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Abstract

This paper compares the shape of the level sets for two multivariate densities. The densities are

positive and continuous, and have the same dependence structure. The density f is heavy-tailed. It

decreases at the same rate – up to a positive constant – along all rays. The level sets {f > c} for

c ↓ 0 have a limit shape, a bounded convex set. We transform each of the coordinates to obtain a new

density g with Gaussian marginals. We shall also consider densities g with Laplace, or symmetric

Weibull marginal densities. It will be shown that the level sets of the new light-tailed density g

also have a limit shape, a bounded star-shaped set. The boundary of this set may be written down

explicitly as the solution of a simple equation depending on two positive parameters. The limit

shape is of interest in the study of extremes and in risk theory since it determines how the maximal

observations in different directions relate. Although the densities f and g have the same copula – by

construction –, the shapes of the level sets are not related. Knowledge about the limit shape of the

level sets for one density does not give any information about the limit shape for the other density.

Key words: Meta distribution, sample clouds, level sets, limit shape, multivariate extremes, densities

with cubic level sets, power norming, copula.

Introduction

0.1 Dependence and the shape of sample clouds

For bivariate distributions the dependence structure is a rather complex issue. In a Gaussian world

dependence may be specified by a single number, the correlation. As one moves from independence to

comonotonicity the elliptic level sets of the density change shape, the circle changes into an ellipse which

clings more and more closely to the diagonal. The correlation moves from zero to one.

For an elliptic Gaussian density the components of the maximum of a large number of independent

observations will be asymptotically independent, however close the correlation is to one. Properly nor-

malized, the partial maxima converge in distribution to a vector with independent Gumbel marginals.
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Under the assumption of joint normality joint occurrence of extreme events is highly unlikely, whereas

reality may point to the contrary. The latter property is one of the major weaknesses of the Gaussian

copula model (as championed by [16]) within the framework of CDO pricing. It may have contributed,

though perhaps in a minor way, to the current credit crisis.

In the present paper, we consider meta distributions. These distributions allow us to model stronger

forms of tail dependence while maintaining the desired Gaussian marginals. Let us illustrate this with

an example.

Spherical Student t densities look somewhat like standard Gaussian densities, but the components

of the coordinatewise maxima exhibit positive dependence. This dependence carries through to the

max-stable limit vector. The marginal densities have heavier tails. A suitable increasing non-linear

transformation will turn a random variable with a standard Gaussian density into a random variable

with a standard Student t distribution with given parameter λ. The inverse transformation will map a

sample from the Student t distribution into a standard Gaussian sample, moving in the far out sample

points. If one applies this inverse transformation to each of the components of a vector from an elliptic

Student t distribution with standard marginals one obtains a random vector with standard Gaussian

components. The distribution of this new vector is not Gaussian. The marginals are Gaussian but the

vector retains the dependence structure of the original heavy-tailed t distribution, also for the maxima.

The new multivariate distribution is known as the meta distribution with standard Gaussian marginals

based on the original elliptic t distribution. In more technical terms the meta distribution and the original

distribution have the same copula.

As a parametric stationary model, meta distributions have been used in a wide range of applications,

especially in the financial and actuarial literature (see [10]), but also in reliability theory (see [2]) and

medical applications (see [13], [5]). The copula-based construction of multivariate distributions allows

one to model marginal components and the dependence structure separately. This two-stage approach

is perceived as an advantage in situations when only limited information on the interdependence of the

marginal components is available. For a view on this, see [6]. The latter paper contains what is referred

to as the ”must-reads” on copulas, together with some references to papers more critical of this two-stage

modelling approach. For more examples of meta distributions as well as references to areas of application

of these models the reader is referred to [7].

The present paper addresses an important aspect of multivariate distributions - the limit shape of the

sample clouds. Formally, a sample cloud is a random sample from a given distribution, a point process

with a fixed number of points. If the scaled sample clouds converge onto a set, the boundary of this

limit set will link the behaviour of extremal observations in different directions. Convergence of random

samples and characterization of the shape of the limit set have been considered in [4] and [15].

In order to highlight the main notions of the paper, let us compare the behaviour of sample clouds
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Figure 1: Bivariate sample clouds of 10, 000 points from (a) the standard normal distribution, (b) centered

Cauchy distribution whose density has level sets shaped like the ellipse 5x2 +6xy+5y2 = 1, (c) the meta-

Cauchy distribution with standard normal marginals and the original distribution as in (b).

from a multivariate Student t distribution and a Gaussian distribution. In both cases the sample clouds

may be scaled to converge. Their asymptotic behaviour is different. The scaled sample clouds from the

t distribution converge in law to a Poisson point process with a simple continuous intensity:

h(w) = η(ω)/rλ+d r = ‖w‖2 > 0, ω = w/r. (0.1)

The function η on the unit sphere is continuous and positive. Here it ensures that h has elliptic level sets

of the same shape as the level sets of the t density. The parameter λ denotes the degrees of freedom of

the t distribution; d is the dimension of the underlying space. The scaled sample clouds from a standard

Gaussian distribution on R
d have a fairly sharp boundary, because of the thin tails. They converge to a

black ball. For the meta distribution with Gaussian marginals based on the elliptic Student t distribution

the scaled sample clouds will also converge, but the limit shape is different. Fig. 1 shows bivariate sample

clouds of ten thousand points for these three situations.

If one wants to step out of the Gaussian world, and use distributions with Gaussian marginals but

a non-Gaussian dependence structure, the procedure above may be applied. One hunts around for a

multivariate distribution whose dependence has the desired structure, and then transforms the marginals

so as to obtain a meta distribution with standard Gaussian marginals and the dependence structure

(copula) of the original distribution.

In this paper we assume that the marginals of the meta distribution all are equal to a given continuous

positive symmetric light-tailed density gd, standard Gaussian or Laplace. More generally one may assume

gd(s) ∼ asbe−ps
θ

s→ ∞, a, p, θ > 0. (0.2)

The original distribution has a continuous heavy-tailed density. This may be a multivariate Student t

density with elliptic or cubic level sets (for information on l p-norm spherical distributions an interested
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reader may consult [12]), or more generally a continuous positive density f whose tail behaviour is

described by a continuous positive function h as in (0.1). Such tail behaviour implies that the shape of

the level sets of f converges to the shape of the level sets of h.

The meta distribution has a continuous positive density g. The shape of the level sets of g depends

on the level. We shall prove that the shape converges as the level goes to zero. Because of the light tails

of the marginal density gd in (0.2), the sample clouds from the meta distribution will also have this limit

shape. The limit shape is non-convex, star-shaped, with continuous boundary, and highly symmetric.

Fig. 3 and 4 show some examples in dimension d = 2 and 3. We shall derive a simple explicit expression

for the boundary; see Theorems 2.4, 2.9 and equation (2.12).

Let us say a few words on the relation to multivariate extreme value theory. Our conditions ensure

that sample clouds from the heavy-tailed density f , properly scaled, converge to a Poisson point process

with intensity h. It follows that the coordinatewise maxima converge. Since the light-tailed density gd

lies in the domain of the Gumbel distribution for maxima, the coordinatewise maxima from the meta

density also converge, by Galambos’ theorem (see [9]). The limit distribution has the same dependence

structure as the heavy-tailed max-stable limit distribution for f . Not only the coordinatewise maxima

from the density g converge, but also the sample clouds from this density (with the same normalization).

The limit is a Poisson point process on R
d with a continuous strictly positive intensity. The intensity is

related to the intensity h in (0.1). The Poisson point process describes the edge of the sample cloud when

zooming in on the positive vertex of the black limit set associated with the meta density. The structure

of the edge of this limit set will be the subject of another paper. It is a second order phenomenon.

0.2 Structure and results

The body of the paper consists of three sections and an appendix. The first section introduces the

meta transformation, contains definitions, formulates precise conditions on the heavy-tailed density f

and the light-tailed marginal gd, and investigates the behaviour of the meta transformation, and the

effect on the meta density when changing the original density into a density which is asymptotic to it.

The second section contains our main results. Here we determine the asymptotic form of the level sets of

the meta density, and the asymptotic shape of the sample clouds from the meta distribution. The third

section discusses domains of the limit shape, and shows how sensitive this shape is to perturbations of

the original distribution. Section 4 presents our conclusions. The appendix contains technical results on

regular variation, on von Mises functions, and on densities with cubic level sets.

The meta transformation is a continuous coordinatewise transformation K linking the original distri-

bution function (df) F to the meta df G = F ◦K. We assume that F has a density f and give conditions

under which the meta df G has a density. If f is positive and continuous and vanishes in infinity, and if

the marginal densities gi are continuous and positive on R then the meta density g will be continuous and
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positive. If the density f̃ is asymptotic to f and has the same marginals as f the meta transformations

K and K̃ coincide and the meta densities g and g̃ will be asymptotic. After these general remarks we

formulate the standard assumptions on the original density f and the marginal density gd which will hold

in the remainder of the paper.

The sample clouds from the meta density, properly scaled, converge almost surely. The limit set is the

level set of a continuous function which is obtained from the meta density by scaling and power norming.

Under the standard assumptions the limit set exists. It is a compact set. It is highly symmetric. It

is invariant under permutations of the coordinates and under sign changes. The limit shape does not

depend on the shape of the convex level sets of the density f ; it is determined by two positive parameters.

These are λ, the parameter which governs the rate of decrease of the density f along rays, and θ, the

exponent in (0.2). The limit set is star-shaped. Its convex hull is a centered coordinate cube. Fig. 3a

shows that in dimension d = 2, for certain values of the parameters, the limit set has the form of a flower

with four symmetric petals.

The limit set does not change if we replace the density f by a density which is weakly asymptotic to

f . However, the shape may change radically if one deletes the density on thin sectors along the axes.

One may construct continuous densities f̃ with the same marginals as f such that the scaled sample

clouds from f and f̃ converge to the same limiting Poisson point process. But the limit set for sample

clouds from the meta density g̃ is a cube, or, alternatively, a cross consisting of the 2d intervals linking

the origin to the vertices of the cube. These results are surprising since the meta densities g and g̃ have

the same multivariate extreme value limits. The limit shape of the sample clouds is of interest to risk

analysis. However it is not clear how the shape relates to the asymptotic dependence in the underlying

distribution. In Section 3.3 we shall discuss these issues in more detail.

1 The meta transformation

Altering the marginals of a multivariate df does not change the dependence structure of the underlying

random vector. Starting with a random vector Z with continuous df F on R
d we alter the marginals to

obtain a new df G with marginals Gi. We assume that the marginals Gi are continuous on R and strictly

increasing on the interval Ii = {0 < Gi < 1}. Typically the marginals of G are equal and Gaussian with

Ii = R, exponential with Ii = (0,∞), or uniform with Ii = (0, 1). These examples are motivated by

models used in finance; see for instance [8] for the first and [16] for the second.

One may think of the theory developed here as an alternative to copulas. Gaussian marginals have the

advantage that there exists a standard finite-dimensional class of multivariate Gaussian densities with

standard normal marginals. Meta densities may be compared to these multivariate Gaussian densities.

For sample clouds, it is more intuitive to assume that the distributions have unbounded support, and to



1 THE META TRANSFORMATION 6

look at points far out, if one is interested in extremes. In the chapter on copulas in Joe [14] the figures

depict bivariate meta densities with Gaussian (rather than uniform) marginals.

