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Abstract

There exist several estimators of the regression line in the simple linear regression

Yi = b+ aXi + Y ∗i i = 1, . . . , n.

Least Squares, Least Absolute Deviation, Right Median, Theil-Sen, Weighted Bal-

ance, Least Trimmed Squares. Their performance for heavy tails is compared below

on the basis of a quadratic loss function. The case where X = 1/U for a uniform

variable U on (0, 1) and where Y ∗ has a Cauchy distribution plays a central role,

but heavier and lighter tails are also considered. Tables list the empirical sd and

bias for ten batches of a hundred thousand simulations when X has a Pareto distri-

bution and Y ∗ a symmetric Student distribution or a one-sided Pareto distribution

for various tail indices. The results in the tables may be used as benchmarks. The

sample size is n = 100 but results for n = ∞ will also be presented. The error in

the estimate of the slope need not be asymptotically normal. For symmetric errors

the symmetric generalized beta prime densities often give a good fit.

0 Introduction

In linear regression the explanatory variables are often assumed to be equidistant on an

interval. If the values are random they may be uniformly distributed over an interval or

normal or have some other distribution. In the paper below the explanatory variables are

random. The Xi are inverse powers of uniform variables Ui in (0, 1): Xi = 1/U ξ
i . The
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variables Xi have a Pareto distribution with tail index ξ > 0. The tails become heavier

as the index increases. For ξ ≥ 1 the expectation is infinite. We assume that the error

variables Y ∗i have heavy tails too, with tail index η > 0. The aim of this paper is threefold:

• The paper compares a number of estimators E for the regression line in the case of

heavy tails. The distribution of the error is Student or Pareto. The errors are scaled

to have interquartile distance IQD = 1. The tail index ξ of the Pareto distribution

of the explanatory variable varies between zero and three; the tail index η of the

error varies between zero and four. The performance of an estimator E is measured

by the loss function L(u) = u2 applied to the difference between the slope a of the

regression line and its estimate âE. Our approach is unorthodox. For various values

of the tail indices ξ and η we compute the average loss for ten batches of a hundred

thousand simulations of a sample of size hundred. Theorems and proofs are replaced

by tables and programs. If the error has a symmetric distribution the square root of

the average loss is the empirical sd. From the tables in Section 6 it may be seen that

for good estimators this sd depends on the tail index of the explanatory variables

rather than the tail index of the error. As a rule of thumb the sd is of the order of

1/10ξ+1 0 ≤ ξ ≤ 3, 0 ≤ η ≤ 4, n = 100. (0.1)

This crude approximation is also valid for errors with a Pareto distribution. It may

be used to determine whether an estimator of the regression line performs well for

heavy tails.

• The paper introduces a new class of non-linear estimators. A weighted balance

estimator of the regression line is a bisector of the sample. For even sample size

half the points lie below the bisector, half above. There are many bisectors. A

weight sequence is used to select a bisector which yields a good estimate of the

regression line. Weighted balance estimators for linear regression may be likened to

the median for univariate samples. The LAD (Least Absolute Deviation) estimator

is a weighted balance estimator. However there exist balance estimators which

perform better when the explanatory variable has heavy tails.
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• The paper gives bounds on the tails of âE − a for some of the estimators E. Occa-

sionally there is a discrepancy between the theoretical bounds on the tail and the

empirical sd’s listed in the tables in Section 6. The empirical sd may be small with

only slight fluctuations in the outcomes for the ten batches of a hundred thousand

simulations even when the estimate âE does not have a finite first moment. The

implications of this discrepancy for risk analysis will be discussed. The difference

âE − a is not asymptotically Gaussian when the explanatory variable has infinite

second moment. We shall present empirical evidence which suggests that EGBP

(Exponential Generalized Beta Prime) distributions may give a good fit for the dis-

tribution of the log of the absolute value of the difference âE − a when the error has

a symmetric distribution with heavy tails.

The results of our paper are exemplary rather than analytical. They describe the

outcomes of an initial exploration on estimators for linear regression with heavy tails.

The numerical results in the tables in Section 6 may be regarded as benchmarks. They

may be used as a measure of the performance of alternative estimators. Insight in the

performance of estimators of the regression line for samples of size a hundred where

the explanatory variable has a Pareto distribution and the error a Student or Pareto

distribution may help to select a good estimator in the case of heavy tails.

The literature on the LAD estimator is extensive, see [4]. The theory for the Theil-

Sen (TS) estimator is less well developed, even though TS is widely used for data which

may have heavy tails, as is apparent from a search on the internet. A comparison of the

performance of these two estimators is overdue.

When the tail indices ξ or η are positive outliers occur naturally. Their effect on

estimates has been studied in many papers. A major concern is whether an outlier

should be accepted as a sample point. In simulations contamination does not play a

role. In this paper outliers do not receive special attention. Robust statistics does not

apply here. If a good fairy were to delete all outliers that would incommodate us. It

is precisely the outliers which allow us to position the underlying distribution in the

(ξ, η)-domain and select the appropriate estimator. The formula (0.1) makes no sense in
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robust regression. Our procedure for comparing estimators by computing the average loss

over several batches of a large number of simulations relies on uncontaminated samples.

This does not mean that we ignore the literature on robust regression. Robust regression

estimates may serve as initial estimates. (This approach does not do justice to the special

nature of robust regression, which aims at providing good estimates of the regression line

when working with contaminated data.) In our paper we have chosen a small number

of geometric estimators of the regression line, whose performance is then compared for

a symmetric and an asymmetric error distribution at various points in the ξ, η-domain,

see Figure 1a. In robust regression one distinguishes M, R and L-estimators. We shall

treat the M-estimators LS and LAD. These minimize the lp distance of the residuals

for p = 2 and p = 1 respectively. We have not looked at other values of p ∈ [1,∞).

Tukey’s biweight and Huber’s Method are non-geometric M-estimators since the estimate

depends on the scaling on the vertical axis. The R-estimators of Jaeckel and Jurečková

are variations on the LAD estimator. They are less sensitive to the behaviour of the

density at the median as we shall see in Section 2. They are related to the weighted

balance estimators WB40, and will be discussed in Section 3. Least Trimmed Squares

(LTS) was introduced by Rousseeuw in [21]. It is a robust version of least squares. It is a

geometric L estimator. Least Median Squares (LMS) introduced in the same paper yields

the central line of a closed strip containing fifty of the hundred sample points. It selects

the strip with minimal vertical width. If the error has a symmetric unimodal density one

may add the extra condition that there are twenty five sample points on either side of the

strip. This Least Central Strip (LCS) estimator was investigated in a recent paper [20].

Maximum Likelihood may be used if the error distribution is known. We are interested

in estimators which do not depend on the error distribution, even though one has to

specify a distribution for the error in order to measure the performance. Nolan and Ojeda-

Revah in [19] use Maximum Likelihood to estimate the regression line when the errors

have a stable distribution and the explanatory variable (design matrix) is deterministic.

Their paper contains many references to applications. They write: ”In these applications,

outliers are not mistakes, but an essential part of the error distribution. We are interested

in both estimating the regression coefficients and in fitting the error distribution.” These
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words also give a good description of the aim of our paper.

There is one recent paper which deserves special mention. It uses the same framework

as our paper. In [24] the authors determine limit distributions for the difference âE − a

for certain linear estimators for the linear regression Yi = aXi + Y ∗i . The error Y ∗ is

assumed to have a symmetric distribution with power tails, and the absolute value of the

explanatory variable also has a power tail. The tail indices are positive. The estimators are

linear expressions in the error terms and functions of the absolute value of the explanatory

variables (which in our paper are assumed to be positive):

âE − a =
∑
|Xi|1/(θ−1)Y ∗i /

∑
|Xi|θ/(1−θ).

The estimator E = Eθ depends on a parameter θ > 1. The value θ = 2 yields LS.

The paper distinguishes seven subregions in the positive (ξ, η)-quadrant with different

rates of convergence. The paper is theoretical and focuses on the limit behaviour of the

distribution of the estimator when the sample size tends to infinity. We look at the same

range of values for the tail indices ξ and η, but our approach is empirical. We focus on

estimators which perform well in terms of the quadratic loss function L(u) = u2. Such

estimators are non-linear. We allow non-symmetric error distributions, and our regression

line may have a non-zero abscissa. We only consider two classes of dfs for the error term,

Student and Pareto, and our explanatory variables have a Pareto distribution. We restrict

attention to the rectangle, (ξ, η) ∈ [0, 3]×[0, 4]. In our approach the horizontal line η = 1/2

and the vertical line ξ = 1/2 turn out to be critical, but for ξ, η ≥ 1/2 the performance

of the estimators depends continuously on the tail indices. There are no sharply defined

subregions where some estimator is optimal. Our treatment of the behaviour for n→∞

is cursory. The two papers present complementary descriptions of linear regression for

heavy tails.

Let us give a brief overview of the contents. The exposition in Section 1 gives some

background and supplies the technical details for understanding the results announced

above. The next four sections describe the estimators which will be investigated in our

paper. The first describes the three well-known estimators LS, LAD and RMP. Least

Squares performs well for 0 ≤ η < 1/2 when the error has finite variance. Least Absolute
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Deviation performs well when ξ is small. The estimator RMP (RightMost Point) selects

the bisector which passes through the rightmost sample point. Its performance is poor, but

its structure is simple. The next section treats the weighted balance estimators. The third

Theil’s estimator which selects the line such that Kendall’s tau vanishes for the residuals,

rather than the covariance as for Least Squares. It also introduces a weighted version of

the Theil-Sen estimator. The last of these four sections introduces four more estimators:

the Least Trimmed Squares estimator, LTS, described above, and three estimators which

select a bisector for which a certain state function is minimal when the 25 furthest points

above the bisector are trimmed and the furthest 25 below.

The heart of our paper is the set of tables in Section 6 where for ξ = 0, 1/2, 1, 3/2, 2, 3

we compare the performance of different estimators. The errors have a Student or Pareto

distribution. The tail index of these distributions varies over 0, 1/3, 1/2, 2/3, 1, 3/2, 2, 3, 4.

In order to make the results for different values of the tail index η comparable the errors

are standardized so that their df F ∗ satisfies

F ∗(−1/2) = 1/4 F ∗(1/2) = 3/4. (0.2)

The interquartile distance is IQD = 1. There are three sets of six tables, each set con-

taining six tables comparing the performance of various estimators for the slope of the

regression line. The six tables correspond to six values of the tail index of the explanatory

variable, ξ = 0, 1/2, 1, 3/2, 2, 3.

• The first set of tables lists the empirical sd for LS, LAD, LADPC, TS and three

versions of LCS for errors with a Student distribution. The estimators do not depend

on the tail index η of the error.

• The second set of tables lists the empirical sd for LADGC, RM, HB40 and HB0,

WTS, Weighted Theil-Sen, and LTS for errors with a Student distribution. The

estimators contain parameters which depend on the value of both tail indices, ξ

and η. Thus the Right Median RM depends on an odd positive integer which tells

us how many of the rightmost points are used for the median. Theil-Sen, TS,

computes the median of the
(
n
2

)
slopes of the lines passing through two sample
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points; the weighted version introduces a weight which depends on the indices of

the two points. The weight increases as the two indices are further apart and as they

become smaller. The rate of increase is determined by a parameter. The optimal

value of this parameter, the value which yields the smallest empirical sd for a million

simulations, depends on the tail indices ξ and η of the explanatory variable and the

error. In LTS there are three parameters, the number of sample points which are

trimmed, and two positive real valued parameters which determine a penalty for

deleting sample points which lie far to the right.

• The third set of tables does the same as the second, but here the errors have a

Pareto distribution. Both the empirical sd and bias of the estimates are listed.

The estimators yielding the tables are simple functions of the 2n real numbers which

determine the sample. Apart from a choice of the parameters they do not depend on

the form of the distribution of the error or the explanatory variable. The results show a

continuous dependence of the empirical sd on the tail indices ξ and η both for Student

and for Pareto errors. The sd and the value of the parameters are different in the third

set of tables (Pareto errors) and the second (Student errors) but the similarity of the

performance of the estimators for these two error distributions suggests that the empirical

sds in these tables will apply to a wide range of error densities. The fourth table lists the

optimal values of the parameters for various estimators. Section 6.5 contains an example

which shows how the results of the paper should be applied to a sample of size n = 231

if the value of the tail indices ξ and η is not known, nor the distribution of the error.

The results in the three tables are for sample size n = 100. The explanatory variables

are independent observations from a Pareto distribution on (1,∞), with tail index ξ > 0,

arranged in decreasing order. One may replace these by the hundred largest points in a

Poisson point process on (0,∞) with a Pareto mean measure with the same tail index.

This will be done in Section 8. A scaling argument shows that the slope of the estimate of

the regression line for the Poisson point process is larger by a factor approximately 100ξ

compared to the iid sample. For the Poisson point process the rule of thumb (0.1) for the
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sd of the slope for good estimators has to be replaced by

10ξ−1 0 ≤ ξ ≤ 3, 0 ≤ η ≤ 4, n = 100. (0.3)

The performance decreases with ξ since the fluctuations in the rightmost point around

the central value x = 1 increase and the remaining 99 sample points Xi, i > 1, with

central value 1/iξ, tend to lie closer to the vertical axis as ξ increases and hence give less

information about the slope of the regression line.

What happens if one uses more points of the point process in the estimate? For ξ ≤ 1/2

the full sequence of the points of the Pareto point process together with the independent

sequence of errors Y ∗n determines the true regression line almost surely. The full sequence

always determines the distribution of the error variable, but for errors with a Student

distribution and ξ > 1/2 it does not determine the slope of the regression line. For

weighted balance estimators the step from n = 100 to ∞ is a small one. If ξ is large, say

ξ ≥ 3/4, the crude formula in (0.3) remains valid for sample size n > 100.

Conclusions are formulated in Section 7. The Appendix contains a brief exposition of

the alternative Poisson point process model and an introduction to the EGBP distribu-

tions. EGBP distributions often give a good fit to the distribution of the logarithm of the

absolute value of âE − a for symmetric errors. The reason for this good fit is not clear.

1 Background

In the paper below both the explanatory variables Xi and the errors Y ∗i in the linear

regression

Yi = b+ aXi + Y ∗i i = 1, . . . , n (1.1)

have heavy tails. The vectors (X1, . . . , Xn) and (Y ∗1 , . . . , Y
∗
n ) are independent; the Y ∗i are

iid and the Xi are a sample from a Pareto distribution on (1,∞) arranged in decreasing

order:

Xn < · · · < X2 < X1.
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The Pareto explanatory variables may be generated from the order statistics U1 < · · · <

Un of a sample of uniform variables on (0, 1) by setting Xi = 1/U ξ
i . The parameter ξ > 0

is called the tail index of the Pareto distribution. Larger tail indices indicate heavier

tails. The variables Y ∗i have tail index η. They typically have a symmetric Student t

distribution or a Pareto distribution. For the Student distribution the tail index η is the

inverse of the degrees of freedom. At the boundary η = 0 and the Student distribution

becomes Gaussian, the Pareto distribution exponential.

The problem addressed in this paper is simple: What are good estimators of the

regression line for a given pair (ξ, η) of positive power indices?

For η < 1/2 the variable Y ∗ has finite variance and LS (Least Squares) is a good

estimator. For ξ < 1/2 the Pareto variable X = 1/U ξ has finite variance. In that case

the LAD (Least Absolute Deviation) often is a good estimator of the regression line.

Asymptotically it has a (bivariate) normal distribution provided the density of Y ∗ is

positive and continuous at the median, see [9]. What happens for (ξ, η) ∈ [1/2,∞)2?

In the tables in Section 6 we compare the performance of several estimators at selected

parameter values (ξ, η) for sample size n = 100. See Figure 1a. First we shall give an

impression of the geometric structure of the samples which are considered in this paper,

and describe how such samples may arise in practice.

For large ξ the distribution of the points Xi along the positive horizontal axis becomes

very skewed. For ξ = 3 and a sample of a hundred P{X1 > 100X2} > 1/51. Exclude

the rightmost point. The remaining 99 explanatory variables then all lie in an interval

which occupies less than one percent of the range. The point (X1, Y1) is a pivot. It

yields excellent estimates of the slope if the absolute error is small. The estimator RMP

(RightMost Point) may be expected to yield good results. This estimator selects the

bisector which passes through (X1, Y1).

Definition 1. A bisector of the sample is a line which divides the sample into two equal

1Probabilities for the explanatory variables may be reduced to probabilities for order statistics from

the uniform distribution on (0, 1). Here we use that given U2 = u the quotient U1/U2 is uniformly

distributed on (0, 1) and that 53 > 100.
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parts. For an even sample of size 2m one may choose the line to pass through two sample

points: m− 1 sample points then lie above the line and the same number below. ♦

The estimator RMP will perform well most of the time but if Y ∗ has heavy tails RMP

may be far off the mark occasionally, even when η < ξ. What is particularly frustrating

are situations like Figure 1b where RMP so obviously is a poor estimate.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4

ξ

η

(a) the parameter grid
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slope of the lad estimated regression line is -0.659

line through 1 and 58 ; seed = 232985

(b) a bad choice of the regression line

On the left the optimal estimators for Student errors in the points on the grid

(ξ, η) ∈ {0, 1/2, 1, 3/2, 2, 3} × {0, 1/3, 1/2, 2/3, 1, 3/2, 2, 3, 4}

are LS, a red circle, and TS, a pink disk; LAD, a light blue 4, TB1, a blue 5, LADPC, a dark green

filled 5, and LADHC a light green filled 4; HB40, an orange �, and HB0 a purple �.

In Section 2 the behaviour of LS at the six diagonal points (i, i)/10, i = 2, . . . , 7, is investigated.

On the right is a sample for (ξ, η) = (3, 1) with Student errors. The true regression line is the horizontal

axis. The LAD estimate drawn in the plot is obviously incorrect. This line also is the RMP estimate.

Figure 1a shows the part of (ξ, η)-space to which we restrict attention in the present

paper. For practical purposes the square 0 ≤ ξ, η ≤ 2 is of greatest interest. The results

for other values of ξ and η may be regarded as stress tests for the estimators.

Often the variables Y ∗i are interpreted as iid errors. It then is the task of the statistician
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to recover the linear relation between the vertical and horizontal coordinate from the

blurred data for Y . The errors are then usually assumed to have a symmetric distribution,

normal or stable.

There is a different point of view. For a bivariate normal vector (X, Y ) there exists

a line, the regression line y = b + ax, such that conditional on X = x the residual

Y ∗ = Y − (ax+ b) has a centered normal distribution independent of x. A good estimate

of the regression line will help to obtain a good estimate of the distribution of (X, Y ).

This situation may also occur for heavy-tailed vectors.

Heffernan and Tawn in [11] study the distribution of a vector conditional on the hori-

zontal component being large. In this conditional extreme value model they focus on the

case where the conditional distribution of Y given X = x is asymptotically independent

of x for x → ∞. The vector Z = (X, Y ) conditioned to lie in a half plane Ht = {x > t}

is a high risk scenario, denoted by ZHt . Properly normalized the high risk scenarios ZHt

may have a limit distribution for t→∞. From univariate extreme value theory we know

that the horizontal coordinate of the limit vector has a Pareto or exponential distribution.

In the Heffernan-Tawn model the vertical coordinate of the limit vector is independent of

the horizontal coordinate. Heffernan and Tawn in [11] considered vectors with light tails.

The results were extended to heavy tails by Heffernan and Resnick in [12]. Other limit

distributions are also possible. For instance the quotient of the two coordinates may be

independent of the horizontal coordinate. See [2] for a list of all limit distributions.

Given a sample of a few thousand observations from a heavy-tailed bivariate distri-

bution one will select a subsample of say the hundred points for which the horizontal

coordinate is maximal. This yields a sequence x1 > · · · > x100. Choose a vertical co-

ordinate. This yields points (x1, y1), . . . , (x100, y100). In the Heffernan-Tawn model the

vertical coordinate may be chosen to be asymptotically independent of x for x → ∞.

In order to find this preferred vertical coordinate one has to solve the linear regression

equation (1.1). The residuals, ŷi = yi − (b̂ + âxi), allow one to estimate the distribution

of the error Y ∗i = Yi − (b+ aXi) and the tail index η.

The estimators of the regression line studied below often contain parameters which
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depend on the value of the tail indices (ξ, η). The tail index ξ may be estimated by

techniques from univariate extreme value theory, see for instance [10]. The tail index η of

the vertical coordinate is another matter. Large values of |Yi| may be due to large values

of Xi if the regression line is steep. This leads to a fix. We need the regression line to

determine the tail index of Y ∗, and we need this tail index η to obtain a good estimate

of the regression line. We shall take a two-step approach. Use an estimator E of the

regression line which is not strongly dependent on η to obtain an initial estimate of the

regression line. Now estimate η from the residuals Yi − (b̂E + âEXi), i ≥ 20, and use this

estimate to improve the initial estimate. Section 6.5 gives the details.

The interpretation of the data should not effect the statistical analysis. Our interest in

the Heffernan-Tawn model accounts for the Pareto distribution of the explanatory variable

and the assumption of heavy tails for the error term. It also accounts for our focus on

estimates of the slope.

We restrict attention to geometric estimators of the regression line. Such estimators

are called contravariant in [17]. A transformation of the coordinates has no effect on the

estimate of the regression line L. It is only the coordinates which are affected.

Definition 2. The group G of affine transformations of the plane which preserve ori-

entation and map right vertical half planes into right vertical half planes consists of the

transformations

(x′, y′) = (px+ q, ax+ b+ cy) p > 0, c > 0. (1.2)

An estimator of the regression line is geometric if the estimate is not affected by coordinate

transformations in G. ♦

Simulations are used to compare the performance of different estimators. For geometric

estimators one may assume that the true regression line is the horizontal axis, that the

Pareto distribution of the explanatory variables Xi is the standard Pareto distribution

on (1,∞) with tail P{X > x} = 1/x1/ξ, and that the errors are scaled to have IQD = 1.

Scaling by the InterQuartile Distance IQD allows us to compare the performance of an

estimator for different error distributions.
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The aim of this paper is to compare various estimators of the regression line for heavy

tails. The heart of the paper is the set of tables in section 6. In order to measure the

performance of an estimator E we use the loss function L(a) = a2. We focus on the slope

of the estimated regression line y = b̂E + âEx. For given tail indices (ξ, η) we choose

X = 1/U ξ Pareto and errors Y ∗ with a Student or Pareto distribution with tail index

η, scaled to have IQD=1. We then compute the average loss Lr of the slope âE for r

simulations of a sample of size n = 100 from this distribution. We choose r = 105. The

square root γ =
√
Lr is our measure of performance. It is known as RMSE (Root Mean

Square Error). We shall not use this term. It is ambiguous. The mean may indicate the

average, but also the expected value. Moreover in this paper the error is the variable Y ∗

rather than the difference âE−a. If the df F ∗ of Y ∗ is symmetric the square root γ =
√
Lr

is the empirical sd of the sequence of r outcomes of âE. The quantity γ is random. If one

starts with a different seed one obtains a different value γ. Since r is large one may hope

that the fluctuations in γ for different batches of r simulations is small. The fluctuations

depend on the distribution of γ, and this distribution is determined by the tail of the

random variable âE. The average loss Lr is asymptotically normal if L has a finite second

moment. For this the estimate âE has to have a finite fourth moment. In Section 2 the

distribution of γ is analyzed for ξ = η = i/10, i = 2, . . . , 7, for the estimator E = LS and

Student errors. We will see how the distribution of γ changes on passing the critical value

η = 1/2.

In order to quantify the fluctuations in γ we perform ten batches of 105 simulations.

This yields ten values γi for the empirical sd. Compute the average µ and the sd δ =√
(γ1 − µ)2 + · · ·+ (γ10 − µ)2/3. The two quantities µ and δ describe the performance of

the estimator. We shall reduce δ to a digit, 1,2 or 5, and µ to a decimal fraction m ∗ 10k

according to a simple recipe:

Notation: Set d = 1, 2 or 5 according as δ/10k lies in the interval [0.7, 1.5), [1.5, 3) or [3, 7)

where k is chosen to ensure that δ/10k lies in [0.7, 7). Now round off µ/10k to the nearest

integer m, and express the result of the ten batches of 105 simulations as m ∗ 10k[d].

For (µ, δ) = (0.01257, 0.000282) or (136.731 ∗ 10−7, 1.437 ∗ 10−7) or (221.386, 3.768) or
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(221.386, 37.68) or (0.000000347, 0.000000303) the recipe gives:

0.0126[2] 137e− 7[1] 221[5] 220[50] 3e− 7[5]. (1.3)

In the fourth example the fluctuations are relatively large. We should not be surprised at

the outcome 400[200] for a different set of ten batches of 105 simulations. The first three

estimates are good since m > 10d, the fifth is poor since m ≤ d and the fourth is weak.

Fluctuations which are comparable to the average are an indication of heavy tails.

Let us mention two striking results of the paper. The first concerns LAD, a widely

used estimator which is more robust than LS since it minimizes the sum of the absolute

deviations rather than their squares. This makes the estimator less sensitive to outliers

of the error. The LAD estimate of the regression line is a bisector of the sample. For

ξ > 1/2 the outliers of the explanatory variable affect the stability of the LAD estimate,

see [22], p.11. The table below lists some results from Section 6 for the empirical sd of

the LAD-estimate:

ξ \ η 0 1/2 1 3/2 2 3 4

0 0.0969[2] 0.0951[2] 0.0917[5] 0.0869[2] 0.0810[5] 0.0681[5] 0.0560[5]

1/2 0.0641[2] 0.0690[2] 0.1[1] 3[5] 40[50] 1e7[1] 2e10[5]

Table (1) The empirical sd for âLAD.

The message from the table is clear. For errors with infinite second moment, η ≥ 1/2, use

LAD, but not when ξ ≥ 1/2. Actually the expected loss for âLAD is infinite for η ≥ 1/2

for all ξ. In this respect LAD is no better than LS. In Section 2 we prove:

Theorem 2.1. In the linear regression (1.1) let X have a non-degenerate distribution

and let Y ∗ have an upper tail which varies regularly with non-positive exponent. Let the

true regression line be the horizontal axis and let ân denote the slope of the LAD estimate

of the regression line for a sample of size n. For each n > 1 the quotient

Qn(t) = P{Y ∗ > t}/P{ân > t}

is a bounded function on R.

The discrepancy between the empirical sd, based on simulations, and the theoretical

value is disturbing. Should a risk manager feel free to use LAD in a situation where the
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explanatory variable is positive with a tail which decreases exponentially and the errors

have a symmetric unimodal density? Or should she base her decision on the mathematical

result in the theorem? The answer is clear: Hundred batches of a quintillion simulations

of a sample of size n = 100 with X standard exponential and Y ∗ Cauchy may well give

outcomes which are very different from 0.0917[5]. Such outcomes are of no practical

interest. The empirical sd’s computed in this paper and listed in the tables in Section 6

may be used for risks of the order of one in ten thousand, but for risks of say one in ten

million – risks related to catastrophic events – other techniques have to be developed.

A million simulations allow one to make frequency plots which give an accurate im-

pression of the density when a density exists. Such plots give more information then the

empirical sd, they suggest a shape for the underlying distribution. We plot the log frequen-

cies in order to have a better view of the tails. Log frequencies of Gaussian distributions

yield concave parabolas. Figure 1 below shows loglog frequency plots for two estimators

of the regression line for errors with a symmetric Student distribution for (ξ, η) = (3, 4).
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(a) LAD(3, 4)
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(b) RM(21)(3, 4)

Figure 1: Frequencies of the absolute slope for (ξ, η) = (3, 4). On the left the LAD estimator yields

an empirical sd = 0e16[1]. On the right the Right Median estimator based on the 21 rightmost sample

points, RM(21), yields an empirical sd = 0.00027[5]. The Hill estimate of the right tail index of the

distribution of |âLAD| is hR = 3.87; for |âRM(21)| it is hR = 0.436.
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First consider the loglog frequency plot of |âLAD| on the left. The range of |âLAD| in

Figure 1a is impressive. The smallest value of |a| is of the order of 10−24, the largest of the

order of 1020. A difference of more than forty orders of magnitude. Accurate values occur

when X1 is large and |Y ∗| small. The LAD estimate of the regression line is a bisector of

the sample. In extreme cases it will pass through the rightmost point and agree with the

RMP estimate. The value will then be of the order of 1/X1. The minimum is determined

by the minimal value of 108 simulations of a standard uniform variable. For ξ = 3 this

gives the rough value 10−24 for the most accurate estimate. Large values of |a| are due to

large values of |Y1|. Because of the tail index η = 4 the largest value of |Y1| will be of the

order of 1024. Then |Y1|/X1 is of the order of 1018. For the tail index pair (ξ, η) = (3, 4)

the limits of computational accuracy for R are breached.

The asymptotes in the loglog frequency plots for |â| correspond to power tails for |â|,

at the origin and at infinity. The slope of the asymptote is the exponent of the tail. The

plot on the right, Figure 1b, shows that it is possible to increase the slope of the right

tail and thus reduce the inaccurate estimates. The value 0e16[1] for the sd of the LAD

estimate of the slope is reduced to 0.00027[5] for RM(21). The Right Median estimate

RM(21) with parameter 21 is a variation on the Rightmost Point estimate RMP. Colour

the 21 rightmost sample points red and then choose the bisector of the sample which also

is a bisector of the red points. This is a discrete version of the cake cutting problem:

“Cut a cake into two equal halves, such that the icing is also divided fairly.” The RM

estimate passes through a red and a black point. Below the line are 49 sample points, ten

of which are red; above the line too. The tail index of â = âRM(21) is at most 2η/20 = 0.4

by Theorem 3.10. The estimate â has finite sd even though the value 0.00027[5] shows

that the fluctuations in the empirical sd for batches of a hundred thousand simulations

are relatively large.

The smooth red curve in the right hand figure is the EGBP fit to the log frequency

plot of log |â|.

EGBP variables have logconcave densities

f = ce−ψ ψ(t) = rψp(u0 ∗ (t− t0)/v0) p ∈ (0, 1), r > 0, u0 > 0, v0 > 0.
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The convex function ψ in the exponent is characterized by the location t0 of the top, the

curvature at the top and the absolute slopes of the two asymptotes. EGBP variables have

the form b + aX where X = log(U/V ) is the difference of two independent loggamma

variables logU and log V . The appendix contains a short introduction to the class EGBP.

The EGBP-fit is particularly good if Y ∗ has a symmetric distribution. This good fit is the

second striking result of this paper. The result is empirical. Section 10 in the Appendix

gives details.

The tables in Section 6 are meant to compare the performance of various estimators.

It is not the value of the empirical sd’s listed in these tables which are important, but

rather the induced ordering of the estimators. For any pair (ξ, η) and any estimator E

the empirical sd and the value of the parameter will vary when the df F ∗ of the error Y ∗

is varied, but the relative order of the estimators is quite stable as one sees by comparing

the results for Student and Pareto errors with the same tail index η. Given a geometric

estimator, one may apply the techniques of this paper. Determine the average losses in

the estimate of the slope for ten batches of 105 simulations of a sample of a hundred

points. Then compare the performance of this estimator to that of the estimators treated

in this paper as listed in Section 6.

The remaining part of this section treats the asymptotic behaviour of estimators when

the sample size tends to ∞ via a Poisson point process approach. This part may be

skipped on first reading.

