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A. Basel II

Amendment to the Capital Accord to Incorporate Market Risks

(Basle Committee on Banking Supervision, 1996):

• “In calculating the value-at-risk, a 99th percentile, one-tailed

confidence interval is to be used.”

• “In calculating value-at-risk, an instantaneous price shock

equivalent to a 10 day movement in prices is to be used.”

• “Banks may use value-at-risk numbers calculated according to

shorter holding periods scaled up to ten days by the square root of

time.”
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Basel II (cont.)

• Market risk: 10-day value-at-risk, 99%

Standard: 1-day value-at-risk, 95%

• Insurance: 1-year value-at-risk, 99%

1-year expected shortfall, 99%
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Value-at-Risk and Expected Shortfall

• Primary risk measure: Value-at-Risk defined as

VaRp(X) = F−1
−X(p) ,

i.e. the pth quantile of F−X. (X denotes the profit, −X the loss.)

• Alternative risk measure: Expected shortfall defined as

ESp(X) = E
(
−X

∣∣ X < −VaRp

)
;

i.e. the average loss when VaR is exceeded. Sp(X) gives

information about frequency and size of large losses.
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VaR in Visual Terms

Profit & Loss Distribution (P&L)
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Losses and Profits

Loss Distribution
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B. Scaling

Question 1: How to get a 10-day VaR (or 1-year VaR)?

Solution in the praxis: scale the 1-day VaR by
√

10 (or
√

250).

Question 2: How good is scaling?

→ Model dependent!
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Scaling under Normality

Under the assumption

Xi
i.i.d.∼ N (0, σ2),

n-day log-returns are normally distributed as well:

n∑
i=1

Xi ∼ N (0, nσ2).

For a N (0, σ̃2)-distributed profit X, VaRp(X) = σ̃ xp, where xp

denotes the p-Quantile of a standard normal distribution. Hence

VaR(n) =
√

n VaR(1).
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Accounting for Trends

When adding a constant trend µ,

Xi
i.i.d.∼ N (µ, σ2),

n-day log-returns are still normally distributed:

n∑
i=1

Xi ∼ N (nµ, nσ2).

Hence

VaR(n) + nµ =
√

n (VaR(1) + µ),
i.e.

VaR(n) =
√

n VaR(1) − (n−
√

n)µ.
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Autoregressive Models

For an autoregressive model of order 1,

Xt = λXt−1 + εt, εt
i.i.d.∼ N (0, σ2),

1-day and n-day log-returns are normally distributed:

Xt ∼ N
(

0,
σ2

1− λ2

)
and

n∑
i=1

Xi ∼ N
(

0,
σ2

(1− λ)2

(
n− 2λ

1− λn

1− λ2

))
.
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Scaling for AR(1) Models

For an AR(1) model with normal innovations,

VaR(n)

VaR(1)
=

√
1 + λ

1− λ

(
n− 2λ

1− λn

1− λ2

)
.

For small values of λ,
√

n VaR(1) is a good approximation of VaR(n).
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Non-Normal Innovations

Question: Is scaling with
√

n still appropriate if innovations are

non-normal?

Example: random walk, Xi
i.i.d.∼ t8

Based on 250 log-returns, how good is
√

10 · V̂aR
(1)

99% as an

estimate for the 10-day 99% VaR?

(V̂aR
(1)

99% denotes the one-day 99% VaR estimate.)
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Non-Normal Innovations (cont.)
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AR(1)-GARCH(1,1) Processes

A more complex process, often used for practical applications, is

the GARCH(1,1) process (λ = 0) and its generalization, the

AR(1)-GARCH(1,1) process:

Xt= λXt−1 + σtεt,

σ2
t = a0 + a(Xt−1 − λXt−2)2 + b σ2

t−1,

εt i.i.d., E[εt] = 0, E[ε2t ] = 1.

(typical parameters: λ = 0.04, a0 = 3 · 10−6, a = 0.05, b = 0.92)
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Scaling for AR(1)-GARCH(1,1) Processes

Goodness of fit of the scaling rule, depending on different values of

λ (x axis) for different distributions of the innovations εt.

For typical parameters (λ = 0.04, εt ∼ t8), the fit is almost perfect.
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GARCH(1,1) vs. Random Walk

A GARCH(1,1) process

Xa,t = σa,tεt,

σ2
a,t = a0 + aX2

a,t−1 + b σ2
a,t−1,

εt i.i.d., E[εt] = 0, E[ε2t ] = 1,

(where a is typically close to 0) can be approximated by a process

with variance

σ2
0,t = a0 + b σ2

0,t−1

or

σ2
0,t = a0 + (a + b) σ2

0,t−1.
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GARCH(1,1) vs. Random Walk (cont.)

If the initial values of the processes (Xa,t) and (X0,t) coincide, then

E[(Xa,t −X0,t)2] ≤ fct(parameters),

and

E[(
n+h∑

t=n+1

Xa,t −
n+h∑

t=n+1

X0,t)2] ≤ fct(parameters).