Let X denote the vector with df G. The vector X lives on the open block I = I1 × · · · × Id. There is

a coordinatewise map K : I → R
d of the form

z = (z1, . . . , zd) = (K1(x1), . . . ,Kd(xd)) = K(x) x = (x1, . . . , xd) ∈ I,

which allows us to write the original vector in terms of the new vector: Z
d
= K(X), where

d
= denotes

equality in distribution. This equality yields the basic relation:

G = F ◦K Ki = F−1
i ◦Gi i = 1, . . . , d. (1.1)

The df F is assumed to be continuous. That is equivalent to continuity of the d marginals Fi. It does

not ensure continuity of the meta transformation. We choose the marginals Ki to be left continuous so

as to agree with the convention that inverse dfs F−1
i are left continuous, see [18], page 3. For continuity

of K, one needs the extra condition that the d marginal dfs Fi are strictly increasing on the interval

{0 < Fi < 1}, see (1.1) above. This extra condition will be fulfilled if F has a density which is positive

on R
d except perhaps on a set of finite Lebesgue measure. The inverse transformation K−1 is continuous

without this extra condition. Because of formula (1.1) we prefer to work with K. Distributions with

discontinuous marginals occur in practice, but the theory of the associated copulas is more complicated;

see [11].

1.1 Definitions, Assumptions and Notation

A meta distribution is constructed by imposing the given marginals G1, . . . , Gd onto the original df.

Definition 1. Let G1, . . . , Gd be continuous dfs on R which are strictly increasing on the intervals

Ii = {0 < Gi < 1}. Consider a random vector Z in R
d with df F and continuous marginals Fi,

i = 1, . . . , d. Define the transformation

K(x1, . . . , xd) = (K1(x1), . . . ,Kd(xd)), Ki(s) = F−1
i (Gi(s)) i = 1, . . . , d. (1.2)

The df G in (1.1) is the meta distribution (with marginals Gi) based on the original df F . The random

vector X is said to be a meta vector for Z (with marginals Gi) if

Z
d
= K(X). (1.3)

The coordinatewise map K = K1 ⊗ · · · ⊗Kd which maps x = (x1, . . . , xd) ∈ I = I1 × · · · × Id into the

vector z = (K1(x1), . . . ,Kd(xd)) is called the meta transformation. ♦

A meta transformation is basically a simple object. It is a vector of univariate increasing functions,

each determined by two dfs on R. The relations (1.1) and (1.3) are equivalent.
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If Z has a density and we choose the meta distribution to have marginal densities, then X will have

a density.

Proposition 1.1. If the original vector has a density f , and if the marginals of the meta distribution

have densities gi, then the meta distribution has a density g. This density has the form:

g(x) = f(K(x))
∏

i

gi(xi)

fi(zi)
zi = Ki(xi), xi ∈ Ii = {0 < Gi < 1}. (1.4)

The density g vanishes outside the block I = I1 × · · · × Id.

Proof The formula (1.4) holds trivially in the univariate case. Let ϕ ≥ 0 be a Borel function on R
d, and

set ψ = ϕ ◦K. Then Eψ(Z) = Eϕ(X) by (1.3). Set P (x) =
∏

i gi(xi)/fi(Ki(xi)). This product is finite

almost everywhere on I since fi is positive almost everywhere on Ki(Ii). The relation

∫

h(z)dz =

∫

h(K(x))P (x)dx

holds for all Borel functions h ≥ 0 since it holds for functions of the form h(x) = h1(x1) · · ·hd(xd) by

Fubini. Let g(x) = f(K(x))P (x). With h = ψf we find:

Eϕ(X) = Eψ(Z) =

∫

ψ(z)f(z)dz =

∫

ψ(K(x))f(K(x))P (x)dx =

∫

ϕ(x)g(x)dx

by the identity ϕ = ψ ◦K. It follows that g = (f ◦K) · P is the density of X. ¶

One may write the equation (1.4) more symmetrically as an equality between two quotients:

qg(x) =
g(x)

g1(x1) · · · gd(xd)
=

f(z)

f1(z1) · · · fd(zd)
= qf (z) z = K(x). (1.5)

These quotients describe the dependence structure of the dfs F and G. Their transformation is simple.

If h denotes the density of the copula, then qh = h since the marginals are uniform on (0, 1). Hence

qf (z) = h(u) zi = F−1
i (ui), 0 < ui < 1, i = 1, . . . , d.

Corollary 1.2. Suppose the marginals gi of the meta density are continuous on Ii. Continuity of the

density g in (1.4) on the block with edges Ii holds if the quotient

qf (z) =
f(z)

f1(z1) · · · fd(zd)
(1.6)

is continuous on the block with edges Ji = {0 < Fi < 1}. Continuity of this quotient holds if the marginals

fi are continuous and positive on Ji, and f is continuous on the block. (But also if the components Zi

are independent, and qf ≡ 1.)

The meta density g in (1.4) is the product of two factors. The first factor f ◦K is the function f in the

new coordinates x, obtained by substituting zi = Ki(xi). The second factor is the Jacobian determinant

of the meta transformation. It is a product of univariate functions.
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Figure 2: Level sets of (a) the density f of the bivariate spherical Student t distribution with λ = 1

degree of freedom, (b) the function f ◦K where the meta transformation K transforms the t marginals

to standard normal marginals, and (c) the meta density g. The levels are given as powers of 10.

Since K is defined coordinatewise, it transforms coordinate rectangles into coordinate rectangles. In

this paper the dfs Fi will have heavy tails, and the dfs Gi will have light tails. If successive rectangles in

z-space increase by a factor two, then in x-space the increase is much slower, each new rectangle adding

a relatively thin border to the previous one. So large balls in z-space (Fig. 2a) will be transformed into

cubes with rounded edges in x-space (Fig. 2b). For a spherically symmetric unimodal density f , the level

sets of f ◦K will be these rounded cubes. However, for the density g we also have to take the Jacobian

into account. What does the function gi(xi)/fi(zi) look like? The coordinates xi and zi are linked:

1−Gi(xi) = 1−Fi(zi). So xi and zi are quantiles for the same probability. Let us express the density in

terms of the distribution tail. Suppose the marginal Gi is standard normal; then the density is heavier

than the tail: gi(s) ∼ s ·(1−Gi(s)), s→ ∞. Suppose the density fi varies regularly with exponent −λ−1

(see Definition 2); the density is lighter than the tail: fi(t) ∼ (λ/t) · (1 − Fi(t)), t→ ∞. So gi(xi)/fi(zi)

is asymptotic to xizi/λ with xi (and zi) tending to +∞. It will grow without bound. On the boundary

of a cube, the Jacobian will be maximal in the vertices. The contribution of this product far outweighs

the variation in the function f ◦K on the boundary of large cubes. For elliptically symmetric Student

densities f , the variation over the surface of a cube is bounded because of asymptotic scale invariance,

and is negligible compared to the contribution of the Jacobian. For a bivariate spherically symmetric

Student density f , the meta density g on the boundary of a large square [−t, t]2 will be larger in the

vertices than in the midpoints of the edges. See Fig. 2c. We conclude that for c > 0 sufficiently small the

level sets {g > c} will not be convex. The ridges along the 2d diagonal halflines, due to the product of the

quotients gi(xi)/fi(zi), have a non-negligible influence on the density g. One of the aims of our paper is

to make these qualitative remarks more precise. Fig. 6 shows how the shape of the bivariate meta density

on horizontal lines depends on the vertical coordinate. Fig. 3 in the next section shows what shapes the

level sets {g > c} may assume as c→ 0.
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1.2 Asymptotic properties of the marginals

For our exposition on the meta transformation it is useful to distinguish between the univariate behaviour,

to be treated in this subsection, and the multivariate behaviour, in the next subsection. For simplicity, for

the univariate behaviour we shall consider continuous dfs F0 and G0 on the halfline [0,∞) which vanish

in the origin. We assume that G0 is strictly increasing. Given explicit expressions for the asymptotic tail

behaviour of these two dfs one can write down equally explicit expressions for the asymptotic behaviour

of K0.

First suppose 1 − F0(t) ∼ c0/t
λ for some λ > 0 and c0 > 0, and

1 −G0(s) ∼ AsBe−ps
θ

s→ ∞, A, p, θ > 0.

Then K0 has a simple asymptotic form. The variables s and t = K0(s) satisfy 1− F0(t) = 1−G0(s). So

c0/t
λ ∼ AsBe−ps

θ ⇒ tλ ∼ (c0/A)s−Beps
θ

,

which gives, with τ = 1/λ, the explicit asymptotic equality

K0(s) = t ∼ (c0/A)τs−τBeτps
θ

s→ ∞. (1.7)

In general, the tail of G0 is asymptotic to a von Mises function:

1 −G0(s) ∼ e−ψ(s) s→ ∞, (1.8)

where ψ is a C2 function with a positive derivative such that

a′(s) → 0 s→ ∞, a(s) = 1/ψ′(s). (1.9)

The function a(s) is the scale function of 1 −G0, and

1 −G0(s+ va(s))

1 −G0(s)
→ e−v s→ ∞, v ∈ R (1.10)

weakly on R and hence uniformly on [c,∞) for all c ∈ R (see e.g. Section 1.1 in [18]).

We assume that the marginal tails of the original df vary regularly.

Definition 2. A measurable function h on (0,∞) varies regularly with exponent ρ (written h ∈ RVρ) if

for all x > 0,

h(tx)/h(t) → xρ t → ∞.

The df F0 has a tail which varies regularly with exponent −λ < 0. Hence

1 − F0(t) ∼ c0e
−λr(log t) t→ ∞, (1.11)

where r is a C2 function (see Sections 11.2 and 18.1 in [1]) such that

r′(t) → 1 r′′(t) → 0 t→ ∞. (1.12)
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The inverse function q = r−1 satisfies the same asymptotic relations as r. Hence

K0(s) = t ∼ cτ0e
ϕ(s) s→ ∞, ϕ(s) = τq(ψ(s)) ∼ τψ(s). (1.13)

Differentiation gives:

ϕ′(s) = τq′(ψ(s))ψ′(s) ∼ τ/a(s) (1/ϕ′)′(s) → 0 s→ ∞. (1.14)

Proposition 1.3. Suppose F0 and G0 are continuous dfs on [0,∞) which vanish in the origin. Assume

G0 is strictly increasing and the tail is asymptotic to a von Mises function as in (1.8) with scale function

a(s). Assume 1 − F0 varies regularly with exponent −λ < 0. Set K0 = F−1
0 (G0). Then 1/K0(s) is

asymptotic to a von Mises function with scale function λa(s), and

K0(s+ vλa(s))/K0(s) → ev v ∈ R s→ ∞. (1.15)

Proof The first statement follows from (1.13) and (1.14). The limit relation in the display holds as

in (1.10) since 1/K0 is asymptotic to a von Mises function with scale function λa(s). ¶

Corollary 1.4. Let F̃0 be a continuous df on [0,∞) which vanishes in the origin, and suppose 1− F̃0 is

asymptotic to 1 − F0 in ∞. Let G̃0 = G0 = F̃0(K̃0). Then the functions K̃0 and K0 are asymptotic in

∞. Write K0(s) = t = K̃0(s̃). Then s̃− s = o(a(s)) for s→ ∞.

Proof Asymptotic equality follows because F̃−1
0 and F−1

0 are asymptotic in one by regular variation.

The last relation follows from (1.15) by monotonicity of the functions K0 and K̃0. ¶

What do these results say about our multivariate dfs?