Recall that our interest in the problem of linear regression for heavy tails was triggered

by a model in extreme value theory. One is interested in the behaviour of a vector X when

a certain linear functional Z = ζ(X) is large. What happens to the distribution of the high

risk scenario XHt for the half space Ht = {ζ ≥ t} for t →∞? We consider the bivariate

situation and choose coordinates such that ζ is the first coordinate. In the Heffernan-Tawn

model one can choose the second coordinate such that the two coordinates of the high risk

scenario are asymptotically independent. More precisely there exist normalizations of the

high risk scenarios, affine transformations mapping the vertical half plane Ht onto H1 such

that the normalized high risk scenarios converge in distribution. The limit scenario lives
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on H1 = {x ≥ 1}. Its first component has a Pareto (or exponential) distribution and is

independent of the second component. The normalizations which yield the limit scenario

applied to the samples yield a limiting point process on {x > 0}. (By the Extension

Theorem in [2].) If the limit scenario has density r(x)f ∗(y) on H1 with r(x) = λ/xλ+1

on (1,∞) for λ = 1/ξ > 0, the limit point process is a Poisson point process N0 with

intensity r(x)f ∗(y) where r(x) = λ/xλ+1 on (0,∞). It is natural to use this point process

N0 to model the hundred points with the maximal ζ-values in a large sample from the

vector X.

For high risk scenarios estimators may be evaluated by looking at their performance on

the hundred rightmost points of the Pareto point process. For geometric estimators the

normalizations linking the sample to the limit point process do not affect the regression

line since the normalizations belong to the group G used in the definition of geometric

estimator above. The point process N0 actually is a more realistic model than an iid

sample.

For geometric estimators there is a simple relation between the slope An of the regres-

sion line for the n rightmost points (X̃i, Y
∗
i ), i = 1, . . . , 100, of N0 and the slope ân of the

regression line for a sample of n independent observations (Xi, Y
∗
i ):

An = Zξ
nân

√
EA2

n = ζn
√

Eân ζn =

√
EZ2ξ

n . (1.4)

(The first n points of the standard Poisson point process divided by the next point, Zn,

are the order statistics from the uniform distribution on (0, 1) and independent of the

Gamma(n+ 1) variable Zn with density xne−x/n! on (0,∞).) A simple calculation shows

that ζn = nξ + c(ξ) + o(1) for n→∞.

The point process Na with points (X̃i, Yi), Yi = Y ∗i +aXi, has intensity r(x)f ∗(y−ax).

The step from n to n + 1 points in estimating the linear regression means that one also

takes the n + 1st point of the point process Na into account. This point lies close to the

vertical axis if n is large and very close if ξ > 0 is large too. The new point will give

more accurate information about the abscissa b of the regression line then the previous

points since the influence of the slope decreases. For the same reason it will give little

information on the value of the slope a. The point process approach allows us to step
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from sample size n = 100 to∞ and ask the crucial question: Can one distinguish Na and

N0 for a 6= 0?

Almost every realization of Na determines the probability distribution of the error: If

y0 is a continuity point of F ∗ the fraction Kn/n of the n rightmost points of N0 above

the horizontal line y = y0 tends to 1 − F ∗(y0) almost surely. This holds not only for

horizontal lines but for any line y = y0 + ax. Hence the point process Na determines

the error distribution. It need not determine the slope a of the regression line. Just as

one cannot distinguish a sequence of standard normal variables Wn from the sequence of

shifted variables Wn + 1/n with absolute certainty, one cannot distinguish the Poisson

point process Na from N0 for ξ > 1/2 if the errors have a scaled Student distribution.

The distributions of the two point processes are equivalent. The one may be expressed in

terms of the other by a strictly positive density. See Appendix 8 for details.

It may seem strange that realizations of the point process Na determine the probability

distribution of Y ∗ but not the slope a of the regression line. However for the latter one

needs points which are not too close to the vertical axis. If ξ is large these are scarce.

The equivalence of the distributions of Na and N0 affects the asymptotic behaviour of

the estimates An of the slope of the regression line for the Poisson point process. There

exist no estimators for which An converges to the true slope. The limit, if it exists, is a

random variable A∞, and the loss (A∞ − a)2 is almost surely positive. Because of the

simple scaling relation (1.4) between the estimate of the slope for iid samples and for N the

limit relation An ⇒ A∞ implies nξân ⇒ A∞. Convergence SDn =
√

E(An − a)2 → SD∞

implies that the square root sdn of the expected loss of ân − a multiplied by nξ has this

limit too: nξ sdn → SD∞.

Since the Poisson point process Na determines the distribution of Y ∗ one may center

the error and replace the regression equation y = y∗ + (b + ax) by the linear equation

y = y∗ + ax. Let â0
n and A0

n denote the estimate of the slope a for the latter equation.

These estimates will be more precise than ân and An since now there is only the one

parameter a. In particular SD0
n for large n should give a better idea of the size of SD∞

then SDn.
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In order to make these observations more concrete we have plotted the values SDn(ξ)

and SD0
n(ξ) for the Least Squares estimator for ξ ∈ (0, 3] and n = 20, 50, 100, 200, 500, 1000

in Figure 2. The dotted line is the plot for SD∞(ξ). The labels on the left and the right

indicate two different scales. For ξ > 1 the plots of SDn are almost indistinguishable apart

from n = 20. On the interval (0, 1) convergence of SDn to SD∞ is slow. One may break up

the uncertainty measured by SDn into two parts, the uncertainty in the slope expressed

in SD0
n, and the uncertainty about the slope of the regression line due to the uncertainty

about the line’s position. The latter is quite large. From the figure one sees that for the

precision of A0
20 one needs a thousand points of the point process in the estimate A1000.
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Figure 2: The sd (on two scales) of the slopes An and A0
n (dashed) of the LS estimates of the regression

lines y = y∗+ax+ b and y = y∗+ax for the n = 20, 50, 100, 200, 500, 1000 (grey, azure, black, red, green,

blue) and ∞ (purple) rightmost points of the Poisson point process N0 for errors Y ∗i with variance one.

The Least Squares estimator does not interest us particularly. It has the attractive

property that there exist simple explicit formulas for the estimates and their sd’s in terms

of the configuration of the explanatory variables and the first two moments of the error.

For a centered error and ξ > 1/2 one may write A0
∞ − a = A∞ − a =

∑
ωnY

∗
n with

coefficients ωn depending on the sequence Xn, see [24]. The limit is the sum of the

series
∑
ωnY

∗
n . Its distribution depends on the distribution of the error Y ∗. The limit

distribution is not universal.
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Figure 2 gives an impression of what to expect for sample size n 6= 100. It raises the

question in how far similar results may be obtained for the other estimators considered

in this paper.

The asymptotic behaviour of the estimators does not interest us particularly. This

paper is about comparing the performance of a number of known and new estimators

of the regression line for iid samples of size n = 100 when the explanatory variable has

a Pareto distribution with tail index ξ > 0 and the error a Student distribution with

tail index η > 0 or a Pareto distribution. The results in [24] indicate that for certain

linear estimators the asymptotic results depend on the tails of the distribution of the

error and of the explanatory variable, but are insensitive to the exact form. Our Ansatz

is that this also is the case for the non-linear estimators treated below. The Poisson point

process approach creates a framework within which the results of this paper fit and may

be interpreted. The last few pages of this section may be regarded as an extended gloss

to Figure 2. This figure should be kept in mind when evaluating the entries in the tables

in Section 6. We shall return to this topic in Section 8.

2 Three simple estimators: LS, LAD and RMP

Least Squares (LS) and Least Absolute Deviation (LAD) are classic estimators which

perform well if the tail index η of the error is small (LS), or the tail index ξ of the

explanatory variable (LAD). For ξ, η ≥ 1/2 one may use the bisector of the sample passing

through the RightMost Point (RMP) as a simple but crude estimate of the regression line.

At the critical value η = 1/2 the second moment of the error becomes infinite and the

least squares estimator breaks down. Samples change gradually when ξ and η cross the

critical value of a half. We shall investigate the break down of the LS estimator by looking

at its behaviour for ξ = η = i/10, i = 2, . . . , 7, for errors with a Student distribution. It

will be seen that the notation in (1.3) nicely expresses the decrease in the performance of

the estimator on passing the critical exponent. We shall also show that even for bounded

errors there may exist estimators which perform better than Least Squares. The estimator
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LAD is more robust than Least Squares. Its performance declines for ξ > 1/2, but even for

ξ = 0 (exponential distribution) or ξ = −1 (uniform distribution) its good performance

is not lasting. The RightMost Point estimate is quite accurate most of the time but may

be far off occasionally. That raises the question whether an estimator which is far off 1%

of the time is acceptable.

Least squares (LS) is simple to implement and gives good results for η < 1/2. Given

the two data vectors x and y we look for the point ax + be in the two-dimensional linear

subspace spanned by x and e = (1, . . . 1) which gives the best approximation to y. Set

z = x−me where m is the mean value of the coordinates of x. The vectors e and z are

orthogonal. Choose a0 and b0 such that y − a0z ⊥ z and y − b0e ⊥ e. Explicitly:

a0 = 〈y, z〉/〈z, z〉 b0 = 〈y, e〉/〈e, e〉.

The point we are looking for is

a0z + b0e = a0x + (b0 −ma0)e = ax + be. (2.1)

This point minimizes the sum of the squared residuals, where the residuals are the com-

ponents of the vector y− (ax + be). Note that m is the mean of the components of x and

s2 = 〈z, z〉 the sample variance. Conditional on X = x the estimate of the slope is

âLS =
∑

ζiY
∗
i /s ζi = (xi −m)/s. (2.2)

There is a simple relation between the standard deviation of Y ∗ and of the estimate âLS

of the slope: (ζi) is a unit vector; hence conditional on the configuration x of X

sd(âLS) = sd(Y ∗)/s.

If the sd of Y ∗ is infinite then so is the sd of the estimator âLS. That by itself does not

disqualify the LS estimator. What matters is that the expected loss is infinite.

Let us see what happens to the average loss Lr when the number r of simulations is

large for distributions with tail index ξ = η = τ as τ crosses the critical value 0.5 where

the second moment of Y ∗ becomes infinite. Figure 3 shows the log frequency plots of âLS

for ξ = η = τ(i) = i/10 for i = 2, . . . , 7 based on ten batches of a hundred thousand
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simulations. The variable Y ∗ has a Student t distribution with 1/η degrees of freedom

and is scaled to have interquartile distance one. The most striking feature is the change in

shape. The parabolic form associated with the normal density goes over into a vertex at

zero for τ = 0.5 suggesting a Laplace density, and a cusp for τ > 0.5. The cusp will turn

into a singularity f(x) ∼ c/xτ with τ = 1− 1/η > 0 when Y ∗ has a Student distribution

with tail index η > 1.

The change that really matters is not visible in the figure. It occurs in the tails.

The distribution of the average loss Lr depends on the tail behaviour of L1 = â2
LS. The

Student variable Y ∗ with 1/η degrees of freedom has tails P{|Y ∗| > t} ∼ c/t1/η. This also

holds for âLS which is a mixture of linear combinations of these variables by (2.2). For

η = i/10, i = 2, . . . , 7, the positive variable L1 = â2
LS has upper tail P{L1 > t} ∼ ci/t

5/i.

See Theorem 2.1 below.

First consider the behaviour of the average Zr(i) of r = 106 independent copies of the

variable Z(i) = 1/U i/5 where U is standard uniform. The Pareto variable Z(i) has tail

1/z5/i on (1,∞). Its expectation is 2/3, 3/2, 4,∞,∞,∞ for i = 2, 3, 4, 5, 6, 7. The average

Zr(i) has the form mr(i) + sr(i)Wr(i) where one may choose mr(i) to be the mean of Z(i)

if finite, and where Wr(i) converges in distribution to a centered normal variable for i = 2,

and for i > 2 to a skew stable variable with index α = i/5 and β = 1. The asymptotic

expression for Zr is:

Zr(i) = mr(i) + sr(i)Wr(i) i = 2, 3, 4, 5, 6, 7

• i = 2: mr(2) = 2/3 = EZ(2), sr(2) = 1/
√
r, Wr(2)⇒ c2W2;

• i = 3: mr(3) = 3/2 = EZ(3), sr(3) = r−2/5, Wr(3)⇒ c3W5/3;

• i = 4: mr(4) = 4 = EZ(4), sr(4) = r−1/5, Wr(4)⇒ c4W5/4;

• i = 5: mr(5) = log r, sr(5) ≡ 1, Wr(5)⇒ c5W1;

• i = 6: mr(6) = sr(6) = r1/5, Wr(6)⇒ c6W5/6;

• i = 7: mr(7) = sr(7) = r2/5, Wr(7)⇒ c7W5/7.
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LS estimate of slope for eta = 1/df in 2:7/10, black, red, green, blue, brown, purple 

and 0.999 quantiles at c(1.28,0.999,1.09,1.33,1.95,2.87);

10 batches of 1e+05 simulations.

Figure 3: Log frequency of âLS for ξ = η = i/10 for i = 2, . . . , 7, and 0.999 quantiles of |âLS|. The Hill

estimates of the tail index of âLS are based on the 500 largest absolute observations:

ξ = η 1/5 3/10 2/5 1/2 3/5 7/10

0.999 quantile 1.28 0.99 1.09 1.33 1.95 2.87

emp sd 0.312[1] 0.196[1] 0.16[1] 0.19[5] 0.3[1] 1[1]

Hill est 0.15[1] 0.23[1] 0.35[2] 0.46[2] 0.59[5] 0.69[5]
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For an appropriate constant Ci > 0 the variable CiL1 = Ciâ
2
LS has tails asymptotic

to 1/t5/i, and hence the averages CiLr exhibit the asymptotic behaviour above. It is the

relative size of the deterministic part mr(i) of Lr compared to the size of the fluctuations

sr(i)Wr(i) of the random part which changes as i/10 passes the critical value 0.5. The

quotients sr(i)/mr(i) do not change much if one replaces Lr by
√
Lr, the batch sd. The

theoretical results listed above are nicely reflected in the Hill estimate of the tail index,

and the loss of precision in the empirical sd’s in the table below Figure 3.

For individual samples it may be difficult to decide whether the parameters are ξ =

η = 4/10 or 6/10. The pairs (4, 4)/10 and (6, 6)/10 belong to different domains in the

classification in [24] but that classification is based on the behaviour for n → ∞. The

relation between the estimates âLS for (4, 4)/10 and (6, 6)/10 for samples of size n = 100

becomes apparent on looking at large ensembles of samples for parameter values (i, i)/10

when i varies from two to seven. The slide show was created in an attempt to understand

how the change in the parameters affects the behaviour of the LS estimator. The estimate

has a distribution which depends on the parameter. The dependence is clearly expressed

in the tails of the distribution. The Hill estimates reflect nicely the tail index η of the

error. A recent paper [18] gives similar results for samples with fixed size for LS in linear

regression where the coefficient b in (1.1) is random with heavy tails.

The simplicity of the LS estimator makes a detailed analysis of the behaviour of the

average loss Lr possible for âLS. The critical value is η = 1/2. The relative size of the

fluctuations rather than the absolute size of the sd signal the transition across the critical

value. Note that the critical value η = 1/2 is not due to the “square” in Least Squares

but to the exponent 2 in the loss function. There is a simple relation between the tails

of the error distribution and of âLS. Appendix 9 shows that P{S < s}/s[n/2] is bounded.

Lemma 3.4 in [18] then gives a very precise description of the tail behaviour of âLS in

terms of the tails of Y ∗. We formulate this lemma as a Theorem below.

Theorem 2.1. (Mikosch & de Vries) Let âLS denote the slope of the LS estimate

of the regression line in (1.1) for a sample of size n ≥ 4 when the true regression line

is the horizontal axis. Suppose Y ∗ has a continuous df and X a bounded density. Let
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T (t) = P{|Y ∗| > t}/2 vary regularly at infinity with exponent −λ < 0 and assume balance:

there exists θ ∈ [−1, 1] such that

P{δY ∗ > t}/T (t)→ 1 + δθ t→∞, δ = ±1.

Set M = (X1 + · · ·+Xn)/n and Zi = Xi −M , V =
√
Z2

1 + · · ·+ Z2
n. Define

Ci = E|Zi|λ/V 2λ Bi = E sign(Zi)|Zi|λ/V 2λ i = 1, . . . , n. (2.3)

If λ < [n/2] then

P{δâLS > t}/T (t)→
∑

Ci + δθ
∑

Bi t→∞, δ = ±1.

Proof Proposition 9.1 shows that there exists a constant A > 1 such that P{V ≤ s} <

As[n/2] for s > 0. Set µ = ([n/2] +λ)/2. Then E‖U‖µ is finite for U = Z/V 2. Lemma 3.4

in [18] gives the desired result with Ci = E|Ui|λ and Bi = sign(Ui)|Ui|λ. ¶

If one were to define the loss as the absolute value of the difference âLS− a rather than

the square, the expected loss would be finite for η < 1. In particular the partial averages

of âLS for an iid sequence of samples of fixed size n converge almost surely to the true

slope. In this respect Least Squares is a good estimator for errors with tail index η < 1.

Least Absolute Deviations (LAD) also known as Least Absolute Value and Least Ab-

solute Error is regarded as a good estimator of the regression line for errors with heavy

tails. The LAD estimator has not achieved the popularity of the LS estimator in linear

regression. Yet LAD has always been seen as a serious alternative to the simpler proce-

dure LS. A century ago the astronomer Eddington in his book [6] discusses the problem

of measuring the velocity of the planets and writes2: “This [LAD] is probably a preferable

procedure, since squaring the velocities exaggerates the effect of a few exceptional veloc-

ities; just as in calculating the mean error of a series of observations it is preferable to

use the simple mean residual irrespective of sign rather than the mean square residual”.

In a footnote he adds: “This is contrary to the advice of most textbooks; but it can be

2I thank Michael Feast from the Department of Astronomy of the University of Cape Town for drawing

my attention to these words.
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shown to be true.” Forty years earlier Edgeworth had propagated the use of LAD for

astronomical observations in a series of papers in the Philosophical Magazine, see [14].

The LAD (Least Absolute Deviations) estimate of the regression line minimizes the

sum of the absolute deviations rather than the sum of their squares. It was introduced

(by Boscovitch) half a century before Gauss introduced Least Squares in 1806. Compu-

tationally it is less tractable, but nowadays there exist fast programs for computing the

LAD regression coefficients even if there are a hundred or more explanatory variables.

Dielman in [4] gives a detailed oversight of the literature on LAD.

The names “least squares” and “least absolute deviations” suggest that one needs finite

variance of the variables Y ∗ for LS and a finite first moment for LAD. That is not the case.

Bassett & Koenker in their paper [3] on the asymptotic normality of the LAD estimate

for deterministic explanatory variables observe: “The result implies that for any error

distribution for which the median is superior to the mean as an estimator of location, the

LAE [LAD] estimator is preferable to the least squares estimator in the general linear

model, in the sense of having strictly smaller asymptotic confidence ellipsoids.” The

median of a variable X is the value t which minimizes the expectation of |X − t|, but a

finite first moment is not necessary for the existence of the median. The median of an

odd number of points on a line is the middle point. It does not change if the positions

of the points to the left and the right is altered continuously provided the points do not

cross the median. Similarly the LAD-regression line for an even number of points is a

bisector which passes through two sample points. The estimate does not change if the

vertical coordinate of the points above and below are altered continuously provided the

points do not cross the line. Proofs follow in the next section.

Under appropriate conditions the distribution of âLAD is asymptotically normal. That

is the case if the second moment of X is finite and the density of Y ∗ is positive and

continuous at the median, see [9]. The LAD estimator of the regression line is not very

sensitive to the tails of Y ∗ but it is sensitive to the behaviour of the distribution of Y ∗

at the median m0. The sd of the normal approximation is inversely proportional to the

density of Y ∗ at the median. LAD will do better if the density peaks at m0 and worse if
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Figure 4: Log frequencies for the estimates âLAD (full line) and âLAD40 (dashed) of the slope of the

regression line based on a million simulations of a sample of 100 points (X,Y ∗), with X standard expo-

nential and Y ∗ of the form O ∗ U2 (red), O ∗ U (black), O ∗
√
U (green) and O ∗ (1 + U)/2 (blue) where

U is standard uniform on (0, 1) and O is a fair sign independent of U . Note that âLAD depends on the

density of Y ∗ at the median; âLAD40 on the density at the 0.4 and 0.6 quantiles.

y∗ = O ∗ U2 O ∗ U O ∗
√
U O ∗ (1 + U)/2

LS 0.0467[1] 0.0603[2] 0.0739[2] 0.0798[2]

LAD 0.0308[1] 0.0982[2] 0.1774[5] 0.2132[5]

LAD40 0.0376[1] 0.0879[2] 0.1069[2] 0.0677[5].
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the density vanishes at m0.

To illustrate this we consider the case where X has a standard exponential distribution

(ξ = 0) and Y ∗ has a density f which is concentrated on (−1, 1) and symmetric. We con-

sider four situations f(y) = 1/4
√
|y|, f ≡ 1/2, f(y) = |y| and f ≡ 1 on the complement

of [−1/2, 1/2]. Figure 4 shows the log frequencies of the estimator âLAD and âLAD40. Here

LAD40 is a variation on LAD which depends on the behaviour of the distribution of Y ∗

at the 0.4 and 0.6 quantiles rather than the median. Ten batches of a hundred thousand

simulations yield the log frequencies in Figure 4 and the given empirical sd’s.

The Gauss-Markov Theorem states that the least squares estimate âLS has the smallest

sd among all estimates â of the slope which are linear combinations of the yi. It clearly

does not apply to LAD or LAD40. The incidental improvement of the performance by

ten or thirty per cent is not sufficient to lure the reader away from LS. This paper is not

about optimal estimators. A glance at the tables in Section 6 will show that for heavy

tails there exist estimators whose performance is abominable. The aim of our paper is to

show that there also exist estimators which perform well.

Rightmost point (RMP or RM(1)) (like LAD as we shall see below) is a weighted

balance estimator. A balance estimate of the regression line is a bisector which passes

through two of the hundred sample points. The regression line for RMP is the bisector

which contains the rightmost sample point. The RMP estimate is accurate if X1 is large,

except in those cases where |Y ∗1 | is large too. In terms of the quadratic loss function

employed in this paper it is a poor estimator for η ≥ 1/2.

The table below lists the empirical sd of the estimate â of the slope for LS, LAD and

RMP, based on ten batches of a hundred thousand simulations of a sample of size n = 100,

for various values of the tail indices ξ and η. The explanatory variable X is Pareto with

tail 1/x1/ξ for ξ > 0 and standard exponential for ξ = 0; the dependent variable Y ∗ has a

Student distribution with 1/η degrees of freedom for η > 0 and is normal for η = 0. The

error is scaled to have Inter Quartile Distance IQD=1.
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ξ = 0 1/2 1 3/2 2 5/2 3

âLS

η = 0 0.0774[2] 0.0518[1] 0.00702[2] 0.00122[1] 0.000245[5] 0.000054[2] 0.0000131[5]

1/3 0.118[1] 0.0790[5] 0.0107[1] 0.00186[2] 0.00037[1] 0.000081[5] 0.000019[1]

1/2 0.23[1] 0.15[1] 0.020[1] 0.0034[2] 0.0007[1] 0.00015[5] 0.00004[1]

2/3 0[100] 30[50] 0[10] 1[1] 0.1[2] 0.01[2] 0.001[2]

1 0[100000] 20000[50000] 3000[5000] 0[1000] 0[100] 2[5] 0.1[1]

âLAD

η = 0 0.0971[2] 0.0641[2] 0.00859[2] 0.00149[1] 0.000295[5] 0.000066[2] 0.0000157[5]

1/3 0.0959[2] 0.0670[1] 0.00946[2] 0.00169[1] 0.000344[5] 0.0000764[5] 0.0000184[5]

1/2 0.0952[2] 0.0690[5] 0.0103[2] 0.00190[5] 0.00039[2] 0.000087[5] 0.000021[2]

2/3 0.0941[2] 0.072[1] 0.0120[2] 0.003[1] 0.00062[5] 0.00014[5] 0.00004[1]

1 0.0918[5] 0.11[5] 1[1] 0.0[1] 0.008[5] 0.00[1] 0.001[1]

âRMP

η = 0 0.1966[5] 0.0974[5] 0.0116[1] 0.00189[5] 0.00036[1] 0.000078[5] 0.000018[1]

1/3 0.290[5] 0.144[2] 0.0171[5] 0.0028[1] 0.00052[2] 0.000111[5] 0.000026[2]

1/2 0.6[1] 0.3[1] 0.04[1] 0.006[2] 0.0011[5] 0.0002[1] 0.00005[5]

2/3 4[5] 2[2] 0.3[5] 0.04[5] 0.01[1] 0.002[2] 0.0003[5]

1 300[500] 200[200] 20[50] 3[5] 1[1] 0.1[2] 0.02[5]

The empirical sd of the estimate of the slope, âLS, âLAD and âRMP, for η ∈ [0, 1]

based on ten batches of a hundred thousand simulations.

The break down of LS for η > 1/2 is dramatic. Even the simple estimator RMP performs better.

The sd’s decrease as ξ increases, as is to be expected, and the relative size of the fluctuations increases too.

For η ≥ 1/2 LAD gives the best performance.

Rousseeuw in [21] observes: “Unfortunately, [LAD] is only robust with respect to

vertical outliers, but it does not protect against bad leverage points.” This agrees with the

deterioration of the LAD-estimate for η ≥ 1/2 when ξ increases. The good performance

of the LAD estimates for ξ = 0 and the relatively small fluctuations reflect the robustness

which is supported by the extensive literature on this estimator. It does not agree with

the theoretical result below:

Theorem 2.2. In the linear regression (1.1) let X have a non-degenerate distribution

and let Y ∗ have an upper tail which varies regularly with non-positive exponent. Let the

true regression line be the horizontal axis and let ân denote the slope of the LAD estimate

of the regression line for a sample of size n. For each n > 1 the quotient

Qn(t) = P{Y ∗ > t}/P{ân > t}

is a bounded function on R.
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Proof Let c1 < c2 be points of increase of the df of X. Choose δ1 and δ2 positive such

that the intervals I1 = (c1 − δ1, c1 + δ1) and I2 = (c2 − δ2, c2 + δ2) are disjoint, and

(c1 − nδ1, c1 + nδ1) and I2 too. Let E denote the event that X1 ∈ I2 and the remaining

n− 1 values Xi lie in I1. The LAD regression line L passes through (X1, Y1). (If it does

not the line L′ which passes through (X1, Y1) and intersects L in x = c1 has a smaller

sum of absolute deviations: Let δ denote the absolute difference in the slope of these two

lines. The gain for X1 is (c2 − δ2 − c1)δ, and exceeds the possible loss (n− 1)δδ1 for the

the remaining n − 1 points.) It is known that the LAD estimate of the regression line

is a bisector. We may choose the vertical coordinate so that y = 0 is a continuity point

of F ∗ and 0 < F ∗(0) < 1. A translation of Y ∗ does not affect the result. The event

E1 ⊂ E that Y1 is positive and more than half the points (Xi, Yi), i > 1, lie below the

horizontal axis has probability pPE where p > 0 depends on F ∗(0) and n. If E1 occurs

the regression line L will intersect the vertical line x = c1 − δ1 below the horizontal axis.

For Y1 = y > 0 the slope A of L then exceeds y/c where c = (c2 + δ2)− (c1 − δ1). Hence

P{A > t} ≥ pPEP{Y ∗ > ct} for t > 0. Regular variation of the upper tail of Y ∗ implies

that P{Y ∗ > ct} ≥ (cλ/2)P{Y ∗ > t} for t ≥ t0 where λ ≤ 0 is the exponent of regular

variation of 1− F ∗. This yields the desired result for the quotient Qn. ¶

How should one interpret this result? The expected loss (MSE) is infinite for η ≥ 1/2.

In that respect LAD is no better than LS. We shall introduce the notion of “light heavy”

tails. Often heavy tails are obvious. If one mixes ten samples of ten observations each

from a Cauchy distribution with ten samples of ten observations from a centered normal

distribution, scaling each sample by the maximum of the ten absolute values to obtain

point sets in the interval [−1, 1], one will have no difficulty in selecting the ten samples

which derive from the heavy-tailed Cauchy distribution, at least most of the time. In

practice one expects heavy tails to be visible in samples of a hundred points. However

heavy tails by definition describe the df far out. One can alter the density of a standard

normal variable Z outside the interval (−12, 12) to have the form c/z2 for an appropriate

constant c. If one takes samples from the variable Z ′ with the new density the effect of

the heavy tails will be visible, but only in very large samples. For a sample of a trillion

independent copies of Z ′ the probability that one of the points lies outside the interval
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(−12, 12) is less than 0.000 000 000 000 01. Here one may speak of “light heavy” tails.

In the proof above it is argued that under certain circumstances LAD will yield the same

estimate of the regression line as RMP. The slope of the bisector passing through the

rightmost point is comparable to Y1/X1 and the upper tail of the df of this quotient is

comparable to that of Y1. In our set up a sufficient condition for LAD to agree with RMP

is that X1 > 100X2. For a tail index ξ = 3 the probability of this event exceeds 0.2 as

we saw in Section 1. If X has a standard exponential distribution the probability is less.

The event {X1 > 100X2} = {U1 < U2/e
100} for Xi = − log(Ui) has probability e−100.

Here are two questions raised by the disparity between theory and simulations:

1) Suppose the error has very heavy tails, η ≥ 1/2. Do there exist estimators E of the

regression line for which the slope âE has finite second moment? In Section 3 it will be

shown that for the balance estimators RM(m) (Right Median) and HB0(d) (Hyperbolic

Balance at the median) one may choose the parameters m and d, dependent on the tail

indeces ξ and η, such that the estimate of the slope has finite second moment.

2) Is it safe to use LAD for ξ < 1/2? Not really. For ξ < 1/2 the estimate âLAD

is asymptotically normal as the sample size goes to infinity provided the error has a

positive continuous density at the median. This does not say anything about the loss for

samples of size n = 100. The empirical sds for ξ = 0, 1/2 and η = 0, 1/2, 1, 3/2, 2, 3, 4

were listed in Table (1). For ξ = 0 the performance of âLAD is good; for ξ = 1/2 the

performance for η ≥ 1 is bad, for η ≥ 3 atrocious. The empirical sd varies continuously

with the tail indices. So what should one expect for ξ = 1/4? Ten batches of a hundred

thousand simulations yield the second row in the table below: For η ≥ 3 the performance

is atrocious. The next sections describe estimators which perform better than LAD,

sometimes even for ξ = 0. We shall construct an adapted version, LADGC, in which the

effect of the large gap between X1 and X2 is mitigated by a gap correction.

ξ \ η 0 1/3 1/2 2/3 1 3/2 2 3 4

0 0.0969[2] 0.0959[2] 0.0951[2] 0.0941[2] 0.0917[2] 0.0869[2] 0.0810[5] 0.0681[5] 0.0560[5]

1/4 0.2328[5] 0.2363[5] 0.238[1] 0.2389[5] 0.243[2] 0.26[2] 0.4[2] 10000[10000] 2e+6[5]

1/2 0.0641[2] 0.0670[2] 0.0690[2] 0.072[1] 0.1[1] 3[5] 40[50] 1e+7[2] 2e+10[5]

1 0.00861[5] 0.00943[5] 0.0104[5] 0.012[1] 1[1] 20[20] 10000[10000] 2e+6[2] 0e+15[2].
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Figure 5: Loglog frequencies of |aLAD| for ξ = 1/4, η = 1, 4. The concave red curve is the EGBP fit. On

the left the empirical sd is 0.243[2], the theoretical sd of the EGBP fit is 0.2425; on the right 2e+6[5e+6]

and ∞. On the left the Hill estimate of the tail index based on the 1001 rightmost points is 0.18 yielding

a finite fifth moment; on the right 0.89 yields an infinite second moment.

