim of this and the following section is to find good criteria for the choice of
h! such that D, converges (rapidly) to 0.

Note that, whenever SZ = Q(b;, p,), in (17) it is convenient to set h; = p/,, so that no
simplexes are passed on to the following iteration of the algorithm. In fact, using (19), having
h, = p! implies that SN V' =S +pl, —p.) = Qb’, p')\S, = 0. Moreover, for
j=2,...,N,(11)implies that at least one component of piqvi]NH is zero, hence SZV:L]NH =0.

As a first choice for h), we propose the so-called bisection rule. Using this choice,
convergence of the sequence D, is guaranteed under some extra assumptions on ¢.

THEOREM 6. 1. Assume that ¢ € N’, the set of all twice differentiable functions ¢ € N for
which there exists a constant r > 0 such that 9, ¢(x) > rforallk € D and x € R?. For all
n € N and t € I, let the sequence h; be defined as

P if S,=9,,

r__
=900 /2p!, otherwise. @7

Then D, = OQ2™"), n— oo.

Proof. It is immediate that h!, € H(p/), and hence h}, is correctly defined. Since ¢ is twice
differentiable, it is also Lipschitz continuous on Q(0, p}), the closure of Q(0, p%). Thus,
there exists a constant L < oo such that |¢(x) — ¢(y)| < L||x — y|| for all x,y € Q(0, p}).

Now, consider the non-empty quasi-simplex S, ,,7 € Iy, for which there exist
/ €X,andj € {1,...,N}suchthat S, , = S ™ For the quasi-simplex S/, we have
that (from the definition (3)) S!' = S(b!',p!’) C Qb ,p!). As S, # @, (27) implies
that Q(b/', p! \S', # 0.

It is then possible to find y,’l/ € Sfl, and zé/ S Q;\S:, for which we have that either
<p(ynf/) =y, go(z,’l/) > 5 (when p,ﬁ/ =0) or qp(y,’l/) > s, go(zfl/) = s (when p,’l/ = 0). In both
cases, continuity of ¢ guarantees (by the intermediate point theorem) the existence qf
a vector xf; onthe curve ¢ : [0,1]+— (1 — c)y,’,/ + cz,’ll, with cp(x,ﬁ/) = 5. Clearly, xfl' e Q; ,
and by (18) and (10), also bﬁ:’i]—Nﬂ e Q:. As a consequence, we have that

‘ bﬁ’iIN - = Hp,’l/’ . Therefore, for each ¢t € 1,41, there exists t/ € I,, such that
Nt —N+j NN+ '
b = 5| = [ ) = 5| = @]l — )

NI'—=N+j ¢
bn+l XnH = L’

t/
X}‘l

SL’

r/
P,
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Combining the above result with the definition of D,, given in (26), it follows that

D, = maX |go(b

) 5| = Lmax|[p | (28)

Note that (28) holds for a general sequence h!, s € I,,. Using the definition of pNt Nt

(see (19)) and the bisection rule (27), it follows that

p) M =ijepl + (1 —2v))oh! =i;op’ + (1 —2v))°1/2p,
1/2p,  if j#1,

=(;+1/20 = 2v))ep, = (i, — v;+1/21)cp, = 12 i =1,

Thus, we have

1
max [|p;.., || = 5 max|p} |

Using (28), we finally obtain that

1 n—1 .
D, = Lol = 52 max o = (5) Lol = /20" o]

which implies the theorem. In the proof above, note that, even if r € I,,4;, there does not
necessarily exist a vector x| € o 41 such that ¢(x!_ ) =s. This case occurs, for
example, when S), | = Q) ;. O

In order to have convergence of the bisection method, we only need ¢ to be Lipschitz
continuous on Q(0, p!). However, to keep notation simple, we defined the smaller set of
functions N, which we will use in the following section.

7. The choice of h: the gradient rule

In this section, we present the gradient method, a different way of choosing the sequence
h!, which guarantees a better asymptotic convergence rate in the case d = 2. By X Ay,
denote the component-wise minimum of x and y, and, by x Vy, the component-wise
maximum. We keep the assumption that ¢ € A, see Theorem 6.1.

First, we use Taylor’s expansion to find a constant 0 = R < oo such that

|¢(b+8) — (¢(b) + Ve(b)'8) | = RIS,

for all x € Q(b,p) and x + 6 € Q(b, p), where Vo denotes the gradient of ¢. Since ¢ is
twice differentiable, the constant R can be chosen to be the same for every b € Q(0, p)).