Suppose the df F0 on R is continuous, F0(−t)/(1 − F0(t)) → C ∈ (0,∞), and 1 − F0 ∈ RV−λ, λ > 0.

Also suppose the df G0 has a continuous positive symmetric density on R and 1 − G0 (or the density)

is asymptotic to a von Mises function with scale function a(s) for s → ∞. Then the results above hold

both for s → ∞ and for −s → ∞ since K0(s) = F−1
0 (G0(s)) = (1 − F0)

−1(1 −G0)(s). (If Fi(t) = Gi(s)

then 1 − Fi(t) = 1 −Gi(s).)

Now assume that F is a multivariate df with heavy-tailed marginals Fi which satisfy

Fi(−t) ∼ c−i e
−λr(log t) 1 − Fi(t) ∼ c+i e

−λr(log t) t→ ∞, (1.16)

where r is a C2 function which satisfies (1.12). The 2d constants c±i are positive. So the 2d marginal

tails all vary regularly with the same exponent −λ < 0, and they are also balanced in the sense that they

decrease at the same rate. The tails are asymptotic to constant multiples of each other. The condition

will hold if the sample clouds from the distribution can be scaled by positive scalars to converge to a

Poisson point process on R
d \ {0} with intensity h in (0.1). See Sections 16 and 17 in [1]. Assume the

marginals of the meta df G are equal to the univariate df G0 above. Under these conditions the 2d

functions −Ki(−s) and Ki(s), i = 1, . . . , d, are asymptotic to (c±i )τeϕ(s) for s→ ∞ as in (1.13).
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1.3 Asymptotic behaviour of the multivariate functions

We assume that F is a multivariate df with continuous marginals F1, . . . , Fd, and that the univariate dfs

G1, . . . , Gd are continuous and strictly increasing on R. We assume that the tails of the marginals of F

vary regularly with negative exponents.

Proposition 1.5. Suppose the assumptions above hold. Let F̃ have continuous marginals whose tails are

asymptotic to those of the marginals of F . Then the meta transformations satisfy

‖K̃(x) −K(x)‖
1 + ‖K(x)‖ → 0 ‖x‖ → ∞. (1.17)

If the marginals Fi and F̃i are strictly increasing then the transformations K and K̃ are homeomorphisms

of R
d onto itself, and the quotient above is continuous and bounded.

Proof The functions F−1
i vary regularly in zero and in one. By regular variation F̃−1

i is asymptotic to

F−1
i in zero and one, and K̃i and Ki are asymptotic in ±∞ by (1.2). Hence |K̃i(xi)−Ki(xi)|/‖K(x)‖ → 0

for ‖x‖ → ∞, whether xi is bounded or not. This establishes (1.17). Adding one in the denominator in

(1.17) ensures continuity of the quotient. ¶

Now assume F and F̃ have continuous densities f and f̃ on R
d. Consider the corresponding meta

densities g and g̃ with all marginals equal to a given continuous positive symmetric density gd. We want

to formulate conditions which ensure that:

• g̃(x) ∼ g(x) for ‖x‖ → ∞;

• g̃(x) ∼ g(x) for ‖x‖ → ∞ and mini |xi| → ∞;

• g̃(x) � g(x) for ‖x‖ → ∞.

Recall that one writes h̃(x) � h(x) for ‖x‖ → ∞ if h̃ and h are positive eventually, and both h̃(x)/h(x)

and h(x)/h̃(x) are bounded outside a compact set; we refer to this type of asymptotic equivalence as

weak. If the densities f and f̃ are positive and continuous, and agree outside a bounded set, and if the

marginal densities agree, f̃i ≡ fi, for i = 1, . . . , d, then K̃i ≡ Ki, and the meta densities g̃ and g agree

outside a bounded set. If the marginals do not agree, then, even if the density f vanishes in infinity, the

quotient g̃/g need not be bounded, unless f is uniformly continuous. We now first look at the case where

the densities f̃ and f are asymptotically equal: f̃(z)/f(z) → 1 for ‖z‖ → ∞.

Proposition 1.6. Suppose the densities f and f̃ are continuous and positive outside a bounded set in

R
d, and asymptotic. Suppose the density f satisfies

f(zn + pn)/f(zn) → 1 ‖zn‖ → ∞, ‖pn‖/‖zn‖ → 0. (1.18)
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Let the marginal tails Fi(−t) and 1 − Fi(t) vary regularly with negative exponent for t → ∞. Then this

also holds for the densities. The marginal densities fi and f̃i are continuous. The multivariate meta

densities g̃(x) and g(x) are continuous and satisfy

g(x)/g̃(x) → 1 min
i

|xi| → ∞. (1.19)

There exists a constant C > 1 such that e−C < g̃(x)/g(x) < eC for ‖x‖ > C.

Proof Asymptotic equality of the densities f and f̃ implies asymptotic equality of their marginals by

integration. The extra condition (1.18) on f also holds for f̃ and ensures that the marginal densities are

continuous. Continuity of the meta densities g and g̃ follows by Proposition 1.1, and its corollary. The

marginal densities also satisfy the condition fi(tn + rn)/fi(tn) → 1 for |tn| → ∞ and rn/|tn| → 0. By

Lemma A.1 the tails of the marginal densities vary regularly. The asymptotic equality K̃i ∼ Ki in ±∞
established in the proof of Proposition 1.5 implies that the functions gi(s)/fi(Ki(s)) and gi(s)/f̃i(K̃i(s))

are asymptotic for s → ±∞. Condition (1.18) ensures that f̃(K̃(x)) ∼ f(K(x)) for ‖x‖ → ∞ by (1.17).

Relation (1.19) follows. The last line follows from the next result. ¶

Proposition 1.7. Suppose the densities f and f̃ are continuous on R
d and positive outside a bounded set,

and f̃(z) � f(z) for ‖z‖ → ∞. Also assume that f(zn + pn) � f(zn) if ‖zn‖ → ∞ and ‖pn‖/‖zn‖ → 0.

Let the marginal densities fi and f̃i be continuous. If the marginal tails Fi(−t) and 1−Fi(t) vary regularly

with negative exponent, and are asymptotic to the corresponding tails of the marginals of F̃ , then the meta

densities g̃(x) and g(x) satisfy

g̃(x) � g(x) ‖x‖ → ∞.

Proof Regular variation and asymptotic equality of the tails of the distribution imply that the func-

tions K̃i and Ki are asymptotic in ±∞. Hence f̃(K̃(x)) � f(K(x)) by the arguments of the pre-

vious proposition, and similarly for the univariate functions gi(s)/fi(Ki(s)) and gi(s)/f̃i(K̃i(s)) since

f̃i(K̃i(xi)) � fi(Ki(xi)) in ±∞, and these functions are continuous and positive. ¶

2 The limit set

2.1 The standard set-up

Let us first introduce the multivariate heavy-tailed densities f .

Densities with level sets all of the same shape are easy to work with. Let D be a bounded convex

open set which contains the origin. There is a unique function nD, the gauge function of D, with the

properties

{nD < 1} = D nD(rz) = rnD(z) r > 0, z ∈ R
d. (2.1)
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For any continuous strictly decreasing positive function f0 on [0,∞), the function f : z 7→ f0(nD(z)) is

unimodal with convex level sets all of the same shape. Assume f is a probability density. If the set D is

symmetric, −D = D, then nD is a norm, and the marginals f1, . . . , fd are symmetric.

For densities f = f0 ◦ nD there is a nice partial integration result:

P{Z ∈ tD} = f0(t)|tD| +
∫ t

0

|sD||df0(s)| =

∫ t

0

f0(s)d|sD|.

The middle term is a limit of sums for horizontal slices; the right hand term is a limit for rings. Since

|sD| = sd|D| one finds

P{Z 6∈ tD} = 1 − P{Z ∈ tD} = d|D|
∫ ∞

t

sd−1f0(s)ds. (2.2)

If f0 varies regularly with exponent −(λ + d) < −d then f is integrable, the marginal densities vary

regularly with exponent −(λ + 1) and the slowly varying functions tλ+df0(t) and tλ+1fi(t), i = 1, . . . , d

are asymptotic up to a constant factor. The remarks above remain valid if we assume asymptotic equality,

f(z) ∼ f0(nD(z)) for ‖z‖ → ∞, and if D is a bounded open star-shaped set with continuous boundary:

there exists a continuous positive function rD on the unit sphere ∂B such that

D = {rζ | ζ ∈ ∂B, 0 ≤ r < rD(ζ)}. (2.3)

As a matter of convenience we shall assume that f is positive.

Definition 3. In the standard set-up, f is a positive continuous density, asymptotic to f0(nD(z)) for

‖z‖ → ∞, with f0 continuous, strictly decreasing and regularly varying with exponent −(λ+ d) for some

positive λ, and with D a bounded open set containing the origin, star-shaped and with a continuous

boundary. The meta density g has equal marginals gd, where the density gd is continuous, positive,

symmetric, and asymptotic to a von Mises function e−ψ with scale function a = 1/ψ′ whose derivative

vanishes in infinity. ♦

The von Mises condition (1.9) ensures that

gd(s+ va(s))/gd(s) → e−v uniformly in v ∈ [c,∞) s→ ∞, c ∈ R.

The distribution tail 1 − Gd satisfies the same limit relation for the same scale function. It is known

that a df H0 lies in the domain of attraction of the Gumbel distribution for maxima if and only if it is

asymptotic to a df G0 with a continuous density g0 which is asymptotic to a von Mises function e−ψ. See

e.g. Proposition 1.4 in [18].

In order to have a limit shape we need to impose an extra condition on the marginal density gd:

The function ψ above varies regularly in infinity with exponent θ > 0. (2.4)
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The distribution tail then satisfies a similar condition since 1 − Gd(s) ∼ a(s)gd(s) for s → ∞ and

| log a(s)| = o(ψ(s)), see Proposition A.2. The weaker assumption is a basic condition on the marginal

distributions in [4], but it is dropped in [15]; see also Cor. 9.16 in [1].

This condition is satisfied by the normal density, the Laplace density, and by densities gd of the

form (0.2). The distribution tail 1 − Gd then also has this form. It is asymptotic to AsBe−ps
θ

with

a = pθA and b = B + θ − 1.

If we assume (2.4) then the meta density g in the standard set-up has level sets which may be scaled

to converge to a limit set, as will be shown below. The shape of the limit set E depends only on the

exponents λ and θ. The scaled densities will diverge on the interior of E and tend to zero off the closure

of E. Let 1 = (1, . . . , 1) denote the vertex of the standard cube C = [−1, 1]d. There exists a compact set

E such that

g(su)

g(s1)
→











∞ u ∈ int(E)

0 u ∈ Ec
s→ ∞.

In order to obtain a proper limit function for the quotient, one has to use power norming. Construct

functions (g(su)/g(s1))ε(s) where the exponent ε(s) vanishes for s → ∞. This dampens the exponential

decrease. We shall see that the exponent ε(s) > 0 may be chosen so that the quotient converges to a

continuous function uniformly on compact sets in R
d. The limit function has a zero in the origin and it

equals one precisely on the boundary of the set E. It is simpler to work with logarithms. Write g = e−γ .

Below we shall prove that
γ(s1) − γ(su)

ψ(s)/λ
→ χ(u) s→ ∞, u 6= 0.

