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Abstract The problem of finding the worst-possible Value-at-Risk (VaR) for a non-
decreasing function of a vector of n dependent risks is solved when n = 2 or a lower
bound on the copula of the portfolio is provided. In this paper we correct the statement
and the proof of this result, given in Embrechts, Höing, and Juri (2003). The problem
gets much more complicated in arbitrary dimensions when no information on the struc-
ture of dependence of the random vector is available. In this case we provide a bound
on the VaR for the sum of risks which we prove to be better than the one generally used
in literature.
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1 Introduction
Consider a n-valued real function ψ and a random vector X := (X1, . . . , Xn). In this
paper we study the problem of finding the best-possible lower bound on the distribu-
tion function (df) of ψ(X) when the marginal distributions of the individual risks Xi

are given and the structure of dependence of X is partially or completely unknown.
Equivalently stated, we search for the worst-possible Value-at-Risk (VaR) for the ran-
dom variable ψ(X). This problem has a long history. Makarov (1981), in response
to a question formulated by A.N. Kolmogorov, provided the first result for n = 2 and
ψ = +, the sum operator. Some years later Frank, Nelsen, and Schweizer (1987)
restated Makarov’s result, using the well-known formulation of the problem based
on copulas. Independently from this geometric approach, Rüschendorf (1982) gave
a much more elegant proof of the same theorem using a dual result proved for a more
general purpose. The dual approach of Rüschendorf was related to a much earlier issue,
dating back to 1871: the so-called Monge-Kantorovich mass-transportation problem;
in particular he solved a special case of its Kantorovich version. A complete analy-
sis of this kind of problems is given in Rachev and Rüschendorf (1998). The use of
dependence information to tighten the bound on the df of a two-dimensional portfolio
firstly appeared in Williamson and Downs (1990), where sharpness was proved for non-
decreasing functionals. Denuit, Genest, and Marceau (1999) extended the bound for
the sum to arbitrary dimensions and provided some applications. Finally Embrechts,
Höing, and Juri (2003) gave the most general theorem till now, stating sharpness of
the bound in the presence of information for a larger class of functions ψ. The latter
paper however contains a gap in the main proof; in our paper, we revisit the proof and
correct the statement of their main result. While the problem can be considered fully
solved if a lower bound on the copula of the vector X is available, the search for the
worst-possible VaR is still open in the no-information scenario for n > 2, even for the
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case of the sum. In this case, a bound for the df of the sum of risks can be obtained
by the previously cited theorems, but it fails to be sharp whenever n > 2. Exploiting
the dual result of Rüschendorf we give a better bound which, though not proved to be
sharp, improves considerably the previous estimate of the VaR of a sum for identically
distributed risks. Some applications of our result are provided to prove the usefulness
of the new estimate for actuarial/financial applications. A full solution of the general
problem seems still out of reach.

1.1 Notation
We first fix some notation. The inverse of a non-decreasing function ψ : R→ R is the
function ψ−1 : R→ R;

ψ−1(y) := inf{x ∈ R|ψ(x) ≥ y}.

Given a vector x = (x1, . . . , xn) ∈ Rn we write

x−i := (x1, . . . , xi−1, xi+1, . . . , xn)

to indicate the (n − 1)-valued vector obtained from x by deleting the i-th component.
The indicator function of the set B ⊂ R is the function 1B : R→ R;

1B(b) :=

{
1 if b ∈ B;
0 otherwise.

Finally, for k (possibly identical) real numbers s1, . . . , sk, we define U{s1,...,sk} : R→
R;

U{s1,...,sk}(s) :=
1

k

k∑

i=1

1[si,+∞)(s)

the probability measure uniformly distributed on {s1, . . . , sk}.

2 Definitions and preliminaries
In this section we introduce the main mathematical problem and recall some well-
known concepts about copulas.

2.1 Copulas as dependence structures
LetX1, . . . , Xn be n real-valued random variables on some probability space (Ω,A,P),
with given dfs Fi(x) = P[Xi ≤ x], i = 1, . . . , n. The random vector X := (X1, . . . ,
Xn) can be seen as a portfolio of one-period financial or insurance risks. For some
function ψ : Rn → R, we consider the problem of bounding the VaR for the financial
position ψ(X), over the class of possible dfs for X having fixed marginals.

Definition 2.1. For α ∈ [0, 1], the Value-at-Risk at probability level α of a random
variable S is its α-quantile, defined as

VaRα(S) := G−1(α)

where G is the df of S.
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Instead of operating directly with the VaR, we can equivalently search for

mψ(s) := inf{P[ψ(X) < s] : Xi v Fi, i = 1, . . . , n}. (2.1)

Indeed, according to Definition 2.1, we have

VaRα(ψ(X)) ≤ m−1
ψ (α), α ∈ [0, 1]. (2.2)

Of course every quantile of ψ(X) can be computed once the df F (x1, . . . , xn) =
P[X1 ≤ x1, . . . , Xn ≤ xn] is known. The latter is uniquely defined through the
marginal dfs and their interdependence. The tool for modelling these dependencies is
offered by the concept of copula.

Definition 2.2. A copula is any function C : [0, 1]n → [0, 1] which has the following
three properties:

(i) C is non-decreasing in each argument.

(ii) C(1, . . . , 1, ui, 1, . . . , 1) = ui for all ui ∈ [0, 1], i = 1, . . . , n.

(iii) C is n-increasing, i.e. for all a = (a1, . . . , an), b = (b1, . . . , bn) ∈ [0, 1]n with
ai ≤ bi, i = 1, . . . , n we have

2∑

j1=1

· · ·
2∑

jn=1

(−1)j1+···+jnC(u1j1 , . . . , unjn) ≥ 0,

where ui1 = ai, ui2 = bi, i = 1, . . . , n.

