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A. Basel Il

Amendment to the Capital Accord to Incorporate Market Risks
(Basle Committee on Banking Supervision, 1996):

e “In calculating the value-at-risk, a 99th percentile, one-tailed
confidence interval is to be used.”

e “In calculating wvalue-at-risk, an instantaneous price shock
equivalent to a 10 day movement in prices is to be used.”

e "Banks may use value-at-risk numbers calculated according to

shorter holding periods scaled up to ten days by the square root of
time.”
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Basel Il (cont.)

e Market risk: 10-day value-at-risk, 99%
Standard: 1-day value-at-risk, 95%

e Insurance: 1-year value-at-risk, 99%

1-year expected shortfall, 99%
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Value-at-Risk and Expected Shortfall

e Primary risk measure: Value-at-Risk defined as
VaR,(X) = F_x(p),
i.e. the pth quantile of F_x. (X denotes the profit, —X the loss.)
e Alternative risk measure: Expected shortfall defined as
ES,(X)=E (-X | X < —VaR,) ;

i.e. the average loss when VaR is exceeded. S,(X) gives
information about frequency and size of large losses.
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Losses and Profits

Loss Distribution
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B. Scaling

Question 1: How to get a 10-day VaR (or 1-year VaR)?

Solution in the praxis: scale the 1-day VaR by v/10 (or v/250).

Question 2: How good is scaling?

— Model dependent!
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Scaling under Normality

Under the assumption
X; " N(0,02),

n-day log-returns are normally distributed as well:
Z Xz ~ N(O, TLO'2).
i=1

For a N(0,5%)-distributed profit X, VaR,(X) = & x,, where z,
denotes the p-Quantile of a standard normal distribution. Hence

VaR™ = /n VaRY.
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Accounting for Trends

When adding a constant trend p,
X i‘i;Jd. N(M? 0-2)7

n-day log-returns are still normally distributed:

Z X; ~ N(np,no?).
i=1

Hence
VaR™ + np = v/n (VaRW + 1),
l.e.
VaR™ = /n VaRW — (n — v/n)p.
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Autoregressive Models

For an autoregressive model of order 1,

Xt = )\Xt—l —+ €¢, €t i.k/d. N(O, 0'2),

1-day and n-day log-returns are normally distributed:

and

1=1
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Scaling for AR(1) Models

For an AR(1) model with normal innovations,

1 — \?

VaR"™ 14 A L= A"
var® 1= \" " |

For small values of ), \/ﬁVaR(l) is a good approximation of VaR™.
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Non-Normal Innovations

Question: |s scaling with /n still appropriate if innovations are
non-normal?

Example: random walk, X; L ts

— (1
Based on 250 log-returns, how good is /10 - VaRég)% as an

estimate for the 10-day 99% VaR?

—— (1

(VaRgg)% denotes the one-day 99% VaR estimate.)
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Non-Normal Innovations (cont.)

random walk, t8
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Scaling is still good, but other methods like random resampling
perform slightly better.
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AR(1)-GARCH(1,1) Processes

A more complex process, often used for practical applications, is
the GARCH(1,1) process (A = 0) and its generalization, the
AR(1)-GARCH(1,1) process:

Xi= AXi_1 + 06,
O'tz: ao —|— CL(Xt_l — )\Xt_g)z —I— bO'tQ_l,
e i.i.d., Ele] =0, Ele?] = 1.

typical parameters: A = U.U4, ag = o - 1U -, a = U.Uo, b = U.
(typical A= 0.04 3-107° 0.05, b = 0.92)
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Scaling for AR(1)-GARCH(1,1) Processes
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Goodness of fit of the scaling rule, depending on different values of
A (x axis) for different distributions of the innovations ¢;.

For typical parameters (A = 0.04, ¢; ~ tg), the fit is almost perfect.
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GARCH(1,1) vs. Random Walk

A GARCH(1,1) process

Xa,t — Oq,t€t,
2 2 2
Oq,t = A0 + G’Xa,t—l + bO_a,t—l?

& i.id., Ele] =0, Elef] =1,

(where a is typically close to 0) can be approximated by a process

with variance

2 2
00t =00+ bog, 4
or

‘7(2),t = ag + (a +b) ‘7(2),t—1-
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GARCH(1,1) vs. Random Walk (cont.)