THEOREM 7.1. Assume that ¢ € N’ and fix « € (1/d, 1). For some n € N and all t € 1,
let the sequence h/, be defined as
P if S, = Q(b,,p)),
n = { B AP)VO, if S, # Q. p)).p, € RY, (29)
(W vp) A0, if S'# O, p.),p, € R,
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where
. — ¢(b,
()=o) o ke,
ak()o(bn)
Then, we have that
» R
Dy = (max{l — a,ad — 1} + @” 5D, | D,. (30)
r

Before proving Theorem 7.1, we need the following result.

LeEmMMA 7.2. Assume that ¢ € A’ and fix n € N. Let i, 7 € I,, be defined by (29). Then,
for all + € 1,,, we have that

Nt—N-+j

max |€D(bn+1 ) — s| = 31

.. oNt—N-+j
JiSppy A0

(maxt1 = a0 = 1)+ 2 2 ot = ) [t =5

Proof. In the case S, = Q(b’,p'), there is nothing to prove. Suppose that ¢(b) <s,

n’

S’ # Qb ,p), and p € R?, the other non-trivial case where ¢(b’) > s and p € R

n

being analogous. It follows from (29) that, for allj € 1, ..., N,
e, ") = 5= @(b] +vjoh) — s
= @b, +h) — s = @(b}) + Vo)) h" — s+ R||[h.
= (b)) +das — g(b)) = s+ R|[h |2
112
= (ad — 1)(s — @(b)) + R|[h||..

o

Recalling that 9,¢(x) > r, k € D, we also have |[h) [l = oz/r{go(b;) — s|7 which gives
N R
oY M) — 5 < o) — | ((ad -+ azﬁ le(b) — s|>. (32)

Note that (v; Oh;)k = pi implies Si:'rlNH = (). Hence, for all j with SLVJ:NJ“" # 0, we
have v;oh] = v;oh!". Thus,

e Ny — g = @b} +v;ohl) —s

n+1
= (b)) + Ve(bl) (v;ohl) — s = R||v;oht’|
= @(b}) — s + a#v(s — eb")) — R(a/r)*(¢(bl) — 5)°.

As#v; =1, forallj=1, ... N, we finally get
Nt—N-+j t 2 R t
@b, ) —s=—leb,) —sl( 1 —at+a ﬁlso(bn) — sl ). (33)

Combining (32) and (33) yields (31). O
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Proof. [Proof of Theorem 7.1] First of all, note that h!, € H(p!,), hence h!, is correctly
defined. Due to Lemma 7.2, and recalling that R > 0, we have that
Dyyi = lréllegllgo(bﬁﬂ) — sl

Nth-&-j) _ s‘

=max max ’go(bn +

tel, Jt NL*INH#Q
R
= max<max{1 —a,ad — 1} + a2—2 ’(p(b;) — s|) |<p(b;) — s‘
(€1, r
» R
= (max{l —a,ad — 1} + a” =D, | D,.
r
Now, we are ready to prove convergence of the gradient method.

THEOREM 7.3. Assume that ¢ € A and fix @ € (1/d, 1). For some i € N and ¢ € (0, 1),
assume that

R
max{l—a,ad—1}+a2r—20;,=1—§<1. (34)

For all n = n, let the sequence h; be defined as (29). Then, we have that lim,,—.D, = 0
and indeed

D, = 0((max{l —a,ad — 1})").
Proof. Using (34) and (30) iteratively, we obtain that D, = (1 — f)”fﬁD;, for all n = n.
Hence, lim,—.D, = 0 and

. Dy
im

n—00

R
= lim(max{l —a,ad — 1} +a22Dn) =max{l —a,ad — 1}.
n n—oo r

Condition (34), which guarantees the convergence of the gradient method with a twice
differentiable function ¢, can always be achieved using the bisection method for the first
iterations of the algorithm. In fact, if one defines h!, using (27), the sequence D,, will go to
zero (Theorem 6.1) and will satisfy (34) for some integer 7 large enough. From that 7 on,
one can then use the gradient method with convergence guaranteed.

Finally, observe that o =2/(d+ 1) minimizes max{l — a,ad — 1} with
max{l —a*,a’d — 1} = (d — 1)/(d + 1). Thus, the rate

d—1\"
D,=0|(|—— 35
<(d + 1> > 4
is the best possible rate attainable using (29).