It is equivalent to say that a copula is a n-dimensional df restricted to [0, 1]n having
standard uniform marginals. It easily follows that given a copula C and a set of n
univariate marginals F1, . . . , Fn one can always define a df F on Rn having these
marginals by

F (x1, . . . , xn) := C(F1(x1), . . . , Fn(xn)). (2.3)

Sklar’s theorem (see Theorem 1 in Sklar (1973) ) states conversely that we can always
find a copula C coupling the marginals of a fixed df F trough (2.3). For continuous
marginal dfs, this copula is unique. In our set-up it is convenient to identify the df F of
X with the copula C merging the given marginals into the df C(F1(x1), . . . , Fn(xn)).
Denote by µC the corresponding probability measure on Rn and define:

σC,ψ(F1, . . . , Fn)(s) : =

∫

{ψ<s}
dC(F1(x1), . . . , Fn(xn))

= µC [ψ(X) < s],

(2.4)

τC,ψ(F1, . . . , Fn)(s) : = sup
x1,...,xn−1∈R

C(F1(x1), . . . ,

Fn−1(xn−1), F−n (ψx̂−n(s))),
(2.5)

where ψx̂−n(s) := sup{xn ∈ R : ψ(x−n, xn) < s} for fixed x−n ∈ Rn−1.
By the above discussion, problem (2.1) can be equivalently expressed as

mψ(s) = inf{σC,ψ(F1, . . . , Fn)(s) : C ∈ Cn} (2.6)

where Cn denotes the set of all n-dimensional copulas.
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2.2 Dependency information
If we don’t have the perfect knowledge of the copula C coupling the fixed marginal
dfs of the portfolio X , the quantiles of ψ(X) cannot be determined exactly and prob-
lem (2.6) arises. However, it can be the case that partial information regarding C is
known.

Given two copulas C1 and C2, we say that C1 ≥ (resp. ≤) C2 if and only if
C1(u) ≥ (resp. ≤) C2(u) for all u ∈ [0, 1]n. Using the properties of a copula it can
be easily shown that any copula C lies between the so-called lower and upper Fréchet
bounds W,M : [0, 1]n → [0, 1];

W (u1, u2, . . . , un) : = (
n∑

i=1

ui − n+ 1)+,

M(u1, u2, . . . , un) : = min{u1, . . . , un},

namely
W ≤ C ≤M.

A third copula of interest is the product copula Π : [0, 1]n → [0, 1]; Π(u) :=
∏n
i=1 ui

which represents independence among coupled random variables.
The copula of a df F contains all the dependency information of F , hence putting

a lower bound on the copula C of the portfolio can be interpreted as having partial
information regarding its dependence structure. For instance, assuming that C ≥ M
directly characterizes the risks of our portfolio as comonotonic, i.e. as being increasing
functions of a common random variable. See Dhaene, Denuit, Goovaerts, Kaas, and
Vyncle (2001) for more details on comonotonicity. Moreover, assuming that C ≥ Π
identifies the risks as positive lower orthant dependent (PLOD).

If we assume that a lower bound on C is known, we can reduce our search to

mCL,ψ(s) : = inf{σC,ψ(F1, . . . , Fn)(s) : C ≥ CL}
= inf{P[ψ(X) < t] : Xi v Fi, i = 1, . . . , n, F ≥ CL(F1, . . . , Fn)}.

(2.7)

Note that mW,ψ(t) = mψ(t): saying that C ≥ W corresponds to the situation in
which we are completely ignorant about the dependence structure of the random vector
X . Obviously, mCL,ψ(t) ≥ mψ(t) but we warn the reader that the last inequality
is often strict even for a non-decreasing function ψ. Due to the fact that ≥ is not a
complete ordering on Cn, letting C ≥ CL is not necessarily a prudent assumption. In
fact, for any CL 6= W , we get rid of all copulas which are not comparable to CL with
respect to ≥. By doing so we possibly exclude the riskiest copula, i.e. the one possibly
solving (2.6). Roughly speaking, if we limit our attention to copulas greater than a
given one, let say Π, we are not in general restricting to riskier portfolios.

Finally note that, contrary to M , W is not a copula for n > 2: this fact will play a
fundamental role in the next sections.

3 Main result with partial information
When partial information on the copula of a vector X is known, it is easy to find a
general lower bound on σC,ψ(F1, . . . , Fn)(s).
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Theorem 3.1. Let X = (X1, . . . , Xn) be a random vector on Rn (n > 1) having
marginal distribution functions F1, . . . , Fn and copula C. Assume that there exists a
copula CL such that C ≥ CL. If ψ : Rn → R is non-decreasing in each coordinate,
then for every real s we have

σC,ψ(F1, . . . , Fn)(s) ≥ τCL,ψ(F1, . . . , Fn)(s). (3.1)

Proof. First observe that for arbitrary x ∈ Rn, the uniform continuity of a copula C
implies that

µC [X1 ≤ x1, . . . , Xn−1 ≤ xn−1, Xn < xn]

= µC [∪k∈N{X1 ≤ x1, . . . , Xn−1 ≤ xn−1, Xn ≤ xn −
1

k
}]

= lim
k→∞

µC [X1 ≤ x1, . . . , Xn−1 ≤ xn−1, Xn ≤ xn −
1

k
]

= lim
k→∞

C(F1(u1), . . . , Fn−1(xn−1), Fn(un −
1

k
))

= C(F1(u1), . . . , Fn−1(xn−1), lim
k→∞

Fn(un −
1

k
))

= C(F1(u1), . . . , Fn−1(xn−1), F−n (un)).

Now fix (x̄1, . . . , x̄n−1) ∈ Rn−1 and assume that x̄n := ψ̂̄x−n(s) is finite. Then

{X1 ≤ x̄1, . . . , Xn−1 ≤ x̄n−1, Xn < x̄n} ⊂ {ψ(X) < s}
and hence

µC [ψ(X) < s] ≥µC [X1 ≤ x̄1, . . .Xn−1 ≤ x̄n−1, Xn < x̄n]

=C(F1(x̄1), . . . , Fn−1(x̄n−1), F−n (x̄n))

≥CL(F1(x̄1), . . . , Fn−1(x̄n−1), F−n (ψ̂̄x−n(s))).