The limit function χ has a simple structure. It is symmetric with respect to permutations of the coordi-

nates, and sign changes. It depends only on the exponents λ and θ. The boundary of the limit set E is

{χ = 0}.

2.2 Limit sets for sample clouds

Sample clouds from light-tailed distributions tend to have clearly defined boundaries. For sample clouds

from the meta density g above there is a limit shape. If X1,X2, . . . are independent observations from

the meta density g and we choose rn > 0 such that ng(rn1) → 1, then the n points from the scaled

sample cloud Nn = {X1/rn, . . . ,Xn/rn} will roughly fill out the limit set E, as we will see.

Definition 4. Let E be a compact set in R
d and µn finite measures. We say that µn converge onto E

if µn(p + εB) → ∞ for any ε-ball centered in a point p ∈ E, and if µn(U
c) → 0 for all open sets U

containing E. The finite point processes Nn converge onto E if P{Nn(U c) > 0} → 0 for open sets U

containing E, and if

P{Nn(p + εB) > m} → 1 m > 1, ε > 0, p ∈ E.



2 THE LIMIT SET 15

Proposition 2.1. If Nn is an n-point sample cloud from a probability distribution πn on R
d, then Nn

converges onto E if the mean measures µn = nπn converge onto E.

Proof For any Borel set A the number Nn(A) has a binomial-(n, πnA) distribution. Hence P{Nn(A) >

m} → 1 for all m > 1 if and only if µnA→ ∞ and P{Nn(A) > 0} → 0 if and only if µnA→ 0. ¶

Example 1. The sample clouds from a standard normal distribution on the plane, scaled by
√

2 logn will

converge onto the closed unit disk; the sample clouds from a meta distribution with standard Gaussian

marginals based on a Student distribution will converge with the same scaling onto a compact set E, but

E has a different shape. Compare Figures 1a and 1c. The scaling constants may be determined by the

marginals, see Proposition 2.5. ♦

A detailed analysis of the almost sure convergence of scaled sample clouds from multivariate distri-

butions with rapidly varying tails in terms of random sets is given in [4] and [15].

2.3 The limit function χ for densities with cubic level sets

In this subsection we assume that Z has density f(z) = f0(‖z‖∞) for a continuous strictly decreasing

function f0 on [0,∞) which varies regularly with exponent −(λ + d). Some results on the construction

and properties of probability densities with cubic level sets are given in the Appendix, Section A.2. The

marginal densities are equal and symmetric, continuous and strictly decreasing on [0,∞). The marginal

density fd varies regularly with exponent −(λ+1). The slowly varying functions for f0, fd and 1−Fd are

asymptotically equal up to a positive constant. In a log-log plot, a regularly varying function becomes a

function whose slope tends to the exponent. Recall that one may write 1−Fd(t) ∼ e−λr(log t), where r is

C2 and satisfies (1.12).

Let g be the meta density with marginals equal to gd, where gd is assumed continuous, positive and

symmetric, and asymptotic to a von Mises function e−ψ, see (1.8). We also assume (2.4), that ψ varies

regularly with exponent θ > 0. The meta transformation is K : x 7→ z = (K0(x1), . . . ,K0(xd)). Recall

that s and t = K0(s) are linked by 1 −Gd(s) = 1 − Fd(t). By (1.13)

κ0(s) := logK0(s) ∼ τψ(s) s→ ∞, τ = 1/λ. (2.5)

For the derivative K ′
0(s) the equalities 1 − Fd(t) = 1 −Gd(s) and K0(s) = t give:

K ′

0(s) =
gd(s)

fd(t)
=

1− Fd(t)

fd(t)

gd(s)

1 −Gd(s)
∼ τt/a(s) = τK0(s)/a(s).

Hence by (2.5) and Proposition A.2

κ1(s) := logK ′

0(s) ∼ log(τ) − log a(s) + κ0(s) ∼ τψ(s) s→ ∞. (2.6)
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We are now ready to determine the shape of the level sets of the meta density

g(x) = f(K(x))K ′

0(x1) · · ·K ′

0(xd).

The first factor again is unimodal with cubic level sets. It is constant on the upper face of the cube

[−s, s]d. It suffices to look at the density g on the cone generated by this face. Let Πs be the upside

down pyramid which is the convex hull of this face and the origin. It consists of all points x of the form

|xi| ≤ xd ≤ s. We have argued above that on a cube the density g is maximal in the vertices. Consider

the quotient g(su)/g(s1). Write g = e−γ , and

χs : u 7→ γ(s1) − γ(su)

τψ(s)
= As(u) +Bs(u) (2.7)

where u = (u1, . . . , ud) with |ui| ≤ ud = v > 0 and As(u) is the contribution due to the first factor

f(K(x)) in the expression for g. Observe that

ϕs(u) := − log f(K(su))) = − log f0(K0(sv)) ∼ (λ+ d) log(K0(sv)) ∼ (λ + d)τψ(sv) s→ ∞ (2.8)

by (2.5). Hence, by (2.4)

As(u) =
log f(K(su) − log f(K(s1))

τψ(s)
∼ ϕs(1) − ϕs(u)

ϕs(1)/(λ+ d)
→ (λ+ d)(1 − vθ) s→ ∞, (2.9)

and by (2.6)

Bs(u) =
κ1(su1) − κ1(s)

τψ(s)
+ · · · + κ1(sud) − κ1(s)

τψ(s)
→ (uθ1 − 1) + · · · + (uθd − 1). (2.10)

Theorem 2.2. Let g be the meta density introduced above. Then for v = ‖u‖∞ > 0,

χs(u) :=
log(g(su)/g(s1))

ψ(s)/λ
→ χ(u) = |u1|θ + · · · + |ud|θ + λ− (λ + d)vθ s→ ∞. (2.11)

Convergence is uniform on compact subsets of R
d.

Hence, the limit set is given by

E := Eλ,θ := {u ∈ R
d | |u1|θ + · · · + |ud|θ + λ ≥ (λ+ d)‖u‖θ∞}. (2.12)

2.4 The shape of the limit set

For dimension d ≥ 2 the shape of the limit set is determined by two positive parameters, the exponents

λ and θ.

For d = 2 the set E consists of four symmetric petals with vertices in (±1,±1), as shown in Fig. 3. The

symmetry of the limit shape is due to the symmetry and equality of the marginals of the meta density.

These symmetry conditions were imposed to keep the presentation simple. The sharp point of the petal

at the vertex (1, 1) follows from our basic assumption that large values of the two components of the meta
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Figure 3: Possible shapes of the limit set Eλ,θ for d = 2 and different values of parameters λ and θ. Each

plot corresponds to a given value of θ. The line legend specifies the value of λ: λ = 1 (solid), λ = 2

(dashed), λ = 4 (dotted), λ = 10 (dotdash).

vector should be dependent. Given these boundary conditions, the petals may still be convex, concave,

or have linear edges. All three cases are present in Fig. 3.

On the cone {|u| < v} the level set ∂E is the graph of the function

u 7→ v = c(λ+ |u|θ)1/θ c = (1 + λ)−1/θ.

The function is symmetric on [−1, 1]. It is convex on [0, 1] for 0 < θ ≤ 1 and concave for θ ≥ 1. The

basic constants are the minimum v00 in u = 0 and the slope s00 in u = 1:

v00 = (1 + 1/λ)−1/θ, s00 = 1/(1 + λ). (2.13)

For d ≥ 2 on the inverted pyramid Π1 the level set Γ = {χ = 0} may be described as the graph of a

function: v = v(u1, . . . , vd−1) by solving

(λ+ d− 1)vθ = λ+ |u1|θ + · · · + |ud−1|θ. (2.14)

Let us first consider this function (u1, . . . , ud−1) 7→ v on the whole space R
d−1. Let H be the set

above the graph. It intersects horizontal hyperplanes v = v0 in the sets

|u1|θ + · · · + |ud−1|θ ≤ C(v0). (2.15)

The constant C(v0) = (λ+ d− 1)vθ0 − λ is positive for

v0 > v00 = 1/(1 + (d− 1)/λ)1/θ. (2.16)

The quantity v00 is the minimum of the function v. For θ ≥ 1 the set H is convex and the level sets of

the function v are disks in the l θ norm.
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(a) θ = 0.5 (b) θ = 1 (c) θ = 2

Figure 4: Possible shapes of the limit set Eλ,θ for d = 3, λ = 1, and different values of θ.

In particular, for θ = 2 the graph of v is a cylinder symmetric hyperbola with asymptotic cone

v = c‖(u1, . . . , ud−1)‖ c = 1/
√
λ+ d− 1.

The point 1 lies on the hyperbola. On the inverted pyramid Π1 the limit set E is the complement of the

convex set H above the hyperbola: E ∩ Π1 = Π1 \H . By symmetry the same holds for the remaining

2d− 1 pyramids into which the cube C = [−1, 1]d may be split. Let S be the boundary of a smaller cube

v0C with 0 < v0 < 1. On each of the faces, the set E is the complement of the disk of radius r0 =
√

C(v0)

in (2.15). For λ = 1 and d = 3 we find r20 = 3v2
0 − 1, and hence for values v0 > 1/

√
2 the intersection of

E with the boundary S of the cube [−v0, v0]3 will consist of eight disjoint components around the eight

vertices of the cube. This phenomenon, in dimension d = 2, is already visible in Fig. 1c.

For θ = 1 and d = 3 the set above the graph of v is the convex cone C with top in (0, 0, 1/(λ+ 2))

which intersects the horizontal plane v = 1 in the rotated square |u1| + |u2| ≤ 2 (since 1 ∈ ∂C). See

Fig. 4 for 3-dimensional visualizations of the limit set Eλ,θ.

Proposition 2.3. The limit set E is star-shaped with continuous boundary. It is symmetric for permu-

tations and sign changes of the coordinates. It converges to the standard cube C = [−1, 1]d for λ→ ∞.

Proof Let Π+ denote the cone ‖u‖∞ ≤ ud. The boundary ∂E contains the intersection of Π+ with the

graph of v. It suffices to observe that this intersection is closed, and that each ray in Π+ intersects the

graph of v in a unique point for λ > 0 by homogeneity. Symmetry follows from the symmetry of f and

gd. The limit relation holds by (2.16) and the inclusion E ⊂ C. ¶

The limit shape of a sample cloud from a distribution on [0,∞)d with equal marginals Gd which

satisfy (2.4) has the form

{u ∈ [0,∞)d | uθ1 + · · · + uθd ≤ 1}

if the vector has independent components, see [4]. There is a superficial resemblance with our limit
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shape (2.12) with the role of the diagonals taken over by the axes.

2.5 Results

We can now formulate and prove the basic result of this paper, dropping the condition of cubic level sets

for the original heavy-tailed density f . This result will then be refined. We prove almost sure convergence

of the scaled sample clouds, and give a number of simple procedures for defining scaling constants. It

will be shown that the level sets {g = c} may be enclosed between the boundaries of scaled copies of the

limit set E, and we give a simple upper bound for the tail of the intensities gn(u) = nrdng(rnu) of the

scaled sample clouds Nn = {X1/rn, . . . ,Xn/rn}.

Theorem 2.4. Let f and gd satisfy the assumptions of the standard set-up. Let condition (2.4) hold. Let

g denote the meta density with marginals gd associated with the density f . Let rn > 0 satisfy gd(rn) ∼ 1/n.