8. Applications

In this section, we test the GAEP algorithm on some random vectors X = (X1, ..., Xy)
and several functions ¢. For illustrative reasons, we provide the joint distribution H of X in
terms of the marginal distributions Fy,, i =1, ...,d, and a copula C. For the theory of
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copulas and the definition of the Gumbel and Clayton copula families, we refer the reader
to Ref. [3].
In Table 1, we consider the 2D case (d = 2) with the Pareto marginals, i.e.

Fx(=PX;=x]=1—-(1+x) "% x=0,i=1,2,

with tail parameters 6; = 1 and 6, = 2. We couple these Pareto marginals via a Gumbel
copula Cg“ with a parameter y = 1.5. For this example, we compute the approximation P,
(see (20)) using both the bisection and the gradient methods, for different values of the
thresholds s and different numbers of iterations n of the algorithm. Here, we set
o(xy,x) = (1 +x)?*(1 +x)'/ — 1. For the gradient method, we provide the
differences P, — P1¢ and their average computation times, for all iterations n and
thresholds s. This has been done to show the speed of convergence of GAEP. The choice of
n = 16 represents the maximum number of GAEP iterations allowed by the memory (4
GB RAM) of our laptop under the gradient method. Within the same table, we give the
differences P, — Pjg, but by using the bisection method. Again, n = 18 is the maximum
number of GAEP iterations under the bisection method. Note that these numbers are
different because the number of quasi-simplexes produced at each iteration of GAEP and,
consequently, the memory used by the algorithm depend on the method chosen. In Table 1,
we also compute the ratio

R __ D (36)
s —e0)

Since, from Lemma 5.3, we have

e(X) — ¢(0)

— N < —
Py = Vu[S]]| =P|1 -R, < = 0)

§1+Rn7

the sequence R, provides a relative measure of convergence of the algorithm. Indeed, the
convergence of R, to 0 implies that the algorithm converges to a certain value. Note that,
since analytical values for Vg[S {] are not available for this example, nothing can be said
about the correctness of the limit. However, for a 2D portfolio, we see that the estimate Py
(for the gradient method) and P;3 (bisection) could be already considered reasonably
accurate and are both obtained in less than 0.1 s.

In Tables 2 (d = 3) to 4 (d = 5), we perform the same analysis for different Gumbel
and Clayton models in which we progressively increase the number of Pareto random
variables used, and we also change the function ¢. In all tables, the reference values used
represent the maximum number of iterations admissible under the corresponding method.

In all examples, the sequences R, and D, are decreasing to 0, indicating convergence
of GAEP. A deeper study of the convergence rates of GAEP will be carried out in
Section 9. At this stage, we only note that for d = 2, the gradient method, measured in
terms of R, is more accurate than the bisection method, whereas for d = 4, 5, the opposite
is the case. Memory constraints made estimates for d = 6 prohibitive.

9. Convergence rates and comparison with MC and QMC methods

In this section, we compare the GAEP algorithm to its main competitors for the estimation
of Vyl[S %], which are the so-called Monte Carlo and quasi-Monte Carlo methods.
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Given M points X, ...,X) in S!, it is possible to approximate V[S i] by the average
of the density function vy of H evaluated at those points, i.e.

M

1
ValS! = L: X =~ V(SH 2> vi(x),

i=1

where V(S i) is the Lebesgue measure of S l If x;’s are chosen to be (pseudo)randomly
distributed, this is the Monte Carlo (MC) method. If x;’s are generated from the so-called
low discrepancy sequence (see [4]), this is the quasi-Monte Carlo (QMC) method. The
main features of (Q)MC methods (their convergence rates included) do not depend on the
function ¢. We refer to [1] for references and a more detailed discussion on both methods.

Unfortunately, we were not able to find a convergence rate for the sequence P,, which
would be necessary to compare GAEP to (Q)MC methods. However, it is possible to
calculate bounds on convergence rates for D,, which, assuming that the random variable
¢(X) has a density near s and has the same asymptotic behaviour of P,. Indeed, because of
Lemma 5.3, we have that

|P, — VuIS{l = Pls — D, < ¢(X) = s + D,] = O(D,).