If the initial values of the processes (X, ;) and (X¢) coincide, then

E( X4 — Xo,t)Q] < fct(parameters),

and
n—+h n+h
E|( Z Xat — Z Xo.¢)%] < fct(parameters).
t=n+1 t=n+1

These inequalities can be used to get bounds for (conditional and
unconditional) value-at-risk of GARCH(1,1) processes. Analogously,
value-at-risk estimates for AR(1)-GARCH(1,1) processes can be
obtained by approximating them with AR(1) processes.
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Stochastic Volatility Model with Jumps

An alternative to autoregressive types of models are stochastic
volatility models:

Xt:a,UtZt+th€t,

¢

_ cYy

€t, Zt7 }/t i.kd. N(07 1)7

Iy R Bernoulli(\)

(typical parameters:
A =0.01, a =0.01, b =0.05, ¢ = 0.05, ¢ = 0.98)
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Stochastic Volatility Model: Volatility and Returns
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Scaling in the Stochastic Volatility Model
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Goodness of fit of the scaling rule, depending on different values of
A (x axis).

The scaled 1-day VaR underestimates the 10-day VaR for small
values of A\. For A > 0.04, this changes to an overestimation.
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C. One-Year Risks

Problems when modelling yearly data:

e Non-stationarity of data sets.

e Lack of yearly returns.

e Properties of yearly data are different from those of daily data.
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How to Estimate Yearly Risks

e Fix a horizon h < 1 year, for which data can be modelled.

e Use a scaling rule for the gap between h and 1 year.

scaling rule

suitable model

[
today h days 1 year
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e Random Walks
e Autoregressive Processes
e GARCH(1,1) Processes

e Heavy-tailed Distributions
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Random Walk

Financial log-data (s;):cny can be modelled as a randow walk
process with constant trend and normal innovations:

St = St_p T Xt, X i'i@d. (,LL, 0'2) for t € hN.

The square-root-of-time rule (accounting for the trend) can be used
to scale h-day risks to 1-year risks.
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Autoregressive Processes

For an AR(p) model with trend and normal innovations,
p
St — Zai St_ih T €t for t € hN,
i=1
(€, ~ N (o + p1 t,0%), independent)

the 1-year value-at-risk and expected shortfall can be calculated as a
function of the parameters 111, 0 and a;, and the current and past
values of (s).
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Generalized Autoregressive Conditional
Heteroskedastic Processes

Assuming a GARCH(1,1) process with Student-t distributed
innovations for h-day log-returns,

Xt:,u—l—O'th fOI‘tEhN,

O't2 = g + Oél(Xt—h — M)Q =+ 510?4”

where ¢, "X t,, Ele,] =0, Elef] = 1,

1-year log-returns follow a so-called weak GARCH(1,1) process. The
corresponding VaR and ES can be calculated as a function of the
above parameters and the current and past values of (X;).
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Heavy-tailed Distributions

h-day log-returns (X;);cnn are said to have a heavy-tailed
distribution, if

Pl X; < —x|=2"“L(z) asx — o0,

where o« € R and L is a slowly varying function,

e, lim, o I]’.J(ég) =1 for all s > 0.

Also in this case, 1-year VaR and ES can be estimated based on the

parameter « and on the observed data.
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Backtesting

The suitability of these models for estimating one-year financial risks
can be assessed by comparing estimated value-at-risk and expected
shortfall with observed return data for

e stock indices,
e foreign exchange rates,
e 10-year government bonds,

e single stocks.
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Conclusions for 1-Year Forecasts

e The random walk model performs in general better than the other
models under investigation. It provides satisfactory results across
all classes of data and for both confidence levels investigated (95%,
99%). However, like all the other models under investigation, the
risk estimates for single stocks are not as good as those for foreign
exchange rates, stock indices, and 10-year bonds.

e The optimal calibration horizon is about one month. Based on
these data, the square-root-of-time rule (accounting for trends) can
be applied for estimating one-year risks.
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Confidence Intervals for a Random Walk
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Point estimates and 95% confidence intervals for one-year
99% expected shortfall and 99% value-at-risk (percentage loss) for a
simulated random walk with normal innovations.
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D. Conclusions

e The square-root-of-time scaling rule performs very well to scale
risks from a short horizon (1 day) to a longer one (10 days, 1 year).

e The reasons for this good performance are non-trivial. Each
situation has to be investigated separately. The square-root-of-
time rule should not be applied before checking its appropriateness.

e In the limit, as a« — 1, scaling a short-term VaR, to a long-term
risk using the square-root-of-time rule is for most situations not
appropriate any more.
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Further Work

e An interesting subject for further research is to find the limits,
where the square-root-of-time rule fails. For example changing
one single parameter in a model can have a strong effect on the
appropriateness of this scaling rule.

e Linked to this topic is the model-dependent question, why the
square-root-of-time rule performs well (or not so well) in a certain
situation.

e An interesting generalisation of this work would be the investigation
of multivariate models.
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