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Basel II: the basics

e late nineties: more refined (granular/risk sensitive) measurement of
credit risk

e A new risk class: operational risk

e overall risk capital before/after equal

e three pillar approach
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e McDonough (before Cooke) Ratio:

total amount of capital

: : > 8%
risk weighted assets

— regulatory capital: Tiers 1, 2 and 3

— risk weighted assets: that's where the Pillar 1 action is

e several quantitative impact studies

e start: 200747
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e Xq,...,X,; d l-period risks, X = (Xq,...,Xy)

e WV (Xq,...,Xy) a financial “instrument” /“position”
— W(x) = s = Lf{_1 7
— V(x) =myg= max{xi,...,x4}
— W(x) =Y¢_, (zp —cp)T  excess—of-loss
— W(x) = (Zgzl T, — c)+ stop—loss
— V(x) = mdl{3d>CIa} digital trigger

— ... (credit derivatives)
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e A risk or pricing measure R
— R(Y) = VaRy(Y)  Value—at—Risk
—RY)=FE(Y|Y >VaRa(Y)) Expected Shortfall (warning)
— R(Y)=E ((Y — u)k) moments

— R(Y) = Fy, the distribution function

e aim, calculate R(W (X)) given
— some information on Xq,..., Xy (Fy,...,Fy)
— for a specific R
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e QQuestions: is this a well—-posed problem?
IS this relevant for practice?

give examples!
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We start with an example:

Operational Risk: The risk of losses resulting from inadequate or failed
internal processes, people and systems, or external events. Included is
legal risk, excluded are strategic/business risk and reputational risk

Examples: many!
Barings, ...

Recent QISs:

— Basel Committee QIS (Moscadelli 2004, 40 000+ observations)

— Federal Reserve Bank of Boston Loss—Date Collection Exercise (Dutta
and Perry 2006, 50 000+ observations)

Similar issues (as in Basel II): Solvency 2 for Insurance
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The OpRisk pillar 1 issue: Loss Distribution Approach (LDA)

— Data matrix Xt = {X;?j i=1,...,8BLs, j= 1,...,7RTs}
foryeart, t=1,...,T (only few years so far)

— Pillar 1 in LDA based on VaRégygﬁ/z, i.,e. a 1in 1000 year event!

— Various approaches are possible/allowed (Basel II spirit)

— Take care of: loss frequency, severity, lower truncation, and use inter-
nal/external/expert data

— insurance (up to 20%) is allowed
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Loss Distribution Approach (LDA)
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As an example, aggregate BL—wise, vielding risk capital estimates:

VaR(1),...,VaR(8)

Calculate (as indicated in Basel II):

VaR(4) = VaR(1) + --- + VaR(8)

Use diversification/corrrelation arguments to find the “real” capital charge

VaR < VaR(+)

Question: how reliable is the above procedure?
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Here are some of the main issues:

e reliability of VaR(7) estimates (statistical issue)

e which arguments lead to VaR(+) reduction? (understanding correla-
tion/diversification)

e are there practically relevant cases where

VaR>VaR(+) 7

(non—coherence of VaR)

e what about different risk measures

©2006 (P. Embrechts, ETH Zurich) 11



A related question: aggregating risk capital at the level of the bank

e MR: VaRo} dqy = 10 days a1 = 99%

o CR: VaRgQ2 d> = 1 year a> = 99.9%
e OR: VaR%3 d3 =1 year az = 99.9%
e EC: VaR%4 dg = 1 year ag = 99.97%

Calculate VaRg (Total) for given confidence level o and holding period d
and link to EC
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Problems to solve:
— scale VaRgfi to a common VaR4(i) for risk class i = 1,2, 3
— calculate VaR%(1)+VaR4%(2)+VaR4(3)

— discuss ‘‘diversification reduction”
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Back to the concrete case of Operational Risk

e How to estimate a capital charge VaR(z) for BL 7
— Using EVT (a = 99.9%!) as in Moscadelli, 20047

— Using the g—and—h distribution (r.v.)

94 _
Y = Au e%hZQ
g

as in Dutta and Perry, 20067

+B, Z~N(0,1)

— Other methods?
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e Key drivers towards choice (five “dimensions” in Dutta and Perry):

— good fit to the available data

— realistic wrt capital charge

— well specified wrt data properties (e.g. losses are positive)

— flexible wrt possible shape of loss densities

— simple: “As simple as possible but not simpler”
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e TheVaR < Z? 1 VaR(2) issue is related to the coherence/non—coherence

(in particular sub/superadditivity) of VaR:

VaR(X 4+ Y) < versus>VaR(X) 4+ VaR(Y)

> may happen, even in practice

= holds for comonotonic risks
X=Wv(W), Y=Wy(W), W, increasing, W arv
also yields maximal correlation between X and Y

e An important result: if (Xq,...,X4) are multivariate normal then VaR
is subadditive (coherent), even more generally this result holds for all
multivariate elliptical vectors (e.g. t, logistic, hyperbolic, ...)