The total number M (n) of evaluations of the joint distribution H performed by GAEP
after the nth iteration (as well as the computation time used) is proportional to the number
of simplexes needed to calculate P,,. Since the number I,, of quasi-simplexes passed to the
nth iteration is bounded by N = 24 we have that

M(n) < BN™,

where B is a constant depending only on the dimension d.

From (35), we know that D, = 0(((d -1/ + 1))”) is the best convergence rate
attainable with GAEP, when the gradient method is used. Analogously, from Theorem 6.1,
we know that D, = O(2") for the bisection method. By expressing the convergence rates
for D, in terms of M(n), we find that

— m In (4}), for the gradient method,

D, = O(M(n)"), = L 37
(M(n)") “ —1/d, for the bisection method. 7

Since, in general, we do not know the exact number of simplexes passed to the next
iteration by GAEP, the rates provided by (37) represent only an upper bound on the real
convergence rates of the GAEP algorithm. As a matter of fact, the convergence rates
encountered in many numerical examples turned out to be much better than those
predicted by (37).

In Figure 6, we plot absolute errors |P, — Vg[S i]l vs. computation time, for random
vectors with independent marginals and functions ¢ for which VH[S{] is available
analytically. We use linear least squares fitting on these curves in order to calculate the so-
called empirical convergence rates for the algorithm. Here, computation time (which is
proportional to M(n)) is used as a measure of numerical complexity. These results are
collected and presented in Table 5, where the empirical convergence rates obtained from
Figure 6, as well as the bounds obtained from (37), are compared with convergence rates
for the MC and QMC methods.
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Figure 6. Errors |P, — V[S(0,3)]] from the GAEP algorithm for random vectors of different
dimensions having independent Pareto marginals with tail indexes 6; = i,i = 2, ..., 5. GAEP errors
are plotted vs. computation time, for the function ¢(x) = Hi:l(xk +1).

From Table 5, it is clear that the gradient method is to be preferred for 2D vectors. This
is consistent with the results illustrated in Table 1. In higher dimensions, the situation is
not so clear. Upper bounds on the convergence rate suggest that the bisection method, in
dimension d = 4,5, is slightly more competitive than the gradient, as confirmed by the
results in Tables 3 and 4. However, Table 5 (and the corresponding empirical rates)
indicates that the gradient rule can be better, computationally, also in higher dimensions.
Here, it is important to remark that exact convergence rates for P, are not available, and
(empirical) convergence rates for the two methods depend on the probability model under
study.

With respect to (QQMC methods, the figures indicate that a well-designed QMC
algorithm will perform better, asymptotically, than GAEP under a smooth probability
model and for dimensions d = 3. At this point, it is, however, important to stress that
GAEP and (Q)MC methods are substantially different. First of all, (Q)MC methods provide
a final estimate which contains a source of randomness, while the GAEP algorithm, being
solely based on geometric properties of a certain domain, is purely deterministic. This can
be seen from the data in Table 6 in which we compare GAEP and MC estimates using two
examples.

Also recall that (QQMC methods need either a density (everywhere on S {) or a
sampling algorithm for the distribution function of X. Instead of this, the GAEP algorithm
does not require the density of H in analytic form, nor does it have to assume overall
smoothness. In order to use GAEP, one only needs that H can be evaluated numerically
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Table 5. Asymptotic convergence rates of GAEP, g (gradient), b (bisection), MC, and QMC
methods. Here, we use the simplified notation M = M(n). The rates calculated with least squares
fitting are denoted with ‘emp.’

d=2 d=3 d=4 d=5
GAEP, g. (bound) M 07 M 033 M 018 M 012
GAEP, g. (emp.) M~218 M 074 M 040 M 026
GAEP, b. (bound) M 03 M~03 M0 M02
GAEP, b. (emp.) M L6z M 0T4 M 040 M 028
MC M—O.S M—O.S M—O.S M—O.S
QMC (best) M1 M! M M
QMC (worst) M~ '(log M) M ~(logM)? M~ (log M)* M~ '(log M)’

Note: For (QQMC methods, M is the number of samples used.

and that ¢ € N. Furthermore, (Q)MC methods need to be tailored to the specific example
under study, their accuracy being generally lost when the density vy is not smooth or when
¢(X) has infinite first or second moments. In these cases, relative errors increase for
(Q)MC for s tending to infinity. Contrary to this, GAEP does not need any adaptation to the
probabilistic model under study, nor it is influenced by the heaviness of the marginal
distributions used. Moreover, in Section 11, we will present another method for the 3D
case, which seems to be competitive with respect to QMC.

