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Basel II: the basics

• late nineties: more refined (granular/risk sensitive) measurement of

credit risk

• A new risk class: operational risk

• overall risk capital before/after equal

• three pillar approach
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• McDonough (before Cooke) Ratio:

total amount of capital

risk weighted assets
≥ 8%

– regulatory capital: Tiers 1, 2 and 3

– risk weighted assets: that’s where the Pillar 1 action is

• several quantitative impact studies

• start: 2007+?
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• X1, . . . , Xd d 1-period risks, X = (X1, . . . , Xd)

• Ψ(X1, . . . , Xd) a financial “instrument”/“position”

– Ψ(x) = sd =
∑d

k=1 xk

– Ψ(x) = md = max {x1, . . . , xd}

– Ψ(x) =
∑d

k=1 (xk − ck)
+ excess–of–loss

– Ψ(x) =
(∑d

k=1 xk − c
)+

stop–loss

– Ψ(x) = mdI{sd>qα} digital trigger

– . . . (credit derivatives)
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• a risk or pricing measure R

– R(Y ) = VaRα(Y ) Value–at–Risk

– R(Y ) = E (Y | Y > VaRα(Y )) Expected Shortfall (warning)

– R(Y ) = E
(
(Y − µ)k

)
moments

– R(Y ) = FY , the distribution function

– . . .

• aim, calculate R(Ψ(X)) given

– some information on X1, . . . , Xd (F1, . . . , Fd)

– for a specific R
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• Questions: is this a well–posed problem?

is this relevant for practice?

give examples!
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We start with an example:

Operational Risk: The risk of losses resulting from inadequate or failed
internal processes, people and systems, or external events. Included is
legal risk, excluded are strategic/business risk and reputational risk

Examples: many!
Barings, . . .

Recent QISs:

– Basel Committee QIS (Moscadelli 2004, 40 000+ observations)

– Federal Reserve Bank of Boston Loss–Date Collection Exercise (Dutta
and Perry 2006, 50 000+ observations)

Similar issues (as in Basel II): Solvency 2 for Insurance
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The OpRisk pillar 1 issue: Loss Distribution Approach (LDA)

– Data matrix X t =
{
Xt

ij : i = 1, . . . ,8BLs, j = 1, . . . ,7RTs
}

for year t, t = 1, . . . , T (only few years so far)

– Pillar 1 in LDA based on VaR1 year
99.9%, i.e. a 1 in 1000 year event!

– Various approaches are possible/allowed (Basel II spirit)

– Take care of: loss frequency, severity, lower truncation, and use inter-

nal/external/expert data

– insurance (up to 20%) is allowed
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Loss Distribution Approach (LDA)
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A complicated stochastic structure

LT+1 =
8∑

i=1

7∑
k=1

LT+1
i,k

LT+1
i,k =

NT+1
i,k∑

`=1

X`
i,k

X`
i,k : loss severities

NT+1
i,k : loss frequencies
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As an example, aggregate BL–wise, yielding risk capital estimates:

VaR(1), . . . ,VaR(8)

Calculate (as indicated in Basel II):

VaR(+) = VaR(1) + · · ·+ VaR(8)

Use diversification/corrrelation arguments to find the “real” capital charge

VaR < VaR(+)

Question: how reliable is the above procedure?
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Here are some of the main issues:

• reliability of VaR(i) estimates (statistical issue)

• which arguments lead to VaR(+) reduction? (understanding correla-

tion/diversification)

• are there practically relevant cases where

VaR>VaR(+) ?

(non–coherence of VaR)

• what about different risk measures
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A related question: aggregating risk capital at the level of the bank

• MR: VaRd1
α1 d1 = 10 days α1 = 99%

• CR: VaRd2
α2 d2 = 1 year α2 = 99.9%

• OR: VaRd3
α3 d3 = 1 year α3 = 99.9%

• EC: VaRd4
α4 d4 = 1 year α4 = 99.97%

Calculate VaRd
α (Total) for given confidence level α and holding period d

and link to EC
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Problems to solve:

– scale VaRdi
αi to a common VaRd

α(i) for risk class i = 1,2,3

– calculate VaRd
α(1)+VaRd

α(2)+VaRd
α(3)

– discuss “diversification reduction”
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Back to the concrete case of Operational Risk

• How to estimate a capital charge VaR(i) for BL i?

– Using EVT (α = 99.9%!) as in Moscadelli, 2004?

– Using the g–and–h distribution (r.v.)

Y = A
egZ − 1

g
e
1
2hZ2

+ B , Z ∼ N(0,1)

as in Dutta and Perry, 2006?

– Other methods?
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• Key drivers towards choice (five “dimensions” in Dutta and Perry):

– good fit to the available data

– realistic wrt capital charge

– well specified wrt data properties (e.g. losses are positive)

– flexible wrt possible shape of loss densities

– simple: “As simple as possible but not simpler”
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• The VaR <
∑8

i=1 VaR(i) issue is related to the coherence/non–coherence

(in particular sub/superadditivity) of VaR:

VaR(X + Y ) ≤ versus≥VaR(X) + VaR(Y )

≥ may happen, even in practice

= holds for comonotonic risks

X = Ψ1(W ) , Y = Ψ2(W ) , Ψi increasing , W a rv

also yields maximal correlation between X and Y

• An important result: if (X1, . . . , Xd) are multivariate normal then VaR

is subadditive (coherent), even more generally this result holds for all

multivariate elliptical vectors (e.g. t, logistic, hyperbolic, . . .)