The empirical sd of âLAD for Student errors with tail index η. [LRLADS18a29]

In order to obtain a continuous transition for ξ → 0 one should replace X = 1/U ξ with

U uniformly distributed on (0, 1) by X = (U ξ− 1)/ξ+ ξ for ξ ∈ (0, 1). In the table above

the entries for ξ = 1/4 and ξ = 1/2 then have to be divided by 4 and 2 respectively. The

rule of thumb (0.1) then is valid for all ξ ∈ (0, 1). Since the situation ξ ∈ (0, 1/2) plays

no role in this paper we shall stick to the simple formula: X = 1/U ξ for ξ > 0.

The words above might evoke the image of a regime switch in the far tails when LAD

is contaminated by the pernicious influence of the RMP estimator due to configurations

of the sample where the distribution of the horizontal coordinates exhibits large gaps.

This image is supported by the loglog frequency plots. For small values of η the plots

suggest a smooth concave graph with asymptotic slope one on the left (due to a df of

|α̂LAD| asymptotic to cx for x → 0), and a steeper slope on the right suggesting a tail

index < 1 for the upper tail of |âLAD|. The two plots for ξ = 1/4 and η = 1, 4 in Figure 5

have different shapes. The slope of the right leg of the right plot becomes less steep as

one moves to the right. For two simulations |â| lies beyond the boundary value 106. The
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maximal absolute value is 5.3 ∗ 109. This single estimate makes a significant contribution

to the average loss for η = 4. All this suggests that for η = 4 the tail of the df of |âLAD|

becomes heavier as one moves out further to the right.

3 Weighted balance estimators

Recall that a bisector is a line which divides the sample into two equal parts. It may be

likened to the median of a one-dimensional sample. For odd sample size bisectors contain

a sample point, for even sample size a bisector contains two sample points or none. The

latter are called free bisectors. There are many bisectors, even if one restricts attention

to bisectors through two points in a sample of size n = 100. The question is:

“How does one choose a bisector which is close to the regression line?”

For symmetrically distributed errors balance is a good criterium for selecting a bisector.

It will be shown below how a decreasing sequence of non-negative weights allows one to

define a bisector which is in balance. We give the intuitive background to the idea of a

weighted balance estimator, some examples and the basic theory. The focus is on sample

size n = 100. The extension to samples with an even number of observations is obvious.

For a detailed exposition of the general theory and complete proofs the reader is referred

to the companion paper [1].

The intuition behind the weighted balance estimators is simple. Assume the true

regression line is the horizontal axis. Consider a sample of size n = 2m and a free bisector

L. If the slope of the bisector is negative the rightmost sample points will tend to lie

above L; if the slope is positive the rightmost points tend to lie below L. Now introduce

a decreasing sequence of weights, w1 ≥ · · · ≥ wn ≥ 0. The weight of the m points below

the bisector will tend to increase as one increases the slope of the bisector. We shall prove

that the increase in weight is indeed monotone. As the slope of bisector L increases the

weight of the m points below the bisector increases. At a certain moment the weight

of the m points below L will surpass half the total weight. That determines the line of

balance. This line L is the weighted balance estimate WB0 for the weight sequence wi.
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For odd sample size, n = 2m + 1, the same argument works. We then consider bisectors

which pass through one sample point to determine the WB0 estimate of the regression

line for the given sample.

Strips might give more stable estimates. Consider a sample of size n = 100 and strips

which contain twenty points such that of the remaining eighty points half lie above the

strip and half below. Here too the weight w(B) of the set B of forty points below the

strip will increase if the slope of the strip increases and (by symmetry) the weight w(A)

of the forty points above the strip will decrease. By monotonicity, as one increases the

slope from −∞ to +∞ there is a moment when w(B) will surpass w(A). The centerline

of that strip is the WB40 estimate of the regression line for the given weight sequence.

Monotonicity allows one to determine the slope of the estimates WB0 and WB40 by

a series of bisections. The Weighted Balance estimator is fast. It is versatile. Both the

RightMost Point estimator and Least Absolute Deviation are weighted balance estimators.

RMP for the weight sequence 1, 0, . . . , 0 and LAD for the random weight sequence wi = Xi

as we shall see below.

We shall now first give some examples. Then we prove the monotonicity mentioned

above. We then show that LAD is the weighted balance estimator for the weight sequence

wi = Xi. The second half of the section is devoted to an analysis of the tail behaviour of

weighted balance estimators. Appendix 8 shows how weighted balance estimators fit in

the Poisson point process model.

3.1 Three examples

In this paper we use three basic weight sequences. Two are deterministic.

1) Let r = 2r0 + 1 be a positive odd number less than n = 100. Colour the rightmost r

sample points red and select a bisector L passing though two sample points, one black and

one red. The bisector L is in balance if there are r0 red points below L and r0 red points

above L. This bisector is the Right Median RM(r) estimate of the regression line. If

one rotates the line L anti clockwise over an infinitesimal angle around the point midway
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between the red and the black sample point on L the slope increases and one obtains a

free bisector. Since the red point lies to the right of the black point the set B of fifty

points below this new line now contains r0 +1 red points. The weight sequence for RM(r)

is (1, . . . , 1, 0, . . . , 0). The Right Median estimator is a variation on RMP which takes

account of the position of the r rightmost points and thus avoids the occasional erroneous

choice of RMP. If r = 1 then RM(r) = RMP.

2a) The weight sequence 1, 1/2, . . . , 1/100 gives the rightmost point the largest weight.

It is overruled by the next three points. w2 + w3 + w4 > w1. If Y1 is very large the

bisector L through the rightmost point will have a large positive slope and the points

z2, . . . , z9 will tend to lie below L. The weight of the 49 points below L, augmented with

the left point on L will then exceed half the total weight. For balance the slope has to be

decreased. One can temper the influence of the rightmost point by choosing the weights

to be the inverse of 2, . . . , 101 or 3, . . . , 102.

In general we define the hyperbolic weight sequence by

1/d, 1/(d+ 1), 1/(d+ 2), . . . , 1/(d− 1 + n). (3.1)

The parameter d is positive. If it is large the weights decrease slowly: w1/w2 = 1 + 1/d.

Take n = 100 and let d be a positive integer. Let Ω =
∑
wi denote the total weight.

Consider a bisector L passing through two sample points. The left point zL is lighter than

the right point zR. There is a unique bisector such that the weight w(B) of the set B of

49 points below L satisfies

wL + w(B) < Ω/2 < wR + w(B).

This is the line of balance. It is the Hyperbolic Weight HB0(d) estimate of the regression

line.

2b) Instead of a line of balance one may look at a strip. Consider a strip S which

contains twenty points with forty points above S and forty below. Assume that S is

closed and of minimal width. The boundary lines of S each contain one of the twenty

points. For certain slopes one of the boundary lines will contain two points and the strip

will contain 21 points. Suppose the upper boundary contains two points, zL to the left of
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zR, and the set above S contains 39 points. Let w(B) be the weight of the forty points

below S and w(A) the weight weight of the 39 points above S. Then S is a strip of balance

if

w(A) + wL < w(B) < w(A) + wR.

The center line of the strip of balance is the Hyperbolic Weight HB40(d) estimate of the

regression line.

Note that the series
∑

1/(d− 1 + i) diverges. A bad estimate due to very large values

of the vertical coordinates of the rightmost k points with total weight approximately

log(k/d) may be overruled by the next k2 points which have total weight ≈ log k. It helps

if n is much larger than k2 and if ξ is not too large.

3) We shall see below that LAD is the weighted balance estimator for the random weight

wi = Xi. Since the Xi form an ordered sample from a continuous Pareto distribution one

cannot split the hundred sample points into two sets of fifty points with the same weight.

It follows that there is a unique bisector L passing through two sample points such that

the balance tilts according as one assigns the heavier point on L to the upper or lower

set.

3.2 Monotonicity

In this section X and Y ∗ are assumed to have continuous dfs. Almost all samples of size

n > 1 from (X, Y ∗) then have the following properties:

• No vertical line contains two sample points;

• no two parallel lines contain four sample points.

In particular no line contains more than two sample points. Configurations which satisfy

the two conditions above are called unexceptional. For unexceptional configurations there

is a set of
(
n
2

)
lines which each contain exactly two sample points. The slopes γ of these

lines are finite and distinct. They form a set Γ ⊂ R of size
(
n
2

)
.

Definition 3. A weight w is a sequence w1 ≥ · · · ≥ wn ≥ 0 with w1 > wn.
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Take an unexceptional sample of n points from (X, Y ∗), a positive integer m < n and

a line with slope γ ∈ R \ Γ. As one translates the line upwards the number of sample

points below the line increases by steps of one since γ does not lie in Γ, and hence the

lines contain at most one sample point. There is an open interval such that for all β in

this interval the line y = β+γx contains no sample point and exactly m sample points lie

below the line. The total weight of these m sample points will be denoted by wm(γ). It

depends only on m and γ. As long as the line L moves around without hitting a sample

point the set of m sample points below the line does not change and neither does its

weight wm(γ). What happens when γ increases?

Lemma 3.1. For any positive integer m < n and any weight sequence w the function

γ 7→ wm(γ) is well defined for γ ∈ R \ Γ, increasing, and constant on the components of

R \ Γ.

Proof Consider lines which contain no sample points. Let γ0 ∈ R \ Γ and let L0 be a

line with slope γ0 which contains no sample points such that there are precisely m sample

points below L0. Let B denote the closed convex hull of these m sample points, and let

A denote the closed convex hull of the n−m sample points above L0. One can move the

line around continuously in a neighbourhood of L0 without hitting a sample point. For

any such line between the convex sets A and B the weight of the m points below the line

equals wm(γ0), the weight of B. If one tries to maximize the slope of this line then in the

limit one obtains a line L with slope γ ∈ Γ. This line contains two sample points. The

left point is a boundary point of B, the right one a boundary point of A. Consider lines

which pass through the point z ∈ L midway between these two sample points. The line

with slope γ − dγ < γ lies between the sets A and B and wm(γ − dγ) = wm(γ0). For

the line with slope γ + dγ > γ there are m points below the line but the left point on L

has been exchanged for the heavier right point. Hence wm(γ + dγ) ≥ wm(γ − dγ) with

equality holding only if the two points on L have the same weight. ¶

This simple lemma is the crux of the theory of weighted balance estimators. An example

will show how it is applied.

Example 1. Consider a sample of n = 100 points and take m = 40. Let w1 ≥ · · · ≥ w100
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be a weight sequence. We are looking for a closed strip S in balance: There are forty

points below the strip and forty points above the strip, and the weights of these two sets

of forty sample points should be in balance. The weight w40(γ) of the forty points below

the strip depends on the slope γ. It increases as γ increases. The limit values for γ → ±∞

are

ω0 = w40(−∞) = w61 + · · ·+ w100 ω1 = w40(∞) = w1 + · · ·+ w40.

Similarly the weight w40(γ) of the forty points above the strip decreases from ω1 to ω0.

Both functions are constant on the components of R \ Γ. Weight sequences are not

constant. Hence ω0 < ω1. It follows from the monotonicity that here are points γ0 ≤ γ1

in Γ such that

{w40 < w40} = (−∞, γ0) {w40 > w40} = (γ1,∞) on R \ Γ. (3.2)

If γ0 = γ1 there is a unique closed strip S of minimal height with slope γ0 = γ1. One

of its boundary lines of S contains one sample point, the other two. This is the strip of

balance. A slight change in the slope will cause one of the two points on the boundary

line containing two points to fall outside the strip. Depending on which, the balance

will tilt to one side or the other. Define the center line of S to be the estimate of the

regression line for the estimator WB40 for this particular weight sequence. If γ0 < γ1 then

for i = 0, 1 let Li with slope γi be the center line of the corresponding strip Si. Define

the WB40 estimate as the line with slope (γ0 + γ1)/2 passing through the intersection of

L0 and L1. ♦

The example shows how to define for any sample size n and any non-constant weight w

and any positive integer m < [n/2] for any unexceptional sample configuration a unique

line, the WBm estimate of the regression line. Of particular interest is the case m = [n/2].

The strip then is a line and the line of balance will be denoted by WB0.

Definition 4. For a sample of size n and m < [n/2] the Hyperbolic Balance estimator

HBm(d) for d > 0 is the weighted balance estimator as in the example above (where

m = 40) with the weight wi = 1/(d− 1 + i) in (3.1). If m = [n/2] we write HB0(d). ♦
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In many cases the line or strip of balance is unique. We shall speak of exact balance

if there is a line or closed strip S with m sample points below S and m above, such that

the two sets of m sample points below and above have the same weight. For sample size

n = 2m exact balance is not possible for the weight sequence (1, . . . , 1, 0, . . . , 0) if the

total weight is odd. Neither is it possible for the random weight sequence wi = Xi when

X has a continuous df.

Proposition 3.2. For sample size n = 100 exact balance is not possible for HB0 with the

hyperbolic weight sequences wi = 1/(d− 1 + i) for parameter d ∈ {1, . . . , 370261} neither

for HB40 for d ≤ 1000.

Proof For HB0 the argument is simple. For d ≤ 370261 the set Jd = {d, . . . , d + 99}

contains a prime power q = pr, which may be chosen such that 2q > d + 99. For exact

balance there exist two disjoint subsets A and B of Jd containing fifty elements each such

that the inverses have the same sum. That implies that 1/q = s where s is a signed

sum
∑
εi/i over the remaining 99 elements i with εi ∈ {−1, 1}. Write s as an irreducible

fraction s = k/m and observe that m is not divisble by q since none of the 99 integers i

in the sum is. Yet 1/q = k/m implies k = 1 and m = q.

For HB40 one needs more ingenuity to show that exact balance does not occur. One

has to show that Jd does not contain two disjoint subsets A and B of forty elements each

such that the sums over the inverse elements of A and of B are equal. We show that

there exist at least 21 elements in Jd which cannot belong to A ∪ B. Thus for d = 1 the

elements 23i, i = 1, 2, 3, 4, cannot belong to A∪B since for any non-empty subset of these

four elements the sum of the signed inverses is an irreducible fraction whose denominator

is divisible by 23. This has to be checked! It does not hold in general. The sum of 1/i

over all i ≤ 100 which are divisible by 25 is 1/12. The sum 1/19 + 1/38 + 1/57 − 1/76

equals (12 + 6 + 4− 3)/12/19 = 1/12. Primes and prime powers in the denominators may

disappear. One can ask R to check whether this happens. For d = 1 the set Jd contains

32 elements, 23, 29, 31, 37, 41, 43, 46, 47, 49, 53, 58, 59, 61, 62, 64, 67, 69, 71, 73, 74, 79,

81, 82, 83, 86, 87, 89, 92, 93, 94, 97, 98, which cannot lie in A ∪ B. For d = 2, . . . , 1000

the number varies but is never less than 32. ¶
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How does one characterize the line or strip of balance? In the case of exact balance

there is a line which contains no points or a strip whose boundary lines contain no sample

points such that the complement consists of two open half planes which both contain m

sample points and which have the same weight. The basic image to keep in mind is that

of the graphs of two piecewise constant functions, one increasing and the other decreasing,

which cross in a point, a jump point of one of the functions, or which agree on an interval.

In the case that the functions cross in one point we have strict balance and the line or

strip of balance is unique. This is characterized by the following criteria:

The most intuitive situation is WB0 with even sample size n = 2m. The line of balance

contains two sample points, zL and zR. The weight wL of the left point is less than the

weight wR of the right point. The set A of the m− 1 sample points above the line L has

weight w(A) and the set B of the m − 1 points above L has weight w(B). Now assign

one of the two points on L to either side. The weight tilts to the side which receives the

heavier point zR.

If the sample size is odd, n = 2m + 1, the line of balance L will contain two points.

One of the adjacent open half planes will contain m points, the other m− 1. Depending

on which of the two points zL or zR on L we assign to the half plane with m − 1 points

the weight of the m points in that half plane will be less or more than the weight of the

m points in the other half plane.

For the estimator WBm with m < [n/2] the situation is similar to the second case

above. The strip of balance S is a closed strip of minimal height. One of the adjacent

half planes contains m points, the other m− 1. The boundary of the latter contains two

points. Depending on which of these two we assign to that half plane the weight of the

m points in that half plane will be less or more than the weight of the other half plane.

For strict balance the inequalities are strict.

Monotonicity makes weighted balance estimators easy to handle.

Corollary 3.3. Let n be the sample size and m ≤ n/2 a positive integer, and let γ0 ∈ R\Γ.

Let S0 be a closed strip of minimal height of slope γ0 such that m sample points lie below

S0 and m above. If n is even and m = n/2 then S0 is a line which contains no sample
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points, a free bisector; if n = 2m+ 1 then S0 is a line which contains one sample point; if

m < [n/2] both boundary lines of S0 contain one sample point. Let w0 denote the weight

of the m sample points below S0 and w0 the weight of the m points above S0. Let γ̂ denote

the slope of the WB estimate of the regression line.

• If w0 < w0 then γ0 < γ̂;

• if w0 > w0 then γ0 > γ̂;

• if w0 = w0 exact balance holds at γ0.

In the case of exact balance there is a maximal interval J = (γ1, γ2) with γ1, γ2 ∈ Γ such

that w0 = w0 for all strips S0 separating two sets of m sample points with slope γ0 ∈ J \Γ.

Both γ0 and γ̂ lie in J . ♦

In order to find the weighted balance estimate for WB40 one needs a slope γ1 for which

the difference D(γ1) = w40−w40 is negative and a slope γ2 > γ1 such that D(γ2) is positive.

By repeated bisection of the interval (γ1, γ2) one quickly obtains good approximations to

the slope of the WB40 estimate. Given a good approximation γ0 one may then apply the

discrete geometric approach of the example above.

Proposition 3.4. The weight sequences (wi) and (cwi + d) for c > 0 yield the same WB

estimates.

Proof The inequalities which define balance remain valid since there are m sample points

on either side. ¶

The weight sequence (6, 1, . . . , 1) yields the RMP estimator, but so does any weight

which is close to this weight, for instance (6, w2, . . . , w100) with 1 < w100 ≤ w2 ≤ 1.1.

A weight sequence for which w1 is large and the remaining weights cluster together will

perform poorly if the error has heavy tails.

Proposition 3.5. Let WB0 be the Weighted Balance estimator of the regression line for

the weight sequence (wi), i = 1, . . . , n = 2m. If

w1 + wm+2 + · · ·+ wn > w2 + · · ·+ wm+1 (3.3)
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then WB0 = RMP.

Proof Suppose z1 does not lie on the line L of balance. Then the weight of z1 together

with the m−2 points on the same side of L and the lighter point on L is not greater than

half the total weight. ¶

3.3 LAD as a weighted balance estimator

We shall show that LAD = WB0 with weight wi = Xi for even sample size. The proof

for odd sample size is similar. See [1].

Theorem 3.6. LAD = WB0 with weight wi = Xi for sample size n = 2m.

Proof First consider lines which contain no sample points. Suppose k < m points lie

below the line. If we translate the line upwards the L1 distance d =
∑
|Yi − (β + γXi)|,

decreases since for the majority of the points the difference Yi− (β + γXi) is positive. So

we may restrict attention to bisectors. Now assume that the weight of the m points below

the line is less than half the total weight: wm < wm. Move the line about without hitting

a sample point. If we alter β the distance d does not change since the change in the m

positive terms in the sum is compensated by the change in the m negative terms. Now

increase the slope γ to γ+δ. The distance d decreases by δwm due to the m positive terms

of Yi − (β + γXi) and increases by δwm due to the m negative terms. The assumption

wm < wm implies a decrease in d. So increase the slope as in the lemma above till we

reach the line of balance. This line contains two sample points. For this line the distance

increases when it is rotated around the point midway between the sample points both

clockwise and anti clockwise. ¶

The LAD estimate of the regression line for a sample of size n = 100 is (almost surely)

a bisector containing two sample points. The estimate is defined in terms of the sum

of the absolute vertical distance of the sample points to this line, but it exhibits an

almost complete lack of sensitivity to the vertical coordinate. Consider an unexceptional

configuration of a sample of a hundred points and let L denote the LAD estimate of the

regression line. Now move each of the sample points up or down the vertical line on which
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it lies, without crossing the bisector L. For the new configuration the line L still is the

bisector in balance since the weights have not been altered. Hence L is the LAD estimate

of the regression line for the new configuration too. This observation is due to Bassett

and Koenker, see [3]. For weighted balance estimators it is trivial.

By treating LAD as a weighted balance estimator it becomes possible to replace the

weight Xi = 1/U ξ
i by a weight Xi = 1/U τ

i with τ ≤ ξ, for instance τ = ξ/12, and thus

avoid the situation where a configuration with x1 much larger than x2 forces the line

of balance to pass through the rightmost point. The RightMost Point estimator gives

very accurate estimates of the slope most of the time if x1 is large, but in the case of

heavy-tailed errors it will occasionally produce estimates which are way out. The power

correction above diminishes this effect. Even for ξ = 1/4 the gaps x1/x2 or x2/x3 may still

be large and give rise to erroneous estimates, yielding poor performance for errors with tail

index η ≥ 3 as we saw in Section 2. A gap correction ensures that the quotients wi/wi+1 of

successive weights do not exceed the quotients of the hyperbolic weights vi = 1/(d−1+i).

By applying these corrections one obtains weights which reflect the configuration of the

horizontal sample points but the excessive behaviour associated with extreme points of

heavy-tailed distributions has been tempered. The tables in Section 6 show that the

estimators LADPC (LAD with power correction) and LADHC (LAD with gap correction

and a hyperbolic deterministic correction) perform well.

The Weighted Balance estimators are geometric with respect to the group G for deter-

ministic weight sequences wi, and so is LAD. The adapted LAD-estimators, LADPC and

LADGC, are not. They are geometric with respect to the subgroup G0 of all transforma-

tions

(x, y) 7→ (cx+ q, dy + ax+ b) c, d > 0, q = 0. (3.4)

The transformations in G0 map the right half plane x ≥ 0 onto itself. A scale trans-

formation of the horizontal axis yields a scale transformation of the weights Xi of the

LAD-estimator but also of the weights Wi = Xτ
i of the power corrected LAD estimator.

If X ′i = cXi and Wi = Xτ
i then the power correction W ′

i = cτiWi of X ′i produces the same

estimate as Wi. Scale the weight sequences so that W1 = 1 = W ′
1 and they are identical.
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Gap correction acts on the quotients and is not affected by scaling. Gap correction of Wi

by the deterministic sequence vi produces the weight sequence Vi defined by

Vi/Vi+1 = (Wi/Wi+1) ∧ (vi/vi+1) V1 = 1. (3.5)

Here vi = 1/(d−1+ i) is the hyperbolic weight sequence and Wi = Xτ
i where τ = 1∧1/ξ.

So Wi = 1/Ui for ξ ≥ 1.

3.4 Tails of âLAD

The performance of LAD is poor for ξ ≥ 1/2 when the error has heavy tails. We shall

now prove that the tails of âLAD for ξ ≥ 0 are as heavy as those of the error. If the upper

tail of the df of Y ∗ varies regularly with negative exponent the quotient

Qn(t) = P{Y ∗ > t}/P{â > t} t > 0 (3.6)

is bounded.

Proposition 3.7. Let X have a Pareto distribution with tail index ξ ≥ 0 and let the

error Y ∗ have a continuous df F ∗ such that F ∗(0) = 1/2. Let 1− F ∗(t) vary regularly at

infinity with negative index. Let the sample size be n ≥ 4. Then the function t 7→ P{Y ∗ >

t}/P{âLAD > t} is bounded on R.

Proof Define E to be the event that X1 lies in the interval [n, 2n] and the other n − 1

variables Xi for i > 1 satisfy Xi < 2. Let E0 be the intersection of E with the event

that at least m of the variables Y ∗i , i > 1, are negative for m = [n/2] + 1. Both E and

E0 have positive probability. Let t > 0. The event Y ∗1 > t is independent of E0 and has

probability 1 − F ∗(t). For LAD the regression line L is the unique line of balance. For

configurations in E0 it passes through the rightmost point by (3.3). Condition on E0.

The event Y ∗1 > t implies â > t/2n since there are at most [n/2] points below L. Hence

one of the m points below the horizontal axis lies on or above L, which implies that the

abscissa is negative. Hence P(E0 ∩ {Y ∗1 > t}) ≤ P{â > t/2n}. Independence implies

P{â > s} ≥ P(E0)P{Y ∗ > 2ns}. Regular variation of the upper tail of the df of Y ∗ then

ensures that the quotient is bounded on (0,∞). ¶
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It might be supposed that estimators like LADPC and LADGC which take the structure

of the sequence (Xi) into account will outperform HB0 which is insensitive to the structure

of the sample apart from the dependence of the parameter d on the tail indices. Recall

however that the median is blind to the values of the sample points and only sees their

order, but is an excellent estimate of the center of a symmetric distribution for heavy tails.

Figure 1a shows that LADGC is a good estimator for errors with a Student distribution,

in particular when η is large.

Definition 5. A weight sequence is called responsive if the components wi = wi(x) depend

continuously on the vector x of the explanatory variables and

xj < xi ⇒ wj < wi xj = xi ⇒ wj = wi 1 ≤ i, j ≤ n. (3.7)

The weight sequences of LAD, LADPC and LADGC are responsive.

The power correction and gap correction of LAD were constructed to ensure good

performance even when ξ is large. The tables in Section 6 show that this goal is achieved.

Yet the proposition above also holds for LADPC and LADGC. It holds for all responsive

weight sequences.

Theorem 3.8. Let the regression (1.1) hold with sample size n ≥ 4. Assume the dfs F of

X and F ∗ of Y ∗ are continuous. Let â be the slope of the WB0 estimate of the regression

line for the weight w. If the weight is responsive, see (3.7), and if the upper tail of the

error, y 7→ 1− F ∗(y), varies regularly with negative exponent the quotient Qn in (3.6) is

bounded.

Proof See [1]. ♦

3.5 Tails of âRM

For âLAD the expected loss is infinite for η ≥ 1/2. So too for âLADPC and âLADGC. One

might be tempted to conclude that Weighted Balance estimators are of little use. Actually

the situation is not as dark as it seems. Table 1 in Section 6 shows that LADPC performs

well. It is optimal for η > 1/2 when ξ = 1/2, 1, 3/2, 2, 3. If we consider estimators which
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depend on a parameter then Table 2 shows that for errors with a Student distribution

LADHC is optimal or indistinguishable from optimal if η is large and Table 3 shows that

for errors with a Pareto distribution LADHC performs quite well, even though it is not

up to the Weighted Theil-Sen estimator. The estimator LADHC is a variation of LAD

which we shall introduce below. For ten batches of a hundred thousand simulations its

performance is indistinguishable from that of LADGC. On the theoretical side there

is some light too: There exist weighted balance estimators for which the loss has finite

second moment for errors with tail index η ≥ 1/2. The next proposition treats a concrete

case to show the basic argument.

Proposition 3.9. Let X have a bounded density and the error Y ∗ a continuous df. As-

sume that there exist positive constants λ < 1 and C0 such that P{|Y ∗| > t} ≤ C0/t
λ for

t > 0. Assume sample size n = 100. Let â be the slope of the RM(r) regression line for

r = 2r0 + 1 = 33. There exists a constant C > 0 such that P{|â| > t} ≤ C/t17λ for t > 1.

Proof Colour the 33 rightmost points red. Let L denote the unique line of balance for

an unexceptional configuration of the hundred points. There are 16 red points above L

and one on L. There are 49 points above L in total, hence at most 33 points with index

i > 50. Hence there are at least 17 points with index i > 50 on or below L. If L is

steep either the 17 red points above or on L have large vertical coordinates or the vertical

coordinates of the 17 points with index i > 50 are large in absolute value. To make this

precise let (x0, y0) ∈ L be the point such that x0 lies midway between x33 and x51, and

set d = (x33 − x51)/2. Suppose L has slope a > t > 0. If y0 is non-negative there is a set

J ⊂ {1, . . . , 33} of 17 indices such that Y ∗j > dt holds for all j ∈ J . If y0 is negative there

is a set J ⊂ {51, . . . , 100} such that Y ∗j < −dt holds for all j ∈ J . The number of such

subsets J is M =
(

33
17

)
+
(

50
17

)
. Hence P{|â| > t} ≤ (MP{|Y ∗| > dt})17. Actually d = D is

random: D = (X33 −X51)/2. The condition that X has a bounded density ensures that

there is a constant C1 > 0 such that P{D ≤ s} ≤ C1s
18. Since D is independent of the

sequence of errors Y ∗i one can bound P{Y ∗j > Dt, j ∈ J} for any set J ⊂ {1, . . . , 100} of

17 indices by C2/t
17λ on (0,∞). This is the desired result since by symmetry a similar

argument holds for negative slopes. ¶
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For the bound on P{D ≤ s} and on P{Y ∗j > Dt | j ∈ J} the reader is referred to [1],

where she will also find the proof of the general result:

Theorem 3.10. Let â denote the slope of the RM0(r) estimate of the regression line for

r = 2r0 + 1 < k = [(n + 1)/2] red points, where n denotes the sample size. Let the

true regression line be the horizontal axis. Let Y ∗ have a continuous df and X a bounded

density. Suppose there exist positive constants B, β such that P{|Y ∗| > y} ≤ (B/y)β for

y > 0. Then there exists a constant C > 0 such that

P{|â| > t} ≤


C/tk−r k − r < (r0 + 1)β

C(log t)/tk−r k − r = (r0 + 1)β

C/t(r0+1)β (r0 + 1)β < k − r.

(3.8)

Given the tail index η > 0 of the error can one choose r0 such that RM(r) for r = 2r0+1

has finite second moment? For sample size n = 100 the condition (r0 + 1)β < k − r

translates into (2 + 1/η)(r0 + 1) < 51. Together with the condition (r0 + 1)/η > 2 this

yields

2η < r0 + 1 < 51/(2 + 1/η). (3.9)

The concave increasing function s2(η) = 51/(2+1/η) exceeds s1(η) = 2η on 0 < η < 49/4.

The condition that r0 is an integer complicates (3.9). Figure 6a plots s1 and s2 on

(0, 49/4). Let η2(s) < η1(s) denote the inverse functions on (0, 49/2). It is clear that for

η ∈ (η2(1), η1(24)) there exists an integer r0 ∈ {0, . . . , 23} such that (3.9) holds (since

η2(i+ 1) < η1(i) for i = 1, . . . , 23).

Proposition 3.11. Let X have a bounded density and Y ∗ a continuous df with tail expo-

nent η > 0. For η ∈ (1/49, 12) and sample size n = 100 one may choose an odd integer

r = 2r0 + 1 in {1, . . . , 47} such that the slope â of the RM(r) estimate of the regression

line has finite second moment. One may choose r0 = [2η].

Similarly Eâ4 is finite for η ∈ (1/49, 23/4) for the RM(r) estimator with r = 2r0 + 1

and r0 = [4η].
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Figure 6: The figure on the left shows that for sample size n = 100 and errors with tail index η < 12

(η < 23/4) one may choose the parameter r = 2r0 + 1 in the Right Median estimate of the regression

line such that (3.9) holds and the slope has finite second moment (finite fourth moment). On the right

the square root of the average loss of âRM for a batch of 105 simulations for X Pareto with tail index

ξ = 1 and Y ∗ Pareto scaled by its IQD, with tail index η = 0, 1/3, 1/2, 2/3, 1, 3/2, 2, 3, 4 (black, red,

green, blue, brown, purple, orange, blue, grey) for various values of r0. The optimal value of r = 2r0 + 1

is 3, 5, 7, 9, 11, 15, 23, 27, 37. The graphs all have values ≈ 0.02 in r0 = 11.
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3.6 Tails of âWB

For general weights the argument has to be adapted. Since we measure performance by

the loss function L(u) = u2 we are particularly interested in weight sequences for which

the slope â has finite second moment.