If x̄n = +∞, then ψ(x̄−n, xn) < s for all xn ∈ R, and hence

µC [ψ(X) < s] ≥µC [X1 ≤ x̄1, . . . , Xn−1 ≤ x̄n−1, Xn ∈ R]

=C(F1(x̄1), . . . , Fn−1(x̄n−1), 1)

≥CL(F1(x̄1), . . . , Fn−1(x̄n−1), F−n (+∞)).

Analogously, if x̄n = −∞ then ψ(x̄−n, xn) ≥ s for all xn ∈ R, so that

µC [ψ(X) < s] ≥ 0 = CL(F1(x̄1), . . . , Fn−1(x̄n−1), 0)

= CL(F1(x̄1), . . . , Fn−1(x̄n−1), F−n (−∞)).

The theorem follows by taking the supremum over all (x̄1, . . . , x̄n−1) ∈ Rn−1.

We now prove that, if a non-trivial lower bound on C is assumed, then there will
always be a copula attaining bound (3.1), i.e. that bound cannot be tightened.

Theorem 3.2. In the hypotheses of Theorem 3.1 assume ψ is also right-continuous in
its last argument. Define the copula Ct : [0, 1]n → [0, 1];

Ct(u) :=

{
max{t, CL(u)} if u = (u1, . . . , un) ∈ [t, 1]n;
min{u1, . . . , un}, otherwise,

where t = τCL,ψ(F1, . . . , Fn)(s). Then this copula attains bound (3.1), i.e.

σCt,ψ(F1, . . . , Fn)(s) = t. (3.2)
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Proof. We prove the theorem in two steps; first we show that the above definition
makes sense.

Lemma 3.1. The function Ct is a copula.

Proof. Properties (i) and (ii) of Definition 2.2 are trivially satisfied by Ct. It therefore
remains to show that Ct is n-increasing on its domain.
If we take a = (a1, . . . , an), b = (b1, . . . , bn) arbitrary vectors in [0, 1]n, with ai ≤
bi, i ∈ N := {1, . . . , n}, we have to show that

2∑

j1=1

· · ·
2∑

jn=1

(−1)j1+···+jnCt(u1j1 , . . . , unjn) ≥ 0, (3.3)

where ui1 = ai, ui2 = bi for all i ∈ N . If Fi(ai) ≥ t for all i ∈ N , then Ct(u) =
CL(u) for every u ∈ ∏n

i=1[ai, bi] and (3.3) follows from n-increasingness ofCL. Note
that we can always find a permutation σ : N → N and an m ∈ N such that

Fσ(1)(aσ(1)) ≤ · · · ≤ Fσ(m)(aσ(m)) < t ≤ Fσ(m+1)(aσ(m+1)) ≤ . . .
≤ Fσ(n)(aσ(n)).

Changing the order of summation, (3.3) can be rewritten as

2∑

jσ(1)=1

· · ·
2∑

jσ(n)=1

(−1)j1+···+jnCt(u1j1 , . . . , unjn) ≥ 0.

In the following we denote

Ct(u[σ(1)jσ(1)], . . . , u[σ(n)jσ(n)]) := Ct(u1j1 , . . . , unjn),

for ji = 1, 2, i ∈ N . Observe that

Ct(u[σ(1)1], u[σ(2)jσ(2)], . . . , u[σ(n)jσ(n)]) = Fσ(1)(aσ(1)),

for jσ(i) = 1, 2, i = 2, . . . , n. Hence

2∑

jσ(2)=1

· · ·
2∑

jσ(n)=1

(−1)1+jσ(2)+···+jσ(n)Ct(u[σ(1)1],u[σ(2)jσ(2)], . . . ,

u[σ(n)jσ(n)]) = 0,

the last expression being the sum of an even number of terms, all equal in absolute
value but with alternate signs. Analogously we have that

Ct(u[σ(1)2], u[σ(2)1], u[σ(3)jσ(3)] . . . , u[σ(n)jσ(n)])

= min{Fσ(1)(bσ(1)), Fσ(2)(aσ(2))}

for jσ(i) = 1, 2, i = 3, . . . , n, and again

2∑

jσ(3)=1

· · ·
2∑

jσ(n)=1

(−1)1+jσ(3)+···+jσ(n)

× Ct(u[σ(1)2], u[σ(2)1], u[σ(3)jσ(3)], . . . , u[σ(n)jσ(n)]) = 0.
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For k = 1, . . . ,m we can show that

Ct(u[σ(1)2], . . . , u[σ(k−1)2], u[σ(k)1], u[σ(k+1)jσ(k+1)], . . . , u[σ(n)jσ(n)])

= min{Fσ(k)(aσ(k)), min
1≤i≤k−1

Fσ(i)(bσ(i))}

for all jσ(i) = 1, 2, i = k + 1, . . . , n, and again

2∑

jσ(k+1)=1

· · ·
2∑

jσ(n)=1

(−1)1+jσ(k+1)+···+jσ(n)

× Ct(u[σ(1)2], . . . , u[σ(k−1)2], u[σ(k)1], u[σ(k+1)jσ(k+1)], . . . , u[σ(n)jσ(n)]) = 0. (3.4)

By (3.4), (3.3) reduces to

2∑

jσ(m+1)=1

· · ·
2∑

jσ(n)=1

(−1)jσ(m+1)+···+jσ(n)

× Ct(u[σ(1)2], . . . , u[σ(m)2], u[σ(m+1)jσ(m+1)], . . . , u[σ(n)jσ(n)]). (3.5)