Let E = Eλ,θ be the closed subset of the standard cube introduced in (2.12). Here λ is the parameter

associated with f , and θ the exponent of regular variation of the function ψ in (2.4). Then the level sets

{g ≥ 1/n} scaled by rn converge to E. For the sequence of independent observations Xn from the meta

density g, the scaled sample clouds Nn = {X1/rn, . . . ,Xn/rn} and their mean measures converge onto

E.

Proof First assume f(z) = c0f0(‖z‖∞). The denominator ψ(s) in (2.7) increases without bound as

s → ∞. Hence the quotient g(s1)/g(su) goes to zero uniformly on any compact set disjoint from the

closure of E, and to infinity on compact sets in int(E) for s→ ∞. The theorem holds for sample clouds

from g by the arguments above. See Proposition 2.5 below for the choice of the scaling constants rn. Now

observe that in the standard set-up f(z) � c0f0(‖z‖∞) because ∂D fits in between two scaled cubes, and

hence also f̃(z) � c0f0(‖z‖∞). By Proposition 1.7 the densities g and g̃ corresponding to f and f̃ satisfy

g̃ � g. Hence they have the same limit set. ¶

There are many ways in which the scaling constants rn may be defined. Assume g0 is a symmetric

density on R with df G0, and g0 is asymptotic to the von Mises function c0e
−ψ in infinity. One may

define rn by ψ(rn) = log n, g0(rn) = 1/n, 1 −G0(rn) = 1/n or rng0(rn) = 1/n.

Proposition 2.5. These four sequences are asymptotically equal.

Proof Let ψ(bn) = logn. Let ε > 0. We have to show that the interval [e−εbn, e
εbn] eventually contains

rn for the other three definitions. This is so if the difference ∆(r) = ψ(eεr) − ψ(r) is sufficiently large.

We need the three relations: ∆(r) >> 1, ∆(r) >> | log a(r)| and ∆(r) >> log r. The last follows from

1/ψ′(r) = a(r) = o(r), and implies the first. The second is proved in the Appendix, Proposition A.2. ¶

Any sequence rn which is asymptotic to one of the four sequences above for the marginal gd may be

used to scale the sample clouds from the meta density g. (Because the projections of the scaled sample

clouds onto the vertical axis will then converge onto [−1, 1].)
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Let us now take a closer look at the meta density g and the scaled densities gn(u) = rdng(rnu). We

want to give bounds on the tails of g, and on the size of gn inside E and outside. The constants r0 below

may differ from line to line.

The limit (2.11) yields the elegant relation

γ(trp) − γ(srq)

ψ(r)
→ tθ − sθ r → ∞, (2.17)

uniformly in p,q ∈ ∂E and 0 ≤ s, t ≤ c for any c > 1. (Since (χ(sq) − χ(tp)) · τ = tθ − sθ.)

For any ε > 0 there exist constants δ > 0 and r0 > 1 such that

γ(eεrp) − γ(rq) ≥ eδψ(r)θε p,q ∈ ∂E, r ≥ r0. (2.18)

(Choose δ > 0 so that eθε − 1 ≥ e2δθε.)

Let m(r) and M(r) denote the minimum and the maximum of the function g on r∂E, the boundary

of the set rE. The minimum may be much smaller than the maximum. However for any ε > 0 eventually

M(eεr) < m(r). By the inequality above for any C > 1 and ε > 0

M(eεr) << e−θεψ(r)m(r)/rC r → ∞ (2.19)

since ψ(r) >> log r. The relation also holds if we define m(r) to be the minimum of g over rE, and M(r)

the maximum over rR where R is the closure of the ring 2E \E. Instead of (2.18) use

γ(trp) − γ(srq) ≤ eδψ(r)θε p,q ∈ ∂E, 0 ≤ s ≤ 1, eε ≤ t ≤ 2eε, r ≥ r0.

The inequality (2.19) now shows that M(eεr) > M(r) eventually, hence g(x) ≤ M(r) for x ∈ rEc and

r ≥ r0, which shows that M(r) is the maximum of g over the closed complement of rE for r ≥ r0.

Hence (2.19) also holds if we redefine:

m(r) = min{g(x) | x ∈ rE} M(r) = max{g(x) | x ∈ cl(rEc)} r > 0.

In the standard set-up the level sets of g may be quite complicated, like a shore line with many small

islands. The “shape” is expressed in the following proposition, which is an immediate consequence of the

inequality (2.19) with the new interpretation of m(r) and M(r).

Proposition 2.6. For any ε > 0 there exists c0 > 0 such that for c ∈ (0, c0] the level set {g = c} lies

between the boundary of r1E and r2E, where r1 = e−εr and r2 = eεr, and the boundary of rE contains

a point of the level set {g = c}.

Let gn(u) = nadng(anu), where we choose an so that gn(an1) = 1. Consider the behaviour of gn

on the boundaries Γk of the sets ekεE for k = 0, 1, 2, . . .. Observe that gn ≤ 1 holds on Γ1, and even

gn ≤ e−θεψ(an). The function gn decreases by a factor at least eθεψ(an) as one moves from Γk to the next
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boundary curve Γk+1. If we define Mn(r) as the maximum of gn over the closed complement of rE, then

Mn(e
εr) ≤ rθψ(an) for r ≥ 1, and hence in terms of the gauge function nE

gn(e
εu) ≤ 1/nE(u)θψ(an) u ∈ Ec. (2.20)

The function gn is the density of the mean measure µn of the scaled sample cloud {X1/an, . . . ,Xn/an}.
For large n

µn(e
εEc) = edε

∫

Ec

gn(e
εu)du ≤ edε

∫

Ec

du

nE(u)θψ(an)
. (2.21)

The integral on the right may be computed explicitly using (2.2). It is finite and asymptotic to |E|/θψ(an).

By symmetry it has the scaling property
∫

rEc

du

nE(u)θψ(an
=

rd

rθψ(an)

∫

Ec

du

nE(u)θψ(an)
r > 0. (2.22)

We see that the projection µ̄n of µn on the vertical axis satisfies µ̄n[eε,∞) → 0.

One may also look at the curve Γ−1. Assume e−ε ≥ 1/2. Then

gn(e
−εu) ≥ eεθψ(an/2) u ∈ E, n ≥ n0. (2.23)

Hence µn(U) → ∞ for any non empty open set U ⊂ e−εE, and µ̄n[e
−2ε,∞) → ∞. Since ε > 0 is arbitrary

we see that the measures µ̄n, with density nangd(ans)ds, converge onto [−1, 1]. This gives:

Theorem 2.7. The sequences an and bn, defined by nadng(an1) = 1 and ψ(bn) = logn, are asymptotic.

Instead of the vertex 1 one may take any point q ∈ ∂E to define the scaling sequence.

Proposition 2.8. Let qn ∈ ∂E and k ∈ Z. Define rn by nrkng(rnqn) = 1. Then rn ∼ bn.

Proof For k = d this follows from Proposition 2.6; else use (2.19) and ψ(an) ∼ ψ(bn) >> log bn as noted

in the proof of Proposition 2.5. ¶

Theorem 2.9. The scaled sample clouds from the meta density converge almost surely onto E.

Proof By the inequalities (2.21) and (2.22), and ψ(rn) ∼ ψ(bn) = logn (by regular variation of ψ),

P{X/rn ∈ e2εEc} ≤ µn(e
2εEc)/n ∼ e2dε−θψ(an)ε/n << 1/n1+εθ/2 n→ ∞.

Hence almost surely Xn/rn ∈ e2εE eventually. Similarly the probability pn that there is no scaled sample

point in an open set U ⊂ e−εE is small,
∑

pn < ∞. Hence U a.s. eventually contains a point of each

scaled sample. By cutting up U into m horizontal open slices of positive volume we see that U a.s.

eventually contains m points. We may conclude that Nn(p + εB) → ∞ holds almost surely for any

open ε-ball centered in a point p ∈ E. Here we give the asymptotics on pn ∼ e−µn(U): The upper

bound on gn in (2.23) together with regular variation of ψ gives εθψ(rn/2) ∼ c logn with c = εθ/2θ.

So µn(U) ≥ |U |nc/2 eventually for all open sets U ⊂ e−εE. Then nc/2 >> logn implies pn ≤ 1/n2

eventually. ¶
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3 The domain of the limit shape

The scaled sample clouds from the density f in Theorem 2.4 converge in distribution to a Poisson point

process N with intensity h in (0.1) weakly on the complement of any centered ball. If one replaces the

density f by a density f̃ which is asymptotic to f , the sample clouds from f̃ will converge with the same

scaling. Convergence need not hold if f̃ is weakly asymptotic to f , f̃ � f . By Proposition 1.7 the meta

densities g and g̃ are weakly asymptotic if f and f̃ are. The sample clouds from g and g̃ will converge

onto the set E with the same scaling.

That raises the question in how far one can alter the original heavy-tailed distribution (with density

f) and still retain the same limit set E with the same scaling constants for the meta distribution with

marginals gd. We shall consider probability distributions with the marginal densities of f . This condition

on the marginals sometimes obscures the argument. Hence we shall also look at discrete distributions,

and then assume that the vectors X and Z are related by Z = K(X) where K is the meta transformation

associated with the multivariate density f and the marginal density gd. In the section on sensitivity

(Section 3.2), it is shown that small perturbations of the distribution with density f , perturbations that

do not affect the marginals or the convergence of the scaled sample clouds from the density f , may

drastically alter the limit shape of the scaled sample clouds from the meta distribution.

3.1 Domains

Suppose f satisfies the standard assumptions from Section 2.1, Definition 3. There exist scaling con-

stants rn such that the mean measures dρn(w) = nrdnf(rnw)dw of the scaled sample cloud Nn =

{Z1/rn, . . . ,Zn/rn} converge to the limit measure dρ(w) = h(w)dw weakly on the complement of any

centered ball, where h is defined in (0.1). What probability measures π̃ will yield the same asymptotic be-

haviour? In particular one may ask: If one replaces the density f by a discrete probability measure, how

large and how far apart are the atoms allowed to be? There is a simple criterium in terms of partitions.

Definition 5. A regular partition of R
d is a countable collection of disjoint bounded Borel sets An of

positive volume, |An| > 0, for which the following conditions hold:

1) every bounded set in R
d is covered by a finite number of sets An;

2) each set An may be enclosed in a ball of radius rn centered in zn ∈ An,

An ⊂ zn + rnB, (3.24)

such that rn = o(‖zn‖2).

If (An) is a regular partition, if zn ∈ An, and if π̃ is a probability measure on R
d with mass pn =

∫

An
f(z)dz in zn, then a sequence of independent observations Z̃1, Z̃2, . . . from the discrete distribution
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π̃ has the same asymptotic behaviour as observations Zn from the density f . Convergence nrdnf(rnw) →
h(w) for w 6= 0 implies weak convergence of ρn = nεr−1

n
(π̃) to dρ(w) = h(w)dw on the complement of

centered balls; the sample clouds Ñn = {Z̃1/rn, . . . , Z̃n/rn} converge in distribution to the Poisson point

process N with intensity h weakly on the complement of centered balls. Here εr is the scalar expansion

εr : x 7→ rx. Similar results hold for all probability measures π̃ for which π̃An ∼
∫

An
f(z)dz. There

also is a converse, which shows that densities f in the standard set-up play an important role in the

characterization of domains of attraction.