Assume sample size n = 100. Define points with index i < 50 to be heavy and points

with indices i > 51 to be light. There is a positive integer bH depending only on the

weight w such that for any line of balance the set of 49 points above the line augmented

with the heavier point on the line contains at least bH heavy points. The argument is

simple. Let L be a bisector which passes through two points. Suppose there are only k

heavy points on or above L. Then the total weight of the 49 points above L together

with the rightmost point on L is at most w1 + · · ·+ wk + w50 + · · ·+ w99−k. If k is small

the sum may be less than Ω/2. In that case L cannot be a line of balance and bH > k.

Similarly balance implies that there are at least bL light points on or above the line of

balance, and by symmetry also at least bL light points on or below the line. A four line

program in R will yield bH as the smallest integer k for which the sum above equals or

exceeds Ω/2. So too for bL. The minimum b = bH ∧ bL is called the balance minimum for

the weight w. For the hyperbolic weight wi = 1/(d− 1 + i), i = 1, . . . , 100, we obtain the

following results:

d 1 2 5 10 20 50 100 200 500

bH 4 6 8 10 12 14 14 15 15

bL 3 5 7 9 11 13 14 14 15

The heavy and light balance minima for HB(d) for sample size n = 100 and various values of d.

One can now use the argument which was used for the Right Median in the proposition

above. Set D = (X49−X52)/2. Then P{D ≤ s} ≤ C1s
3, and for t > 0 the event {|â| > t}

is included in the union of a finite number of events {|Y ∗j | > tD | j ∈ J} where J is a

subset of {1, . . . , 49} or of {52, . . . , 100} containing b elements. This has been done in [1].

Since the tail index of the error plays an important role in the present paper we use that

to formulate a simple corollary to the theorem.
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Proposition 3.12. Let the variables X and Y ∗ in the linear regression (1.1) have con-

tinuous dfs. Suppose the error has tail index η > 0 and the weight has balance minimum

b ≥ 1. The slope â of the corresponding WB estimator of the regression line has finite

second moment if η/b < 1/2.

Proposition 3.13. Suppose the sample size n = 2m is even. Let w be a weight sequence

and define the dual weight w∗ by w∗i = w1 − wn+1−i. Then the light balance minimum of

w is the heavy balance minimum of w∗.

Proof For even sample size the heavy points for w∗ are the light points for w and vice

versa. ¶

Example 2. For sample size n = 1000 and parameter d = 250 we find bH = bL ≥ 121 for

the hyperbolic weight 1/d, 1/(d+ 1), . . .. Hence the slope â of the HB0(d) estimate of the

regression line for d = 250 will have finite second moment if X has a Pareto distribution

with tail index ξ > 0 and if the error has a continuous df with tail index η ≤ 60. ♦

Example 3. Assume n = 100. There exist weights with balance minimum b = 0. No

weight has balance minimum b > 25. For the weight 1, 0, . . . , 0 associated with RMP the

set A of fifty points with indices i = 2, . . . , 51 contains no light points, but the weight

of A is less than half the total weight. Hence bL = 0. Suppose b > 25. Then bL and

bH both exceed 25. Hence any set A of fifty points which contains 25 heavy points has

weight < Ω/2 where Ω =
∑
wi is the total weight. Now let A be the set of points with

indices i ∈ {1, . . . , 25} ∪ {51, . . . , 75}. Since w is decreasing and not constant it follows

that w(A) > w(B) where B is the complementary set of fifty points. ♦

3.7 Tails of âLADHC

On the one hand there are tails which are as heavy as the tails of the error, on the other

hand tails which decrease so fast that there is a finite second moment even when the

error has tail index η = 4. How does one harmonize these different tail behaviours for

the slope â? There exists a simple technical solution. Before we formulate that let us

remark that one of the attractions of weighted balance estimators is the transparent tail
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behaviour. One may be unhappy about the heavy tails of LAD and its adapted forms

LADPC and LADGC, but the tail behaviour is clear, it has a simple description and the

reason for the heavy tails is clear too: For certain configurations the weight will be close

to an affine transformation of the weight (1, 0, . . . , 0) of RMP and for these configurations

the estimator will exhibit the bad tail behaviour of RMP. Similarly the tail behaviour of

RM and HB has a simple explanation: The balance condition implies that there exists

a positive integer b, the balance minimum, which depends only on the weight such that

for any configuration the line of balance will be steep only if at least b sample points

have vertical coordinates which are large in absolute value. For sample size n = 100 the

balance minimum of ten ensures that the slope â has finite second moment if the tail

exponent of the error is less than five.

There is a simple formula for combining the responsiveness of LADGC with the good

tail behaviour of HB.

Definition 6. The Deterministic Correction of the random weight Vi by the deterministic

weight wi is the weight Wi which agrees up to a scale factor with the weight Vi in the right

half of the points and with the weight wi in the left half. Set Wm = 1 for m = [n/2] and

Wi = Vi/Vm i ≤ m; Wi = wi/wm i ≥ m. (3.10)

The Hyperbolic Correction of LAD, LADHC(d) is the deterministic correction of the ran-

dom sequence Vi of LADGC by the hyperbolic weight wi = 1/(d− 1 + i).

In simulations the gap correction of LAD and the hyperbolic correction (with the same

parameter d) are indistinguishable. This only aggravates the problem of the disparity in

the tail behaviour. For tail indices (ξ, η) = (2, 4) the tail of âLADGC is bounded below by

c/t1/4; the tail of âLADHC is bounded above by C/t5/2. How does one choose between an

estimator with tails of the order of c/t1/4 and one with tails of the order of C/t5/2? In

order to compare the tail behaviour of the gap correction and the hyperbolic correction

one would need to have information on the constants c and C. Sharp bounds on such

constants are hard to obtain and will depend not only on the parameters but also on

the shape of the underlying dfs. In the absence of such constants we have to accept the
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lower bound on the tail of âLADGC as a weakness of the estimator. A weakness shared by

all weighted balance estimators that are responsive to the configuration of the horizontal

coordinates of the sample points. One would like to know how many simulations are

needed to reveal the flaw. For LAD a million suffice if the error has very heavy tails,

η ≥ 3, even when the tail index of X is small, ξ = 1/4, as was shown in Section 2. For

LADGC the flaw is not visible in the simulations analyzed in this paper. It is known for

which configurations the estimate will be poor: The rightmost x-coordinate is isolated

and the remaining x-coordinates all cluster together. Such configurations pose problems

for many estimators. Pivot points have received considerable attention in the statistical

literature. The hyperbolic correction solves the estimation problems associated with these

configurations. It combines sensitivity to the configuration of the horizontal coordinates

in the right half of the sample points with the good tail behaviour of the HB0 estimator,

while achieving the same performance as the gap corrected version of LAD.

The weight for LADHC(d) is random. Hence so is the balance minimum. However for

the deterministic correction of a random weight (Vi) by a deterministic weight (wi) there

is a lower bound b0 for the balance minimum which only depends on the sequence (wi).

We give the arguments for the heavy balance minimum below for n = 2m. Recall that

k < bH holds if a set of m sample points which contains at most k heavy points (with

index i < m) has weight less than Ω/2 where Ω is the total weight of all sample points.

Maximizing the weight of this set of m sample points gives the inequality

k∑
1

+
n−k−1∑
m

<
m−1∑
k+1

+
n∑

n−k

which may be written as

D =
m−1∑
k+1

−
k∑
1

> δ =
n−k−1∑
m

−
n∑

n−k

. (3.11)

The left hand side is random, the right hand side deterministic.

Proposition 3.14. Let W be the deterministic correction of a random weight V by the

deterministic weight w for sample size n = 2m. Let Ω =
∑
Wi. There exists an integer

b0
H which depends only on w such that any set A of m sample points which contains less
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than b0
H points with index i < m has weight W (A) < Ω/2. The value b0

H is optimal: There

exists a weight V0 and a set A0 of m sample points, of which b0
H have index i < m, such

that W0(A0) ≥ Ω/2 holds with positive probability.

Proof Assume that w has been scaled to satisfy wm = 1. Introduce weights z = z(t) for

1 ≤ t ≤ w1 by

zi(t) =

twi/w1 ∨ 1 i = 1, . . . ,m

wi i = m, . . . , n.

Observe that z(1) = w∧1 and z(w1) = w. In general for t ∈ (w1/wj, w1/wj+1) the weight

z(t) satisfies zi(t) = 1 for i > j and zi(t) > 1 for i = 1, . . . , j. Let d = d(t) denote

the difference D on the right hand side of (3.11) for the weight z(t). One can show that

t 7→ d(t) is continuous on [1, w1] with a derivative ḋ(t) which is constant on intervals

(w1/wj, w1/wj+1), negative on (1, w1/w2k), and increasing on (w1/wk, w1). Hence d is a

piecewise linear convex function on [w1/wk, w1]. It is minimal in w1/wj for an index j ≥ 2k

where j = m or j is the first index i for which w1+· · ·+wk < wk+1+· · ·+wi. Let d0 denote

this minimum. Now observe that conditional on Wk = c ≥ 1 the difference D in (3.11)

is bounded below by d(t) if we choose t such that zk(t) = c. Hence D ≥ d(T ) ≥ d0

for T = w1Wk/wk. Define b0
H to be the minimal integer k for which d0 = d0(k) ≤ δ.

If j0 ≥ 2k0 is the index j associated with k0 = d0
H then the weight V0 = z(t0) with

t0 = w1/wj0 satisfies V0(A) ≥ Ω/2 where A is the set of sample points with index i ∈

{1, . . . , k0} ∪ {m, . . . , n− 1− k0}. ¶

If L is a bisector for the weight W and balance holds then the set of m−1 points above

L together with the heavier point on L contain at least b0
H points with index i > m. One

may define the light balance minimum b0
L similarly. These two integers depend only on

the deterministic weight w. For the hyperbolic weights wi = 1/(d−1 + i) and sample size

n = 100 the optimal lower bounds b0
H and b0

L for the heavy and light balance minima are

listed below for various values of the parameter d.
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d 1 2 3 4 5 6 8 10 12 15 20 25 30 40 50 60 80 100

bH 4 6 7 7 8 9 9 10 11 11 12 12 13 13 14 14 14 14

b0H 3 5 5 6 7 7 8 8 9 9 10 10 11 11 11 12 12 12

bL 3 5 6 7 7 8 9 9 10 11 11 12 12 13 13 13 14 14

b0L 2 4 5 6 6 7 7 8 8 9 10 10 11 11 11 12 12 12

The heavy and light balance minima bH and bL for HB(d) for sample size n = 100 and various values of d

and the optimal lower bounds b0H and b0L for the corresponding Hyperbolic Correction of a random weight.

4 Theil’s estimator and Kendall’s τ

Least squares chooses a regression line such that the residuals yi − (axi + b) have zero

mean and are uncorrelated with the n values xi of the explanatory variable. Theil in [28]

showed that the median of the
(
n
2

)
lines passing through two sample points is an estimator

of the regression line for which Kendall’s τ vanishes. The Theil-Sen estimator is widely

used in papers on climate change.

Kendall’s τ is a robust measure of the correlation or strength of association in a bivariate

sample. It is non-parametric. It counts the number of inversions. An inversion holds for

two indices i 6= j if (yj−yi)/(xj−xi) is negative. The pair (i, j) is then called discordant.

In a sample of n points there are
(
n
2

)
pairs. If the number of inversions is

(
n
2

)
and the xi

are in decreasing order then the yi are in increasing order. If there are no inversions the

two sequences have the same order. By definition:

τ = 2
nc − nd
n(n− 1)

(4.1)

where nc is the number of concordant pairs and nd the number of discordant pairs. For

independent variables τ is centered and asymptotically normal (for n→∞) with variance

2(2n+ 5)/(9n(n− 1)). See [17].

Let x and y be sequences of the same length with distinct values and define τ(y, x) as

in (4.1).

Proposition 4.1. The function a 7→ τ(a) = τ(y + ax, x) is increasing.
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Proof It suffices to prove τ(a) > τ(0) for a > 0 (replace y by y + a1x). Assume j < i.

Set c = yj − yi and d = xj − xi > 0. Now observe that (c+ ad)/d lies between c/d and a

and may be positive if c/d is negative but can not be negative if c is positive. ¶

It follows that one may determine a = â such that τ(a) = 0 by finding a value a1 where

τ is negative and a value a2 > a1 where τ is positive and then using successive bisections.

Theil in 1950 proposed to use the median of the
(
n
2

)
quotients (yj− yi)/(xj−xi) of the

plane sample (x, y) as an estimator of the slope of the regression line through the sample.

He proved:

Theorem 4.2. Let âT denote the Theil estimator of the slope. Then τ(âT ) = 0.

The estimator has a simple structure. It is called complete in [28] since it makes use

of the complete set of quotients. Sen in [25] extended the estimator to the case where

points may have the same x-coordinate. Siegel in [26] introduced a variation where one

first computes for each point the median of the quotients involving that point, and then

takes the median of these medians. This is related to the RM(2k + 1) estimator. The

estimate âRM(m) is the median of the slope of the lines through the m = 2k+ 1 rightmost

points dividing the sample into two equal parts.

Jaeckel in [13] proposed a weighted version with weights wij = xj − xi, j < i. For

deterministic explanatory variables xi,n under appropriate conditions this weighted Theil-

Sen estimate is asymptotically normal, see [27]. These conditions do not apply in our

situation. For large values of ξ the weights with j = 1 will tend to dominate the sum.

For the Weighted Balance estimator replacing the weights Xi by the hyperbolic weights

yielded good results. We shall therefore use the weights

wij(d) =
1

i+ d
− 1

j + d
i < j (4.2)

which promote pairs for which the smaller index is close to one and for which i and j are

far apart. The parameter d > 0 determines how strong this bias for the rightmost points

is. The unweighted Theil-Sen estimator outperforms the weighted Theil-Sen estimator

with d = 1, but by increasing d and thus decreasing the bias of the weights the empirical

sd of the estimator may be decreased by a factor 2 or more.
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5 Trimming

Trimming is an excellent procedure for getting rid of the noisy outer observations in a

sample from a heavy-tailed distribution. If one arranges the observations from a Student

distribution with tail index η in decreasing order, Y1 > Y2 > · · · > Yn, the maximal

term Y1 has tail index η, the second largest term Y2 has tail index η/2, the third largest

tail index η/3, etc. For the very heavy tails with index η = 4 deleting the eight largest

and the eight most negative observations leaves us with variables Y9, . . . , Yn−8 which have

finite variance. Trimming reduces the sample size (and destroys independence), but this

is compensated by the good behaviour of the remaining sample points. The number of

sample points that have to be trimmed to get good performance depends on the tail index

of the distribution.

Take samples of a hundred Student variables with tail index η ∈ {0, 1/3, 1/2, 2/3, 1, 3/2, 2, 3, 4}

scaled by their IQD. Perform ten batches of a hundred thousand simulations, compute

the average â of the trimmed sample, the square root α of the average loss for each of

the ten batches, and the average, ᾱ, and sd of these ten values of α. Do this for various

values of m, where m is the number of observations which are deleted to the right and to

the left. Thus â is the estimate of the center of the distribution based on the 100 − 2m

centermost observations. Figure 7a plots the values of ᾱ for m = 0, . . . , 49 for the nine

values of the tail index η. Note that - as a result of the scaling by the IQD - the nine plots

fit in the same frame, the minimal values are comparable and for some unknown reason

the plots all pass through approximately the same point, (27, 0.08). Note too that even

for η = 1/3 when Y has finite second moment almost half the sample points are deleted to

obtain the estimate âm(η) with the minimal loss. For η = 4 the optimal trimmed average

is the median.

Rousseeuw in [21] suggested a trimming procedure for linear regression with heavy

tails. Fix a positive integer m < n/2 − 1. For any slope γ ∈ R consider a closed strip S

with slope γ such that there are m points above the strip and m points below. Compute

the LS estimate b̂(γ)+ â(γ)x of the regression line based on the n−2m points in the strip

and the sum Q(γ) of the squared residues. Define the Least Trimmed Squares estimate
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Figure 7: On the left: ᾱ, for ten batches of 105 simulations of a sample of 100 Student variables scaled

by their IQD and trimmed by m on both sides, is minimal for m = 1, 23, 29, 34, 39, 44, 46, 48, 49 for tail

index η = 0, 1/3, 1/2, 2/3, 1, 3/2, 2, 3, 4. On the right a bimodal loglog frequency plot for âTLS(m,p) for

(ξ, η) = (3, 3), (m, p) = (22, 1) and Pareto errors. The red (green) curve describes the 370659 negative

(629341 positive) outcomes. Here ᾱ = 0.0029[1] for the state function logQ − p
∑
{1/i | zi ∈ S} with

p = 1 and 0.0137[1] without reward (p = 0). The minimal value is 0.00016[5] for p = 15. An extra

parameter yields ᾱ = 0.000020[1] for (m, p, r) = (25, 30, 0.6).
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for this value of the trimming parameter m as the regression line L(γ) for which Q(γ) is

minimal.

Recall from the section on the Weighted Balance estimators that for unexceptional

configurations of a sample of size n the slopes of the lines passing through two sample

points are distinct. The set Γ of these slopes divides R \ Γ into
(
n
2

)
+ 1 open intervals,

the components of R \ Γ. The set of sample points above the strip S with slope γ does

not change when γ varies over one of these components, neither does the set of sample

points below S. It suffices to choose a point γi in each of the components, compute the LS

regression line L̂(γi) associated with this value γi, and the sum Q(γi) of squared residues

over the sample points in the strip with slope γi. Then âLTS(m) is the slope of the line

L̂(γi) for which Q(γi) is minimal. The functions â(γ), b̂(γ) and Q(γ) are constant on

the components of R \ Γ. There are differences with the theory of WB-estimators. The

function Q is roughly V-shaped and the minimum is almost surely unique if X and Y have

continuous dfs but Q is not decreasing to the left of its minimum or increasing to the right.

The sum Q of the squared residuals in the strip S depends only on the way in which the

strip S partitions the sample into three subsets of m, n− 2m and m points, but in order

to determine the minimum one has to compute Q for all these different partitions. This

makes TLS a computer intensive procedure. Note too that LTS uses the points inside the

strip to estimate the regression line and WBm the points outside the strip.

As in the example above on the trimmed average of a hundred Student variables we

vary m to determine the optimal value, the value m = m0 for which the average loss of

âLTS(m) over a million simulations is minimal.

Instead of selecting the strip S = S(γ) with slope γ which minimizes Q(γ), the sum

of the squared residuals of the sample points in S, one could minimize the sum of the

absolute values of the residuals, or the width of S, the difference between the maximal

and the minimal residual. One can also choose the closed strip S(γ) minimal. That would

ensure that the boundary lines of S would each contain a sample points (for γ ∈ R \ Γ).

Now choose â = γ to be the slope of the strip S(γ) with minimal vertical height. The

minimal vertical height is not constant on the components of R \ Γ but increasing or
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decreasing depending on the positions of the two sample points on the boundary. This

yields the Least Central Strip estimator mentioned in the Introduction. For all these

estimators one then can ask how the optimal value of the trimming parameter m depends

on the tail indices (ξ, η).
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Figure 8: The average square root ᾱ of the average loss for âLTS for Student (left, m = 30) and Pareto

(right, m = 29) errors for (ξ, η) = (3, 3) and ten batches of 105 simulations. The curves describe the

behaviour of ᾱ as a function of p for different values of r = 0.15, 0.2, 0.25, 0.3, 0.4, 0.5 (Student) and

r = 3 : 8/10 (Pareto) with colours black, red, green, blue, brown, purpe. The erratic behaviour on the

right is symptomatic for Pareto errors.

In this paper we restrict attention to LTS. By insisting on a minimal value of the

squared residuals of the remaining points the estimator does not pay special attention

to the rightmost sample points. To compensate for this neglect we introduce a reward.

Divide Q by the product P of 1 + 1/i over the indices i of the n− 2m points in the strip.

Since one wants to minimize Q the reward for including the rightmost point is generous:

Q is halved. One can introduce a positive parameter p to temper the reward, replacing

1 + 1/i by (1 + 1/i)p. With the extra parameter p one can reduce the loss, but for certain

values of the tail indices the loglog frequency plot of |â(m, p)| for Pareto errors and for

optimal m and p turns out to be bimodal, suggesting a dichotomy: choose γ to minimize
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Q or to include z1 in the strip. See Figure 7b.

The reward used in this paper is more complex. It depends on two positive parameters

p and r. We choose the strip S(γ) which minimizes the state function

Tp,r(γ) = logQ(γ)− p
∑

zi∈S(γ)

1

1 + r(i− 1)
. (5.1)

The parameter r regulates how fast the reward decreases with the index i. The optimal

values lie in (0, 2). The parameter p determines the total effect on the state function.

It may exceed 100. Now there is a good fit of the distribution of log |â| in the class of

EGBP-distributions.

Given the trimming parameter m one can compute for each γ a vector of T -values Tp,r,

(p, r) ∈ ∆, and estimates âp,r for a finite set ∆ ⊂ (0,∞)2. By appropriate updating one

obtains a vector âTLS(m,p,r), (p, r) ∈ ∆. Now compute the empirical sd for ten batches of

hundred thousand simulations. The square root s = s(p, r) of the average loss over the

million simulations is a function of (p, r). In Figure 8 ∆ = {p1, . . . , p11}×{r1, . . . , r7} and

we plot s(p, r) as a function of p for various values of r.

The performance of the resulting estimator WLTS is impressive.

The erratic dependence of p on the tail indices (ξ, η) suggests that it might be difficult

to determine a good parameter triple (m, p, r) for a given sample of size n = 100 even

if one has good estimates of the tail indices. The difference between the left and right

plots in Figure 8 suggests that the parameters p and r may be sensitive to changes in

the distribution of the error. For (ξ, η) = (1, 1) the optimal trimming parameter m is

the same for Student and Pareto errors, but the optimal values of the parameter p in the

reward differ by a factor a thousand. In Figure 9 we plot in one figure the square root

of the average loss in the estimate âWLTS for Student and for Pareto errors for various

values of r as a function of p. The minimal values for the two error distributions are not

far apart but the difference in the optimal value of p and the difference in the structure

of the graphs make it difficult to see how one should choose good parameter values if the

distribution of the error is not known. These features place the WLTS(m, p, r) estimator

hors concours.



5 TRIMMING 62

p

sd

0.1 0.2 0.5 1 2 5 10 20 50 100 200

0.
00
8

0.
01

0.
01
2

0.
01
4

0.
01
6

0.
01
8

0.
02

Figure 9: The square root of the average loss for WLTS(16, p, r) at (ξ, η) = (1, 1) for Student errors (full

lines) and Pareto errors (dashed) scaled by the IQD for p ranging from 0.1 to 200 and r = 0.01 (grey),

0.02 (pink), 0.05 (dark green), 0.1 (black), 0.2 (red), 0.3 (green), 0.4 (blue), 0.5 (brown), 0.6 (purple), 1

(orange), 2 (azure). The optimal values of (p, r) are (0.2, 0.4) (Student) and (200, 0.5) (Pareto).
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We now turn to trimmed LAD. Let us first say a few words on terminology. Trimmed

Least Squares as opposed to Least Trimmed Squares was investigated in [23]. In that

paper two procedures are compared. The trimming is based on a preliminary estimate of

the slope of the regression line or on the Koenker-Bassett regression quantiles. The term

Least Trimmed Squares introduced by Rousseeuw makes clear that one minimizes over

all possible trimmings.

The LAD estimate is a bisector passing through two sample points. Hence we consider

trimming around a bisector. Given a positive integer m < n/2 − 1, for each bisector L

of the sample we consider the minimal closed strip S ⊃ L such that m sample points

lie in the open half plane above S and m in the open half plane below. The boundary

lines of S contain one sample point each. Define the state variable T = Tm as the sum

of the absolute residuals of the n− 2m points in the strip with respect to the bisector L.

Note that L also is a bisector of the sample restricted to the strip S. Define âm to be

the slope of the bisector L for which the state variable Tm is minimal. The optimal value

of the trimming parameter m is random. It minimizes the average loss over a million

simulations. If the error has a symmetric Student distribution the optimal value of m

is approximately 25. This holds for all values of the tail indices ξ and η. It also holds

if we define the state function to be the sum of the squared residuals, or the difference

between the maximal and minimal residual values. We therefore define the TB1, TB2

and TB∞ estimator of the regression line as the bisector L for which the corresponding

state function T = Tm is minimal for m = 25. These three Trimmed Bisector estimators

are based on trimming around a bisector. The difference between the three estimators is

small.

It is not clear why the optimal value of m for trimming around bisectors should be

m = 25. This value need not be optimal if the errors have a Pareto distribution.
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6 Tables

There are three sets of six tables listing the empirical sd and bias for various estimators

and error distributions for the six values ξ = 0, 1/2, 1, 3/2, 2, 3 of the tail exponent of the

explanatory variable.

The value of ξ can be estimated from the data. This determines the table which applies.

In the first two sets the error has a symmetric Student distribution; in the third a Pareto

distribution. The entries typically have the form m/10k[d] where xE = m/10k is the mean

of the ten quantities γi =
√
Ar with Ar = (â2

1 + · · · + â2
r)/r the average loss for â = âE

over a batch of r = 105 simulations of a sample of a hundred observations (Xi, Y
∗
i ). Here

â = âE is the slope of the regression line estimated by E. The true regression line is the

horizontal axis. The digit d ∈ {1, 2, 5} gives an indication of the size of the fluctuations

in the ten observed values γi. The sd of these ten values is rounded to d/10k. See (1.3)

for the precise prescription.

The entries in the tables depend on the seed used in the simulations. We have used

the seeds 2223, . . . , 1002222 for the ten batches of a hundred thousand simulations. A

different sequence of seeds will give different outcomes. The difference will in general be

of the order of d in the last digit of m.

Colours are used to make the information in the tables more accessible. The value

xE = m/10k may be a bad indicator of the performance. The entry 0[1e + 17] for

Least Squares at (ξ, η) = (0, 3) describes a poorer performance than 0.0567[5] for the

Trimmed LAD, TB1, in the same row. In each row let y∗ denote the minimum of the

sums (m+3d)/10k over the six entries in the row corresponding to the different estimators,

and x∗ the corresponding value of x = m/10k. (In Tables 2 and 3 Weighted Least Trimmed

Squares, WLTS, is excluded in determining the minimum.) The colour scheme is:

• red: 0 < xE ≤ x∗ (minimum);

• green: 0 < xE ≤ y∗ (indistinguishable from the minimum);

• blue: 0 < xE ≤ 5y∗/4 (excellent);
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• purple: 0 < xE ≤ 2y∗ (good).

A colourful table indicates that there are quite a few estimators which perform well.

The estimators are geometric. The estimated regression line does not change if one

changes the coordinates, though the coordinates of the line do, see (1.2). The estimates

of LADPC and LADHC are aberrant, they are not invariant under translations of the

horizontal axis, see (3.4).

In the second and third set of tables the estimator depends on a parameter. The

parameter may vary with the values of the tail indices ξ and η. It is chosen to minimize

the average loss. The value of this optimal parameter is given in the fourth set of tables.

It may seem foolish to choose a quadratic loss function to measure the performance

of estimators in an environment where the underlying variables have heavy tails. The

results in the tables seem to justify the choice.

6.1 Table 1, estimators without parameters, Student errors

LS, Least Squares, and LAD, Least Absolute Deviation, are treated in Section 2. LAD

is a Weighted Balance estimator with weight Xi; LADPC, power corrected LAD uses the

weight X
1/12
i . It is geometric with respect to the subgroup G0 of transformations which

map the right half plane onto itself. It is only defined when the explanatory variables are

positive, see Section 3. TS, Theil-Sen, is a robust estimator which chooses the regression

line for which Kendall’s tau vanishes, rather than the covariance as in LS. The slope is the

median of the slopes of the 4950 line segments connecting two sample points, see Section4.

The three estimators TB1,TB2,TB∞ are based on samples for which 25 points above

and 25 points below the bisector have been trimmed. The estimator chooses the bisector

for which a certain state function T of the residuals is minimal. For TB1 T is the sum

of the absolute values of the fifty remaining points, for TB2 the sum of the squares and

for TB∞ T is the width, the difference between the largest and smallest residual, see

Section 5.

LS is optimal if and only if the error has a Gaussian distribution. LAD is good when η
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is small and the power correction LADPC is good when η is large. TS and TB1 are good,

but not as good as LADPC. For the three estimators trimmed around the bisector TB∞

is best for small values of η, TB1 for large values of η and TB2 for values in between.