If there exists i ∈ {1, . . . ,m} so that Fσ(i)(bσ(i)) < t then, as before, (3.5) is zero
because Fσ(i)(aσ(i)) ≥ t, i = m + 1, . . . , n. If instead Fσ(i)(bσ(i)) ≥ t, for all i =
1, . . . ,m, then Ct = CL on the terms of summation in (3.5) and hence

2∑

jσ(m+1)=1

· · ·
2∑

jσ(n)=1

(−1)jσ(m+1)+···+jσ(n)

× Ct(u[σ(1)2], . . . , u[σ(m)2], u[σ(m+1)jσ(m+1)], . . . , u[σ(n)jσ(n)])

= µCt [Uσ(1) ≤ bσ(1), . . . , Uσ(m) ≤ bσ(m), Uσ(m+1) ∈ [aσ(m+1), bσ(m+1)], . . . ,

Uσ(n) ∈ [aσ(n), bσ(n)]] ≥ 0,

where (U1, . . . , Un) v Ct on [0, 1]n. The Lemma follows from arbitrariness of a and
b.

We now turn to the proof of Theorem 3.2. First note that, since min{x1, . . . , xn}
yields the upper Fréchet bound, Ct ≥ CL. Hence by Theorem 3.1 we have

σCt,ψ(F1, . . . , Fn)(s) ≥ t (3.6)

and it remains to prove the converse inequality. Consider the set

Bs := {x ∈ Rn : ψ(x) < s}.

If t=1, (3.6) leads to σC,ψ(F1, . . . , Fn)(s) = 1 for every copula C ≥ CL. Consider
t ∈ [0, 1) and assume thatBs is non-empty (otherwise σCt,ψ(F1, . . . , Fn)(s) = 0 = t).
For an arbitrary x̃ = (x̃1, . . . , x̃n) ∈ Bs, ψ(x̃) < s and

ψ̂̃x−n(s) = sup{xn ∈ R : ψ(x̃−n, xn) < s} ≥ x̃n.

If ψ̂̃x−n(s) = x̃n, then ψ(x̃−n, x̃n + ε) ≥ s for all ε > 0, and by right-continuity of ψ
in its last argument, we obtain

ψ(x̃) = lim
ε→0

ψ(x̃−n, x̃n + ε) ≥ s;
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this contradicts the fact that x̃ ∈ Bs. Hence ψ̂̃x−n(s) > x̃n and

F−n (ψ̂̃x−n(s)) = µCt [Xn < ψ̂̃x−n(s)] ≥ µCt [Xn ≤ x̃n] = Fn(x̃n),

which leads to

CL(F1(x̃1), . . . , Fn(x̃n)) ≤ CL(F1(x̃1), . . . , F−n (ψ̂̃x−n(s))

≤ sup
x1,...,xn−1∈R

CL(F1(x1), . . . , F−n (ψx̂−n(s))) = t. (3.7)

From the definition of Ct, (3.7) implies that, for any x ∈ Bs,

Ct(F1(x1), . . . , Fn(xn)) = min{t, F1(x1), . . . , Fn(xn)}. (3.8)

Note that for t = 0, we have C0(F1(x1), . . . , Fn(xn)) = 0, for all x ∈ Bs and hence

σC0,ψ(F1, . . . , Fn)(s) = 0.

We can then restrict to t ∈ (0, 1). Define now xo = (xo1, . . . , x
o
n) by

xoi := sup{xi : Fi(xi) < t}, i = 1, . . . , n− 1,

xon := ψx̂o−n(s) = sup{xn ∈ R : ψ(xo−n, xn) < s}.

Note that xoi is finite for i = 1, . . . , n− 1 because the Fi’s are (non-defective) distribu-
tion functions on R and

xi < xoi ⇒ Fi(xi) < t, for all i = 1, . . . , n− 1. (3.9)

Moreover, right-continuity of the marginals implies that

xi ≥ xoi ⇒ Fi(xi) ≥ t, for all i = 1, . . . , n− 1. (3.10)

This claim also holds for i = n. Indeed, suppose there exists x′n ≥ xon = ψx̂o−n(s)

such that Fn(x′n) < t, and fix an arbitrary vector (x1, . . . , xn−1) ∈ Rn−1. If xi < xoi
for some i = 1, . . . , n− 1 then Fi(xi) < t and

CL(F1(x1), . . . , Fi(xi), . . . , F
−
n (ψx̂−n)) ≤ CL(1, . . . , 1, Fi(xi), 1, . . . , 1)

≤ Fi(xi) < t.

If instead xi ≥ xoi for all i = 1, . . . , n− 1, then ψx̂−n ≤ ψx̂o−n ≤ x
′
n and

CL(F1(x1), . . . , F−n (ψx̂−n)) ≤ CL(1, . . . , 1, F−n (x′n))

≤ F−n (x′n) < t.
(3.11)

Hence we have

t = sup
x1,...,xn−1∈R

CL(F1(x1), . . . , F−n (ψx̂−n)) < t,

which is a contradiction and thus we can extend (3.10) to

xi ≥ xoi ⇒ Fi(xi) ≥ t, for all i = 1, . . . , n. (3.12)
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Combining (3.8), (3.9) and (3.12) we obtain, for all x ∈ Bs,

Ct(F1(x1), . . . , Fn(xn))

=





min{t, F1(x1), . . . , Fi−1(xi−1), Fi+1(xi+1), . . . , Fn(xn)} if xi ≥ xoi
for some i ∈ {1, . . . , n− 1};

min{t, F1(x1), . . . , Fn−1(xn−1)} if xn ≥ xon;

min{F1(x1), . . . , Fn(xn)} if xi < xoi , i = 1, . . . , n.

Now recall that
σCt,ψ(F1, . . . , Fn) = µCt [Bs]

and consider the following covering of Bs

Bs ⊆ ∪ni=1Ii ∪ T

where

Ii : = {x ∈ Rn : xi > xoi } ∩Bs, i = 1, . . . , n,

T : =
n∏

i=1

(−∞, xoi ].