X = µ +
√

V Z , Z ∼ Nd(0,Σ) independent of V > 0
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Why does this hold: look at the normal case

– X ∼ N
(
µ, σ2

)
⇒ VaRα(X) = µ + σΦ−1(α) (easy!)

VaR is driven by standard deviation σ and hence coherent
(Cauchy–Schwartz Inequality)

– (X1, X2) ∼ N2 (µ, σ, ρ), then X1 + X2 ∼ N
(
µ1 + µ2, σ2

1,2

)
where σ2

1,2 = σ2
1 + σ2

2 + 2ρσ1σ2, hence

VaRα (X1 + X2) = µ1 + µ2 + σ1,2Φ
−1(α)

= µ1 + µ2 +
√

σ2
1 + σ2

2 + 2ρσ1σ2Φ
−1(α)

(ρ ≤ +1) ≤ µ1 + µ2 +
√

σ2
1 + σ2

2 + 2σ1σ2Φ
−1(α)

= µ1 + µ2 + (σ1 + σ2)Φ−1(α)

= VaRα (X1) + VaRα (X2)

standard deviation drives subadditivity!
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Under what circumstances is VaR superadditive (>)

– very skew distributions

– very heavy–tailed distributions

– special dependence but possible nice marginals
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Are these examples relevant for practice?

– for MR perhaps not

– for CR slightly for very skew positions

– for OR highly relevant

OpRisk data are: – heavy–tailed (power laws, Pareto)

– skew

– we have no clear view on interdependence

So “There is an issue!”

c©2006 (P. Embrechts, ETH Zurich) 19



Here are the (counter)examples in short:

• Skewness

100 iid loans: 2% yearly coupon, 100 face value, 1% yearly default, no

recoverable, P&L Xi (use easy binomial calculation):

VaR95%

100∑
i=1

Xi

 >VaR95% (100X1) =
100∑
i=1

VaR95% (Xi)

• Heavy–tailedness

X1, X2 independent, P (Xi > x) = x−δL(x) with δ < 1 (infinite mean!)

and L slowly varying, then for α large enough

VaRα (X1 + X2)>VaRα (X1) + VaRα (X2)
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• Special dependence

given marginal risks X1 ∼ F1, X2 ∼ F2, then one can always construct

a joint model F with marginals F1, F2 so that under F and for any

0 < α < 1:

VaRα (X1 + X2)>VaRα (X1) + VaRα (X2)

use the notion of copula F = C (F1, F2), in particular one can take

F1 = F2 = N(0,1) and construct the worst dependence structure with

respect to VaR
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“A risk manager’s worst nightmare”
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Going beyond VaR, does that help?

– VaRα(X) = inf {` ∈ R : FX(`) ≥ α} = F−1
X (α) (a quantile)

– Expected Shortfall

ESα(X) =
1

1− α

∫ 1

α
VaRu(X) du (1)

= E (X | X ≥ VaRα(X)) (careful!)

is always coherent ((1)), larger than VaR and yields information on the

residual loss potential above VaR

– Median Shortfall

Medα(X) = median (X | X ≥ VaRα(X))

may yield reasonable values but is in general not coherent
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Conclusion (for the Operational Risk case)

• estimating VaRα(1), . . . ,VaRα(d) for α = 0.999 is a very daunting task:
no easy solution!

• VaR(+) need not yield an upper limit!
Hence discuss diversification effect with care

• No easy short–cut via scaling (90% → 99.9%), or constrained estima-
tion (finite mean) or putting an upper limit on the losses

• Combining data (internal, external, expert opinion) may call for credi-
bility techniques from actuarial science

• g–and–h seems promising, be careful with EVT
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Back to the calculation of

R (Ψ(X)) (2)

for a risk/pricing measure R, financial position Ψ and risk factors

X = (X1, . . . , Xd)

Suppose given marginal information Xi ∼ Fi, i = 1, . . . , d and some idea

of dependence, then (2) cannot be calculated explicitly, hence approxima-

tions/bounds are called for

RL ≤ R(Ψ(X)) ≤ RU

Tasks: Calculate RL, RU

Prove optimality
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Some concrete examples:

• homogeneous case (F1 = · · · = F8) (easier)

P (Xi > x) = (1 + x)−1.5 , x ≥ 0 , i = 1, . . . ,8

– comonotonic case

VaR0.999

 8∑
i=1

Xi

 =
8∑

i=1

VaR0.999 (Xi) = 0.79

– RU = 1.93

• heterogeneous case (F1 6= · · · 6= F8) (difficult)
P (Xi > x) as given by Moscadelli (2004)

– Comonotonic case
∑8

i=1 VaR0.999 (Xi) = 4.8347× 105

– RU = 2.3807× 106 (factor 5!)
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Final conclusions

• Quantitative tools exist for understanding aggregation issues

• In special cases, calculation is easy

• In general difficult

• Diversification effects have to be handled with care

• Definitely more research is needed

• Basel II still has some issues to solve (2007+)
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• VaR–aggregation leads to problems

• Scaling is only understood in very specific models

• And as always

MORE WORK IS NEEDED
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