10. GAEP vs. AEP

The GAEP algorithm is similar to the AEP algorithm introduced by the same authors in [1]
for the sum operator, but cannot be seen as an extension of AEP. In the case
o(x) = ZZ:H% the geometrical decompositions of the set

S%:{xe[Rd:0<x and x; + ... +x;, = s},

used by AEP and GAEP (gradient method), are equivalent for d = 2, 3, but different for
d = 4. AEP decomposes S } in a countable family of overlapping simplexes, whereas the
(quasi)simplexes produced by GAEP are always disjoint. The decomposition used by AEP
has the advantage that all the simplexes generated by the algorithm are scaled copies of the
simplexes from which they have been generated. On the other hand, using overlapping
simplexes implies a larger numerical complexity, particularly in high dimensions, and a
much more cumbersome proof of convergence. Indeed, the problem of convergence of
AEP in dimensions d = 9 is still open.

This is different with GAEP, which uses disjoint simplexes, and is more efficient than
AEP for ¢(x) = ZZ:] x; in dimensions d = 4. Moreover, convergence (under some
smoothness of ¢) is easily stated in arbitrary dimensions. Unfortunately, the disjoint
(quasi)simplexes produced by GAEP can be ‘cut off” at the edges. This does not allow the
use of the extrapolation technique described in [1], (Section 5). This is the reason why the
AEP algorithm, in its extrapolated version (AEP-E), turns out to be better than GAEP for
the sum operator, in all dimensions.

In Figure 7, we plot the error committed by AEP, AEP-E (see (43) below) and GAEP
(gradient method) vs. computation time, when the three algorithms are applied to random
vectors of different dimensions for the function ¢(x) = E?Zl x;. In these examples, the
value Vg[S }] is available analytically. Again, note that AEP and GAEP are equivalent in
dimensions d = 2 and d = 3. As already remarked, GAEP is more efficient than standard
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Table 6. GAEP (bisection) and MC estimates for Vg [S}] for the example described in (a) Table 2
and (b) Table 3.

(a) GAEP estimate MC estimate MC SE
s (n=12,615) (M = 5e07, 645)

10° 0.416123502687784 0.41614132 6.97¢-05
10? 0.860937621800580 0.86099074 4.89e-05
10* 0.975466112029285 0.97545864 2.19¢-05
10° 0.996034158165874 0.99603776 8.88e-06
(b) GAEP estimate MC estimate MC SE
s (n=28,415s) (M = 4e07, 47 )

1072 0.000729352448762 0.000715050 4.22e-06
10° 0.174626428280207 0.172616075 5.98e-05
10? 0.989734882116519 0.989638175 1.60e-05
10* 0.999899605726889 0.999899550 1.58e-06

AEP in dimensions d = 4 due to the use of a disjoint decomposition. However, AEP-E
turns out to be the best algorithm to be used with the sum operator, in all dimensions d.

In order to better clarify the difference between AEP and GAEP, we want to
decompose the simplex {x ER?:0 =x = p, ¢(x) = s} C R*, where 0 =h =< p and
o(h) <s. In the case of a general function ¢ € N, an overlapping decomposition,
analogous to the one used by AEP, can be carried out, leading to

Vul{x: 0 =x=p, o(x) = s}] =Vu[Q(0,h)]
+ Vul{x:(0,h) = x=p, ¢(x) = s}]
+ Vul{x: (h,0) = x = p, ¢(x) = s}]
—Vul{x:h=x=p, o(x) = s}].

(38)

For the same simplex, the disjoint decomposition used by GAEP gives, instead,

Val{x: 0 =x =p, o(x) = s}] =Vy[Q(0,h)]
+ Val{x: (0,/n) = x = (hy, ), ¢(x) = 5}]
+ Val{x: (h1,0) = X = (p2, hy), ¢(X) = 5}]
+Vul{x:h=x=p, ox) = s}]. (39

The two decompositions are illustrated in Figure 8.

In conclusion, the AEP-E algorithm is to be used with sum operator, while, for a
general function ¢, GAEP will perform better. The problem of finding a technique
analogous to extrapolation, and working with a general functional ¢, will be addressed in
future research.