Theorem 3.1. Suppose f satisfies assumptions of the standard set-up in Definition 3. Let rn be the

associated scaling constants, and dρ(w) = h(w)dw the limit measure. If π̃ is a probability measure on

R
d such that the mean measures µn = nε−1

rn
(π̃) of the scaled sample clouds converge weakly to ρ on the

complement of any centered ball, then there exists a regular partition (An) such that π̃(An) ∼
∫

An
f(z)dz.

Proof See [1], Theorem 16.27.

Now turn to the meta distribution with density g. Assume the standard conditions. Also assume

regular variation of the function ψ in the exponent of the von Mises function e−ψ as in (2.4). The measures

with densities nrdng(rnu) converge onto the set E = Eλ,θ for a suitable choice of scaling constants rn by

Theorem 2.4.

Proposition 3.2. Let (An) be a regular partition, and π̃ a probability measure such that π̃(An) ∼
∫

An
g(x)dx. Then the measures ρ̃n = nε−1

rn
(π̃) converge onto the set E.

Proof For any δ > 0 there exists a constant r0 > 1 such that for r ≥ r0 all sets An/r which intersect

the cube [−2, 2]d have diameter less than δ. We first show that ρn(S) → ∞ for any ball S = x + εB in

the interior of E. The ball S ′ = x + (ε − δ)B is covered by the union Un of the sets Ak/rn which are

contained in S for n ≥ n0, and hence

ρ̃n(S) ≥ ρ̃n(Un) ∼
∫

Un

hn(w)dw ≥
∫

x+(ε−δ)B

hn(w)dw → ∞.

Similarly the integral of hn over the complement of the cube [−3/2, 3/2]d goes to zero, and this implies

that the ρ̃n measure of the union Vn of all atoms Ak/rn which intersect the complement of [−2, 2]d goes

to zero. By the same argument the ρ̃n measure of a compact ball at distance > δ from E will vanish for

n→ ∞. ¶

Now replace the original measure with density f by the probability distribution µ̃ = K(π̃). Then

µ̃(Bn) ∼
∫

Bn

f(z)dz Bn = K(An). (3.25)

If we choose π̃ to have marginals gd, like g, then the probability measure µ̃ will have the same univariate

marginals as the density f . For any probability measure µ̃ on R
d which satisfies (3.25) for the partition

(Bn), and which has the same univariate marginals as the density f , the scaled sample clouds from the
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meta distribution with marginals gd converge onto the set E with the scaling constants rn ∼ bn where

ψ(bn) = logn as in Theorem 2.7.

In order to get some insight in these partitions (Bn) in z-space, we consider standard partitions

in x-space generated by centered coordinate cubes snC = [−sn, sn]d where 0 < s1 < s2 < · · · and

sn+1 ∼ sn → ∞. We create a regular partition by dividing the square rings Rn = sn+1C \ snC into

blocks whose edges are o(sn). This may be done by dividing each side of the cube sn+1C into subintervals

by a symmetric partition:

sn,0 = 0 < sn,1 < · · · < sn,m = sn < sn+1 sn,−k = −sn,k, m = mn → ∞.

The sequence mn may go to infinity quite slowly, say mn = [1+ logn]. One may take all 2m subintervals

of [−sn, sn] of equal length, but it suffices that δn, the length of the maximal interval is o(sn) for n→ ∞.

If we assume for simplicity that the marginals of f are equal and symmetric, then the image of a centered

coordinate cube in x-space is a centered coordinate cube in z-space, and the 2d((mn + 1)d −md
n) blocks

in the square ring [−sn+1, sn+1]
d \ [−sn, sn]d are mapped by the meta transformation K into blocks in

the square ring Rn = [−tn+1, tn+1]
d \ [−tn, tn]d, where tn = Kd(sn). These blocks are determined by the

partition

tn,0 = 0 < tn,1 < · · · < tn,m = tn < tn+1 tn,−k = −tn,k tn,k = Kd(sn,k).

What does the partition in z-space look like? The cubes tnC = [−tn, tn]d with tn = Kd(sn) are huge.

For any δ ∈ (0, 1) one may choose sn ∼ sn+1 → ∞ such that

tn = nn
n1−δ

.

Since tn � exp(en
1−δ/2

) we shall assume tn = ern where rn = exp(n1−δ). Then rn+1/rn → 1, but

t1−1/n
n � tn−1 � tn

en
� tn

log tn
� tn.

The partition in x-space is regular if we subdivide the ring Rn = tn+1C \ tnC into blocks Bnk according

to an exponential subdivision of the sides given by tnk = ernk with rnk = (k/m)rn for k = 1, . . . ,m = mn.

The probability mass pnk of the block Bnk is the integral of f over this block. The masses of the

blocks in a given ring Rn are very unequal. In the bivariate case the twelve rectangles, which contain the

vertices of the square [−tn, tn]2, contain almost all mass of the ring.

If one replaces the density f by a discrete measure with mass pnk in a point znk in the block Bnk

then the image of the sample clouds associated with a sequence of independent observations Z̃1, Z̃2, . . .

from this discrete probability distribution under the original coordinatewise map K−1 will converge onto

the set E if one scales by rn. Alternatively on each block one can define a measure µnk of mass pnk on a

curve linking two diametric vertices of the block Bnk such that the measure µnk has the same univariate

marginals as the restriction of the density f to the block. One is free to choose a copula for each block.
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The sum µ then has the same marginals as f . The meta distribution is K−1(µ). Sample clouds from this

distribution have the same asymptotic shape as the sample clouds from the original meta density g.

The probability distribution π above is an example of a perturbation of the original distribution with

density f for which the meta transformation is the same, and for which the sample clouds from the meta

distribution have the same asymptotic behaviour as those from the meta density g based on f . The

original distribution given by the density f may be distorted to a considerable extent without affecting

the meta transformation K, or the first order asymptotic behaviour of the sample clouds from the meta

distribution, as described by the limit set E = Eλ,θ.

3.2 Sensitivity

The limit shape turns out to be sensitive to slight perturbations of the original density. Proposition 3.2

shows that the tails of the meta distribution with density g may be mangled without destroying the

convergence of the scaled sample clouds to the limit set Eλ,θ. Below we show that small changes in the

density f may, however, alter the limit set E drastically.

Example 2. Assume f is a density on the plane with square level sets and Student t marginal densities

which decrease like 1/2t2. We delete the mass on a thin strip T along the positive vertical axis:

T = {(x, y) | |x| ≤ y

log y
, y ≥ e}.

This strip is asymptotically negligible since |x|/y ≤ 1/ log y → 0. We like the marginals to be equal

and symmetric, and hence also delete f on the three sets obtained by reflections in the diagonals. One

may compensate for the lost mass by increasing the density in a compact neighbourhood of the origin.

The new density f̃ may be assumed to have equal continuous positive marginals. These satisfy f̃2(t) ∼
1/2t2. Choose Ki(s) = es for s ≥ s0. Then gd(s) ∼ e−s/2. Let Cn = enC be the square with edge

length 2en in z-space. The corresponding square in x-space is nC, with edge length 2n. The interval

[−en, en]×{en} maps onto [−n, n]×{n}. The subinterval [−en/n, en/n]×{en} is deleted. It maps onto

[−n+ logn, n− logn] × {n}. See Fig. 5.

We now have a density f̃ close to f such that the meta density g̃ vanishes everywhere except on a

thin strip around the diagonals. Hence the scaled sample clouds from g̃ converge onto the cross E00

consisting of the two diagonals in the standard square C = [−1, 1]2. The functions fr(z) = f̃(rz)/f̃(r1)

still converge (almost everywhere, and in L1 on εBc for all ε > 0) to the function 1/‖w‖3
∞. The sample

clouds from the density f̃ and from the density f converge to the same Poisson point process with intensity

h(w) = 1/‖w‖3
∞. The coordinatewise maxima from the densities f̃ and f have the same limit; so do the

coordinatewise extremes from the meta densities g̃ and g by Galambos’s theorem. ♦

There is a converse. Restrict f to the union U of T and its three reflections, multiply by log ‖z‖∞
to ensure that the marginal densities decrease asymptotically like 1/2t2, and make some changes on a



3 THE DOMAIN OF THE LIMIT SHAPE 26

(a) Cn = enC in z-space (b) Cn = nC in x-space

Figure 5: The squares with edge lengths 2en in z-space (a) with subintervals [−en/n, en/n]×{en} deleted

and the images Cn = nC in x-space (b) with the corresponding subintervals [−n+ logn, n− logn]×{n}
deleted.

compact set to ensure that the two marginals are equal, symmetric and positive. The meta transformation

K above with Ki(s) = es for s ≥ s0 will give a meta density g̃ with marginals g̃d(s) ∼ e−s/2 for s→ ∞.

Now the sample clouds from g̃ converge onto E, even though the density f̃ lives on a thin set which clings

to the axes. The scaled sample clouds from f̃ converge to a Poisson point process which lives on the axes.

The max-stable limit vector for f (and hence for g) has independent components. ♦

With some extra effort one may create for any star-shaped compact set E0 ⊂ [−1, 1]d with continuous

boundary a continuous positive density f̃ with the same marginals as f such that the sample clouds from

f̃ and f converge to the same Poisson point process with the same scaling, and such that the sample

clouds from g̃ converge onto the set E = E0 ∪ E00, where E00 is the diagonal cross, the union of the

intervals linking the origin to the vertices of the bounding cube. For E0 = [−1, 1]d one can construct

a density g with cubic level sets and marginals gd such that gd(s) � gd(s) but gd(cs) � gd(s) for any

c ∈ (0, 1) (see Lemma A.3 and Proposition A.4 for details). Then the marginals of f + f and of f are

asymptotic and one may use a meta transformation to replace f + f by a density f̃ with marginals fd.

3.3 Discussion

In situations where chance plays a role the asymptotic description often consists of two parts, a deter-

ministic term, catching the main effect, and a stochastic term, describing the random fluctuations around

the deterministic part. Thus the average of the first n observations converges to the expectation; under
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additional assumptions the difference between the average and the expectation, blown up by a factor
√
n,

is asymptotically normal. Empirical dfs converge to the true df; the fluctuations are modeled by a time

changed Brownian bridge. For a positive random variable the n point sample clouds Nn scaled by the

1− 1/n quantile converge onto the interval [0, 1] if the tail of the df is rapidly varying; for convergence of

the maxima one needs the extra condition that the tail is asymptotic to a von Mises function.

Example 3. Suppose F is the df of the absolute value of a standard Gaussian variable. The scaled sample

clouds Nn/rn converges onto [0, 1] if 1−F (rn) = 1/n, but (Nn − rn)/an with an = 1/
√

2 logn converges

(in distribution) to a Poisson point process with intensity e−s. Convergence of the scaled sample clouds

onto the interval [0, 1] with this scaling sequence rn will hold for any df G which agrees with F in a

sequence of points tn → ∞ provided tn+1/tn → 1. The tails of F and G may differ considerably. With

some effort one may construct a sequence tn and a df G such that

G(tn) = F (tn) (1 −G(tn−))/(1 − F (tn)) = nn
√

n

.

Convergence to the first order deterministic term is a much more robust affair than convergence of

the random fluctuations around this term.

It is surprising that in the theory developed in this paper perturbations of the original distribution

which do not affect the second order fluctuations at the vertices may drastically alter the shape of the

limit set, the first order term.

This peculiarity of the theory of limit shapes for meta distributions could be due to the nature of the

meta transformation. The map K is highly nonlinear. It respects coordinatewise maxima, but destroys

geometric objects: ellipsoids, convex sets, hyperplanes, cones and rays.