η \ 0 LS LAD TS TB1 TB2 TB∞

0 0.0774[2] 0.0969[2] 0.0912[2] 0.2578[5] 0.2371[5] 0.2227[5]

1/3 0.1179[5] 0.0959[2] 0.1001[2] 0.2094[5] 0.1916[5] 0.1896[5]

1/2 0.26[5] 0.0951[2] 0.1041[5] 0.1888[5] 0.1726[5] 0.1770[5]

2/3 1.6[5] 0.0941[2] 0.1080[2] 0.1697[5] 0.1561[5] 0.1669[5]

1 200[100] 0.0917[2] 0.1147[2] 0.1390[5] 0.1302[5] 0.1516[5]

3/2 1e+6[2e+6] 0.0869[2] 0.1218[5] 0.1062[5] 0.1056[5] 0.1407[5]

2 3e+9[5e+9] 0.0810[5] 0.1257[5] 0.0838[5] 0.0936[5] 0.139[1]

3 0[1e+ 17] 0.0681[5] 0.1242[5] 0.0567[5] 0.095[1] 0.153[1]

4 2e+24[5e+24] 0.0560[5] 0.1159[5] 0.0417[5] 0.124[5] 0.192[5]

η \ 1/2 LS LAD LADPC TS TB1 TB2 TB∞

0 0.0518[1] 0.0641[2] 0.0711[2] 0.0822[2] 0.258[1] 0.230[1] 0.2159[5]

1/3 0.0788[5] 0.0670[2] 0.0720[2] 0.0913[2] 0.2044[5] 0.1829[5] 0.1824[5]

1/2 0.17[2] 0.0690[2] 0.0723[2] 0.0957[5] 0.1827[5] 0.1640[5] 0.170[1]

2/3 1.0[5] 0.072[1] 0.0726[2] 0.1001[2] 0.163[1] 0.148[1] 0.1604[5]

1 120[50] 0.1[1] 0.0727[2] 0.1083[5] 0.1331[5] 0.1236[5] 0.1452[5]

3/2 0[1e+ 6] 3[5] 0.0716[2] 0.1182[5] 0.1023[5] 0.1026[5] 0.135[1]

2 1e+9[1e+9] 40[50] 0.0695[5] 0.1253[5] 0.0835[5] 0.0960[5] 0.134[1]

3 1e+16[1e+16] 1e+7[2e+7] 0.0624[5] 0.1298[5] 0.0638[5] 0.113[2] 0.153[2]

4 2e+23[5e+23] 2e+10[5e+10] 0.055[1] 0.1257[5] 0.057[2] 0.160[5] 0.21[1]



6 TABLES 67

η \ 1 LS LAD LADPC TS TB1 TB2 TB∞

0 0.00703[5] 0.00861[5] 0.01189[5] 0.01660[5] 0.0647[2] 0.0558[2] 0.0514[2]

1/3 0.0106[2] 0.00943[5] 0.01224[5] 0.0187[1] 0.0491[2] 0.0424[2] 0.0424[2]

1/2 0.022[5] 0.0104[5] 0.01239[5] 0.0197[1] 0.0432[2] 0.0376[2] 0.0393[1]

2/3 0.1[1] 0.012[1] 0.01259[5] 0.02084[5] 0.0382[2] 0.0336[2] 0.0369[2]

1 10[10] 1[1] 0.0130[1] 0.0230[1] 0.0305[5] 0.0279[5] 0.0333[1]

3/2 30000[20000] 20[20] 0.01328[5] 0.0260[1] 0.0234[2] 0.0238[5] 0.0312[5]

2 1e+8[2e+8] 10000[10000] 0.01339[5] 0.0286[1] 0.0197[2] 0.0237[2] 0.0316[5]

3 0[1e+ 16] 2e+6[2e+6] 0.0130[1] 0.0314[2] 0.0171[2] 0.032[1] 0.038[1]

4 2e+23[5e+23] 0[2e+ 15] 0.0123[5] 0.0320[1] 0.0182[5] 0.049[1] 0.055[1]

η \ 3/2 LS LAD LADPC TS TB1 TB2 TB∞

0 0.00122[1] 0.00149[1] 0.00260[2] 0.00432[2] 0.0220[2] 0.0183[1] 0.0164[1]

1/3 0.00184[5] 0.00167[2] 0.00271[2] 0.00491[2] 0.0160[1] 0.0133[1] 0.0131[1]

1/2 0.004[1] 0.00188[5] 0.00276[2] 0.00521[2] 0.0137[1] 0.0116[1] 0.0120[1]

2/3 0.02[2] 0.0028[5] 0.00282[2] 0.00556[2] 0.0120[1] 0.0103[1] 0.0112[1]

1 3[5] 0.1[1] 0.00296[2] 0.00626[5] 0.0093[2] 0.0085[1] 0.0101[1]

3/2 5000[5000] 10[10] 0.00313[2] 0.00730[5] 0.0072[1] 0.0074[1] 0.0095[1]

2 2e+7[5e+7] 1e+6[2e+6] 0.00328[2] 0.00830[5] 0.0063[1] 0.0078[1] 0.0099[2]

3 1e+15[2e+15] 1e+8[2e+8] 0.00344[5] 0.00968[5] 0.0062[2] 0.0117[5] 0.0129[5]

4 0[1e+ 23] 3e+12[5e+12] 0.00347[5] 0.0104[1] 0.0074[2] 0.0187[5] 0.020[1]

η \ 2 LS LAD LADPC TS TB1 TB2 TB∞

0 0.000243[5] 0.000296[5] 0.000645[5] 0.00126[1] 0.0086[1] 0.00685[5] 0.00597[5]

1/3 0.00036[1] 0.00034[1] 0.00068[1] 0.00145[1] 0.00596[5] 0.00482[5] 0.00463[5]

1/2 0.0008[5] 0.00041[5] 0.000693[5] 0.00154[1] 0.00502[5] 0.00415[5] 0.00422[5]

2/3 0.004[5] 0.001[1] 0.00071[1] 0.00165[1] 0.00431[5] 0.00363[5] 0.00388[5]

1 1[1] 0.01[2] 0.00075[1] 0.00189[2] 0.0033[1] 0.00295[5] 0.00348[5]

3/2 1000[1000] 1[1] 0.00082[1] 0.00227[1] 0.00254[5] 0.00266[5] 0.00334[5]

2 0[1e+ 7] 0[100000] 0.00089[1] 0.00266[5] 0.00229[5] 0.00292[5] 0.0036[1]

3 1e+14[5e+14] 0[1e+ 7] 0.00101[2] 0.00328[2] 0.0025[1] 0.0047[2] 0.0050[2]

4 1e+22[2e+22] 1e+15[2e+15] 0.00108[5] 0.00372[5] 0.0032[2] 0.0079[2] 0.0081[5]
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η \ 3 LS LAD LADPC TS TB1 TB2 TB∞

0 0.0000129[5] 0.000016[1] 0.000049[1] 0.000133[2] 0.00161[5] 0.00122[2] 0.00099[2]

1/3 0.000019[2] 0.000018[1] 0.000053[1] 0.000155[2] 0.00103[2] 0.00079[2] 0.00071[2]

1/2 0.00004[2] 0.000022[1] 0.000054[1] 0.000166[2] 0.00084[2] 0.00065[1] 0.00063[2]

2/3 0.0002[2] 0.00005[5] 0.000055[2] 0.000179[5] 0.00070[1] 0.00057[1] 0.00058[2]

1 0.02[5] 0.001[1] 0.000060[2] 0.000209[5] 0.00051[2] 0.00045[1] 0.00051[2]

3/2 30[50] 0.1[1] 0.000068[2] 0.000261[5] 0.00040[1] 0.00042[1] 0.00051[1]

2 100000[200000] 0[1000] 0.000077[2] 0.00032[1] 0.00038[2] 0.00051[5] 0.00057[5]

3 0[1e+ 13] 300000[500000] 0.00010[1] 0.00044[1] 0.00049[5] 0.0009[1] 0.0009[1]

4 1e+20[5e+20] 1e+13[2e+13] 0.00012[1] 0.00055[2] 0.0007[1] 0.0016[1] 0.0016[5]

Empirical sd of the slope â for LS, LAD, LADPC, TS, TB1, TB2 and TB∞.

Sample size n = 100, ξ = 0, 1/2, 1, 3/2, 2, 3. Student errors with tail index η, scaled by their IQD.

6.2 Table 2, estimators with a parameter, Student errors

The Hyperbolic balance estimators HB40(d) and HB0(d) are comparable. They use the

weight sequence 1/d, 1/(d + 1), . . . , 1/(d − 1 + n) see (3.1). The parameter d depends

on the value of the tail indices. The estimator HB0 performs slightly better than HB40

when η is large. This may be due to the fact that for large η the Student density at the

0.4 and 0.6 quantiles is much smaller than at the median. The Right Median estimator

RM(r) chooses the bisector which divides the r = 2r0 + 1 rightmost (red) points equally

into two sets of r0 with one red point, the median, on the bisector, see Section 3. It is

intuitive but its performance is less good than that of the Hyperbolic Balance estimators.

LADHC, the Hyperbolic Correction of LAD is indistinguishable from the Gap Correction,

LADGC, see (3.10). It performs well when η is large. Apart from these four weighted

balance estimators we consider the weighted Theil-Sen estimator WTS(p) introduced

in Section 4 which performs well for small values of η. The Least Trimmed Squares,

LTS(m, p, r), yields the smallest empirical sd’s but is hors concours since it is not clear

how its parameters should be chosen, see Section 5.
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η \ 0 RM[r] HB40[d] HB0[d] LADHC[d] WTS[p] WLTS[m, p, r]

0 0.1215[5] 0.0916[2] 0.0993[5] 0.0972[2] 0.0810[2] 0.0706[2]

1/3 0.1200[5] 0.0918[2] 0.0979[2] 0.0964[2] 0.0894[2] 0.0722[2]

1/2 0.1188[2] 0.0917[2] 0.0969[2] 0.0955[2] 0.0935[2] 0.0726[2]

2/3 0.1173[5] 0.0913[2] 0.0956[2] 0.0944[2] 0.0973[2] 0.0727[2]

1 0.1140[5] 0.0904[2] 0.0927[2] 0.0918[2] 0.1044[2] 0.0717[1]

3/2 0.1072[5] 0.0878[2] 0.0868[2] 0.0862[2] 0.1128[5] 0.0680[2]

2 0.0991[5] 0.0840[2] 0.0800[2] 0.0797[5] 0.1190[5] 0.0626[2]

3 0.0806[5] 0.0738[5] 0.0645[5] 0.0643[5] 0.125[1] 0.0475[2]

4 0.0633[5] 0.0626[2] 0.0498[2] 0.0497[2] 0.129[1] 0.0331[2]

η \ 1/2 RM[r] HB40[d] HB0[d] LADHC[d] WTS[p] WLTS[m, p, r]

0 0.0889[5] 0.0632[1] 0.0687[2] 0.0658[2] 0.0553[1] 0.0398[1]

1/3 0.0930[5] 0.0663[2] 0.0710[2] 0.0680[2] 0.0632[2] 0.0421[1]

1/2 0.0944[5] 0.0677[2] 0.0717[2] 0.0691[2] 0.0674[2] 0.0428[1]

2/3 0.0955[5] 0.0689[2] 0.0725[5] 0.0704[2] 0.0717[2] 0.0430[1]

1 0.0973[2] 0.0712[2] 0.0735[2] 0.0719[2] 0.0801[2] 0.0424[1]

3/2 0.0972[5] 0.0729[2] 0.0730[2] 0.0725[2] 0.0917[5] 0.0396[1]

2 0.0947[5] 0.0731[5] 0.0709[2] 0.0711[2] 0.1018[2] 0.0356[1]

3 0.0833[5] 0.0692[5] 0.0621[5] 0.0625[5] 0.117[1] 0.0264[1]

4 0.0706[5] 0.0624[5] 0.0512[5] 0.0512[2] 0.129[1] 0.01825[5]

η \ 1 RM[r] HB40[d] HB0[d] LADHC[d] WTS[p] WLTS[m, p, r]

0 0.0116[1] 0.00870[5] 0.00952[5] 0.00920[5] 0.00754[2] 0.00706[5]

1/3 0.0138[1] 0.00957[5] 0.01030[5] 0.00980[5] 0.00894[5] 0.00860[5]

1/2 0.0147[1] 0.01009[5] 0.01071[5] 0.01020[5] 0.00978[5] 0.00936[5]

2/3 0.0156[1] 0.01066[5] 0.01119[5] 0.01069[5] 0.01071[5] 0.0100[1]

1 0.01703[5] 0.01160[5] 0.01203[5] 0.01171[5] 0.0127[1] 0.0109[1]

3/2 0.0187[2] 0.0128[1] 0.0129[1] 0.01270[5] 0.0156[2] 0.0110[1]

2 0.0197[5] 0.01375[5] 0.01346[5] 0.01328[5] 0.0185[1] 0.01040[5]

3 0.0195[5] 0.0144[2] 0.0133[2] 0.0132[1] 0.0240[5] 0.00839[5]

4 0.0180[2] 0.0141[2] 0.0120[2] 0.0119[1] 0.0288[5] 0.00617[5]
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η \ 3/2 RM[r] HB40[d] HB0[d] LADHC[d] WTS[p] WLTS[m, p, r]

0 0.00189[5] 0.00153[1] 0.00168[2] 0.00176[1] 0.00133[1] 0.00123[1]

1/3 0.00250[5] 0.00174[2] 0.00187[2] 0.00188[2] 0.00160[2] 0.00159[2]

1/2 0.00277[5] 0.00188[2] 0.00200[2] 0.00197[2] 0.00178[1] 0.00183[2]

2/3 0.00307[5] 0.00205[2] 0.00216[2] 0.00208[2] 0.00201[2] 0.00204[2]

1 0.00362[5] 0.00236[5] 0.00245[2] 0.00236[2] 0.00250[5] 0.00236[2]

3/2 0.0044[1] 0.00278[5] 0.00285[5] 0.00278[5] 0.00330[5] 0.00261[5]

2 0.0050[2] 0.00316[5] 0.00314[2] 0.00311[2] 0.00418[5] 0.00269[5]

3 0.0056[2] 0.0037[1] 0.0035[1] 0.00345[5] 0.0062[2] 0.00243[5]

4 0.0056[2] 0.00394[5] 0.00343[5] 0.00343[5] 0.0082[5] 0.00200[5]

η \ 2 RM[r] HB40[d] HB0[d] LADHC[d] WTS[p] WLTS[m, p, r]

0 0.00036[1] 0.000306[5] 0.00034[1] 0.000384[5] 0.000271[5] 0.000245[5]

1/3 0.00052[1] 0.00036[1] 0.00039[1] 0.00043[1] 0.000328[5] 0.00033[1]

1/2 0.00058[1] 0.00040[1] 0.000423[5] 0.000448[5] 0.000370[5] 0.00038[1]

2/3 0.00069[5] 0.00044[1] 0.00047[1] 0.000476[5] 0.000426[5] 0.00044[1]

1 0.00084[2] 0.00053[2] 0.00056[2] 0.00054[1] 0.00055[2] 0.00054[2]

3/2 0.0012[1] 0.00066[2] 0.00069[2] 0.00067[2] 0.00077[2] 0.00065[2]

2 0.00137[5] 0.00081[1] 0.00080[1] 0.00082[1] 0.00104[2] 0.00070[2]

3 0.0018[1] 0.00107[5] 0.00102[5] 0.00100[2] 0.0018[1] 0.00072[2]

4 0.00191[5] 0.00122[5] 0.00107[2] 0.00108[2] 0.0025[1] 0.00066[1]

η \ 3 RM[r] HB40[d] HB0[d] LADHC[d] WTS[p] WLTS[m, p, r]

0 0.000018[1] 0.000017[1] 0.000018[1] 0.000027[1] 0.0000150[5] 0.0000130[5]

1/3 0.000025[2] 0.000020[1] 0.000021[1] 0.000030[1] 0.000018[1] 0.000018[1]

1/2 0.000034[1] 0.000022[1] 0.000024[1] 0.000032[2] 0.0000210[5] 0.000021[2]

2/3 0.000040[5] 0.000026[1] 0.000029[2] 0.000033[2] 0.000025[1] 0.000025[1]

1 0.000054[2] 0.000032[2] 0.000035[2] 0.000038[2] 0.000033[1] 0.000033[2]

3/2 0.000086[5] 0.000046[5] 0.000050[5] 0.000049[2] 0.000054[5] 0.000046[5]

2 0.000122[5] 0.00006[1] 0.00007[1] 0.000065[2] 0.000077[5] 0.000053[5]

3 0.00020[2] 0.00011[2] 0.00010[1] 0.00010[1] 0.00017[5] 0.000069[5]

4 0.00024[1] 0.00013[1] 0.00012[1] 0.00012[1] 0.00025[5] 0.000073[5]
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Empirical sd of the slope for RM(r), HB40(d), HB0(d), LADHC(d), WTS(p) and WLTS(m, p, r).

Sample size n = 100, ξ = 0, 1/2, 1, 3/2, 2, 3. Student errors with tail index η, scaled by their IQD.

6.3 Table 3, estimators with a parameter, Pareto errors

The estimators are the same as for Table 2 but now applied to Pareto errors. Weighted

Theil-Sen is the best choice here. It yields the minimal square root of the average loss for

51 of the 54 rows. The bias is positive, roughly one tenth of the sd. Only WLTS has a

negative bias.

η \ 0 RM[r] HB40[d] HB0[d] LADHC[d] WTS[p] WLTS[m, p, r]

0 0.1194[5] 0.0877[2] 0.0969[2] 0.0949[2] 0.0712[1] 0.0778[2]

0.0096[5] 0.0086[5] 0.0079[5] 0.0088[2] 0.0089[2] -0.0280[5]

1/3 0.1165[5] 0.0844[2] 0.0942[2] 0.0927[2] 0.0679[1] 0.0823[2]

0.0122[5] 0.0096[5] 0.0100[5] 0.0112[2] 0.0099[2] -0.0462[5]

1/2 0.1149[5] 0.0826[2] 0.0926[2] 0.0910[1] 0.0640[1] 0.0823[2]

0.0134[5] 0.0097[5] 0.0109[5] 0.0118[2] 0.0093[2] -0.0561[2]

2/3 0.1128[2] 0.0806[2] 0.0906[2] 0.0893[5] 0.0604[2] 0.0812[2]

0.0129[5] 0.0104[5] 0.0110[2] 0.0120[1] 0.0088[2] -0.0650[2]

1 0.1085[5] 0.0761[5] 0.0865[2] 0.0854[5] 0.0517[2] 0.0702[5]

0.0145[5] 0.0104[2] 0.0118[2] 0.0124[2] 0.0068[2] -0.0890[2]

3/2 0.1006[5] 0.0685[2] 0.0793[2] 0.0786[2] 0.0422[2] 0.072[5]

0.0137[2] 0.0096[2] 0.0125[2] 0.0133[1] 0.0055[1] -0.0762[2]

2 0.0917[5] 0.0601[2] 0.0715[5] 0.0708[5] 0.0333[2] 0.055[1]

0.0128[2] 0.0087[2] 0.0123[2] 0.0126[2] 0.0039[1] -0.0657[1]

3 0.0733[5] 0.0434[2] 0.0556[5] 0.0553[2] 0.0196[1] 0.0376[5]

0.0108[2] 0.0062[1] 0.0110[2] 0.0103[2] 0.00149[5] -0.0417[1]

4 0.0571[5] 0.0296[2] 0.0412[5] 0.0408[2] 0.0115[1] 0.0236[2]

0.0071[2] 0.0040[1] 0.0082[1] 0.0078[2] 0.00054[2] -0.02674[5]
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η \ 1/2 RM[r] HB40[d] HB0[d] LADHC[d] WTS[p] WLTS[m, p, r]

0 0.0918[2] 0.0626[2] 0.0690[2] 0.0658[2] 0.0498[1] 0.0517[2]

0.0134[5] 0.0101[2] 0.0105[2] 0.0098[2] 0.0077[2] -0.0131[2]

1/3 0.0947[2] 0.0636[2] 0.0704[2] 0.0671[2] 0.0518[2] 0.0534[2]

0.0165[5] 0.0117[2] 0.0129[2] 0.0128[2] 0.0099[2] -0.0218[2]

1/2 0.0956[5] 0.0639[2] 0.0710[5] 0.0675[2] 0.0529[2] 0.0533[2]

0.0172[5] 0.0124[2] 0.0143[2] 0.0140[2] 0.0108[2] -0.0263[1]

2/3 0.0964[5] 0.0639[5] 0.0710[5] 0.0682[5] 0.0524[5] 0.0535[5]

0.0179[5] 0.0134[2] 0.0149[2] 0.0154[1] 0.0110[2] -0.0284[1]

1 0.0969[5] 0.0632[5] 0.0709[5] 0.0689[5] 0.0470[5] 0.0517[2]

0.0196[5] 0.0138[2] 0.0163[2] 0.0171[2] 0.0095[2] -0.0328[2]

3/2 0.0951[5] 0.0609[5] 0.0693[5] 0.0669[5] 0.0374[2] 0.0463[2]

0.0199[5] 0.0137[2] 0.0175[2] 0.0175[2] 0.0064[1] -0.0351[1]

2 0.091[1] 0.0569[5] 0.0662[5] 0.0639[5] 0.0309[2] 0.0423[5]

0.0203[5] 0.0128[2] 0.0178[2] 0.0165[2] 0.0048[1] -0.0290[1]

3 0.079[1] 0.0453[5] 0.0560[5] 0.0549[5] 0.0197[2] 0.0299[2]

0.0174[2] 0.0098[2] 0.0156[2] 0.0146[2] 0.00217[5] -0.0183[1]

4 0.064[1] 0.0325[5] 0.0444[5] 0.0434[2] 0.0122[1] 0.0195[2]

0.0127[2] 0.0066[1] 0.0122[2] 0.0115[2] 0.00102[5] -0.01029[5]
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η \ 1 RM[r] HB40[d] HB0[d] LADHC[d] WTS[p] WLTS[m, p, r]

0 0.0134[1] 0.00907[5] 0.00995[5] 0.00944[5] 0.00692[5] 0.00733[5]

0.00236[5] 0.00158[2] 0.00165[2] 0.00148[2] 0.00096[2] -0.00080[2]

1/3 0.0155[1] 0.00987[5] 0.0108[1] 0.0102[1] 0.00748[5] 0.00770[5]

0.00306[5] 0.00205[2] 0.00216[5] 0.00203[5] 0.00130[2] -0.00161[2]

1/2 0.0162[1] 0.0102[1] 0.0113[1] 0.01053[5] 0.0078[1] 0.00786[5]

0.00329[5] 0.00223[2] 0.00244[5] 0.00229[5] 0.00145[2] -0.00178[2]

2/3 0.0170[2] 0.0105[1] 0.0116[1] 0.0111[1] 0.0081[1] 0.00788[5]

0.00353[5] 0.00241[5] 0.00263[5] 0.00258[5] 0.00159[2] -0.00209[2]

1 0.0183[2] 0.0111[1] 0.0123[1] 0.0121[1] 0.0089[2] 0.0078[1]

0.00408[5] 0.00272[5] 0.00303[5] 0.00309[5] 0.00183[2] -0.00257[5]

3/2 0.0196[2] 0.0115[1] 0.0131[2] 0.0134[2] 0.0100[5] 0.00729[5]

0.00462[5] 0.00298[5] 0.00348[5] 0.00366[5] 0.00200[5] -0.00329[2]

2 0.0203[2] 0.0115[1] 0.0135[2] 0.0130[2] 0.0086[5] 0.00670[5]

0.0048[1] 0.00309[5] 0.00373[5] 0.00367[5] 0.00164[2] -0.00300[2]

3 0.0194[5] 0.0104[2] 0.0128[2] 0.0123[2] 0.0048[1] 0.0052[1]

0.0048[1] 0.00279[5] 0.00366[5] 0.00358[5] 0.00078[2] -0.00233[2]

4 0.0172[5] 0.0083[2] 0.0111[2] 0.0107[1] 0.0030[1] 00361[5]

0.00389[5] 0.00210[5] 0.00315[5] 0.00309[5] 0.00038[1] -0.00184[1]
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η \ 3/2 RM[r] HB40[d] HB0[d] LADHC[d] WTS[p] WLTS[m, p, r]

0 0.00236[5] 0.00165[2] 0.00182[2] 0.00182[2] 0.00125[1] 0.00133[1]

0.000368[5] 0.000247[5] 0.000269[5] 0.000237[5] 0.000146[5] -0.000073[5]

1/3 0.00301[5] 0.00189[2] 0.00209[2] 0.00198[2] 0.00139[2] 0.00142[1]

0.00052[1] 0.000342[5] 0.000373[5] 0.000329[5] 0.000203[5] -0.000132[5]

1/2 0.00333[5] 0.00201[2] 0.00221[5] 0.00206[1] 0.00148[2] 0.00147[2]

0.00060[1] 0.000385[5] 0.000417[5] 0.00037[1] 0.000232[5] -0.000167[5]

2/3 0.0037[1] 0.00215[5] 0.00239[5] 0.00219[2] 0.00158[5] 0.00152[2]

0.00069[1] 0.000434[5] 0.000475[5] 0.00043[1] 0.000259[5] -0.000159[5]

1 0.0042[1] 0.00238[5] 0.00267[5] 0.00249[2] 0.00180[5] 0.00150[5]

0.00085[2] 0.000518[5] 0.000569[5] 0.000530[5] 0.000311[5] -0.000239[5]

3/2 0.0049[1] 0.00271[5] 0.00302[5] 0.0030[1] 0.0023[2] 0.00154[5]

0.00106[1] 0.00063[1] 0.00069[1] 0.00068[1] 0.000381[5] -0.000302[5]

2 0.0056[2] 0.00291[5] 0.0033[1] 0.0033[1] 0.0028[2] 0.00142[2]

0.00122[2] 0.00071[1] 0.00080[1] 0.00078[1] 0.00041[1] -0.000429[5]

3 0.0059[2] 0.0030[1] 0.0035[1] 0.00342[5] 0.003[1] 0.00113[1]

0.00139[2] 0.00075[1] 0.00089[1] 0.00087[1] 0.000312[5] -0.000380[5]

4 0.0058[2] 0.0026[1] 0.0034[1] 0.00329[5] 0.00100[5] 0.00082[2]

0.00132[2] 0.00067[1] 0.00086[1] 0.00086[1] 0.000138[5] -0.000297[2]
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η \ 2 RM[r] HB40[d] HB0[d] LADHC[d] WTS[p] WLTS[m, p, r]

0 0.00046[2] 0.000340[5] 0.000374[5] 0.000416[5] 0.000260[5] 0.000272[5]

0.000054[1] 0.000041[1] 0.000044[1] 0.000042[2] 0.0000244[5] -44e-7[5e-7]

1/3 0.00064[2] 0.00041[1] 0.00044[1] 0.000452[5] 0.00030[1] 0.000296[5]

0.000089[2] 0.000059[1] 0.000063[1] 0.000059[1] 0.000035[1] -0.000017[1]

1/2 0.00076[2] 0.00044[2] 0.00049[1] 0.000471[5] 0.00032[1] 0.000306[5]

0.000113[2] 0.000069[1] 0.000074[1] 0.000068[2] 0.000040[1] -0.000016[1]

2/3 0.00084[2] 0.00049[2] 0.00053[2] 0.00051[1] 0.00034[1] 0.000314[5]

0.000130[2] 0.000079[1] 0.000084[1] 0.000079[2] 0.000046[1] -0.000025[1]

1 0.00107[5] 0.00057[2] 0.00061[2] 0.00059[2] 0.00041[2] 0.000324[5]

0.000186[5] 0.000099[1] 0.000107[2] 0.000099[1] 0.000057[1] -0.000040[1]

3/2 0.00133[5] 0.00069[2] 0.00076[2] 0.00073[2] 0.00055[5] 0.00033[2]

0.000249[5] 0.000129[2] 0.000140[2] 0.000132[2] 0.000073[1] -0.000036[1]

2 0.0016[1] 0.00079[5] 0.00088[5] 0.00089[5] 0.0007[1] 0.00033[2]

0.000304[5] 0.000157[2] 0.000174[2] 0.000164[5] 0.000084[2] -0.000049[1]

3 0.0020[2] 0.00090[5] 0.00106[5] 0.00104[5] 0.0009[5] 0.000282[5]

0.00039[1] 0.000191[5] 0.000215[5] 0.000207[5] 0.000077[2] -0.000067[1]

4 0.0021[2] 0.00089[5] 0.00111[5] 0.00107[5] 0.00035[5] 0.000217[5]

0.00043[1] 0.000193[5] 0.000235[5] 0.000227[2] 0.000043[1] -0.000052[1]
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η \ 3 RM[r] HB40[d] HB0[d] LADHC[d] WTS[p] WLTS[m, p, r]

0 0.000024[2] 0.000019[1] 0.000021[1] 0.000030[1] 0.000015[1] 0.000015[1]

16e-7[1e-7] 135e-8[5e-8] 144e-8[5e-8] 18e-7[1e-7] 86e-8[5e-8] 6e-8[5e-8]

1/3 0.00004[1] 0.000024[2] 0.000026[2] 0.000032[1] 0.000018[2] 0.000017[1]

28e-7[2e-7] 207e-8[5e-8] 219e-8[5e-8] 25e-7[1e-7] 126e-8[5e-8] -14e-8[5e-8]

1/2 0.000044[5] 0.000027[2] 0.000029[2] 0.000033[1] 0.000019[2] 0.000017[1]

39e-7[1e-7] 25e-7[1e-7] 26e-7[1e-7] 28e-7[1e-7] 148e-8[5e-8] -26e-8[5e-8]

2/3 0.000053[5] 0.000030[5] 0.000034[5] 0.000036[5] 0.000021[5] 0.000018[1]

47e-7[1e-7] 30e-7[1e-7] 31e-7[1e-7] 33e-7[1e-7] 172e-8[5e-8] -32e-8[5e-8]

1 0.00008[1] 0.00004[1] 0.00004[1] 0.000044[5] 0.000027[5] 0.000019[1]

74e-7[2e-7] 39e-7[1e-7] 42e-7[1e-7] 43e-7[1e-7] 223e-8[5e-8] -43e-8[5e-8]

3/2 0.00012[1] 0.000053[5] 0.00006[1] 0.000052[5] 0.00004[1] 0.000020[1]

0.0000159[2] 57e-7[2e-7] 61e-7[2e-7] 59e-7[2e-7] 31e-7[1e-7] -74e-8[5e-8]

2 0.00015[2] 0.00007[1] 0.00008[1] 0.000069[5] 0.00006[2] 0.000021[2]

0.0000191[5] 75e-7[2e-7] 82e-7[2e-7] 78e-7[2e-7] 40e-7[2e-7] -112e-8[5e-8]

3 0.00025[5] 0.00010[2] 0.00011[2] 0.00012[1] 0.00013[5] 0.000020[1]

0.000027[1] 0.0000109[5] 0.0000126[5] 0.0000120[5] 59e-7[5e-7] -159e-8[5e-8]

4 0.0006[5] 0.00012[2] 0.00014[2] 0.00014[1] 0.0003[2] 0.000018[1]

0.000034[2] 0.0000131[5] 0.0000158[5] 0.0000149[2] 7e-6[1e-6] -22e-7[1e-7]

Empirical sd and bias of the slope â for RM(r), HB40(d), HB0(d), LADHC(d), WTS(p)

and WLTS(m, p, r). Sample size n = 100, Pareto errors with tail index η, scaled by their IQD.

6.4 Table 4, parameter values

The parameter values, like the empirical sd and the bias in the tables above, depend on

the seeds used for the simulations. They are chosen to be optimal on the basis of one

batch of a hundred thousand simulations. Since the dependence of the average loss on

the parameter is often locally quadratic the values of the parameter are imprecise. The

dependence on the tail indices is monotonic. The values for ξ = 0 are aberrant since here
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the 1/
√
n asymptotic normality will apply. We have not been able to establish a simple

functional relationship between the parameter and the tail indices even if the values at

ξ = 0, 1/2 are omitted. The parameter values for Pareto and Student errors differ. For

the parameters p and r in the WLTS estimator this difference may be large.

η \ ξ 0 1/2 1 3/2 2 3 η \ ξ 0 1/2 1 3/2 2 3

0 21 5 1 1 1 1 0 11 4 1 0 0 0

1/3 21 7 3 3 1 1 1/3 11 5 2 1 1 0

1/2 23 9 5 3 3 3 1/2 11 6 3 2 2 1

2/3 25 11 7 5 3 3 2/3 13 7 4 2 2 1

1 27 13 9 7 5 5 1 13 8 5 4 4 2

3/2 29 17 13 11 7 7 3/2 16 11 7 5 5 5

2 31 21 15 13 11 11 2 18 12 11 6 6 5

3 35 29 23 19 17 15 3 20 16 13 11 9 6

4 41 39 33 27 23 21 4 23 20 18 14 13 6

Parameter r = 2r0 + 1 for Right Median, RM(r), with Student (left) and Pareto (right) errors.

η \ ξ 0 1/2 1 3/2 2 3 η \ ξ 0 1/2 1 3/2 2 3

0 12 3 1.5 1 0.8 0.8 0 15 3 1.5 1 1 0.8

1/3 15 4 2 1.2 1 1 1/3 15 4 2 1.2 1.2 1

1/2 15 4 2 1.5 1.2 1 1/2 15 4 2 1.5 1.2 1

2/3 15 5 2.5 1.5 1.2 1 2/3 20 5 2.5 1.5 1.5 1

1 20 6 3 2 1.5 1.2 1 25 6 3 2 2 1.2

3/2 25 8 4 2.5 2 1.5 3/2 30 8 4 3 2.5 1.5

2 30 10 5 4 3 2 2 40 10 5 4 4 2

3 40 20 10 6 6 4 3 50 20 10 8 6 4

4 60 30 15 12 12 6 4 100 40 20 15 12 6

Parameter d > 0 for Hyperbolic Balance 40, HB40(d), with Student (left) and Pareto (right) errors.
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η \ ξ 0 1/2 1 3/2 2 3 η \ ξ 0 1/2 1 3/2 2 3

0 15 3 1.5 1.2 1 1 0 10 3 1.5 1.2 1 1

1/3 15 4 2 1.5 1.2 1 1/3 15 5 2 1.5 1.2 1.2

1/2 20 4 2 1.5 1.2 1.2 1/2 20 6 2.5 2 1.5 1.2

2/3 20 5 2 1.5 1.5 1.5 2/3 20 6 3 2 1.5 1.5

1 20 6 3 2 2 1.5 1 30 10 4 3 2 1.5

3/2 25 8 4 3 2.5 2 3/2 60 20 8 4 3 2

2 30 10 5 4 3 2.5 2 100 40 12 6 5 2.5

3 40 20 10 8 6 4 3 300 150 40 15 10 4

4 60 40 20 15 12 8 4 1000 500 120 40 20 6

Parameter d > 0 for Hyperbolic Balance 50, HB0(d), with Student (left) and Pareto (right) errors.