Hence

µCt [Bs] ≤
n∑

i=1

µCt [Ii] + µCt [T ] = µCt [T ]

for Ct is constant along the i-th dimension on Ii. If xon = +∞ then (xo−n, xn) ∈ Bs
for all real xn, and hence

µCt [T ] = µCt [X1 ≤ xo1, . . . , Xn−1 ≤ xon−1]

= lim
xn→+∞

µCt [X1 ≤ xo1, . . . , Xn−1 ≤ xon−1, Xn ≤ xn]

= lim
xn→+∞

Ct(F1(xo1), . . . , Fn−1(xon−1), Fn(xn)) ≤ t.

If instead xon is finite, observe that ψ(xo) = s by right-continuity of ψ in the last
argument, so it is sufficient to show that

µCt [T \ {xo}] = µCt [∪ni=1{X−i ≤ xo−i, Xi < xoi }] ≤ t. (3.13)

For P ⊂ {1, . . . , n} define

AP := {Xi < xoi for i ∈ P,Xi ≤ xoi for i ∈ {1, . . . , n} \ P}.

From elementary probability we have

µCt [∪ni=1{X−i ≤ xo−i, Xi < xoi }] = µCt [∪ni=1A{i}]

=
n∑

1≤i1≤n
µCt [A{i1}]−

∑

1≤i1≤i2≤n
µCt [A{i1,i2}]

+
∑

1≤i1≤i2≤i3≤n
µCt [A{i1,i2,i3}]− · · ·+ (−1)n+1µCt [A{1,...,n}].

(3.14)
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Observe that for every non-empty P

AP = ∪k∈N ∩ni=1 {Xi ≤ xoi −
1

k
1P (i)},

hence

µCt [AP ] = lim
k→∞

Ct(F1(xo1 −
1

k
1P (1)), . . . , Fn(xon −

1

k
1P (n))).

If P ∩ {1, . . . , n− 1} 6= ∅ then Fi(xoi − 1
k ) < t for some i ∈ {1, . . . , n − 1} and all

integers k; if instead n ∈ P then (xo−n, x
o
n − 1

k ) ∈ Bs for all integers k by definition
of xon. These facts lead to

µCt [AP ] = lim
k→∞

min{t, F1(xo1 −
1

k
1P (1), . . . , Fn(xon −

1

k
1P (n))}

= min{t,min
i∈P

F−i (xoi )}.

We assume, without loss of generality, that F−1 (xo1) ≤ · · · ≤ F−n−1(xon−1). Noting
that (3.11) implies that F−n (xon) ≥ t > F−n−1(xon−1), we can calculate (3.14):

µCt [T \ {uo}]

=
n−1∑

i=1

F−i (xoi ) + min{t, F−n (xon)}

−
(
n− 1

1

)
F−1 (xo1)−

(
n− 2

1

)
F−2 (xo2)− · · · −

(
1

1

)
F−n−1(xon−1)

+

(
n− 1

2

)
F−1 (xo1) +

(
n− 2

2

)
F−2 (xo2) + · · ·+

(
1

1

)
F−n−2(xon−2)

− . . .+(−1)n+1F−1 (xo1).

Rearranging all the terms we obtain

µCt [T \ {uo}]

= F−1 (xo1)[

(
n− 1

0

)
−
(
n− 1

1

)
+

(
n− 1

2

)
− · · ·+ (−1)n−1

(
n− 1

n− 1

)
]

+ F−2 (xo2)[

(
n− 2

0

)
−
(
n− 2

1

)
+

(
n− 2

2

)
− · · ·+ (−1)n−2

(
n− 2

n− 2

)
]

+ . . .

+ F−n−1(xon−1)[

(
1

0

)
−
(

1

1

)
] + t.

(3.15)

Recall that
∑n
i=0(−1)i

(
n
i

)
= 0 for all integer n, hence (3.15) simplifies to

µCt [T \ {uo}] = t,

which completes the proof.
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Remark 3.1. There are several points worth noting regarding this theorem.

(i) For n = 2, CL = W and ψ(x) = x1 + x2 we get Proposition 1 in Rüschendorf
(1982) and in equivalent form Theorem 1 in Makarov (1981) and Theorem 3.2
in Frank, Nelsen, and Schweizer (1987). In these papers, as well as in Embrechts,
Höing, and Juri (2003), a sharp upper bound on the df of ψ(X) is also given.

(ii) The theorem cannot be strengthened to read

µCt [ψ(X) ≤ t] = sup
x1,...,xn−1∈R

C(F1(x1), . . . , Fn−1(xn−1), Fn(ψx̂−n(s))),

for σC,ψ(F1, . . . , Fn)(s+) := µC [ψ(X) ≤ s] may have no minimum over the
set Cn. Hence, contrary to Embrechts, Höing, and Juri (2003, page 151), (2.4)
is the correct way of defining the operator σ, if one wants to state Theorem (3.2)
correctly. See Nelsen (1999, page 187) for more details in the case of the sum of
risks.

(iii) Note that Ct is not the unique copula attaining the bound t for we can always
change it on [0, t]n by substituting for the upper Fréchet bound any other copula
C ≥ CL.

(iv) The last part of the proof (from (3.13) on) is necessary only if all F ′is are discon-
tinuous at xo. Indeed, if there exists Fi, i = 1, . . . , n − 1 which is continuous at
xoi , then Fi(xoi ) = t and

µCt [T ] = µCt [X1 ≤ xo1, . . . , Xn ≤ xon] ≤ µCt [Xi ≤ xoi ] = Fi(x
o
i ) = t.

If instead it is Fn to be continuous at xon, then µCt [Xn = xon] = 0 and

µCt [T ] = µCt [X1 ≤ xo1, . . . , Xn ≤ xon]

= µCt [X1 ≤ xo1, . . . , Xn−1 ≤ xon−1, Xn < xon]

= lim
xn→xon

min{t, F1(xo1), . . . , Fn−1(xon−1), F−n (xn)} ≤ t.