11.  An alternative choice of h!, ford = 3

The (speed of) convergence of GAEP heavily depends on the choice of { h;, t €1,} ateach
iteration of the algorithm. In this paper, we have presented two different ways of choosing
this sequence: the bisection and the gradient methods. For both these methods, we have
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Figure 7. Errors |P, — V[S(0, 10)]| from the AEP, AEP-E and GAEP (gradient) algorithms for
random vectors of different dimensions having independent Gamma marginals with scale parameter
1 and shape parameters 0.5 + 0.5, i =1, ...,5. GAEP errors are plotted vs. computation time for
the sum operator @(x) = E?: L Xi.

derived their mathematical properties, including convergence rates. Of course, we are
aware that a different choice of the sequence h), may provide better results on a particular
model. As an example of a possible improvement of GAEP, we present an alternative
approach, which, in numerical examples, yields extraordinarily fast convergence for 3D
vectors. Thus, throughout this section, fix d =3 and, for all n € N and ¢ € 1,,, let the
sequence h’ be defined as

P if S, =Q(bj,p)),

h =
n d(b!), otherwise,

(40
where @ : R* - R* U Ri is the function that maps b € R’ to the unique vector h €
R’ U [R?fr satisfying

@(b+ho(1,1,0)) = ¢(b+he(1,0,1)) = ¢(b+he(0,1,1)) =s. 41)
Note that, for a fixed b, existence and uniqueness of a vectorh € R* U [F\Efr satisfying (42)

follow from the definition of the set V. Moreover, we also have h; € H(p,), foralln € N
and r € I,,. Hence, ® is well defined.
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Figure 8. An illustration of the two decompositions (38) and (39).

LEMMA 11.1. Let d = 3 and assume that ¢ € N. Then, the sequence h;, as defined by (40)
and (41), satisfies h!, € H(p’) for all n € N and 1 € I,.

Proof. Using induction on n, it is possible to show that, for all n € N, we have
go(b; + pfloek) =g for all t€1, and k=1,2,3. 42)

Equation (42) is illustrated in Figure 9. Recalling that bﬁl =0, (42) follows, for n = 1, from
the definition (4) of p}. Now assume that (42) is true for some n and choose an arbitrary
t € I,,. First of all, it is easy to see, using (18) and (19), that the quasi-simplexes Si:lgﬂ,
j=175,...,8, are empty. Therefore, it is sufficient to show that

@Y VT 4 pY N oe) =5 for j=1,...,4 and k=1,2,3.

Nt—N+1 +

For j=1 (the proofs in the other cases are analogous), we have that ¢(b)

YV oer) = (b, + b, — I, oe;) and
@(bl, +h,o(0,1,1)), if k=1,

o’ +h! —hoey) = @b, +h,(1,0,1), if k=2,
@(b§1+h;°(l,170)), if k=3.

The induction step then follows from (41).

Suppose now that, for a certain n and ¢ € I,,, (42) is satisfied with p’, = 0. Since ¢ is
strictly increasing, for any vector x with at least one coordinate, say the first, larger than p’,
we have that

@(b, +x°(1,1,0)) = (b, +x°(1,0,0)) > (b, + p},°(1,0,0)) = s.

Since, by (40), @(b’, +h! o (1, 1,0)) = s, we must have that h!, =< p’. Analogously, if (42)
is satisfied with p/ = 0, we get h!, = p/, and, finally, h}, € H(p!). O

Choosing the sequence h!, according to (40) has several advantages. First of all, it
reduces numerical complexity of GAEP, since (see the proof of Lemma 11.1)

SYTIT = SYISTO = SV = SYTE = for all nEN and t €1,
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:3}

Figure 9. Decomposition (12) of the 3D simplex S{ = S5(0, p{) for the h{ satistfying (41).

As illustrated in Figure 9, the maximum number of new simplexes generated by the
decomposition (12) is then reduced from 8 to 4, as, for some n € N and ¢ € I,,, we have
VilS1] = ValQr] = VIS 4 Vi lSIR ]+ ValSIE ] + vl
On the other hand, solving (41) requires numerical root finding algorithms, which can be
time-consuming depending on the function ¢. However, for a polynomial ¢, the use of
Newton’s method combined with an initial guess obtained from (29) proved to be
extremely fast. Indeed, it is possible to show that, when b’ approaches the curve
{x:@(x)=1s}, the sequence h!, as defined in (40), goes to the sequence (29)

characterizing the gradient method.