η \ ξ 0 1/2 1 3/2 2 3 η \ ξ 0 1/2 1 3/2 2 3

0 12 3 1.5 1 0.8 0.8 0 15 3 1.5 1 1 0.8

1/3 15 4 2 1.2 1 1 1/3 15 4 2 1.2 1.2 1

1/2 15 4 2 1.5 1.2 1 1/2 15 4 2 1.5 1.2 1

2/3 15 5 2.5 1.5 1.2 1 2/3 20 5 2.5 1.5 1.5 1

1 20 6 3 2 1.5 1.2 1 25 6 3 2 2 1.2

3/2 25 8 4 2.5 2 1.5 3/2 30 8 4 3 2.5 1.5

2 30 10 5 4 3 2 2 40 10 5 4 4 2

3 40 20 10 6 6 4 3 50 20 10 8 6 4

4 60 30 15 12 12 6 4 100 40 20 15 12 6

Parameter d > 0 for LAD with Hyperbolic Correction, LADHC(d), with Student (left) and Pareto (right) errors.

η \ ξ 0 1/2 1 3/2 2 3 η \ ξ 0 1/2 1 3/2 2 3

0 15 2.5 1 1 1 1 0 2.5 1 1 1 1 1

1/3 15 3 1.2 1 1 1 1/3 3 1 1 1 1 1

1/2 15 4 1.5 1 1 1 1/2 4 1 1 1 1 1

2/3 20 5 2 1.2 1 1 2/3 5 1.2 1 1 1 1

1 25 6 3 2 1.5 1 1 10 2.5 1 1 1 1

3/2 25 8 5 4 3 1 3/2 15 8 1.2 1 1 1

2 30 12 8 6 5 4 2 25 15 2.5 1.2 1.2 1

3 50 30 15 8 6 5 3 100 60 15 3 2.5 1.2

4 80 50 25 12 10 8 4 400 150 50 20 12 1.5

Parameter p > 0 for Weighted Theil-Sen, WTS(p), with Student (left) and Pareto (right) errors
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η \ ξ 0 1/2 1 3/2 2 3

0 (5,0,0) (6,0,0) (1,0.04,0.25) (1,0.4,2.5) (1,0.25,1.5) (1,0.3,1.5)

1/3 (12,0.008,0.01) (12,0.005,0.1) (5,0.1,2) (3,0.12,2.5) (4,0.2,0.8) (4,0.2,1.2)

1/2 (14,0.008,0.06) (16,0.02,0.3) (9,0.12,1.5) (8,0.15,0.8) (6,0.25,0.6) (5,0.3,1.25)

2/3 (16,0.012,0.05) (19,0.04,0.8) (12,0.15,1) (10,0.15,0.8) (11,0.3,0.6) (10,0.3,1)

1 (22,0.04,0.08) (26,0.08,0.3) (16,0.2,0.5) (15,0.4,0.4) (14,0.3,0.6) (16,0.8,1.5)

3/2 (25,0.1,0.06) (33,0.25,0.4) (24,0.5,0.4) (24,0.8,0.4) (18,0.6,0.3) (20,3,2.5)

2 (28,0.15,0.05) (38,0.5,0.4) (30,0.8,0.3) (28,1,0.25) (26,1,0.3) (24,3,2.5)

3 (34,0.5,0.015) (42,1,0.3) (35,1.2,0.2) (32,1.5,0.25) (30,1.5,0.25) (26,8,5)

4 (39,0.8,0.03) (45,1.5,0.25) (38,1.5,0.15) (34,1.5,0.15) (32,1.5,0.2) (28,10,5)

Parameters (m, p, r) for Weighted Least Trimmed Squares, WLTS(m, p, r), with Student errors

η \ ξ 0 1/2 1 3/2 2 3

0 (4,25,0.04) (5,100,0.06) (5,80,0.12) (6,100,0.2) (4,100,0.15) (3,80,0.25)

1/3 (7,1.2,0.08) (9,300,0.15) (9,8,0.2) (8,12,0.25) (8,12,0.25) (5,50,0.2)

1/2 (9,1,0.1) (11,6,0.15) (10,20,0.25) (9,5,0.25) (10,40,0.4) (9,60,0.4)

2/3 (11,1.2,0.12) (13,80,0.25) (12,25,0.3) (10,30,0.4) (12,30,0.4) (9,20,0.4)

1 (25,6,0.3) (17,8,0.3) (16,100,0.4) (15,50,0.5) (15,200,0.4) (15,100,0.6)

3/2 (34,20,0.4) (25,12,0.4) (22,20,0.4) (23,10,0.6) (18,150,0.6) (16,80,0.6)

2 (38,10,0.3) (33,15,0.5) (25,10,0.5) (27,25,0.5) (25,30,0.6) (21,15,0.6)

3 (42,8,0.25) (39,6,0.4) (32,25,0.6) (31,12,0.5) (29,100,0.5) (25,30,0.6)

4 (43,6,0.2) (42,6,0.4) (36,5,0.4) (33,25,0.5) (31,12,0.5) (28,20,0.5)

Parameters (m, p, r) for Weighted Least Trimmed Squares, WLTS(m, p, r), with Pareto errors

6.5 An example

An example may help to explain how the parameter in the estimator functions for samples

of size n 6= 100. Consider a sample of size 231. The error distribution is not symmetric:

the upper tail decreases like c/y, the lower tail like c′/y2. The explanatory variables have

a Pareto distribution with tail index ξ = 1. We want to apply the HB100(d) estimator.

The estimate is the central line of a strip with a hundred points above the strip and a

hundred points below. These two subsets of a hundred points are in balance with respect

to the hyperbolic weight wi = 1/(d − 1 + i). This estimator, like HB40 for sample size

n = 100, is not very sensitive to the behaviour of the error density at the median.
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If the error distribution is known one determines the optimal value of the parameter

d by a series of simulations for batches of a hundred thousand simulations. Throughout

this paper we choose d to have the form d0 ∗ 10k with d0 ∈ {1, 1.2, 1.5, 2, 2.5, 3, 4, 5, 6, 8}.

For the optimal value we have computed the empirical sd and bias of âHB100(d) over ten

batches of a hundred thousand simulations:

d = 3 emp sd = 0.00403[2]; bias = 0.00021[1]. (6.1)

Here is the error density f ∗: Start with a unimodal symmetric Pareto distribution with

tail 1/(2 + 2y), replace observations Y ∗i < −1 by −
√
|Y ∗i |, and scale by the IQD = 2.

This yields the error density f ∗(y) = 1/(1 + 2|y|)2 on (−1,∞) and 4|y|/(1 + 4y2)2 on

(−∞,−1).

If one knows the 231 sample points (Xi, Yi), but the tail indices and error distribution

are unknown, then one has to estimate the tail indices and determine the lack of symmetry

in the error distribution. Use the Hill estimator ξ̂ for the tail index of the horizontal

coordinate. Apply LADPC or one of the other estimators in Table 1 which do not contain

a parameter to obtain a preliminary estimate â0 of the slope of the regression line. Use

the residues zi = yi− â0xi to determine an estimate η̂ of the tail index of the error and to

determine the lack symmetry of the error distribution. Our program deletes the twenty

rightmost points (since for these points the effect of an error in the estimate â0 on the

value of zi may be large). The remaining 211 values zi are shifted to make the median

the origin and arranged in increasing order. Now delete the middle points, retaining the

58 largest and the 58 smallest values. Compute the standardized Wilcoxon rank statistic

T for these 116 values. For |T | ≤ 2 we assume that the distribution is symmetric and

apply the Hill estimator to the 116 absolute values to determine η̂; for T ≥ 6 we assume

extreme asymmetry and apply the Hill estimator to the 58 positive values; for 2 < T < 6

we augment these 58 values with the largest of the remaining absolute values, the number

depending linearly on T , to estimate η. For T < −2 we do the same with signs changed.

Now determine the optimal value dS of the parameter d for a sample of 231 observations

from a Student distribution with tail index η̂ and dP for a sample of 231 points from a

Pareto distribution with this tail index ξ̂. Finally apply the HB100(d) estimator to the
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sample where d is dS or dP or a geometric average of dS and dP depending on the value

of |T |.

What is the performance of this two step estimator? For the initial LADPC estimate

ten batches of 105 simulations give an empirical sd of 0.00470[2] and bias 0.00017[1].

Construct tables with the optimal value of the parameter d for various values of the tail

indices for samples of size n = 231 for Student errors and Pareto errors as in Table 3

above:

η \ ξ 0 1/2 1 3/2 2 3 η \ ξ 0 1/2 1 3/2 2 3

0 30 3 1.5 1 0.8 0.6 0 30 4 1.5 1.2 1 0.8

1/3 30 4 2 1.5 1 0.6 1/3 40 6 2.5 1.5 1.2 1

1/2 30 5 2 1.5 1.2 0.8 1/2 40 8 3 2 1.5 1.2

2/3 30 5 2 1.5 1.5 1.2 2/3 40 8 3 2 1.5 1.2

1 30 6 3 2 2 1.5 1 50 8 4 2.5 2 1.5

3/2 40 8 4 3 2 2 3/2 60 15 5 3 2.5 2

2 50 10 5 4 3 2.5 2 60 20 8 5 3 2

3 60 20 8 6 5 3 3 120 40 15 10 5 4

4 80 30 15 10 10 5 4 200 60 25 12 10 8

The optimal parameter d for Hyperbolic Balance, HB100(d).

Sample size n = 231 with Student (left) and Pareto (right) errors.

These two tables may be used to determine the optimal value of the parameter d for any

pair (ξ, η) in the rectangle [0, 3]×[0, 4] by interpolation. We calculated for S and P for the

six values ξ = 0, 1/2, 1, 3/2, 2, 3 a linear approximation to log d as a function of η and used

these linear approximations for the interpolation. Of the million simulations 269 024 were

given the predicate “symmetric”, and 16 114 “extremely asymmetric”. Our estimates of

(ξ, η) vary around a mean value (1.00, 1.3) with sd’s (0.066, 0.17) and correlation −2/103.

For the log of the parameter d we find a mean value of 0.95 and sd 0.03. The empirical

sd and bias for ten batches of 105 simulations are

emp sd = 0.00405[2]; bias = 0.00023[1].

These are indistinguishable from the values in (6.1). Knowledge of the tail indices ξ and

η and of the distribution of the error hardly improves the estimate! That is remarkable
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but perhaps not unreasonable. In the two step estimate the parameter adapts to the

configuration of the sample.

7 Conclusions

There are a number of estimators which perform well for linear regression with heavy

tails.

The conclusions may be found in the tables in Section 6. For sample size n = 100

and errors Y ∗ with a scaled Student or Pareto distribution and explanatory variables X

with a Pareto distribution the tables list the performance of a number of estimators for

certain values of the tail index η of the error and of the tail index ξ of the explanatory

variable. The similarity in the results for errors with a symmetric Student distribution

and for errors with a one sided Pareto distribution suggests that these exemplary results

extend to a wide class of error distributions for tail indices η ∈ [0, 4] and ξ ∈ [0, 3]. The

example in Section 6.5 shows how these results may be used to obtain estimates of the

regression line and the error distribution for samples of any size when the value of the tail

indices is not known.

Least Squares performs poorly for errors with infinite second moment, η ≥ 1/2. Least

Absolute Deviation too unless ξ < 1/2. The other eleven estimators perform well. One

may decide to use the Theil-Sen estimator. The performance is good for symmetric errors.

It may be improved by adding a weight. Weighted Theil-Sen is overall the best estimator

for errors with a Pareto distribution and a good estimator for errors with a Student

distribution. If one prefers to work with Least Absolute Deviations the tables will warn

you that LAD performs badly if both ξ and η exceed a half. However there exist variations

which do well. The Power Corrected LAD overall is the best estimator for Student errors

for estimators which do not contain a parameter. The Gap Correction and the Hyperbolic

Correction of LAD do better but here one needs to choose a parameter depending on the

tail indices. Actually the situation is quite complex. The gaudy Figure 1a shows that

for Student errors nine estimators from the dozen which are investigated in the paper are
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optimal at at least one of the 54 points (ξ, η) at which the loss is calculated.

Statisticians are not particularly concerned with the asymptotic behaviour of estimators

for sample size n→∞. One is confronted with a sample of fixed size. One is interested in

the distribution of the estimator for samples of this size. If there is a universal limit like

the normal distribution the limit distribution may give information on the distribution

of the estimator for the sample at hand. This yields an efficient procedure to evaluate

estimators. But if there is no universal limit? It then may be convenient to take a fixed

sample size, say n = 100, as benchmark. Samorodnitsky et al in [24] show that for heavy

tails for ξ > 1/2 certain linear estimators of the slope of the regression ray have a limit

distribution for n→∞. The limit is a functional of a Poisson point process on (0,∞)×R.

It depends on the distribution of the error. It is not universal. This also is the case for

non-linear estimators. Unorthodox methods are needed to handle this situation. We have

chosen to compare the performance of a small number of estimators for a fixed sample

size at six values of the tail index ξ of the explanatory variable and nine values of the

tail index η of the error. Throughout the paper we restrict attention to samples of size

n = 100. The paper uses tables and programs rather than theorems and proofs.

The credit for this paper should not go to the two authors mentioned on the title page,

but to R, more precisely to the men and women who developed R. What the telescope is

to the human eye R is to statistical intuition.

From our background in extreme value theory it is natural that we should focus the

power of R on linear regression with heavy tails. The relation to the theory of conditional

extremes and high risk scenarios is explained in Section 1. Our task was to determine the

framework: Ten batches of a hundred thousand simulations of a sample of size n = 100

and distributions with tail index η = 0, 1/3, 1/2, 2/3, 1, 3/2, 2, 3, 4 for the error and ξ =

0, 1/2, 1, 3/2, 2, 3 for the explanatory variable. The rectangle [0, 3]× [0, 4] is a small subset

of the positive quadrant of the ξ, η-plane but it is ample for most practical applications.

The bounds of the rectangle are dictated by the software, R version 3.2.1, the sample size

and the number of simulations by the hardware, the operating system OS X 10.6.8 the

3.06 GHz Intel Core 2 Duo processor and 4 GB 1067 MHz DD3 memory of the imac used
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for obtaining the results of this paper. For most estimators computing the estimate of

the regression line for a batch of a hundred thousand samples of size n = 100 takes a few

minutes. The distributions, Pareto for the explanatory variable and Student for the error,

are standard. We added Pareto errors to see how asymmetry would affect the results.

In extreme value theory the step from Pareto samples to a Poisson point process on

(0,∞) with a power tail is a small one, see [8]. The importance of Poisson point processes

for linear regression for heavy tails has been pointed out in [24]. The alternative model

is a Poisson point process which may be regarded as a sample of size n =∞. Samples of

finite size n then correspond to a restriction, one only considers the rightmost n points

of the Poisson point process. R allows us to give a detailed picture of the performance of

Least Squares for Gaussian errors and of the Right Median estimator for Cauchy errors

as a function of ξ for various values of n, see Figure 2 in Section 1 and Figure 10 in

Appendix 8.

The first task for R was to show how standard estimators, Least Squares, Least Abso-

lute Deviation and RMP, the bisector through the rightmost sample point, break down:

LS for η ≥ 1/2, LAD for ξ ≥ 1/4 and RMP for η > 1/2. This analysis is documented in

Section 2.

We consider a dozen estimators. The weighted balance estimators are new but seem

well suited to handle heavy tails. For weighted balance estimators the estimate of the

regression line is a bisector of the sample. One chooses the bisector which ensures balance

for a given sequence of weights w1, . . . , wn. Weighted balance estimators have several

attractive features. They are versatile. They are fast. There exist simple bounds on the

tails of the estimators. In some instances not only ân but also â∞ is well defined. Both

LAD, Least Absolute Deviation, and RMP, the bisector through the rightmost point,

are weighted balance estimators. Simple variations on LAD, like the power correction

LADPC and the hyperbolic correction LADHC ensure good performance for ξ > 1/2

where LAD breaks down. Similarly RM, the Right Median, yields a more robust estimator

of the slope than RMP. The Hyperbolic Balance estimators, HB, use the weight sequence

1/d, 1/(d+1), 1/(d+2), . . . , 1/(d−1+n) which may be regarded as a smoothed version of
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the weight sequence 1, . . . , 1, 0, . . . , 0 for RM, or as a deterministic version of the weight

sequence wi = Xi used in LAD.

We also look at the performance of the Theil-Sen and the weighted Theil-Sen estimator,

and at a number of estimators where the sample is trimmed to avoid the influence of

outliers of the error. The reader may restrict attention to the section dealing with the

estimator of her choice.

There is no clear winner. In such a situation the reader may expect clear and objective

descriptions of the various estimators and of the relations between the estimators. She

will be interested in the tail behaviour of the various estimators. The authors may be

expected to supply a framework within which the results of the tables may be evaluated.

It is surprising that a criterium which might be supposed to need a finite second mo-

ment, a quadratic loss function for the estimates, performs well for errors and explanatory

variables with very heavy tails. The RMSE (Root Mean Squared Error) with the term

“mean” interpreted as average is the measure used in this paper to compare the perfor-

mance of the estimators. For symmetric error distributions RMSE is the empirical sd of

the batch of a hundred thousand simulations. For Pareto errors we also list the empirical

bias. The expected loss may be infinite and yet both the average losses over the ten

batches and the fluctuations in these averages may be small. The conclusion in this paper

is that the square root of the average quadratic loss is a good measure of performance even

for errors and explanatory variables with very heavy tails, and that one should trust the

outcomes of R rather than the theoretical expressions for the tails of â. For risks where

the stakes are high one might consider increasing the number of simulations, and perform

a hundred batches of ten million simulations rather than ten of a hundred thousand.

What would have happened if we had chosen the absolute value loss function L(u) = |u|

to measure performance rather than the quadratic loss function L(u) = u2? By the

Mikosch-de Vries Theorem 2.1 the LS estimate âLS has finite expectation for η < 1. The

critical value for the tail index of the error would then be η = 1 rather than η = 1/2. Since

in applications errors with infinite first absolute moment “do not occur” one might then

conclude that there is no need for this paper. However in last instance it is the distribution
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of the estimator â which determines its performance. Since the loglog frequency plots all

have a roughly concave shape the loss functions u2 and |u| both are determined by the

right asymptote and will give similar results. For quadratic loss LS is not optimal even

for η = 1/3.

The tables in Section 6 are a poor reflection on the power of R. For each of the 54

points in the ξ, η-plane where the estimator is applied to ten batches of a hundred thousand

simulations R not only determines the average loss per batch, it also determines a loglog

frequency plot of the absolute estimate |â| for the million simulations (and in the case of

asymmetric error distributions also of the positive and negative parts of â). R determines

the extreme outcomes of â and records the seeds which produced these extreme estimates

so that the samples which produce poor estimates can be reconstructed. In addition R

gives an estimate of the slope of the right asymptote of the loglog plot based on the

thousand largest values of |â|. This slope is the exponent in the right tail of the df of |â|.

An absolute slope larger than two is an indication of a finite second moment.

Considerations of space forced us to record the empirical sds rather than the loglog

frequency plots for the various estimators at the 54 selected points in the ξ, η-plane. For

a statistician it is the frequency plot which is of prime interest. By plotting the log of the

frequency of log |â| one obtains figures which give a clear representation of the relevant

data. The slope of the right asymptote is the exponent of the right tail of the distribution

of |â|, the slope of the left asymptote is the exponent of the df of |â| at the origin. The

right asymptote tells us how far off the estimates may be, the asymptote on the left tells

us how accurate the estimates may be. The curvature at the top reflects the concentration

of the distribution of log |â|.

Comparison of the shapes of these loglog frequency plots yield a disappointing result.

Recall that our estimators are geometric. Transformations Γ ∈ G have no effect on the

estimated regression line. Here G is the group of all linear transformations of the plane

which map right half planes into right half planes and preserve orientation, Γ : (x, y) 7→

(px + q, b + ax + cy) with p, c > 0, see (1.2). The loglog frequency plots of the good

estimators, up to random fluctuations and a transformation Γ in G, all have the shape
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of the graph of log g0 for the probability density g0(s) = (1/π)/ cosh(s). Appendix 10

contains more information on this mysterious result.

The focus on the square root of the average loss does not do justice to the versatility

of R in investigating the performance of estimators of the regression line. Let us give two

examples.

LAD, and more generally the weighted balance estimators, may be regarded as the

counterpart to the median in linear estimation. The estimate is affected by the behaviour

of the error density at the median. For errors with a Pareto distribution the bias is

a considerable fraction of the empirical sd. A natural question is: Is the positive bias

term due to the asymmetry of the tails of the Pareto distribution, or is it due to the

local asymmetry of the density at the median? For R the answer is simple. Construct

Pareto variables normalized such that F ∗(−1/2) = 1/4 and F ∗(1/2) = 3/4 to ensure that

IQD = 1, draw a hundred samples Y ∗i from this distribution, but flip the sign of the error

if Y ∗i lies in the interval (−1/2, 1/2). This reverses the effect of the local asymmetry but

does not affect the tails. Simulate ten batches of a hundred thousand samples and note

the effect on the bias of estimate â. We find that roughly a third of the bias is due to the

local asymmetry.

For the Cauchy distribution one can easily write down the equations for the MLE

estimator of the slope of the regression line. How does this estimator perform? The

program includes a call to the optimization function optim() which needs a starting point.

If one chooses the origin as initial point the performance is slightly better than HB0 or

HB40. However the maximum determined by optim() is local. An initial point far out

may result in a different (larger) local maximum. By considering a variety of initial points

one increases the chance of finding the absolute maximum. One obtains a better estimate

of the MLE. Initial points far out may result in a larger empirical sd. The performance

of MLE now is slightly worse than HB.

The criticism that the paper is no more than a collection of examples and a tabulation

of rote results obtained by varying the parameters in a small set of simple programs and

that it hardly contains any material of theoretical significance is justified. The paper may
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be seen as a first exploration of a rough terrain. We hope that the tables are helpful to

the practicing statistician and that the examples will stimulate theoretical statisticians

to develop the mathematics which may result in a better understanding of the results

presented above.

8 Appendix 1. Linear Regression for Poisson point

processes

Recall the alternative model for the regression equation introduced at the end of Section 1.

Instead of a sample of n points (Xi, Yi) in the plane with Yi = Y ∗i + b + aXi we look at

the n rightmost points of a Poisson point process Na with points (Xi, Yi), Yi = Y ∗i + aXi.

Here Xi = 1/U ξ
i where U1 < U2 < . . . are the points of the standard Poisson point process

on (0,∞). The tail index ξ is positive. The points X1 > X2 > . . . then form a Poisson

point process on (0,∞) with mean measure ρ(x,∞) = 1/xλ for λ = 1/ξ. The iid sequence

(Y ∗i ) from the error distribution F ∗ is independent of the Poisson point process (Xi). If

F ∗ has density f ∗ then Na has intensity f ∗(y−ax)λdx/xλ+1 on (0,∞)×R. Almost every

realization of Na determines the error distribution as we shall see below. Hence the value

of the abscissa b in the regression equation is of little interest. The question is: Do the

realizations of Na determine a?

If the tail index ξ of ρ exceeds a half and the error has a Student or Gaussian distribution

then Na does not determine a. The distributions πa of the Poisson point processes Na

are equivalent. One may write dπa = fadπ0 and dπ0 = gadπa. We shall explain this

more precisely below. We then give conditions on the error distribution which ensure

equivalence of the distributions πa, a ∈ R, for ξ > 1/2. Roughly speaking the density

f ∗ of the error Y ∗ should be positive and smooth. We shall also briefly investigate

the influence of irregularities in the error distribution. The second half of this section

contains an analysis of the behaviour of the estimate ân of the slope of the regression

line based on the n rightmost points of the Poisson point process N0 for n → ∞ for

two estimators: Least Squares and Right Median. For both one may define â∞. For LS
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Figure 2 at the end of Section 1 plotted the sd of ân(ξ), 0 ≤ ξ ≤ 3, for various sample

sizes, n = 20, 50, 100, 200, 500, 1000 and for n = ∞. Below we shall present similar plots

for the empirical sd’s of the RM(r) estimates for the optimal value of the parameter r.

The figures for LS and for RM(r) both suggest convergence for n→∞. It will be shown

that convergence holds.

8.1 Distributions and densities of Poisson point processes

One can distinguish a biased coin from a fair coin by repeated trials. Similarly one can

distinguish a normal variable with variance one and positive mean from a standard normal

variable. One can distinguish a Poisson point process on (0,∞) with intensity c > 1 from

the standard Poisson point process. But what happens if the bias varies over time, if

the mean tends to zero and if the intensity is not constant but a function which tends

to one? Suppose the Poisson point process on (0,∞) has intensity j(t) which tends to

one for t → ∞. If
∫ t

0
(j(s) − 1)ds = o(

√
t) the difference in the number of points on

(0, t] between the Poisson point process with intensity j and the standard Poisson point

process is masked by the random fluctuations in the standard point process which are of

the order of
√
t. Does this imply that one cannot distinguish samples from the two point

processes?

To answer this question one has to look at the distributions. If the probability measures

which describe the distributions of the point processes are singular one can distinguish

samples with certainty; if the distributions are equivalent one can not.

Densities of random variables or vectors are generally taken with respect to Lebesgue

measure. One can also consider the density of a variable X with respect to a standard

variable U . If X is N(c, 1) and U is N(0, 1) the density of X with respect to U is f(U) =

Z/C where Z = ecU and C = EZ = ec
2/2. If (Xn) is a sequence of independent N(cn, 1)

variables with mean cn = 1/n and (Un) are independent standard normal variables, the

density of the sequence X with respect to the sequence U is f(U) = Z/C where Z =

exp(U1 + U2/2 + · · · ) and C = exp(1 + 1/4 + · · · ) = eπ
2/6. The Monotone Convergence

Theorem applied to Zn = exp(U1/1 + · · ·+Un/n) shows that E(Z/C) = 1. Samples from
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(Xn) and from (Un) cannot be distinguished with certainty. Our aim is to show that this

also is the case for samples from the Poisson point processes Na on (0,∞)×R for ξ > 1/2

if the error Y ∗ has a Student distribution.

The situation is not quite symmetric. If the density of X with respect to U is f(U)

then the density of U with respect to X is g(X) where g = 1/f , but only if f is U -

a.s. positive. Thus if the intensity j of the Poisson point process Nj on (0,∞) vanishes

on the interval (0, 1) a sample which has a point in this interval evidently derives from

the standard Poisson point process on (0,∞) and not from Nj. We shall now consider

Poisson point processes N and M on a separable metric space with mean measures ν and

µ. Assume dν = gdµ with g = eγ.

Theorem 8.1. Let M be a Ppp on a separable metric space E with mean measure µ and

N the Ppp with mean measure gdµ for g = eγ. The distribution of N has a density h(M)

with respect to the distribution of M in the following situations:

• µE <∞ and g ≡ 0: h(M) = 1{M=0}/e
µE;

• µE <∞, g = eγ > 0,
∫
gdµ <∞: h(M) = e

R
γdM/e

R
g−1dµ;

• g = eγ > 0,
∫
γ2dµ <∞,

∫
|g − 1− γ|dµ <∞: h(M) = e

R
γd(M−µ)/e

R
g−1−γdµ.

Proof If K and K0 are Poisson variables with expectation c, c0 the density of K with

respect to K0 is Z/C where Z = (c/c0)K0 and C = EZ = ec−c0 . Note the similarity

with the normal variables. Poisson and normal both are exponential families. Let g =

c11E1 + · · · + cm1Em for disjoint subsets E1, . . . , Em of E and dν = gdµ. Set γi = log(ci)

and Ki = M(Ei). Then the density of N with respect to M is Z/C where

Z = cK1
1 1E1 + · · ·+ cKm

m 1Em = e
R
γdM

and C = EZ = e
R
g−1dµ. The extension to positive µ-integrable Borel functions g is

standard, and so is the L2 extension if µE =∞. ¶

The Poisson point process Na on (0,∞)×R has intensity λf ∗(y−ax)/xλ+1 for λ = 1/ξ

where f ∗ is the error density. We are interested in the density Z/C of Na with respect to
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N0. The restrictions of the intensities to the half plane {x ≥ 1} are probability densities.

If f ∗ is strictly positive the restrictions of Na have equivalent distributions by the second

condition above. This is not surprising. One can hardly expect to determine with certainty

the slope of the regression line from the few points if any of Na in this half plane. But

what if one knows the position of all points?

First observe that for any ξ > 0 almost every realization of N0 determines the error

distribution. Recall that for the standard Poisson point process N on (0,∞) the number

Nt = N(0, t) of points of N in the interval (0, t) is almost surely asymptotic to t for

t→∞. Indeed the Law of the Iterated Logarithm applies:

lim sup
t→∞

(Nt − t)√
2 log log t

= 1 lim inf
t→∞

(Nt − t)√
2 log log t

= −1 a. s. (8.1)

Let N0(x) denote the number of points of N0 in the half plane (x,∞)×R, and N0(x, y) the

number in (x,∞)×(−∞, y]. Assume F ∗ is continuous in y. Then N0(x, y)/N0(x)→ F ∗(y)

a.s. for x→ 0+. This also holds for Na. If F ∗ is continuous, the limit relation holds almost

surely for all rational y and for all integers a. Hence there is a null set Ω0 such that

Na(x, y)(ω)/Na(x)(ω)→ F ∗(y) a, y ∈ R, ω ∈ Ωc
0. (8.2)

8.2 Equivalence of the distributions πa for ξ > 1/2

For many smooth strictly positive error densities f ∗ = e−ϕ for ξ > 1/2 almost no re-

alization of Na determines a. The distributions of Na, a ∈ R, are equivalent. Since

equivalence holds for the restrictions of Na to {x > 1} for positive error densities f ∗ it

suffices to prove equivalence for the restrictions of Na to the vertical strip (0, 1)×R. We

apply the third criterium of the theorem above with M = N0 and N = Na. Then g = eγ

with γ(x, y) = ϕ(y) − ϕ(y − ax). Set ∆(y) = ϕ(y) − ϕ(y − t). If we can prove that

J(0) =
∫

∆2(y)f ∗(y)dy and J(1) =
∫
|e∆ − 1 −∆|f ∗(y)dy are O(t2) for t → 0+ the two

integrals
∫
γ2dµ and

∫
|g− 1− γ|dµ are finite for ξ > 1/2 and dπa = hdπ0. By symmetry

the distributions πa of all the point processes Na are equivalent.

We shall formulate simple criteria on the error density which ensure that the distri-

butions of the point processes Na are equivalent. The basic condition is that f ∗ = e−ϕ
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is strictly positive and continuous and that ϕ is the integral of a function ϕ′ which is

bounded on bounded intervals. The function ϕ′ need not be continuous. If ϕ′ is bounded

equivalence holds. If ϕ′(y) tends to ∞ for y → ∞ or to −∞ for y → −∞ extra condi-

tions are needed. We then assume a second derivative ϕ′′ which is bounded on bounded

intervals and which satisfies some extra conditions.

Set ∆(y) = ϕ(y)− ϕ(y − t) where f ∗ = e−ϕ. We consider the two integrals

J(0) =

∫
∆2(y)f ∗(y)dy J(1) =

∫
|e∆ − 1−∆|(y)f ∗(y)dy.