To this extent our theorem generalizes Theorem 3 in Williamson and Downs
(1990), where the case of multiple discontinuities was excluded. Note however
that the theorem in Williamson and Downs (1990) holds for dfs on R (defective
dfs) also.

(v) The hypothesis of right-continuity in the last argument of the function ψ is nec-
essary to prove sharpness of the bound. Take for instance n = 2, X1 v F1 =
U{0, 12 ,1}, X2 v F2 = U{0,1,1} and ψ(x1, x2) = 1{x1≥1,x2>1}. Note that

ψ(·, x2) =

{
0 if x1 < 1;
1{x2>1} otherwise,

is not right-continuous. We have

ψx̂1
(1) =

{
+∞ if x1 < 1;
1 otherwise,

11



and then τψ,W (F1, F2)(1) = supx1∈R[F1(x1) + F−2 (ψx̂1
(1)) − 1]+ = 2

3 . By
Theorem 3.2 we should have that

µ 2
3
[ψ(X1, X2) < 1] =

2

3
,

but this is impossible because it is evident that ψ(X1, X2) = 0 < 1 P-a.s. for
every probability measure P havingF1 andF2 as marginals. The reader can verify
that the theorem works with ψ̂(x1, x2) = 1{x1>1,x2≥1}. Finally, one can easily
check that defining τW,ψ(F1, F2)(1) := supx1∈R[F1(x1) + F2(ψx̂1

(1))− 1]+ in
the above example does not lead to a more general result.

The proof of Theorem 3.2 provided in this paper is long and laborious, but the
elegant proof of the same theorem given in Embrechts, Höing, and Juri (2003) contains
a gap. First of all note that, as we said in Remark 3.1, (ii), the correct statement of the
theorem requires the definition of the operator σ as given in (2.4). Embrechts, Höing,
and Juri (2003), stated in our notation, affirm that

In particular µCt assigns mass t to any set [0, u1]× · · · × [0, un] such
that CL(u1, . . . , un) = t, whence µCt [{CL ≤ t}] = t . . .

From this the theorem follows easily. This claim is not correct, since, even in the
simplest case of two uniformly distributed risks andCL = W , we have that µCt [{W ≤
t}] = 1 for every t ∈ [0, 1]. Hence the correct statement is

In particular µCt assigns mass t to any set [0, u1]× · · · × [0, un] such
that CL(u1, . . . , un) = t, whence µCt [{CL ≤ t}] ≥ t . . .

This does not yield the theorem and a new proof is then required.
For applications of Theorem 3.2, including how to calculate numerically the bound

for every choice of F1, . . . , Fn and CL, see Embrechts, Höing, and Juri (2003).

4 Main result without information on dependence
Theorem 3.2 solves problem (2.7) when n = 2 or CL > W . The fact that the function
W is not a copula for n > 2 causes problems. The bound in (3.1) holds in arbitrary
dimensions. However, when n > 2 and we have no information regarding the depen-
dence structure of the portfolio (vector)X , then the bound in (3.1) may fail to be sharp.
In fact, when n > 2 and CL > W , the function Ct defined in Theorem 3.2 fails to be
a copula.

4.1 Mutually exclusive risks
Actually there is an important special case when the lower Fréchet bound is a proper
df and hence sharpness of the bound still holds, also in the no-information scenario. In
fact, Theorem 3.7 of Joe (1997) (based on a previous result of Dall’Aglio (1972)) gives
a necessary and sufficient condition for W (F1, . . . , Fn) to be a df having marginals
F1, . . . , Fn.
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Theorem 4.1. When n > 2 , W (F1, . . . , Fn) is a df on Rn if and only if

n∑

i=1

Fi(xi) ≤ 1 for all x ∈ Rn s.t. 0 < Fi(xi) < 1, i = 1, . . . , n or

n∑

i=1

Fi(xi) ≥ n− 1 for all x ∈ Rn s.t. 0 < Fi(xi) < 1, i = 1, . . . , n.

(4.1)

An example of non-negative risks which satisfy condition (4.1) and have df W can
be found in Dhaene and Denuit (1999). They form the class of so-called mutually
exclusive risks, those risks that can be positive at most one at a time. In this specific
case, of actuarial interest, the bound stated in Theorem 3.1 is sharp for arbitrary finite
n.

4.2 Non-negative continuous and identically distributed risks
Throughout the rest of the paper we will consider CL = W . In this situation, the
bound (3.1) is no longer sharp if n > 2, and it is convenient to express (2.6) by a
duality result given in Rüschendorf (1982):

mψ(s) = 1− inf{
n∑

i=1

∫
fidFi : fi are bounded measurable functions on R s.t.

n∑

i=1

fi(xi) ≥ 1[s,+∞)(ψ(x1, . . . , xn)) for all xi ∈ R, i = 1, . . . , n}.

(4.2)

This dual optimization problem is very difficult to solve. The only explicit results
known in literature are contained again in Rüschendorf (1982) for the case of the sum of
marginals being all uniformly or binomially distributed. Unfortunately, the dependence
structure which solves (4.2) in the case of the sum of uniform marginals does not work
in the general case, where the solution depends upon the marginals chosen. This is
much in contrast to the case of the copula Ct, which satisfies (3.2) for all choices of
F1, . . . , Fn. For that reason, below we restrict our attention to ψ(x) =

∑n
i=1 xi and

set all marginal dfs equal to a common df F , which we assume to be non-negative and
continuous. In this situation (4.2) reads as

mψ(s) = 1− inf{n
∫
fdF : f bounded measurable function on R s.t.

n∑

i=1

f(xi) ≥ 1[s,+∞)(
n∑

i=1

xi) for all xi ∈ [0,+∞)n, i = 1, . . . , n}
(4.3)

and it is easy to show that the bound stated in (3.1), which we call standard bound in
the following, reduces to

τW,+(F, . . . , F )(s) = [nF (s/n)− n+ 1]+ (4.4)

for every s ≥ nx∗F where x∗F := inf{x ≥ 0 : F ′(r) is non-increasing for all r ≥ x}.
For example, for the numerical example given below we obtain for Pareto(1.5, 1), Log-
Normal(−0.2, 1) and Γ(3, 1) the values x∗F = 0, 2, 0.31, respectively.