It should also be noted that a limit shape is less stable than a limit point. We have assumed the

marginals of the meta density to be equal and symmetric. That is natural. We are free to choose the

marginals and the dependence structure separately, hence we choose well behaved marginals. If the

marginal densities are not symmetric even the convex hulls of the sample clouds will have a limit (a

coordinate box) only under special balance conditions for the upper and lower quantiles of the marginal

distributions.

A more technical explanation for the peculiar sensitivity of the limit shape is the incompatibility of the

partition (An) and (Bn = K(An)) of Section 3.1. Both partitions may be seen as partitions of z-space.

The partition (An) is associated with the max-stable limit distribution; the partition (Bn) is associated

with the limit shape of the sample clouds from the meta distribution. If we regard the atoms of the

partition (Bn) as nerve cells, then the region around the axes is far more sensitive than the remainder of

the space, and it is not surprising that cutting away these regions has drastic effects on the limit.

The limit shape describes the variation in the distribution of large observations as the direction

changes. Insight in this variation is important for risk analysis. If one assumes that the loss function
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is known, and increases as one moves out in the state space on which the density lives, then, given

the rate at which the tails decrease along rays, the limit shape of the level sets will determine the

asymptotic distribution of high losses. Unfortunately the non-linear nature of the meta transformation

destroys the sense of direction. Under the transformation K rays in x-space turn into curves in z-space

which are attracted towards the 2d halfaxes; under the inverse transformation rays in z-space turn into

curves in x-space which are attracted towards the 2d semidiagonals. For densities f in the standard

set-up the direction of large sample points is fairly uniformly distributed; the variation is determined

by the function η in (0.1), a continuous positive function on a compact set. In the meta distribution

the large observations cluster around the 2d semidiagonal rays, the components are either asymptotically

comonotonic or countermonotonic.

There is a dual result. For light-tailed densities with elliptic level sets the meta densities with Student

t marginals concentrate around the axes. If the original density is Gaussian with spherical level sets, the

meta vector has independent t distributed components, and so has the max-stable limit. Scaled sample

clouds from this multivariate t distribution converge to a Poisson point process on R
d \ {0} whose mean

measure lives on the axes.

The shape of the level sets and sample clouds of the meta density reflect the structure of the density.

In Section 1 we observed that the Jacobian in the expression for the meta density creates ridges along

the semidiagonal rays. In order to obtain more insight into the structure of these ridges, we depict in

Fig. 6 two sections at the levels y = 2 and y = 6 of the bivariate meta density of Fig. 1c. Fig. 6 suggests

that the ridges are steep, with the mass concentrated along the centre, the points on the diagonal. This

is due to rapid variation of the density. Let us see what happens as the level y goes to infinity.

For both the original vector Z and for the meta vector X the conditional density given the value of the

vertical component Zd or Xd may be written down without ado. Scale the conditional distribution by the

value of the vertical component, and let this value go to infinity. The conditional distributions converge.

For the vector Z with the heavy-tailed density the limit distribution is continuous on R
d−1 × {1} with

density ∝ h(w1, . . . , wd−1, 1) where h is the limit function in (0.1). For the meta vector the conditional

distributions converge to a discrete probability distribution concentrated in the 2d−1 vertices δ of the

standard cube in the positive halfspace {ud ≥ 0}. The probability distribution is given by

p(δ) = ρ(Q(δ) ∩ {wd ≥ 1})/ρ{wd ≥ 1} δi ∈ {−1, 1},

where Q(δ) denotes the orthant containing the point δ, and ρ is the infinite measure with density h. The

numbers p(δ) reflect the asymmetry of the distribution of the tails of f in the upper halfspace.



4 CONCLUSIONS 29

−5 0 5

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

x

g(
x,

 2
)

(a)

−5 0 5

0.
0e

+
00

5.
0e

−
09

1.
0e

−
08

1.
5e

−
08

x
g(

x,
 6

)

(b)

Figure 6: Sections of a bivariate meta-Cauchy density g(x, y) with standard normal marginals at levels

(a) y = 2 and (b) y = 6. The original density has Cauchy marginals with scale parameter
√

5/4 and

level sets shaped like the ellipse 5x2 + 6xy + 5y2 = 1.

4 Conclusions

Gaussian models may perform well for multivariate data but still fail in describing extremal situations.

This failure may be due to the tail behaviour of the marginals. It may also be due to a non-Gaussian

dependence structure. This paper addresses the second cause, but also touches on the first.

The setting in which we work is rather limited. The issue of importing asymptotic dependence for

large observations in a Gaussian world is an important one. We focus on a class of dependence structures

determined by a well circumscribed, well understood family of heavy-tailed densities. These densities have

exemplary limit behaviour - under scalar normalization they converge to a continuous positive function,

the intensity of the limit point process for the sample clouds. In the meta world we weaken the condition

of Gaussian marginals, also allowing Weibull tails. But we retain our assumption of good behaviour for

the marginals: the marginal densities are equal, continuous, positive, and symmetric.

In this limited setting we obtain precise and explicit results on the asymptotic behaviour of the meta

density. These results are of interest in themselves. They should also help to clear up the relation between

three fundamental concepts in multivariate asymptotics: dependence (copula); asymptotic dependence

(shape of the sample clouds); and limit behaviour (of the coordinatewise extremes and high risk scenarios;

refer to [1] for a definition of the latter).

For applications it is important to know the effect of small changes in the original distribution. (Weak)

asymptotic equality of the densities has no effect on the limit shape, but if one replaces the original density



4 CONCLUSIONS 30

by a probability measure with the same limit behaviour for extremes, even if one preserves the marginals,

the shape of the sample clouds from the meta distributions may change. Here our results are of a rather

sketchy nature, but they should cast some light on the relation between asymptotic dependence and

asymptotic equivalence for multivariate probability distributions, and on the invariance of these concepts

under transformations which preserve the copula.

We now list a number of concrete conclusions:

• If we import the dependence structure of an elliptic Student t distribution into a distribution with

Gaussian marginals the components of the max-stable limit vector will no longer be independent.

The probability that the coordinatewise maximum of the sample cloud is attained by one of the

points of the sample is bounded away from zero as the size of the sample goes to infinity.

• The meta density g has a simple form. It may be described in terms of the Gaussian marginals and

the level sets {g > c}. The level sets have a limit shape as c decreases to zero.

• A limit shape for the level sets of the meta densities exists whenever the original density f is

continuous and may be scaled to converge to a function h(w) = η(ω)/rλ+d as in (0.1), and when

the prescribed marginals are equal, continuous, positive, symmetric, and asymptotic to a von Mises

function e−ψ, where moreover ψ ∈ RVθ, θ > 0. The shape is determined by the two positive

exponents λ and θ, see Fig. 3.

• The limit shape of the level sets of the meta density is also the limit shape of the sample clouds.

The scaled sample clouds converge almost surely.

• The scaling constants rn for this convergence are only determined up to asymptotic equality. One

may choose rn to satisfy gd(rn) = 1/n, but there are various other explicit definitions in terms of

the df Gd or the meta density g.

• It is not clear what is the relation between the copula and the asymptotic dependence of a distri-

bution. The meta transformation preserves the copula, but in the first order asymptotics of the

meta distribution, expressed in the shape of the sample cloud, all information about the asymptotic

dependence of the original distribution is lost, at least in the standard set-up treated in this paper,

and only the parameter λ is still visible. Given the marginal density gd the limit shape of the

sample clouds from the meta distribution is determined by one positive constant, the parameter λ

in the asymptotic decay of the heavy-tailed density f .

• There is no relation between the limit shape of the level sets of the original densiy f (which is the

common shape of the level sets of h), and the limit shape of the level sets of the meta density g.

• The limit shape describes the variation in the size of the extremes in terms of the direction. It helps

the risk analyst to locate the directions in which the risk region is most likely to be entered.
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• The limit shape is invariant under weak asymptotic equivalence of the original distributions. It is

sensitive to excision of the original density around the axes. The exact relation between the original

distribution and the limit shape of the meta density (with Gaussian marginals say), is still unclear.

• The relation between the limit laws for the coordinatewise maxima from the original distribution

and from the meta distribution is simple. If there is a limit law for the coordinatewise maxima from

the original distribution then the coordinatewise maxima from the meta distribution will converge

provided the upper tails of the marginals of the meta distribution lie in the domain of attraction of

a univariate extreme value distribution. This follows by Galambos’s theorem. However, compared

to the limit shape, the coordinatewise extrema are a second order phenomenon, which only comes

to life when one zooms in on one of the vertices of the limit shape.

• The behaviour of the sample cloud at the edge will be investigated more fully in a future publication.

A Appendix

The appendix collects a number of technical results.

A.1 On regular variation

If a density varies regularly with exponent −1 − λ with λ > 0 then the distribution tail varies regularly

with exponent −λ (see Karamata’s theorem 0.6 in [18]). The converse holds if the density is decreasing,

see [3], Theorem 1.7.2, or if it satisfies a growth condition:

Lemma A.1. Suppose the density f on R is positive and continuous on a neighbourhood of ∞ and

satisfies f(xn) ∼ f(yn) for xn ∼ yn → ∞. If the distribution tail R(x) =
∫ ∞

x
f(t)dt varies regularly with

exponent −λ < 0, then the density varies regularly with exponent −λ− 1.

Proof Let xn → ∞ and write fn(t) = f(xnt)/cn with cn = R(xn)/xn. Then fn is a density on [1,∞).

Write fn(1) = a2
nλ. Choose sn > 1 minimal with fn(sn) = anλ. If sn → 1 then an → 1 since snxn ∼ xn

implies f(snxn) ∼ f(xn). So suppose sn ≥ s > 1. If an > a > 1 then
∫ s

1 fn(t)dt > a(s−1)λ > a(1−1/sλ).

Write
∫ s

1

fn(t)dt =

∫ ∞

1

fn(t)dt−
∫ ∞

s

fn(t)dt = 1 −
∫ ∞

s

f(xnt)

cn
dt = 1 − 1

cnxn

∫ ∞

sxn

f(y)dy = 1 − R(sxn)

R(xn)
.

We find R(sxn)/R(xn) < 1 − a(1 − 1/sλ) = 1/sλ − (a − 1)(1 − 1/sλ), which contradicts the regular

variation of R. Similarly for an ≤ a < 1. Then R(sxn)/R(xn) > 1 − a(1 − 1/sλ). ¶

A von Mises function has the form e−ψ, where ψ is a C2 function on [c,∞) with a positive derivative,

and where the scale function a = 1/ψ′ has a derivative which vanishes in infinity. Regular variation of

the scale function implies regular variation of ψ. The converse need not hold.
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Example 4. Let ψ(t) = t +
√
t cos

√
t. Then ψ(t) ∼ t implies that ψ varies regularly. The derivative

is ψ′(t) = 1 − (sin
√
t)/2 + (cos

√
t)/2

√
t. Hence ψ′′(t) vanishes, and so does a′(t) since ψ′(t) > 1/3

eventually. Take tn = (2nπ + π/2)2 and sn = (2nπ − π/2)2. Then sn ∼ tn, but ψ′(tn) → 1/2 and

ψ′(sn) → 3/2. So ψ′ does not vary regularly, and neither does the scale function 1/ψ′. ♦

The function ψ is increasing and unbounded. The scale function a satisfies a(t) = o(ψ(t)) for t→ ∞.