We want to show that the two integrals are O(t2) for t→ 0. Write J(i)ba for the integral

over the interval (a, b).

Proposition 8.2. Suppose ϕ is the integral of a bounded function ϕ′. Then J0 and J1

are O(t2) for t→ 0 and the distributions πa, a ∈ R, are equivalent for ξ > 1/2.

Proof Let |u| ≤ C0. There exists a constant C such that 1/C ≤ (eu − 1 − u)/u2 ≤ C.

Hence it suffices to prove that J(0) is O(t2). This follows since |∆(y)| = |ϕ(y)−ϕ(y−t)| ≤

C1|t| where C1 is a bound for |ϕ′|. ¶

The set of densities described in Proposition 8.2 is closed for shifts, scaling, reflection,

exponential tilting and powers. If f ∗ satisfies the conditions then so do f ∗(y−y0), cf ∗(cy)

for c > 0, f ∗(−y), eλyf ∗(y)/M(λ) provided the mgf M(λ) = EeλY ∗
is finite at λ, and

(f ∗)q/C(q) for q > 0 provided the integral C(q) of the power is finite.

If the density f ∗ is logconcave ϕ′ is increasing. If the limits at ±∞ are finite the

distributions πa are equivalent. This is the case for Laplace densities (e−x/a∧ex/b)/(a+ b)

with a, b > 0, and for the EGBP densities. If the derivative of f ∗ varies regularly at

∞ with exponent α ≤ −1 then yϕ′(y) → α + 1 and the distributions of the Poisson

point processes Na are equivalent for ξ > 1/2. Student densities satisfy the conditions of

Proposition 8.2, and so do the continuous unimodal Pareto densities

f ∗(y) =
( 1[0,∞)(y)

(1 + y/a)α+1
+

1(−∞,0)(y)

(1− y/b)β+1

)
/
( a
α

+
b

β

)
a, b, α, β > 0. (8.3)

For the normal density ϕ′ is not bounded. The situation then is less simple. We assume

that ϕ′ is locally bounded. The integrals J(0)ba and J(1)ba are O(t2) for bounded intervals
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(a, b). We shall introduce extra conditions on the behaviour of ϕ at +∞ which ensure

that the integrals over (b,∞) are O(t2) too. Results for the left tail are similar.

First note that
∫
e∆(y)f ∗(y)dy = 1 =

∫
f ∗(y)dy, and

∫
ϕ′(y)f ∗(y)dy = 0. Write

J(1) =

∫
(e∆ − 1−∆)(y)f ∗(y)dy − 2

∫
∆<0

(e∆ − 1−∆)(y)f ∗(y)dy.

The first integral equals
∫

(tϕ′(y)−∆(y))f ∗(y)dy by the remarks above and the second is

bounded by J(0)/2 since e−u−1+u ≤ u2/2 on (0,∞). Hence it suffices to give conditions

which ensure that J(0) is O(t2) for t→ 0 and also J(2) =
∫
|∆(y)− tϕ′(y)|f ∗(y)dy.

Proposition 8.3. Suppose ϕ′ is continuous and is the integral of ϕ′′. Assume ϕ′′ is

bounded. Assume ϕ′ is bounded on [0,∞) or ϕ′(y) → ∞ for y → ∞, and similarly for

|ϕ′| on (−∞, 0]. Then J(0) and J(2) are O(t2) for t → 0 and the distributions of the

Poisson point processes Na, a ∈ R, are equivalent for ξ > 1/2.

Proof Let C be a bound for |ϕ′′|. Then |∆(y)− tϕ′(y)| ≤ (t2/2)C. This shows that J(2)

is O(t2). For any c > 0 the integral J(0) over the interval (−c, c) is O(t2). So consider

the integral over (c,∞). If ϕ′ is bounded the proof of the previous proposition applies.

So assume ϕ′(y)→∞ for y →∞. Observe that ϕ(y)→∞ and that ϕ′(y+ t)/ϕ′(y)→ 1

uniformly on bounded t-intervals since ϕ′′ is bounded. Hence ∆(y) ∼ tϕ′(y) for y →

∞ and ϕ′(y)/ϕ(y) → 0 and also ϕ′(y)/eϕ(y)/2. It follows that ∆2(y) ≤ 2t2(ϕ′(y))2 ≤

t2ϕ′(y)eϕ(y)/2 for y > b, and for b sufficiently large∫ ∞
b

∆2(y)f ∗(y)dy ≤ t2
∫ ∞
b

ϕ′(y)e−ϕ(y)/2 = 2t2e−ϕ(b)/2.

A similar argument works for the integral over (−∞,−a). ¶

Proposition 8.4. Suppose ϕ′ is continuous and is the integral of a locally bounded func-

tion ϕ′′. Assume ϕ′′(y)→∞ for y →∞ and ϕ′′(y + t)/ϕ′′(y)→ 1 uniformly on bounded

t-intervals. There exists a constant b such that the integrals J(0)∞b and J(2)∞b are O(t2).

Proof Observe that ϕ′(y)→∞ and that ϕ′′(y)/ϕ′(y)→ 0 and that ϕ′(y + t)/ϕ′(y)→ 1

uniformly on bounded t intervals, and similarly ϕ(y) → ∞, ϕ′(y)/ϕ(y) → 0 and ϕ(y +

t)/ϕ(y) → 1 uniformly on bounded t-intervals for y → ∞. Hence J(0)∞b = O(t2) by the
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same argument as above. For J(2)∞b we find |∆ − tϕ′(y)| ≤ t2|ϕ′′(y)|. Now observe that

ϕ′′(y) < ϕ′(y) implies
∫∞
b
ϕ′′(y)f ∗(y)dy ≤ f ∗(b). ¶

The last proposition shows that for errors with positive smooth Weibull densities the

Poisson point processes Na are equivalent. A Weibull density has tail ce−q(y+b)r
for c, q, r

positive, or more generally e−R(y) for a function R which varies regularly with exponent

r > 0. Here we need to assume that R′′ varies regularly. The exponents for the left

and right tails may differ. The density of the double exponential Gumbel distribution is

logconcave but ϕ′ increases too fast for the conditions of the propositions above to apply.

8.3 Error densities with local irregularities

For errors with a Student or Gaussian distribution and ξ > 1/2 no realization of Na deter-

mines a. Sometimes local irregularities in the error distribution may help to determine a.

For errors with a Pareto distribution and ξ ≤ 1 almost every realization of Na determines

a. We shall look at the effect of irregularities below.

Lines L with slope a through (0, y0), where y0 is a discontinuity of the df F ∗, contain

infinitely many points of Na almost surely. With probability one no other line contains

more than two points. For discontinuous error distributions Na determines a almost

surely, whatever the value of ξ > 0.

Henceforth we again assume a continuous error distribution. There may still be local

irregularities in the density which reflect in the Poisson point process Na. The density

may have a zero or become infinite at some point. It may have a jump, a vertex or a

cusp. It may vanish on an interval or a half line.

The exponential density and shifted Pareto densities are positive on [0,∞) and vanish

on (−∞, 0). The points of Na lie above the ray with slope a. For certain values of the

tail index ξ this boundary is sharp. The sector Sθ0 bounded by the horizontal axis and

the ray with slope θ > 0 has mean measure

µ0(Sθ0) =

∫ ∞
0

F ∗(θx)dρ0(x) =

∫ ∞
0

F ∗(θx)λdx/xλ+1 λ = 1/ξ.

Since F ∗(x) ∼ xf ∗(0) for x→ 0+ and f ∗(0) > 0 we see that µ0(Sθ0) =∞ for all θ > 0 for
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ξ ≤ 1.

Proposition 8.5. Let the error distribution have a finite lower endpoint y0 and suppose

F ∗(y0 + t) ∼ ct for t→ 0+ for a constant c > 0. Then Na determines a almost surely for

ξ ≤ 1: a is the maximal slope for which there are no points of Na below the line y0 + ax.

A similar argument shows that Na determines a almost surely for ξ ≤ 1/γ if the error

has a Gamma distribution with shape parameter γ > 0.

If F ∗ has an irregularity at the origin it is the restriction of the point process to sectors

Scb bounded by two rays with slope b < c which determine whether one can distinguish

the point processes Na. Assume

F ∗(y)− F ∗(−y) ∼ c0y
α,

F ∗(y)− F ∗(0)

F ∗(y)− F ∗(−y)
→ p ∈ [0, 1] y → 0 + . (8.4)

For ξ ≤ 1/α the mean measure µ0 of the sector S1
−1 is infinite since

∫ 1

0
xαλdx/xλ+1 =∞ for

α ≤ λ = 1/ξ. Let M(δ) denote the mean measure of the truncated sector S1
−1 ∩ {x > δ}.

For ξ ≤ 1/α

µ0(Scb ∩ {x > δ})/M(δ)→ H(c)−H(b) δ → 0+

where H(t) = ptα for t > 0 and−(1−p)|t|α for t < 0. For µa the limit is H(b+a, c+a). The

limit relation holds almost surely if one replaces µa by Na. Hence if one can distinguish

the functions t 7→ Ha(t) = H(t + a) one can distinguish the point processes Na almost

surely for ξ ≤ 1/α. The functions Ha can be distinguished unless α = 1 and p = 1/2.

Then F ∗ has a positive derivative at the origin:

Proposition 8.6. Let the df of the error satisfy (8.4). Then Na determines a almost

surely for αξ ≤ 1 unless α = 1 and p = 1/2.

In particular Na determines a almost surely for ξ ≤ 1 if the error density has a jump.

8.4 Plots

The two figures in Figure 10 give a good description of the performance in two specific

situations: Least Squares for Gaussian errors in the upper figure and Right Median for

Cauchy errors in the lower figure.
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Figure 10: The upper figure shows the sd of the slopes ân(ξ), ξ ∈ [0, 3], (and â0
n(ξ), ξ ∈ (0, 3], dotted)

of the LS estimates of the regression line y = y∗ + ax + b (and the regression ray y = y∗ + ax) for

the n = 20, 50, 100, 200, 500, 1000 (azure, pink, black, red, green, blue) and ∞ (purple dotted) rightmost

points of the Poisson point process N0 for normal errors Y ∗i with IQD = 1. The sd’s have been scaled

by 10ξ−1. The lower figure shows the scaled empirical sd for the RM-estimates for errors with a Cauchy

distribution scaled by its IQD, based on a million simulations. In both figures the explanatory variables

have the form Xi = 1/Uξi for ξ ∈ [1, 3] where U1 < U2 < . . . are the points of the standard Poisson point

process on (0,∞). For ân(ξ) Xi = − logUi for ξ = 0 and Xi = (1/Uξi − 1)/ξ + ξ for 0 < ξ < 1. For

â0
n Xi = 1/(ξUξi ) for 0 < ξ < 1. This renormalization is standard in extreme value theory. Because of

the geometric nature of the estimators the effect on ân, â0
n and on sdn, sd0

n is simple. The values for the

sequence 1/Uξi are multiplied by ξ to obtain the values plotted in Figure 10. The extra factor ξ on (0, 1)

explains the kink in the curves at ξ = 1. This is the price we pay for continuity of ân and sdn at ξ = 0.
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We consider estimates â of the slope of the regression line y = y∗ + ax + b based on

the rightmost points of the Poisson point process N0 and estimates â0 of the slope of the

regression ray y = y∗ + ax. For ξ ∈ [1, 3] the Poisson point process N0 = N0(ξ) has

intensity f ∗(y)λdx/xλ+1, λ = 1/ξ. For ξ ∈ (0, 1) the intensity is adapted as described

in the caption in order to ensure continuity at ξ = 0 for the estimates â. For ξ = 0 the

intensity is f ∗(y)e−x on R2.

The sd depends on the error distribution and on the estimator. In the upper figure

we plot sdn(ξ) and sd0
n(ξ) for the Least Squares estimator with Gaussian errors scaled to

have IQD = 1; in the lower figure the errors have a Cauchy distribution and the Right

Median estimator with parameter r is used. Here r is an odd integer, the number of

“red” points. It depends on n and ξ and is chosen to yield the minimal average loss over

a million simulations. The curves plot the empirical sd, the square root of the average

loss over a million simulations.

The similarity between the two figures is striking. For sample size n = 20, 50, 100, 200, 500, 1000

the full curves form a decreasing sequence. So do the dotted curves. These lie below the

full curves. Knowledge of the abscissa gives a substantial improvement of the estimate.

For ξ ∈ [1, 3] the full black curve, sd100, can scarcely be distinguished from the purple

dotted curve sd0
∞. This is not a defect of the estimators LS and RM. For ξ large the

points of the explanatory variable tend to zero so fast that the value of (Xi, Yi) for i > 100

is of little use in estimating the slope of the regression line. For ξ closer to 1/2 we see the

same phenomenon in a less extreme form. For ξ > 1/2 the asymptotics of sdn and sd0
n for

n→∞ is trivial. Convergence to a positive limit holds without any normalization. That

also is the case for the distribution of ân and â0
n. Details are given below.

For ξ > 1/2 we could have listed in Section 6 the empirical sd for n = ∞ rather than

n = 100. There are practical drawbacks. It is not always clear how the limit variable,

the estimate â∞ should be defined. For HB0 and HB40 one can show that truncation of

the weight at an appropriate index hardly affects the performance, and one may define

â∞ for the truncated weights. For LAD and the variations LADPC and LADHC, or for

Theil’s weighted estimator or Weighted Least Trimmed Squares, or the estimators TB1,
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TB2 and TB∞ it is not clear how the empirical sd for sample size n = ∞ should be

determined. Since the intention of the paper is to introduce and describe a number of

estimators which perform well for heavy tails the focus on the finite sample size n = 100

is a viable procedure. In principle it makes no difference whether one takes n = 100 or

n =∞ as the standard.

A closer look reveals several differences between the upper and lower figure. The curves

for LS are lower than the corresponding curves for RM. The decrease over the interval

[1, 3] is stronger for LS. The dotted lower curves for RM vanish when ξ becomes large.

The dotted purple curve for LS seems to decrease to zero for ξ → 1/2+0. This behaviour

is less marked for RM. Some of these differences have a simple explanation. LS is optimal

for normal errors, the performance of RM is only fair for Cauchy errors. The estimator

RM has been chosen not for its good performance but because of its intuitive simplicity

and because its behaviour for n → ∞ and for n = ∞ can be described by simulations.

The estimate â0
∞(ξ) for RM(r) has a simple form. Draw the rays through the r = 2r0 + 1

rightmost points of N0. Then â0
n is the median of the slopes of the r rays. If ξ is large r

is small since one wants to make optimal use of the leverage effect of the largest values of

X in the estimate of the slope. The slow rate of decrease of sdn and sd0
n over the interval

1 ≤ ξ ≤ 3 for RM is due to the heavy tails of the Cauchy error. Heavy tails of Y ∗ demand

a conservative estimator. For ξ > 2 RM is the median of the slopes of the rays through

the r = 5 or r = 7 rightmost points of N0. It does not exploit the leverage effect of the

rightmost point to the full. The dotted curves for sd0
n for n = 20, 50, 100, 200, 500, 1000

coincide with the purple dotted curve for sd0
∞ if ξ is so large that the optimal value of the

parameter r for â0
∞ is less than twenty.

It should be pointed out that IQD is a good normalization if one wants to compare

errors with different tail indices η, but an unnatural normalization for LS. One can

construct bounded errors Y ∗ with IQD = 1 and with a symmetric unimodal density for

which the sd is very large. A normal error scaled by its IQD has sd 0.74. If one takes

a bounded error Y ∗ with IQD = 1 and sd=1.5 the curves in the upper figure will all be

shifted upwards over the same distance, corresponding to an increase in the sd’s by a

factor two.



8 APPENDIX 1. LINEAR REGRESSION FOR POISSON POINT PROCESSES 99

The plots in the lower figure are random. They depend on the seed with which we

start our sequence of a million simulations. This randomness is more pronounced for large

values of ξ where r is small. It may account for the anomalous behaviour of the dotted

purple curve for ξ → 3.

8.5 Convergence for the LS-estimates

If the explanatory variables have finite second moment the Least Squares estimators â0
n

and ân are consistent [5] and asymptotically normal, see [16]. Figure 10 suggest that sd0
∞

vanishes on (0, 1/2] and is positive on (1/2, 3], and that sd0
n and sdn converge to sd0

∞ for

n → ∞. We shall prove this and show that â0
n and ân converge almost surely to â0

∞ for

ξ > 1/2. For â0
n convergence in distribution was established in a more general setting

in [24].

The sd dn of the slope ân of the LS estimate of the regression line y = y∗ + b + ax is

dn =
√

E(1/Vn) and the sd d0
n of the slope of the LS regression ray is d0

n =
√

E(1/Qn),

where

Qn = X2
1 + · · ·+X2

n Vn = (X1 −Mn)2 + · · ·+ (Xn −Mn)2 (8.5)

with Mn the mean of X1, . . . , Xn. Here X1 > X2 > . . . are the points of a Poisson point

process on (0,∞) with mean measure ρ(x,∞) = 1/xλ, λ = 1/ξ. We prove that dn and

d0
n decrease to the same positive limit d∞ = d0

∞ for ξ > 1/2. The variables 1/Vn and

1/Qn converge monotonically and in L1 to the same finite positive limit 1/V∞ = 1/Q∞

for ξ > 1/2. The variables Vn and Qn converge monotonically and in L1 to the finite

positive limit V∞ = Q∞. The equation Vn = Qn−S2
n/n then implies that Sn/

√
n vanishes

in L2 for n→∞.

For a finite sequence of real numbers t1, . . . , tn set vn = qn − s2
n/n where

qn = t21 + · · ·+ t2n sn = t1 + · · ·+ tn.

We do not assume that the ti are ordered.

Lemma 8.7. Replacing ti by ti − c for i = 1, . . . , n has no influence on vn.
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Lemma 8.8. The sequence vm, m = 1, . . . , n, is increasing.

Proof Let m < n and set tm+1 = t. Assume sm = 0, see Lemma 8.7. Then vm = qm =

t21 + · · ·+ t2m ≤ qm + t2 − s2
m+1/(m+ 1) = vm+1 since sm+1 = t. ¶

Write Xi = 1/U ξ
i where U1 < U2 < · · · are the points of a standard Poisson point

process on (0,∞). Then V1 = 0 almost surely and

E(1/Qn) ≤ E(1/X2
1 ) = EU2ξ

1 <∞ n = 1, 2, . . . , ξ > 0.

Lemma 8.9. E(1/V4) is finite.

Proof First observe that V4 ≥ X2
1 +X2

4 − (X1 +X4)2/2 = (X1 −X4)2/2 by Lemma 8.7.

Write U1 = U,U4 = U + W where W is Gamma(3) and independent of the standard

exponential variable U . Now observe

1/uξ − 1/(u+ w)ξ ≥

(1− 1/2ξ)/uξ w ≥ u

ξw/(2u)ξ+1 0 < w < u.

Hence E(1/V4) ≤ E(2/(X1 − X4)2 and 1/(X1 − X4)2 ≤ U2ξ/(1 − 1/2ξ)2 on W ≥ U and

≤ (2U)2ξ+2/ξ2/W 2 on W < U . Since P{W < t} ∼ t3/2 the expectation of 1/W 2 is finite

and so are E(1/(X1 −X4)2) and E(1/V4). ¶

Similar arguments show that E(1/V2) is infinite.

The series Q∞ =
∑
X2
i is almost surely finite for ξ > 1/2. It may be expressed as∫∞

0
1/u2ξdN where N is the standard Poisson point process on (0,∞). Write this as

Q(0, 1) +Q(1,∞) where Q(0, 1) =
∫ 1

0
u−2ξdN is finite as the sum of the squares X2

i with

Xi > 1, and EQ(1,∞) =
∫∞

1
u−2ξdu = 1/(2ξ − 1).

Proposition 8.10. For ξ > 1/2 the variable 1/Q∞ is almost surely positive and finite.

Its expectation is finite and 1/Qn → 1/Q∞ in L1.

Proposition 8.11. For ξ > 1/2 the variable 1/V∞ is almost surely finite and positive.

Its expectation is finite and 1/Vn → 1/V∞ in L1.

Proof The inequalities (X1 − X4)2/2 ≤ V4 ≤ V∞ ≤ Q∞ prove that V∞ is finite and

positive a. s. Then Vn ↑ V∞, together with E1/V4 < ∞ imply convergence in L1 by

dominated convergence. ¶
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Lemma 8.12. V∞ = Q∞ for ξ > 1/2.

Proof We have to prove that Sn/
√
n → 0 in probability. Set Sn = An + Bn where An

is the sum of the terms Xi ≥ 1. Then An/
√
n → 0 almost surely. Now Bn may be

compared to a stochastic integral. Set Jt =
∫ t

1
(1/xλ)dN , λ = 1/ξ < 2 where N is the

standard Poisson point process on (0,∞). Then for ξ ∈ (1/2, 1)

E(Jt) =

∫ t

1

dx/xξ = (t1−ξ − 1)/(1− ξ).

Hence J2n/
√
n → 0 in L1. The nth point Un has a Gamma(n) distribution. Hence

P{Un > 2n} → 0 and Bn ≤ J2n on {Un ≤ 2n}. It follows that Bn/
√
n→ 0 in probability

if ξ ∈ (1/2, 1). If ξ increases then 1/U ξ
n decreases for Un > 1. Hence Bn(ξ) ≤ Bn(3/4) for

ξ > 3/4 and hence Bn(ξ)/
√
n→ 0 in probability for ξ > 3/4. ¶

Corollary 8.13. Suppose ξ > 1/2. Then Sn/
√
n→ 0 in L2.

Proof Qn and Vn = Qn − S2
n/n converge in L1 and the limits agree. ¶

For ξ = 1/2 the second moment of 1/U ξ is infinite. The conditions for consistency of

the estimators â0
n and ân in [5] do not apply. We shall prove that sd0

n and sdn vanish

almost surely for n→∞. The same arguments work for ξ < 1/2.

Proposition 8.14. Suppose Y ∗ is centered and has finite variance. Let Xi = 1/U ξ
i for

ξ = 1/2. The sd’s sd0
n and sdn vanish for n→∞.

Proof Introduce the random integrals S(t) =
∫ t

0
1/uξdN where N is the standard Poisson

point process on (0,∞) with points U1 < U2 < . . .. Similarly we define Q(t) =
∫ t

0
1/u2ξdN

and N(t) =
∫ t

0
dN . We shall also consider integrals S(s, t) and Q(s, t) over intervals

(s, t). Set ξ = 1/2. Note that ES(t) =
∫ t

0
du/uξ = 2

√
t and EQ(1, t) = varS(1, t) =∫ t

1
du/u2ξ = log t. The variance of Q(1, t) is

∫ t
1
du/u2 = 1 − 1/t. Since Q(0, 1) is a finite

sum of variables 1/Ui we see that Q(t)/ log t
P→ 1. Hence Q(t)

P→∞ and by monotonicity

Q(t)→∞ a. s., which implies Qn →∞ a. s. and 1/Qn → 0 a. s.. Dominated convergence

by Lemma 8.9 implies E(1/Qn) → 0. Similarly S(t)/t
P→ 2 implies S2(t)/N(t)

P→ 4. Set

V (t) = Q(t)− S2(t)/N(t). Then V (t)/ log t
P→ 1 and as above E(1/Vn)→ 0. ¶
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We now turn to convergence of the estimators â0
n and ân for ξ > 1/2.

Suppose ξ > 1/2. The estimate for the slope of the regression ray y = y∗ + ax based

on the n rightmost points (Xi, Yi) with Xi = 1/U ξ
i has the form â0

n = ω1Y1 + · · · + ωnYn

with ωi = Xi/Qn and Qn as defined in (8.5). We assume that Y = Y ∗ is centered normal

scaled by its IQD. The series
∑
xnY

∗
n converges in L2 and almost surely if

∑
x2
n is finite.

Hence

Zn = X1Y
∗

1 + · · ·+XnY
∗
n → Z∞ =

∑
XnY

∗
n as

Then Qn → Q∞ almost surely implies â0
n → â0

∞ = Z∞/Q∞ almost surely, hence in

distribution. A more general result on convergence in distribution is given in [24]. The

authors observe that the limit distribution may be expressed in terms of the points U1 <

U2 < . . . of the standard Poisson point process on (0,∞) as

â0
∞ = (

∑
Y ∗n /U

ξ
n)/Q∞ Q∞ =

∑
1/U2ξ

n . (8.6)

Almost sure equality holds if one expresses the explanatory variables as Xi = 1/U ξ
i .

The same limit distribution holds for the estimate ân = ω̃1Y
∗

1 + · · · + ω̃nY
∗
n where

ω̃i = X̃i/Vn and X̃i = Xi − Mn for the mean Mn of X1, . . . , Xn. Set An = (X̃1Y
∗

1 +

· · · + X̃nY
∗
n )/Qn. Then Qn ∼ Vn a. s. implies An − ân → 0 a. s. Now observe that

â0
n−An = Mn(Y ∗1 + · · ·+Y ∗n )/Qn

P→ 0 since
√
nMn = Sn/

√
n→ 0 in L2 by Corollary 8.13

and (Y ∗1 + · · ·+ Y ∗n )/
√
n converges in distribution to a normal variable. For ξ > 1/2:

Theorem 8.15. Let U1 < U2 < . . . denote the points of the standard Poisson point

process on (0,∞) and let (Y ∗n ) be an iid sequence of centered variables with finite second

moment which is independent of the Poisson point process. Let ân denote the slope of the

LS estimate of the regression line for the points (X1, Y
∗

1 ), . . . , (Xn, Y
∗
n ) where Xi = 1/Uλ

i ,

1/λ = ξ > 1/2. Then

ân → â0
∞ = (

∑
XnY

∗
n )/(

∑
X2
n) a. s.

8.6 Convergence for the RM estimates

The results for the Right Median estimator are slightly different and less complete than

for Least Squares.
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Recall the limit relation (8.2), rλN0{x > r, y ≤ y0 + ax} → F ∗(y0), r → 0+. Call

a realization of N0 unexceptional if no four points lie on two parallel lines and if the

limit relation holds for all y0 and a. At the end of Section 8.1 we saw that almost every

realization of N0 is unexceptional.

Assume F ∗(0) = 1/2 and the median is unique. Given a weight, a decreasing sequence

wi ≥ 0 with finite sum Ω, a ray of balance for an unexceptional realization is a ray

L : y = ax such that the weight of the points below L does not exceed Ω/2 and neither

does the weight of the points above L. Exact balance holds if one of these sets has weight

Ω/2. One of the attractive features of the weighted balance estimators is the possibility to

define estimators not only for a finite set of rightmost points of the point process N0 but

for the set of all points. The line of balance Ln based on the n rightmost points depends

on the weight wn. For the Right Median estimator for ξ > 1/2 simulations suggest that

there exists an optimal value r = 2r0 + 1 depending on ξ such that the slope âRM of the

ray which divides these rightmost r (red) points fairly has minimal average loss. For the

hyperbolic weights wi = 1/(d− 1 + i) for fixed parameter d and ξ > 1/2 there also exists

such an optimal truncation. For truncated weights there is a simple continuity result.

Proposition 8.16. Let wn be weights of total weight Ωn and suppose there exists an

index r such that the components wni vanish for i > r. Assume wn → w, where w has

the property that no subset A of {1, . . . , r} has weight w(A) = Ω/2 where Ω is the total

weight of w. Consider an unexceptional realization N0(ω). Let Ln be a line of balance for

the rightmost n points of N0(ω). Assume the df of the error satisfies F ∗(0) = 1/2 and the

median is unique. Then Ln converges to the line of balance L0 through the origin for the

weight w.

Proof Let L0 pass through the point z0 of the unexceptional realization N0(ω). We claim

that almost all lines Ln pass through z0. This implies Ln → L0 by (8.1). The weights

w1 ≥ · · · ≥ wr ≥ 0 with total weight Ω = 1 for which there is a subset A in {1, . . . , r}

of weight 1/2 lie in a finite union of hyperplanes in Rr. Hence there exists an index n0

such that for the weights wn, n ≥ n0, no such subset A exists. For these weights the line

of balance is unique. Colour the r rightmost points red. There is an interval J = [−δ, δ]
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such that for y ∈ J the line through (y, 0) and z0 divides the red points fairly with respect

to the eight w. This then also holds with respect to the weights wn for n ≥ n1. Let L be

a line through (0, y) for y ∈ J and assume z0 lies below L. Then by monotonicity L does

not divide the red points fairly for wn for any n ≥ n1. So too if z0 lies above L. ¶

For ξ < 1/2 the RM estimate â0
n based on the n rightmost points of the Poisson point

process Na is consistent if the error has a density which is continuous and positive in the

median.

Proposition 8.17. Assume F ∗(0) = 1/2. Let â0
n denote the median of the slopes of the

rays through the rightmost n points of the point process Na. If Y ∗ has a density which is

positive and continuous at the origin and ρ0(x,∞) = 1/x1/ξ with ξ ∈ (0, 1/2) then ân → a

almost surely.

Proof We may assume that a = 0. Set λ = 1/ξ. If there exists c0 > 1/
√

2 and δ0 ∈ (0, 1)

such that the truncated sector Sθ0(δ) = {x > δ, 0 < y < θx} satisfies

µ0(Sθ0(δ)) > c0δ
−λ/2

√
log log(1/δ) δ ∈ (0, δ0) (8.7)

then by the Law of the Iterated Logarithm for almost every realization of N0 the number of

points below the ray through (1, θ) will eventually exceed the number of points above the

ray, and hence â(δ) < θ where â(δ) is the median of the slopes over the points in (δ,∞)×R.

Now observe that µ(Sθ0(δ)) =
∫∞
δ
F ∗(θx) − F ∗(0)λdx/xλ+1. Since F ∗(θx) − F ∗(0) ∼

f ∗(0)θx for x→ 0+ we find

µ(Sθ0(δ)) ∼ f ∗(0)θλ/((λ− 1)δλ−1 δ → 0 + .

If ξ < 1/2 then λ− 1 > λ/2 and (8.7) holds. ¶

If n is odd the ray with the median slope will pass through a point (XKn , YKn) and

Kn → ∞ almost surely since Y ∗i is non-zero for i = 1, 2, . . .. The leverage effect of the

horizontal coordinate decreases as Kn increases. Convergence is slow as may be seen in

Figure 10.

Remark 1. If Y ∗ has a symmetric Pareto distribution with density f ∗(x) = 1/(2x1/η) on

the complement of (−1, 1) the df of the RM estimate ân will converge to the defective df

G ≡ 1/2. ♦
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Proposition 8.18. Suppose â0
n → â0

∞ almost surely. Then the empirical sd’s for the

estimates â0
n based on a million simulations converge almost surely to the empirical sd’s

of the estimates â0
∞.

Proof The average of a finite number of variables which converge almost surely converges

almost surely to the average of the limit variables. ¶

Corollary 8.19. For ξ > 1/2 the empirical sd’s for the RM estimates converge: sd0
n →

sd0
∞. Similarly sdn → sd0

∞ almost surely. For 0 < ξ < 1/2, sd0
n → 0 almost surely.

9 Appendix 2. The left tail of Dn

With a sample of n points associate the uniform distribution on these n points and the

mean m and sd d associated with this distribution. With the sample X1, . . . , Xn associate

the variables S,Q, V,M,D:

Sn = X1 + · · ·+Xn Qn = X2
1 + · · ·+X2

n Vn = Qn − S2
n/n (9.1)

and

Mn = Sn/n D2
n = Vn/n = ((X1 −Mn)2 + · · ·+ (Xn −Mn)2)/n. (9.2)

Proposition 9.1. Let M = (X1, . . . , Xn)/n be the average of a sample of size n > 1 from

a df F with a bounded density and let D > 0 be the square root of

D2 =
(

(X1 −M)2 + · · ·+ (Xn −M)2
)
/n.