We use (4.3) to provide a bound which is better (i.e. ≥) than the standard one.
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Theorem 4.2. Let F be a non-negative, continuous df. If Fi = F, i = 1, . . . , n, then
for every s ≥ 0

m+(s) ≥ 1− n inf
r∈[0,s/n)

∫ s−(n−1)r

r
1− F (x)dx

s− nr . (4.5)

Proof. For r ∈ [0, s/n] define f̂r : R→ R,

f̂r(x) :=





0 if x < r;
x−r
s−nr if r ≤ x ≤ s− (n− 1)r;
1 otherwise.

We prove that f̂r is an admissible function in (4.3). Since f̂r is non-negative, it is
sufficient to show that we have

∑n
i=1 f̂r(xi) ≥ 1 when

∑n
i=1 xi ≥ s. If xi ≥ s− (n−

1)r for some i = 1, . . . , n this trivially follows, so take x1, . . . , xn ∈ [0, s− (n− 1)x]
with

∑n
i=1 xi ≥ s. Define

I := {i ≤ n : xi ≥ r}, Ī := {1, . . . , n} \ I

and observe that we have
∑

i∈I
xi ≥ s−

∑

i∈Ī
xi ≥ s−#(Ī)r.

By definition of f̂r it follows that

n∑

i=1

f̂r(xi) =
∑

i∈I
f̂r(xi) =

∑

i∈I

xi − r
s− nr =

∑
i∈I xi − (#I)r

s− nr

≥ s− ((#I) + (#Ī))r

s− nr ≥ 1.

The theorem follows by checking that

∫
f̂r(x)dF (x) = 1−

∫ s−(n−1)r

r
F (x)dx

s− nr

and taking the infimum over all r ∈ [0, s/n).

Remark 4.1. (i) Note that

lim
r→s/n

{
1− n

∫ s−(n−1)r

r
1− F (x)dx

s− nr

}
= nF (s/n)− n+ 1,

hence it follows that (4.5) is greater or equal than the standard lower bound given
in (3.1) for every threshold s at which (4.4) is valid. In Section 5 below we
actually show that (4.5) is strictly greater than (3.1) in most cases.

(ii) For n = 2, (4.5) gives the sharp bound already stated in (3.1).

(iii) For n > 2, the infimum expressed in (4.5) can be easily calculated numerically
by finding the zero-derivative point of its argument in the specified interval.
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The assumptions under which Theorem 4.2 is valid, though considerable with re-
spect to the setting of the previous sections, are consistent with most dfs F and thresh-
olds s of actuarial/financial interest. In fact, such a difference in generality of results
implicitly shows that the assumption of a non-trivial lower bound on the copula C of
the portfolio is very strong.

5 Applications
In this section we show the quality of the dual bound expressed by (4.5) with respect
to the standard bound stated in (4.4).

5.1 Computing numerically the worst-possible VaR
A good approximation for the real value of m+(s) can be found by solving two linear
problems (LPs). We follow Williamson and Downs (1990) in defining the two dfs
FN , FN by

FN (x) : =
1

N

N∑

i=1

1[qr,+∞)(x),

FN (x) : =
1

N

N−1∑

i=0

1[qr,+∞)(x),

the jump points q0, . . . , qN being the quantiles of F defined by q0 := inf supp(F ),
qN := sup supp(F ) and qr := F−1( rN ), r = 1, . . . , N − 1. In the applications to
follow we will always take q0 = 0 and qN = +∞. It is straightforward to note that

FN ≤ F ≤ FN ,

from which it follows that for every real s

σC,+(FN , . . . , FN )(s) ≤ σC,+(F, . . . , F )(s) ≤ σC,+(FN , . . . , FN )(s)

and hence
m+(s) ≤ m+(s) ≤ m+(s), (5.1)

where m+(s) and m+(s) are naturally defined as:

m+(s) : = inf{P[
n∑

i=1

Xi < t] : Xi v FN , i = 1, . . . , n}

m+(s) : = inf{P[
n∑

i=1

Xi < t] : Xi v FN , i = 1, . . . , n}.
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Given that FN is a (possibly defective) discrete df, m+(s) is the solution of the
following LP:

m+(s) = min
pj1,...,jn

N∑

j1=1

· · ·
N∑

jn=1

pj1,j2,...,jn1(−∞,t)(
n∑

i=1

qji) subject to





∑N
j2=1

∑N
j3=1 · · ·

∑N
jn=1 pj1,...,jn = 1

N j1 = 1, . . . , N,∑N
j1=1

∑N
j3=1 · · ·

∑N
jn=1 pj1,...,jn = 1

N j2 = 1, . . . , N,

. . . ,∑N
j2=1

∑N
j3=1 · · ·

∑N
jn−1=1 pj1,...,jn = 1

N jn = 1, . . . , N,

0 ≤ pj1,...,jn ≤ 1 ji = 1, . . . , N,
i = 1, . . . , n.

(5.2)

Analogously, m+(s) is the solution of:

m+(s) = min
pj1,...,jn

N∑

j1=1

· · ·
N∑

jn=1

pj1,j2,...,jn1(−∞,t)(
n∑

i=1

q(ji−1)) subject to





∑N
j2=1

∑N
j3=1 · · ·

∑N
jn=1 pj1,...,jn = 1

N j1 = 1, . . . , N,∑N
j1=1

∑N
j3=1 · · ·

∑N
jn=1 pj1,...,jn = 1

N j2 = 1, . . . , N,

. . . ,∑N
j2=1

∑N
j3=1 · · ·

∑N
jn−1=1 pj1,...,jn = 1

N jn = 1, . . . , N,

0 ≤ pj1,...,jn ≤ 1 ji = 1, . . . , N,
i = 1, . . . , n.