X=pu++VVZ, Z~ Ny0,%) independent of V >0
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Why does this hold: look at the normal case

— X ~N (p, 02> = VaRa(X) = p+ o 1(a) (easy!)
VaR is driven by standard deviation ¢ and hence coherent
(Cauchy—Schwartz Inequality)

— (X1,X2) ~ No(u,0,p), then X1 + Xo ~ N <N1 + N27J%,2)

2 _ 2 2
where 010 =07 + 05 + 2po102, hence

VaRa (X1 4+ X2) = p1+p2+ 0129 1(a)
- M1+M2+\/0%+0§+2,00102¢_1(04)

(p<+1) < pr+pz+ \/0% + 03 + 20100® ()
= p1+po+ (01 +02) P71 (a)
VaRa (X1) + VaRa (X2)

standard deviation drives subadditivity!
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Under what circumstances is VaR superadditive (>)

— very skew distributions

— very heavy—tailed distributions

— special dependence but possible nice marginals
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Are these examples relevant for practice?

— for MR perhaps not

— for CR slightly for very skew positions

— for OR highly relevant
OpRisk data are: — heavy—tailed (power laws, Pareto)
— skew
— we have no clear view on interdependence

So ‘““There is an issuel”

©2006 (P. Embrechts, ETH Zurich)

19



Here are the (counter)examples in short:

e Skewness
100 iid loans: 2% vyearly coupon, 100 face value, 1% vyearly default, no
recoverable, P&L X; (use easy binomial calculation):

100 100
VaRgso, (Z Xi) >VaRggo, (100X1) = > VaRggy, (X;)

e Heavy—tailedness
X1, X5 independent, P (X; > z) = 2 °L(z) with § < 1 (infinite mean!)
and L slowly varying, then for « large enough

VaR, (Xl -+ XQ) >VaRg (Xl) + VaR, (XQ)
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e Special dependence
given marginal risks X1 ~ F7, Xo ~ F5, then one can always construct
a joint model F' with marginals Fy, F> so that under F' and for any

O<a<l:

VaR, (Xl -+ XQ) >VaR, (X1> + VaRgy (XQ)

use the notion of copula F = C (Fy, F>), in particular one can take
F1 = F> = N(0,1) and construct the worst dependence structure with

respect to VaR
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“A risk manager’'s worst nightmare”
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Going beyond VaR, does that help?
— VaRu(X) =inf{feR: Fx{¥) > a} = Fgl(a) (a quantile)

— EXxpected Shortfall

ES.(X) = 1ia/alVaRu(X)du (1)

= FE(X | X >VaRuy(X)) (careful!)

is always coherent ((1)), larger than VaR and yields information on the
residual loss potential above VaR

— Median Shortfall
Medq,(X) = median (X | X > VaRuy(X))
may vield reasonable values but is in general not coherent
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Conclusion (for the Operational Risk case)

e estimating VaRq(1),...,VaRa(d) for « = 0.999 is a very daunting task:
no easy solution!

e VaR(+) need not yield an upper limit!
Hence discuss diversification effect with care

e NO easy short—cut via scaling (90% — 99.9%), or constrained estima-
tion (finite mean) or putting an upper limit on the losses

e Combining data (internal, external, expert opinion) may call for credi-
bility techniques from actuarial science

e g—and—h seems promising, be careful with EVT
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Back to the calculation of
R (V(X)) (2)

for a risk/pricing measure R, financial position W and risk factors
X=(X1,...,Xy)

Suppose given marginal information X, ~ F;, : = 1,...,d and some idea
of dependence, then (2) cannot be calculated explicitly, hence approxima-

tions/bounds are called for
Rp < R(W(X)) <Ry

Tasks: Calculate Ry, Ry

Prove optimality
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Some concrete examples:

e homogeneous case (F; = --- = Fg) (easier)

P(X;>z)=04+2)"°, z>0, i=1,...,8

— comonotonic case

VaRoggg(Z X) ZvaRoggg(X)—()?g
1=1

— Ry = 1.93

e heterogeneous case (Fy # ---# Fg) (difficult)
P (X; > x) as given by Moscadelli (2004)

— Comonotonic case Y2 ; VaRg gg9 (X;) = 4.8347 x 10°

— Ry = 2.3807 x 10%  (factor 5!)
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Final conclusions

e Quantitative tools exist for understanding aggregation issues

e In special cases, calculation is easy

e In general difficult

e Diversification effects have to be handled with care

e Definitely more research is needed

e Basel II still has some issues to solve (20074 )
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e VVaR—aggregation leads to problems

e Scaling is only understood in very specific models

e And as always

MORE WORK IS NEEDED
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