There exists a constant A = An such that

P{D ≤ s} < Asm s > 0 m = [n/2].

Proof The inequality D2 < s2 implies that the sample clusters around the average M :

more than m points Xi satisfy |Xi−M | ≤
√

2d. (If (Xi−M)2 > 2s2 holds for n−m indices

then D2 > 2(n−m)s2/n ≥ s2.) Clustering implies that the interval (M −
√

2s,M +
√

2s)
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contains more than m points. In terms of the order statistics X(1) < · · · < X(n): There

exists an index i = 1, . . . , n−m such that

X(i+m) −X(i) < 2
√

2s. (9.3)

We shall first derive bounds on the events Ei(r) = {Ui+m − Ui < r} for uniform order

statistics Ui. By symmetry PEn+1−m−i(r) = PEi(r). The order statistic Uk has density

fk,n and

fk,n(u) =

(
n− 1

k − 1

)
uk−1(1− u)n−k ⇒ P{Uk ≤ u} ≤ ck,nu

k ck,n =
1

k

(
n− 1

k − 1

)
.

Conditional on Ui = u the difference Ui+m− u is distributed like (1− u)V where V is the

mth order statistic from a sample of size n − i from the uniform distribution on (0, 1).

Hence

P(Ui+m − Ui ≤ r | Ui = u) = P{V ≤ r/(1− u)} ≤ cm,n−i(r/(1− u))m.

We may restrict attention to i ≤ [([n/2] + 1)/2] + 1 by symmetry. Then n − i ≥ m and

PEi(r) ≤ cm,n−ir
mE(1/(1− Ui)m) and

E(1− Ui)−m =

∫ 1

0

fi,n(u)/(1− u)mdu = Ci =

(
n− 1

i− 1

)
/

(
n−m− 1

i− 1

)
.

Finally write X = F←(U). Then X(i) = F←(Ui) and

X(i+m) −X(i) =

∫ Ui+m

Ui

dF←(u) ≥ (Ui+m − Ui)/‖f‖∞

where ‖f‖∞ is the bound on the density f of X. This yields the desired inequality with

An = (
√

8‖f‖∞)mC, where C is a sum of products ci,mCi. ¶

10 Appendix 3. The EGBP distributions

EGBP is the acronym of Exponential Generalized Beta Prime. The EGBP densities form

a four dimensional family of logconcave functions f = e−ψ where ψ is a smooth function

with asymptotes which have finite non-zero slope. We are interested in the class EGBP

since the characteristic shape of the loglog frequency plots of |ân(E)| for many estimators
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E is a concave function with non-zero asymptotic slopes. The fit with a function of the

form y0 − ψ is good.

There is a relation with heavy tailed distributions on (0,∞) such as the Gamma distri-

butions and the Snedecor F -distributions and with symmetric heavy-tailed distributions

such as the Student distributions. The variable S = aS0 + b has an EGBP distribution

precisely if X0 = exp(S0) has a Generalized Beta Prime distribution. A Beta Prime

distribution is a Beta distribution transformed to live on the positive half line rather

than the interval (0, 1). If U has a Beta distribution on (0, 1) with parameters a, b then

X = U/(1− U) lives on the positive half line. It has a strictly positive density and its df

tends to ∞ like 1/xa and to zero like xb. X has a Beta Prime distribution.

We shall first give a description of the class EGBP, then show the relation with heavy

tailed distributions, and finally discuss the remarkable fit to the loglog frequency plots of

the estimators â considered in this paper.

10.1 The EGBP densities

This section contains information about EGBP, the set of Exponential Generalized Beta

Prime distributions, their densities, the role of exponential tilting and powers.

We begin with a simple result on logconcave densities f = e−ψ. Let ψ′ denote the

derivative of ψ. It is increasing since ψ is convex. We may assume that it is right-

continuous. The derivative ψ′ determines the logconcave density f . If ψ0 is convex

with derivative ψ′ one may write f = C0e
−ψ0 where C0 is the constant which ensures

that
∫
f(s)ds = 1. This results in a one to one correspondence between the class LCA

of logconcave densities with non-zero finite asymptotes on the one hand and a product

space on the other

LCA ↔ (0, 1)× (0,∞)×DF

where DF is the space of all dfs on R. Write ψ′ = (H − p)c with p ∈ (0, 1) and c > 0 for

some df H. Every non-degenerate df H generates a four parameter family of log concave
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densities f = e−ψ where

ψ′(x) = c(H(ax+ b)− p) p ∈ (0, 1), a, c > 0, b ∈ R. (10.1)

These families are disjoint unless H1 and H2 are of the same type, in which case the

families coincide. The degenerate distribution H concentrated at b ∈ R generates the

three parameter family of shifted Laplace densities f(x) = f0(x+ b) where

f0(x) = (ex/α ∧ e−x/β)/(α + β) α, β > 0. (10.2)

An increasing function ψ′0 which assumes both positive and negative values has a unique

primitive ψ0 such that f0 = e−ψ0 is a probability density. The probability density associ-

ated with ψ′0(ax + b) is af0(ax + b). The probability densities associated with cψ′0(x),

c > 0, are powers f = Ccf
c
0 . The probability densities associated with ψ′0 + d for

d ∈ (ψ′(−∞), ψ′(∞)) form the exponential family generated by f0. EGBP is the four

dimensional set of distributions with logconcave densities generated by the logistic df

H0(x) = 1/(1 + e−x) as we shall see presently. Here we want to stress that in terms

of the derivative ψ′ the four parameters consist of two parameters which determine an

affine transformation on the vertical axis and two parameters which determine an affine

transformation on the horizontal axis. This holds for any df H by (10.1). To describe the

four dimensional class of functions ψ associated with the df H0 we may use the group G

of transformations (x′, y′) = γ(x, y) = (px+ q, ax+ b+ cy), see (1.2).

Example 4. Note that the density f0(s) = c/ cosh(s) is logconcave, ψ0(s) = c0 +

log cosh(s) and

ψ′0(s) = tanh(s) = (es − e−s)/(e−s + es) = 2(H0(2s)− 1/2).

The variable S with density c/ cosh(s) is EGBP. The variable X = eS has density 2c/(x+

1/x)/x = 2c/(1 + x2). We see that c = 1/π and X is the absolute value of a standard

Cauchy variable. The question which interests us is whether the loglog frequency plot of

ân for a given estimator E can be approximated well by the graph of y0 − q(ψ0(t) + pt),

t = as+ b for appropriate constants a, b, p, q and y0. ♦
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The density f0(s) = (1/π)/ cosh(s) = elog cosh(s)/π = e−ψ0(s)/π in the example above

generates the class EGBP. Every density f in EGBP has the form f = ce−ψ where

ψ(s) = q(ψ0(as+ b)+p(as+ b)) with q > 0 and p ∈ (−1, 1) to ensure that ψ′ is positive at

∞ and negative at −∞. We shall now first look at the distributions of the heavy tailed

positive variables X = eS associated with the variable S with an EGBP density.

10.2 Basic formulas

The Beta Prime distribution with parameters (a, b) has density

g(x) =
1

B(a, b)

xa

(1 + x)c
1

x
B(a, b) =

Γ(a)Γ(b)

Γ(c)
a > 0, b > 0, c = a+ b. (10.3)

The distribution has power tails with exponent a at zero and −b at infinity. If X has

a Beta Prime distribution on (0,∞) then X/(X + 1) has a Beta distribution on (0, 1)

with the same parameters. The variable X may also be written as the quotient of two

independent Gamma variables X = X(a)/X(b) where X(λ) has density xλ−1e−x/Γ(λ).

The variable X(a) yields the power tail of X at zero, the heavy tailed variable 1/X(b)

the power tail at infinity.

The variable T = logX has density

1

B(a, b)

eat

(1 + et)c
.

The moment generating function of T has a simple form:∫
eξteat

(1 + et)c
dt =

Γ(a+ ξ)Γ(b− ξ)
Γ(c)

⇒ EeξT =
Γ(a+ ξ)

Γ(a)

Γ(b− ξ)
Γ(b)

a+ξ > 0, b−ξ > 0.

(10.4)

We shall compute the density and mgf of the normalized variable

S = log((X(a)/a)/(X(b)/b)) = T − t0 et0 = a/b.

Proposition 10.1. The normalized variable S above has density f(s) and mgf M(ξ) given

by

f(s) = Ce−rψp(s) C =
∆(c)

∆(a)∆(b)
∆(x) = exΓ(x)/xx p = a/c, q = 1−p = b/c, r = ab/c
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M(ξ) = EeξS =
( b
a

)ξ
EeξT =

Γ(a+ ξ)

aξΓ(a)

Γ(b− ξ)
Γ(b)/bξ

−a < ξ < b a = r/q, b = r/p, c = a+b.

The functions

ψp(s) = (logA(s))/pq A(s) = peqs + qe−ps p+ q = 1 (10.5)

with increasing derivative

ψ′p(s) =
1

p+ 1/(es − 1)
(10.6)

are standardized (see Figure 11):

ψp(0) = ψ′p(0) = 0 ψ′′p(0) = 1 ψ′p(−∞) = −1/q ψ′p(∞) = 1/p. (10.7)

Proof Set s = t− t0. Then∫
eat

(1 + et)c
dt =

(p
q

)∫ eas

(1 + pes/q)c
ds =

aabb

cc

∫
ds

(peqs + qe−ps)c

and hence ∫
e−rψp(s)ds =

∫
ds

(peqs + qe−ps)c
=

cc

aabb
Γ(a)Γ(b)

Γ(c)
=

∆(a)∆(b)

∆(c)

with c = r/pq. ¶

The functions ψp satisfy the symmetry relation:

ψq(s) = ψp(−s) q = 1− p.

Let hp, p ∈ (0, 1), be one of the families:

hp(t) = 1/(peqt + qe−pt);

hp(t) = eθt/ cosh(t) θ = 2p− 1;

hp(t) = ept/(1 + et).

Theorem 10.2. Let ψp = − log hp for one of the three families hp, p ∈ (0, 1), above. The

distributions with logconcave densities of the form f = e−ψ where

ψ(t) = d+ cψp(at+ b) p ∈ (0, 1), a, c > 0, b ∈ R, d = − log
(
a

∫
e−cψp(s)ds

)
are the EGBP-distributions.
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Figure 11: The convex functions ψp for p = 0.5, 0.4, 0.3, 0.2, 0.1, 0 (black, red, green, blue, azure, purple)

and the asymptotes for p = 1/2 and p = 0.1.
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Corollary 10.3. EGBP is the set of dfs with logconcave densities of the form ce−ψ where

ψ′(t) = a0H0(c0t+ c1) + a1 |a1| < a0, c0 > 0,

for the logistic df H0(t) = 1/(1 + e−t).

10.3 The closure of EGBP

The EGBP distributions form a four dimensional set in the space of all non-degenerate

dfs on R with the topology of weak convergence. The closure of this set contains the

normal distributions, the exponential and the Laplace distributions, but also the Gumbel

distribution for maxima and the corresponding limit distribution for minima. We shall

show that there is a closed triangle of dfs Fθ1,θ2 such that EGBP distributions are the

dfs Fθ1,θ2(ax+ b) where (θ1, θ2) are interior points of the triangle. We shall first consider

the effect of scaling, both in the horizontal and in the vertical direction, on the convex

functions ψp.

• Zoom out. The transforms cψp(s/c) have the same asymptotic slopes as ψp. For

c → ∞ the functions cψp(s/c) converge to the wedge −s/q ∨ s/p corresponding to

the Laplace density es/q ∧ e−s/p.

• Zoom in. The transforms c2ψp(x/c) have the same curvature as ψp at the origin.

For c → 0 we obtain the parabola y = s2/2 corresponding to the standard normal

density.

Loosely speaking the EGBP distributions form a bridge between the normal distribu-

tions and the (shifted asymmetric) Laplace distributions.

The density ψ′p(s) = 1/(p+ 1/(es− 1)) tends to es− 1 for p→ 0. The limits ψ1 and ψ0

exist. They correspond to the Gumbel distribution and the corresponding limit law for

minima. The limit relations

• ψp(t)→ ψ0(t) := et − 1 + t for p→ 0,

• cnψpn(t/cn)→ ϕp(t) = t/p ∨ (−t/q) for cn → 0, pn → p ∈ (0, 1),
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• c2
nψpn(t/cn)→ ϕ(t) = t2/2 for cn →∞, pn ∈ (0, 1),

follow from the corresponding limit relations for the derivatives.

Theorem 10.4. The closure of this four-dimensional set of EGBP-dfs in the space of

non-degenerate dfs is the set of dfs

F (t) = Fθ1,θ2(at+ b) (θ1, θ2) ∈ Θ, a > 0, b ∈ R

where Θ denotes the closed triangle with vertices (0, 0) and (±1, 1) and Fθ1,θ2 denotes the

df with density f = C(r, p)e−ψr,p for θ2 = e−r and θ1 = (2p− 1)/er.

Proof Let ψr,p(t) = (r ∨ r2)ψp(t/r) for r > 0 and p ∈ [0, 1]. If (rn, pn) → (0, 0) and

rnpn > 0 then

ψ′rn,pn
(t) = ψ′pn

(t/rn) =
et/cn − 1

pnet/cn + qn
→

∞ t > 0

−1 t < 0.

The corresponding dfs converge to the standard exponential df. This also holds if rn = 0

or pn = 0. Similarly for rn →∞ the functions ψn = ψrn,0 satisfy

ψ′n(t) = rnψ
′
0(t/rn) = rn(et/rn − 1)→ t.

We conclude that the closure of the set of functions ψr,p and of the corresponding dfs Fr,p

is a triangle.

Suppose Zn has df Fn = Fθ(n)(anz + bn) and Zn ⇒ Z. Then Xn = anZn + bn has df

Fθ(n)(x). Since Θ is compact there is a subsequence θ(kn)→ θ(0) and Xn ⇒ X0. By the

Convergence of Types Theorem akn → a0 > 0 and bkn → b0 and

Zkn = (Xkn − bkn)/akn ⇒ (X − b0)/a0 = Z.

Hence the limit of Fn has the form Fθ(0)(a0t+ b0). ¶

10.4 SGBP

The estimator â is symmetric if Y ∗ is. The distribution of log |â| may be approximated by

an EGBP distribution; the distribution of â by the corresponding Symmetric Generalized
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Beta Prime distribution. If X has a Symmetric Beta Prime distribution then T = log |X|

has density Ceat/(1 + et)c as we saw above. The symmetric variable X̃ corresponding to

T̃ = rT +d is X̃ = ed|X|r sign(X), a power transform of X. Thus the SGBP distributions

have three shape parameters, the EGBP densities f = e−ψ two, the exponents ψ one, and

their derivative ψ′ none.

The class EGBP is closed under certain operations. Variables may be scaled, translated

and their sign may be changed; densities are closed for powers and exponential tilting. For

the class SGBP of Symmetric Generalized Beta Primes distributions there exist related

results. Let c be positive.

• if X is a SGBP variable then so are cX, |X|c sign(X) and 1/X;

• if f is a SGBP density and J =
∫
f c(x)dx is finite then f c/J is a SGBP density;

• if f is a SGBP density and J =
∫
|x|cf(x)dx is finite then |x|cf(x)/J is a SGBP

density.

Proposition 10.5. SGBP is the smallest set of dfs which satisfies the three closure prop-

erties above for c > 0 and which contains the Cauchy distribution.

Proposition 10.6. The set SGBP is the smallest set of distributions which contains the

symmetric Student t distributions and satisfies for c > 0:

• if X is a SGBP variable then so is |X|c sign(X);

• if f is a SGBP density and J =
∫
|x|cf(x)dx is finite then |x|cf(x)/J is a SGBP

density.

Multiplication by a power of x for the density of a positive variable X corresponds to

exponential tilting for the densitiy of logX. A good example is the family of Gamma

densities. Powers of densities do not have a simple probabilistic interpretation. Fami-

lies of densities which are closed for powers include the symmetric normal densities, the

symmetric and the asymmetric Laplace densities and the symmetric Student t densities.
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The closure of the set of Generalized Beta Prime distributions (or Beta distributions of

the second kind) is rich. It contains the Beta Prime distributions, Student t distributions,

the F -distributions, the gamma distributions, the Weibull distributions with densities

Cxa−1e−bx
c

for a, b, c positive, the lognormal, log-Laplace and loglogistic distributions.

The notes above exhibit the simple underlying structure of this set of distributions on

(0,∞).

10.5 The parameters

The set EGBP has four parameters. The mode x0 is unambiguous. For the functions ψ

with the top at the origin there are different parametric descriptions:

1) geometric: (L,R,D). The absolute values L and R of the inverse of the left and right

asymptotic slope and the absolute value D of the curvature ψ′′(0). The shape parameter

is p = R/M where M = L+R.

2) algebraic: (p, u0, v0). One may write ψ(x) = ψp(u0x)/v0. Hence D = ψ′′(0) = u2
0/v0

and M = v0/u0.

3) stochastic: (a, b, s0). Let X have a Prime Beta distribution with parameters (a, b) and

set S = log(X/(a/b)). The rv Z = S/s0 has density e−ψ with ψ(z) = y0 + r0ψp(s0z) with

r0 = ab/c.

Set L+R = M , a+ b = c, p+ q = 1 and r0 = ab/c, c = r0/pq. Then

p =
a

c
=

R

M
,u0 = s0 = DM, v0 =

1

r0

=
c

ab
= DM2; a =

r0

q
=

1

v0q
, b =

1

v0p
.

10.6 Fitting EGBP distributions to log |ân(E)|

Ten batches of a hundred thousand simulations yield a useful estimate of the empirical sd.

The million simulations also yield good frequency plots. We restrict attention to errors

with a symmetric distribution. Then so has â given that the true regression line is the

horizontal axis. It suffices to plot the frequencies for the absolute values. The right tail
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is heavy. It decreases like a power of 1/x. The exponent of the tail of the density will be

roughly −3 since we try to minimize the average quadratic loss, less if the second moment

of â is finite, more if the second moment is infinite. For x→ 0+ the density will tend to

infinity like x1/ξ−1 for ξ > 1 as we shall see below. The frequency plot for |â| shows the

central part of the density, a part which is of little interest. The loglog frequency plot

which plots the log of the frequency of log |â| is more interesting.

There is empirical evidence that EGBP densities g = e−ψ give a good fit for the

frequency plots of log |âE| for good estimators E, in particular if the error has a symmetric

distribution. The intuition behind this good fit is vague. The density gE = e−ψE of

log |âE| is smooth even when the density of the error has discontinuities since the value

of âE depends continuously on a hundred independent sample points. The absolute slope

of the left asymptote of ψE corresponds to the power of x which describes the df of |âE|

at the origin. The power is λ = 1/ξ for ξ ≥ 1 since the most accurate estimates are due

to large values of X1. The right asymptotic slope of ψE determines the tail behaviour

of |âE|. For estimators E with a parameter like RM(r) the loglog frequency plot often

exhibits a number of isolated large values of |âE| if the parameter is not optimal. These

large values are due to outliers of the vertical coordinate Y ∗i for the rightmost points.

For the optimal value of the parameter r these large values are eliminated by giving less

weight to the extreme rightmost points.

Of the four parameters of the EGBP distribution there is one, the slope of the left

asymptote of ψE which we can link to the tail indices (ξ, η). It would be of interest to

know how the remaining three parameters depend on the tail indices, the shape of the

error density and the estimator. In the text below we define the optimal fit. Let S denote

the variable with density e−ψ where y0−ψ yields the optimal fit. We consider two issues:

• How close is the theoretical sd
√

Ee2S to the empirical sd listed in the tables in

Section 6?

• How does the distance between the loglog frequency plot of |â| and e−ψ compare to

the distance between the log of the frequency plot of S and e−ψ.
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Figure 12: EGBP approximations to the loglog frequency plots for various values of (ξ, η). Empirical sd

and theoretical sd:
(a) Weighted Theil-Sen: 0.0018[1], 0.00173;

(b) LAD with Hyperbolic Correction: 0.0711[2], 0.07118;

(c) Right Median for the Poisson point process, n =∞: 5.1[1], 5.03;

(d) Trimmed about the Bisector: 1 (black) 0.0197[2], 0.02044; 2 (red) 0.0237[2], 0.02460; ∞ (green)

0.0316[5], 0.03197.
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Our loglog frequency plots are random piecewise linear functions with twenty bins per

unit. We round off to an integer value m the random value 20 ∗ log |â|, count the number,

n, of occurrences of m in the million simulations and connect the points (m/20, log n).

The random fluctuations in the resulting plot fr are clearly visible, in particular in the

tails. We choose the base line at level −1/10 so as to see unique occurrences, n = 1. The

global shape is a concave curve like a parabola but with asymptotes with finite slopes.

Let g = e−ψ be a logconcave density. Define the distance

d(fr, g) =
√

E(fr− (y0− ψ))2 y0 = log(1e6)− log 20, g = e−ψ. (10.8)

where we take the expectation with respect to the probability measure with atoms of size

n/106 in m/20. In order to see whether the fit is good we simulate a million samples from

the density g, construct gr, the log of the corresponding frequency plot, and compute

the distance d(gr, g). Actually we simulate twenty batches of a million samples and write

down the average and sd of the distances d(gr, g) in the notation (1.3) introduced in the

Introduction.

What logconcave density g = e−ψ should one choose to obtain a good fit? The density

g(s) = c/ cosh(s) is symmetric. The function ϕ0(s) = log cosh s has asymptotes with

slope ±1. It satisfies ϕ0(0) = ϕ′0(0) = 0 and ϕ′′0(0) = 1. A scale transformation in the

vertical and the horizontal direction will transform ϕ0 into the function ϕ(s) = cϕ0(s/a)

which satisfies ϕ(0) = ϕ′(0) = 0 and ϕ′′(0) = c/a2. The asymptotes of ϕ have slope ±c/a.

We still need to modify the function to have asymptotes whose absolute slopes assume

different values. This may be achieved by replacing 1/ cosh(s) by one of the functions

below:

eθs/ cosh(s) 1/(es/p + es/q) er0s/(1 + er1s).

Note that the scale transformation of ϕ in the vertical direction corresponds to a power

transformation of the density. We now have a three-dimensional family of analytic convex

functions ϕ which are determined by the absolute values of the asymptotic slopes and the

curvature ϕ′′(0) at the origin. We still need a horizontal translation to fit the densities

g = e−ψ to the frequency plot fr.

Let Φ denote this four-dimensional space of convex analytic functions ϕ. Each function
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ϕ ∈ Φ is determined by four parameters: x0, ϕ
′′(x0),−ϕ′(−∞), ϕ′(∞) in R×(0,∞)3. The

corresponding space of dfs is EGBP. For a given loglog frequency plot fr choose the density

g0 = e−ϕ0 with ϕ0 ∈ Φ to minimize the distance d(fr, g0). Let

d = d(fr, g0) = dΦ(fr)

denote this minimal distance. Let gr denote the log of the frequency plot for a sample

of size n = 106 from g0 and setd0 = d(gr, g0). It may happen that d0 > d. Perhaps one

should compare d not to d0, the distance between gr and g0, but to d1 = dΦ(gr), the

minimum of d(gr, g) over all densities g = e−ϕ, ϕ ∈ Φ. Do that for twenty batches of a

million simulations from the density g0.

Example 5. For the estimators HB40(3), HB0(3) and RM(9) applied to samples of size

n = 100 of points (Xi, Yi) where the X1 > · · · > X100 have a Pareto(1) distribution,

Xi = 1/Ui, for the order statistics Ui of a sample from the uniform distribution on

(0, 1) and errors Yi from a Cauchy distribution scaled by its IQD we obtain (d, d0, d1) =

(0.01965, 0.019[1], 0.019[1]), (0.02036, 0.020[1], 0.019[1]) and (0.02077, 0.028[1], 0.020[1]).

Here is a crude estimate of the distance d(gr, g) between the log of the frequency plot

gr for a million simulations from the density g and the density. Let b0 denote the number

of non-empty bins. Then

d(gr, g) ≈
√
b0/1000.

In our case b0 ≈ 340 which gives d ≈ 0.017.

Indeed the number Nk of sample points in the kth bin Bk is binomial(n, pk) where

n = 106 is the number of simulations and pk is the integral of g over the bin Bk. Hence

Nk = npk +σkUk where σk =
√
npkqk with qk = 1− pk close to one and Uk asymptotically

standard normal for npk →∞. Hence logNk = log npk + U ′k/σk and

nd2 =
∑

Nk| logNk − log(npk)|2 =
∑

Nk(U
′
k)

2/σ2
k ≈

∑
(U ′k)

2 ≈ b0.

The condition that npk be large does not hold for the bins in the tails. The loglog

frequency plots are based on a million values of â. Most of these occur in the center. The

tails, say the part where the frequency, the number of entries Nk in a bin, is less than a
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hundred is less than 0.5% of the total. It is this part which determines the tail behaviour.

The distance between the smooth EGBP-fit y0 − ψ and the loglog frequency plot fr is

determined by the middle part. A good fit in the tails is a bonus.

10.7 Variations in the error density at the origin

What happens if one replaces the Student density by a symmetric density which is constant

on a neigbourhood of the origin, or which has a vertex at the origin, or a zero, or a pole?

We introduce three error variables with symmetric densities and with tail index η = 1.

Start with variables Zs, Zu, Zp with IQD = 2. These variables have symmetric densities

and satisfy P{Z > 1} = 1/4. The variable Zs has a Student distribution. It is the Cauchy

variable with density (1/π)/(1+z2). The variable Zu has a density which is constant with

value 1/4 on the interval (−1, 1) and has Pareto tails: P{Zu > z} = 1/(4z), z > 1. The

variable Zp is the symmetric version of a shifted Pareto variable P{Zp > z} = 1/(2 + 2z),

z > 0.

Define the corresponding error variables Yt = Zt/2 for t = s, u, p. The explanatory

variables are Xi = 1/Ui where U1, . . . , Un are the increasing order statistics from the uni-

form distribution on (0, 1). We shall use the estimators HB0[3] and HB40[3] to determine

the empirical sd and to construct loglog frequency plots fr. One may expect HB40 to

be less sensitive to the precise form of the density at the origin since it is based on the

behaviour of the df at the 0.4 and 0.6 quantiles of the error distribution. Determine the

EGBP approximation g0 = e−ψ0 in these six cases, and the theoretical sd, the square

root of
∫
e2sg0(s)ds. We also compute the distance d = d(fr, g0). We shall then con-

struct twenty plots gr corresponding to twenty batches of a million simulations from g0,

and compute the distances d0 = d(gr, g0) and d1 = d(gr, g) where y − log g is the best

EGBP-approximation to gr.

If U is uniformly distributed on the interval (0, 1) then U2 has density 1/(2
√
u) and

√
U has density 2u2 on (0, 1). In general P{U r > x} = x1/r for r > 0. For the three

variables Zt introduced above define samples of Z
[r]
t by replacing Zt by sign(Zt)|Zt|r when

Zt lies in the interval (−1, 1). The density f
[r]
t of Y

[r]
t = Z

[r]
t /2 is asymptotic to ct|y| at
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the origin if r = 1/2 and asymptotic to c′t/
√
|y| if r = 2. We shall also check how good

the EGBP-fit is for errors with these densities.

The final plot below shows the EGBP-fit to the loglog frequency plot for âLS. The

error has a Cauchy distribution scaled by its IQD, the explanatory variables are Pareto

with tail index ξ = 1. The figure shows two things: LS is not a good estimator for

(ξ, η) = (1, 1). The right tail of the log log frequency plot extends beyond 10000. The

EGBP fit is not good. The loglog frequency plots suggests a smooth logconcave density

e−ϕ with asymptotes with finite non-zero slopes, although one sees a certain amount of

rubble at the extreme right tail. The EGBP fit ignores the tails. It only looks at the

central part around the top. This central part clearly does not fit with the tails of the

loglog frequency plot.

density emp sd theor sd d = d(fr, ψ0) d0 = d(gr, ψ0) d1 = d(gr, ψ)

fs 0.01158[5] 0.01158 0.01965 0.019[1] 0.019[1]

fu 0.01105[5] 0.01106 0.01790 0.019[1] 0.019[1]

fp 0.0122[2] 0.01223 0.02012 0.0200[5] 0.0192[5]

HB40(1, 1)[3]

density emp sd theor sd d = d(fr, ψ0) d0 = d(gr, ψ0) d1 = d(gr, ψ)

fs 0.01201[5] 0.01200 0.02036 0.020[1] 0.019[1]

fu 0.01205[5] 0.01218 0.01893 0.0192[5] 0.0188[5]

fp 0.0120[1] 0.01217 0.02050 0.0193[5] 0.0189[5]

HB0(1, 1)[3]

density emp sd theor sd d = d(fr, ψ0) d0 = d(gr, ψ0) d1 = d(gr, ψ)

f
[2]
s 0.00952[5] 0.009545 0.02022 0.0194[5] 0.0193[5]

f
[2]
u 0.00963[5] 0.009643 0.02100 0.019[1] 0.019[1]

f
[2]
p 0.0096[2] 0.009824 0.02295 0.0203[5] 0.0201[5]

HB40(1, 1)[3]
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Figure 13: EGBP approximations to three loglog frequency plots for âHB0[3] and one for âLS

The error densities f [2]
s , f [2]

u , f [2]
p in the first three are asymptotic to c/

√
|y| at the origin.

In the fourth plot the error is Cauchy scaled by its IQD.
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density emp sd theor sd d = d(fr, ψ0) d0 = d(gr, ψ0) d1 = d(gr, ψ)

f
[2]
s 0.00847[5] 0.008634 0.03120 0.0209[5] 0.0208[5]

f
[2]
u 0.00881[5] 0.008888 0.03094 0.0200[5] 0.0199[5]

f
[2]
p 0.0083[1] 0.008916 0.03863 0.0210[5] 0.0209[5]

HB0(1, 1)[3]

density emp sd theor sd d = d(fr, ψ0) d0 = d(gr, ψ0) d1 = d(gr, ψ)

f
[1/2]
s 0.01209[5] 0.01226 0.01971 0.0194[5] 0.0190[5]

f
[1/2]
u 0.01103[5] 0.01115 0.01892 0.0193[5] 0.0190[5]

f
[1/2]
p 0.0134[2] 0.01338 0.02144 0.020[1] 0.019[1]

HB40(1, 1)[3]

density emp sd theor sd d = d(fr, ψ0) d0 = d(gr, ψ0) d1 = d(gr, ψ)

f
[1/2]
s 0.01518[5] 0.01525 0.01727 0.019[1] 0.019[1]

f
[1/2]
u 0.0148[1] 0.01482 0.01876 0.018[1] 0.018[1]

f
[1/2]
p 0.0157[2] 0.01585 0.02003 0.0191[5] 0.0186[5]

HB0(1, 1)[3]

It is the distribution of the estimator â which determines how good it is, in particular

the right tail of the distribution of the absolute value. This right tail determines the risk

associated with the estimate. The loglog frequency plot gives a good description of the

tail behaviour. A steep decrease on the right, indicating an asymptote with large absolute

slope, is ideal. A good EGBP fit means that the logconcave density of the EGBP variable

S agrees well with the distribution of the variable log |â|. If moreover the theoretical sd
√

Ee2S is close to the empirical sd associated with the loglog frequency plot that indicates

that the good fit extends to the right tail. The simulations on which this paper is based

suggest that minimizing the average quadratic loss leads to loglog frequency plots which

may be fitted accurately by the exponent of the logconcave EGBP densities, and that this

good fit extends to the right tail. These empirical results vindicate the choice of average

quadratic loss of â as a measure of the performance of estimators in linear regression for

heavy tails.
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