(5.3)

Since for N tending to infinity the dfs FN and FN converge to the original df F ,
calculatingm+(s) with any given level of accuracy is a matter of solving (5.2) and (5.3)
for N large enough. Unfortunately, that is not a trivial task. The dimension of the two
LPs is Nn rows (variables) per nN columns (constraints) and, while the length of
the interval [m+(s),m+(s)] asymptotically decreases as 1/N , the computational time
and the memory needed to solve the LPs increase exponentially. Finally note that a
computer solution will truncate FN at a certain finite value to perform computations.
The software used automatically sets this upper limit so that (5.1) is maintained.

5.2 Plots and tables of worst-possible VaRs
In this section we illustrate the quality of the estimate of the worst-possible
VaRα(

∑n
i=1Xi) provided by the dual bound previously found. Some dfs of actuar-

ial and financial interest are considered for F . In Figure 5.1, standard and dual bounds
for a portfolio of three Pareto-distributed risks are given. It is relevant to note that the
dual bound is strictly greater than the standard one, in accordance to Remark 4.1, (i).
Most importantly, the dual value always falls within the range [m+(s),m+(s)], which
we plot for some thresholds of interest. This range has been calculated solving (5.2)
and (5.3) withN = 180. The two linear problems have been solved by ILOG CPLEX R©

C Callable Libraries. We remark that switching to n = 4 drastically lowers the quality
of approximation to N < 60. In Figure 5.1, the values of µC [X1 + X2 + X3 < s] in
case of independent (C = Π) and comonotonic (C = M ) scenarios are also given. The
fact that the worst case of VaR does not occur under the comonotonicity assumption
is equivalent to non-coherence of VaR as a risk measure; see Embrechts, McNeil, and
Straumann (2000) for a discussion on this.
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Figure 5.1: Range for P[X1 +X2 +X3 < s] for a Pareto(1.5,1)-portfolio under various
scenarios. Together with the independence and comonotonic situation we represent the
standard and dual bound resp. given by (4.4) and (4.5). Some intervals for the true
value of m+(s) are also given.

For the calculation of the distribution of the sum of comononotic random variables
note that in case of common df F we have:

µM [

n∑

i=1

Xi < s] = F (s/n),

while the convolution is computed by iterated conditioning:

µΠ[

n∑

i=1

Xi < s] =

∫
dF (xn) . . .

∫
dF (x2)F (s−

n∑

i=2

xi).

In Figures 5.2, 5.3 we do the same for Log-Normal and Γ portfolios.
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Figure 5.2: The same as Figure 1 for a Log-Normal(-0.2,1)-portfolio.
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Figure 5.3: The same as Figure 1 for a Γ(3,1)-portfolio.
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We finally provide some tables to emphasize the gain an end user may have in
evaluating the risk of a portfolio by the the dual rather than the standard bound. In fact
the lowest bound offers an evaluation of the risky position held that is prudential, more
realistic and economically advantageous at the same time. The bounds on the VaR of
different portfolios are numerically computed using (2.2). All values are rounded to
their last digit.

VaRα(
∑3
i=1 Xi), exact VaRα(

∑3
i=1 Xi), upper bound

α independence comonotonicity dual standard

0.90 49.71 40.50 119.06 130.50
0.95 96.80 85.50 242.61 265.50
0.99 420.76 445.50 1231.04 1345.50
0.999 871.95 4495.50 12350.90 13495.50

Table 5.1: Range for VaR for a Pareto(1.5,1)-portfolio.

VaRα(
∑3
i=1 Xi), exact VaRα(

∑3
i=1 Xi), upper bound

α independence comonotonicity dual standard

0.90 7.54 8.85 14.44 15.38
0.95 9.71 12.73 19.50 20.63
0.99 16.06 25.16 35.31 37.03
0.999 29.78 53.99 69.98 73.81

Table 5.2: Range for VaR for a Log-Normal(-0.2,1)-portfolio.

VaRα(
∑3
i=1 Xi), exact VaRα(

∑3
i=1 Xi), upper bound

α independence comonotonicity dual standard

0.90 13.00 15.97 19.80 20.54
0.95 14.44 18.89 22.57 23.26
0.99 17.41 25.22 28.67 29.33
0.999 21.16 33.69 36.97 37.59

Table 5.3: Range for VaR for a Γ(3,1)- portfolio.

In Table 5.4 it can be seen how the gain induced by the lowest bound increases
considerably with n. A most useful fact is that the time of computation of (4.5) is not
affected by the dimension of the portfolio.
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VaRα(
∑10
i=1Xi) VaRα(

∑100
i=1 Xi) VaRα(

∑1000
i=1 Xi)

α dual standard dual standard dual standard

0.90 0.669 1.485 11.039 149.850 150.162 14998.500
0.95 1.353 2.985 22.227 229.850 301.823 29998.500
0.99 2.985 14.985 111.731 1499.850 1515.111 149998.500
0.999 68.382 149.985 1118.652 14999.850 15164.604 1499998.500

Table 5.4: Upper bounds for VaRα(
∑n
i=1 Xi) of three Pareto portfolios of different

dimensions. Data in thousands.

6 Conclusions
The problem of finding the worst-possible VaR for a non-decreasing function of depen-
dent risks is solved when some information on the dependence structure of the portfolio
is provided or the portfolio is two-dimensional. The problem gets much more compli-
cated in arbitrary dimensions when no information on the copula of the random vector
is given. In this case we provide a new bound which we prove to be better than the
standard one generally used in the literature.
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