In [1], the authors introduce two sequences of estimators for Vg [S ] in the case of the
sum operator ¢(x) = Z w1 X- The first sequence, P,, is the standard AEP estimator. The
second sequence, the so-called AEP-E(xtrapolated) estimator P;, is defined as

. d+1)7%
Py=py+ S Z#vH Q). (43)

converges significantly faster to VH[S}] than P,. The idea behind AEP-E is that the
simplexes generated by AEP become smaller and smaller at each iteration, so that a
smooth probability distribution H can be approximated by its Taylor expansion.

Using the same philosophy, (43) can be used with the GAEP estimator in the case
d = 3. Thus, we define the GAEP-E estimator as

In
Py =Pooy +4/3) 7 VulQ],
=1

where P, is now the sequence defined in (20) and the sequence h!, as defined in (41).
Unfortunately, we were not able to find theoretical results for the GAEP E estimator for
a general function ¢. However, in numerical examples, we found P, to be significantly
more accurate and faster than P,,. Figure 10 gives an illustration of this improvement on
a specific example, where the value Vg[S }] is available analytically. Empirical
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Figure 10. Errors |P, — Vg[S(0, 100)]| from the GAEP (gradient method and alternative approach

as defined in (40)) and GAEP-E algorithm for a random vector having d = 3 independent Pareto

marginals with tail indexes 6; = i, i = 1,2,3. GAEP errors are plotted vs. computation time, for the
. 3

function @(x) = [[;—; (xx + D).

convergence rates ]P; — VulS i]| = O(M(n)*) found in examples for the GAEP-E vary
from k = —2 to — 1.6, thus making GAEP-E more than competitive with respect to
QMC methods.

Unfortunately, we were not able to find the improvements in accuracy provided by the
GAEP-E estimator P, in any other dimension than d = 3.

12. Final remarks

In this paper, we have introduced the GAEP algorithm in order to numerically compute the
distribution function of a function ¢(X) of a d-dimensional random vector X with given
joint distribution function H. The algorithm is mainly based on two assumptions: the
marginal components of X have to bounded from below, and ¢ has to be strictly increasing
in each coordinate. If the vector X is absolutely continuous, and ¢ is also twice
differentiable, the convergence of the algorithm is guaranteed in arbitrary dimensions,
even if its numerical complexity limits any application to dimensions d = 5.

The convergence (rate) of GAEP depends heavily on the method adopted to define the
sequence P, of estimators converging to the value P[¢(X) = s]. In this paper, we have
proposed three different methods, which are (very) effective for different dimensions d:
the gradient (for d = 2), the bisection (d = 4), and the GAEP-extrapolated rule (d = 3).
Summarizing all the results presented in the paper, we can say that the GAEP algorithm is
better than its competitors, mainly MC and QMC methods, for dimensions d = 3. The
GAEP algorithm behaves slightly worse in dimension d = 4,5. We remark again that,
contrary to (QQMC-methods, the GAEP algorithm is deterministic and does not need any
adaptation to the probabilistic model under study.

An improvement of the GAEP convergence rates in dimensions d = 4 needs an
extension of the extrapolation technique introduced in [1] to general aggregating
functionals ¢. Alternative methods for the choice of the vectors {h/,r € I,}, more
efficient than those described in this paper, may also be possible. We propose to address
these problems in future research.



Downloaded by [ETH Zurich] at 03:30 13 December 2011

Stochastics: An International Journal of Probability and Stochastic Processes 29

Acknowledgements

The authors thank Guus Balkema for some useful comments on a previous version of this paper.
Philipp Arbenz, as SCOR Fellow, thanks SCOR Switzerland for the financial support. Paul
Embrechts, as Senior SFI Professor, acknowledges the support from the Swiss Finance Institute.
Giovanni Puccetti would like to thank RiskLab and the Forschungsinstitut fiir Mathematik (FIM) of
the Department of Mathematics, ETH Zurich, for the financial support.

References

[1] P. Arbenz, P. Embrechts, and G. Puccetti, The AEP algorithm for the fast computation of the
distribution of the sum of dependent random variables, preprint (2011), forthcoming in
Bernoulli.

[2] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability,
Cambridge University Press, Cambridge, 1995.

[3] R.B. Nelsen, An Introduction to Copulas, 2nd ed., Springer, New York, 2006.

[4] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, Society for
Industrial Mathematics, Philadelphia, PA, 1992.