This implies that log(1 + a(t)) = o(ψ(t)) for t→ ∞. However | log a(t)| will also be large if a(t) becomes

very small.

Proposition A.2. Let ψ be a C2 function on [c,∞) with a positive derivative. Set a(t) = 1/ψ′(t). If

a′(t) vanishes for t→ ∞ then | log a(t)| = o(ψ(t)).

Proof By the remarks above, the positive part, log+ a(t), is o(ψ(t)) for t→ ∞. However nothing prevents

the scale function from becoming very small. We shall now show that a decrease in a(t) by a factor e

yields a larger increase in ψ eventually. Suppose |a′(t)| ≤ ε for t ≥ t0. Let t0 < t1 < t2 and suppose

a(t2) = a(t1)/e. Then ψ(t2)−ψ(t1) ≥ 1/ε. (The increase in ψ is minimal if a is maximal over the interval.

So let a increase with slope ε, then decrease with slope −ε until it reaches its initial value, and finally

decrease with slope −ε from the value q = a(t1) to the value q/e = a(t2). The increase of ψ over the final

interval equals
∫ s0

0

ds

q − εs
= −1

ε
log(q − εs)

∣

∣

∣

s0

0
=

1

ε
log

q

q − εs0
=

1

ε

since q− εs0 = q/e.) So, if beyond t0 the scale function attains the value a(t0)/e
m in a point t then ψ will

have increased by at least m/ε at that point. Hence ψ′(t) ≥ ψ′(t0) implies log+ ψ
′(t)− log+ ψ

′(t0)− 1 ≤
ε(ψ(t) − ψ(t0)). Since ε > 0 is arbitrary it follows that log+ ψ

′(t) = o(ψ(t)) for t→ ∞. ¶

Lemma A.3. Let g be a positive continuous symmetric density which is asymptotic to a von Mises

function e−ψ. There exists a continuous unimodal symmetric density g1 such that for all c ∈ (0, 1)

g1(s)/g(s) → 0 g1(cs)/g(s) → ∞ s→ ∞.

Proof Let Mn(s) = ψ(s) − ψ(s − s/n), and let M∗
n(s) = mint>sMn(t) for n ≥ 2. Each function M∗

n

is increasing, continuous and unbounded (since t/a(t) → ∞), and for each s > 0 the sequence M ∗
n(s) is

decreasing. There exists a continuous increasing unbounded function b such that

lim
s→∞

Mn(s) − b(s) = ∞ n = 1, 2, . . . . (A.1)

Indeed, define M∗(s) = M∗
n(s) on [an, bn] = {M∗

n ∈ [n, n + 1]}, and M∗(s) = n on [bn−1, an]. Then

M∗(s) is increasing and M∗(s) ≤M∗
n(s) eventually for each n ≥ 2. Set b(s) = M ∗(s)/2 to obtain (A.1).

The function g1 = e−ψ1 with ψ1(s) = ψ(s) + b(s) is decreasing on [0,∞) and continuous, and b(s) → ∞
implies g1(s)/g(s) → 0 for s→ ∞. For c = 1 − 1/m the relations

ψ(s) − ψ1(cs) = ψ(s) − ψ(cs) − b(cs) ≥Mm(s) − b(s) → ∞
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hold, and yield the desired result. ¶

Proposition A.4. Let gd be a continuous positive symmetric density which is asymptotic to a von Mises

function e−ψ. Choose rn such that
∫ ∞

rn
gd(s)ds ∼ 1/n. Let g1 be the probability density in the lemma

above. There exists a unimodal density g(x) = g0(‖x‖∞) on R
d with cubic level sets and marginals g1.

The sample clouds from the density g, scaled by rn converge onto the standard cube C = [−1, 1]d. The

functions hn(u) = nrdng(rnu) are unimodal with cubic level sets. They satisfy

hn(u) →











∞ u ∈ (−1, 1)d

0 u 6∈ [−1, 1]d.

Let E be a closed subset of C, containing the origin as interior point, star-shaped with continuous bound-

ary, see (2.3). Set cE = |E|/2d. Then gE(x) = g0(nE(x))/cE is a probability density, and the sample

clouds from gE scaled by rn converge onto the set E.

Proof Existence of g follows from Proposition A.5 below. Let G1 be the df with density g1. Then

n(1−G1(crn)) → 0 for c > 1, and n(1−G1(crn)) → ∞ for c ∈ (0, 1). Let π be the probability distribution

with the unimodal density g. The limit relations on the marginal dfs G1 imply that nπ(Bn) → ∞ for

the block Bn = [−2rn, 2rn]
d−1 × [crn, 2rn] for any c ∈ (0, 1). Since hn is unimodal with cubic level sets it

follows that hn → ∞ uniformly on [−c, c]d for any c ∈ (0, 1). (Since hn(c1) ≤ k implies nπ(Bn) ≤ (2c)dk.)

The area of a horizontal slice of the density gE at level y/cE > 0 is less than the area of the horizontal

slice of g at level y, but the height of the slice is proportionally more by the factor cE . So the slices have

the same volume. The level sets of the scaled densities are related:

{hE ≥ t/cE} = rE ⇐⇒ {h ≥ t} = rC.

So the function hE mimics the behaviour of h = hC . ¶

A.2 Probability densities with cubic level sets and given marginals

It is simple to construct continuous unimodal densities with convex level sets all of the same shape. Take

a continuous decreasing function f0 on [0,∞), the generator, and a bounded open convex set D ⊂ R
d

containing the origin, and write f(z) = f0(nD(z)), see (2.1). If td−1f0(t) is integrable then so is f . The

marginals f1, . . . , fd may be evaluated by integration. They will be continuous and unimodal.

It is much harder to determine for a given set D what densities may occur as marginals, and to

reconstruct the density f from its marginal fd, even in the case where D is the unit ball in lp norm. If

D is the Euclidean unit ball in R
3 then the marginals of spherically symmetric probability distributions

which do not charge the origin are precisely the unimodal densities, since the uniform distribution on the

unit sphere projects onto the uniform distribution on the interval (−1, 1) on the vertical axis. See [14]
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for results when D is the Euclidean ball in arbitrary dimension, and [17] for the case where D is the unit

ball in l1.

The l∞ theory is quite simple. The projection of the uniform distribution on the interior of the unit

cube on the vertical axis is the uniform distribution on (−1, 1). So there is a one to one correspondence

between continuous (or lower semi-continuous) unimodal densities f on R
d with cubic level sets and

continuous (or lower semi-continuous) unimodal symmetric marginals fd.

If a probability distribution on R
d with cubic symmetry charges the boundary of a cube (−c, c)d the

marginal distribution will have an atom in the points ±c.

Proposition A.5. Let fd be a symmetric density on R. There exists a density f on R
d which is constant

on the boundaries of cubes and with marginals equal to fd if and only if

∫ ∞

r

fd(r) − fd(t)

td
dt ≥ 0 r > 0. (A.2)

Proof Suppose f has the form above with D = (−1, 1)d the open unit cube, and f0 ≥ 0 a Borel function

such that td−1f0(t) is integrable. Since f is constant on the faces of the cube (−y, y)d, with value f0(y),

one finds

fd(y) =

∫

Rd−1

f(x, y)dx = (2y)d−1f0(y) + (2d− 2)

∫ ∞

y

(2t)d−2f0(t)dt y > 0. (A.3)

If f0 is C1 one may take the derivative on the right to find the elegant relation:

dfd(y) = (2y)d−1df0(y) y > 0. (A.4)

This describes the relation between the generator and the marginal for unimodal densities.

Given a symmetric density m, define the function H by

∫ ∞

r

H(t)

2t
dt = (2r)d−1

∫ ∞

r

m(t)

(2t)d
dt r > 0. (A.5)

Differentiation gives

H(r) = m(r) − (2d− 2)(2r)d−1

∫ ∞

r

m(t)

(2t)d
dt. (A.6)

Now use (A.5) to obtain

H(r) = m(r) − (2d− 2)

∫ ∞

r

H(t)

2t
dt.

If we compare this to (A.3) we see that the last equation states that m is the marginal of the density

f(z) = f0(‖z‖∞) with f0(r) = H(r)/(2r)d−1, provided H is non-negative. The latter condition is

equivalent to (A.2) by (A.6). ¶

The next result shows that regular variation of the marginal density for a unimodal multivariate

density with cubic level sets implies regular variation of the generator f0 with the same slowly varying

function but a different constant. The converse result also holds.
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Proposition A.6. Let f(z) = f0(‖z‖∞) be a density on R
d with marginals fd. Let λ > 0. The

marginal density varies regularly with exponent −(λ + 1) if and only if the function f0 varies regularly

with exponent −(λ + d). Their asymptotic behaviour is related: The marginal density fd has the form

fd(t) ∼
L(t)

(λ+ 1)tλ+1
, t→ ∞ with λ > 0 and L(t) a slowly varying function, if and only if

f0(r) ∼
1

2d−1

L(r)

(λ+ d)rλ+d
r → ∞.

Proof Suppose f0(r) =
1

2d−1

L(r)

(λ + d)rλ+d
as r → ∞. The relation (see e.g. Theorem 0.6 in [18])

∫ ∞

r

L(t)

tc+1
dt ∼ L(r)

∫ ∞

r

t−c−1dt = L(r)
1

ctc
r → ∞, c > 0 (A.7)

implies
∫ ∞

r

td−2f0(t)dt ∼
L(r)

λ+ d

∫ ∞

r

t−λ−2dt =
L(r)

(λ + d)(λ+ 1)rλ+1
.

The definition of the marginal density fd in (A.3) and the above result give

fd(r) = (2r)d−1f0(r) + 2(d− 1)

∫ ∞

r

(2t)d−2f0(t)dt

∼ L(r)

(λ + d)rλ+1
+ (d− 1)

L(r)

(λ+ d)(λ+ 1)rλ+1
=

L(r)

(λ+ 1)rλ+1
r → ∞.

To prove the opposite direction, we use relation (A.6) instead of (A.3). ¶

A.3 Summary of Notation

We shall use the following notation to distinguish between the original and the meta variables, and

between the basic variables and the normalized limit variables:

z = (z1, . . . , zd), Z, f(z), zi = t, w for the original vector, etc.

x = (x1, . . . , xd), X, g(x), xi = s, u for the meta vector, etc.

Frequently used symbols:

an � bn or an = o(bn) an/bn → 0 for n→ ∞
an ∼ bn an/bn → 1 for n→ ∞ (asymptotic equality)

an � bn ratios an/bn and bn/an are bounded eventually (weak asymptotic equality)

int(E) and cl(E) the interior and the closure of a set E

B and C denote the open centered unit ball and the cube [−1, 1]d
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[11] C. Genest and J. Nešlehová. A primer on copulas for count data. The Astin Bulletin, 37:475–515,

2007.

[12] A.K. Gupta and D. Song. lp-norm spherical distribution. Journal of Statistical Planning and Infer-

ence, 60:241–260, 1997.

[13] P. Hougaard. Analysis of Multivariate Survival Data. Springer, 2000.

[14] H. Joe. Multivariate models and dependence concepts. Chapman & Hall, 1997.

[15] K. Kinoshita and S.I. Resnick. Convergence of scaled random samples in R
d. The Annals of Proba-

bility, 19:1640–1663, 1991.

[16] D. Li. On default correlation: a copula function approach. Journal of Fixed Income, 9:43–54, 2001.
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