These inequalities can be used to get bounds for (conditional and

unconditional) value-at-risk of GARCH(1,1) processes. Analogously,

value-at-risk estimates for AR(1)-GARCH(1,1) processes can be

obtained by approximating them with AR(1) processes.
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Stochastic Volatility Model with Jumps

An alternative to autoregressive types of models are stochastic

volatility models:

Xt = a σt Zt + b Jt εt,

σt = σφ
t−1 ec Yt,

εt, Zt, Yt
i.i.d.∼ N (0, 1),

Jt
i.i.d.∼ Bernoulli(λ)

(typical parameters:

λ = 0.01, a = 0.01, b = 0.05, c = 0.05, φ = 0.98)
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Stochastic Volatility Model: Volatility and Returns
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Scaling in the Stochastic Volatility Model
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Goodness of fit of the scaling rule, depending on different values of

λ (x axis).

The scaled 1-day VaR underestimates the 10-day VaR for small

values of λ. For λ > 0.04, this changes to an overestimation.
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C. One-Year Risks

Problems when modelling yearly data:

• Non-stationarity of data sets.

• Lack of yearly returns.

• Properties of yearly data are different from those of daily data.
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How to Estimate Yearly Risks

• Fix a horizon h < 1 year, for which data can be modelled.

• Use a scaling rule for the gap between h and 1 year.

 

 

suitable model

scaling rule

today h days 1 year
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Models

• Random Walks

• Autoregressive Processes

• GARCH(1,1) Processes

• Heavy-tailed Distributions
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Random Walk

Financial log-data (st)t∈hN can be modelled as a randow walk

process with constant trend and normal innovations:

st = st−h + Xt, Xt
i.i.d.∼ N (µ, σ2) for t ∈ hN.

The square-root-of-time rule (accounting for the trend) can be used

to scale h-day risks to 1-year risks.
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Autoregressive Processes

For an AR(p) model with trend and normal innovations,

st =
p∑

i=1

ai st−ih + εt for t ∈ hN,

(εt ∼ N (µ0 + µ1 t, σ2), independent)

the 1-year value-at-risk and expected shortfall can be calculated as a

function of the parameters µ1, σ and ai, and the current and past

values of (st).
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Generalized Autoregressive Conditional
Heteroskedastic Processes

Assuming a GARCH(1,1) process with Student-t distributed

innovations for h-day log-returns,

Xt = µ + σt εt for t ∈ hN,

σ2
t = α0 + α1(Xt−h − µ)2 + β1σ

2
t−h,

where εt
i.i.d.∼ tν, E[εt] = 0, E[ε2t ] = 1,

1-year log-returns follow a so-called weak GARCH(1,1) process. The

corresponding VaR and ES can be calculated as a function of the

above parameters and the current and past values of (Xt).
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Heavy-tailed Distributions

h-day log-returns (Xt)t∈hN are said to have a heavy-tailed

distribution, if

P [Xt < −x] = x−αL(x) as x →∞,

where α ∈ R+ and L is a slowly varying function,

i.e. limx→∞
L(sx)
L(x) = 1 for all s > 0.

Also in this case, 1-year VaR and ES can be estimated based on the

parameter α and on the observed data.
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Backtesting

The suitability of these models for estimating one-year financial risks

can be assessed by comparing estimated value-at-risk and expected

shortfall with observed return data for

• stock indices,

• foreign exchange rates,

• 10-year government bonds,

• single stocks.
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Conclusions for 1-Year Forecasts

• The random walk model performs in general better than the other

models under investigation. It provides satisfactory results across

all classes of data and for both confidence levels investigated (95%,

99%). However, like all the other models under investigation, the

risk estimates for single stocks are not as good as those for foreign

exchange rates, stock indices, and 10-year bonds.

• The optimal calibration horizon is about one month. Based on

these data, the square-root-of-time rule (accounting for trends) can

be applied for estimating one-year risks.
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Confidence Intervals for a Random Walk
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D. Conclusions

• The square-root-of-time scaling rule performs very well to scale

risks from a short horizon (1 day) to a longer one (10 days, 1 year).

• The reasons for this good performance are non-trivial. Each

situation has to be investigated separately. The square-root-of-

time rule should not be applied before checking its appropriateness.

• In the limit, as α → 1, scaling a short-term VaRα to a long-term

risk using the square-root-of-time rule is for most situations not

appropriate any more.
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Further Work

• An interesting subject for further research is to find the limits,

where the square-root-of-time rule fails. For example changing

one single parameter in a model can have a strong effect on the

appropriateness of this scaling rule.

• Linked to this topic is the model-dependent question, why the

square-root-of-time rule performs well (or not so well) in a certain

situation.

• An interesting generalisation of this work would be the investigation

of multivariate models.
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