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Abstract Over the recent years, numerous results have been derived in order to
assess the properties of regulatory risk measures (in particular VaR and ES) un-
der dependence uncertainty. In this paper we complement this mainly methodolog-
ical research by providing several numerical examples for both homogeneous as
well as inhomogeneous portfolios. In particular, we investigate under which circum-
stances the so-called worst-case VaR can be well approximated by the worst-case
(i.e. comonotonic) ES. We also study best-case values and simple lower bounds.
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1 Introduction

Recent regulatory discussions in the realm of banking and insurance have brought
the following quantitative aspects very much to the forefront:

i) The choice of risk measure for the calculation of regulatory capital; examples
include Value-at-Risk (VaR) and Expected Shortfall (ES).

ii) The properties of statistical estimators of such risk measures, especially when
based on extreme tail observations.
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iii) The issue of Model Uncertainty (MU). The latter can be interpreted in many
ways: statistical, numerical, functional, . . .

In this paper we will mainly concentrate on a combination of i) and iii), and discuss
the (functional) model uncertainty of risk measures VaR and ES for linear portfo-
lios in both the homogeneous as well as inhomogeneous case. The interpretation
of MU concerns portfolios with known marginal distributions but unknown interde-
pendence. The latter is often referred to as Dependence Uncertainty (DU). It plays
a crucial role in various examples throughout the banking and insurance literature.
Going forward, several relevant examples will be given. One general purpose refer-
ence is Embrechts et al. (2014).

The considered setting is a static one-period model, however, the results are
also applicable to the dynamic case, using marginal distributions conditioned on
the available information, e.g. conditional mean and volatility. While conditioning
on the volatility may lead to light-tailed marginal distributions, it is not always the
case, as shown in McNeil and Frey (2000), where methods from extreme value the-
ory are applied to GARCH-filtered (and still heavy-tailed) one-dimensional time
series in order to obtain point estimates of VaR and ES. Moreover, Christoffersen
and Diebold (2000) argue that the volatility of financial time series is forecastable
only up to 10 days ahead (relevant for market risk) but not for longer time scales
(such as 1 year, relevant for insurance). The effect of tail-heaviness of the marginal
distributions on the portfolio risk will therefore be analyzed. Furthermore, the con-
ditional dependence between the margins may change over time, as illustrated by
Dias and Embrechts (2009), where a parametric copula approach is used to model
and detect changes in the dependence structure. This demonstrates some of the dif-
ficulties in estimating the dependence. The mainly numerical results presented in
our paper aim at understanding better the estimation of the best and worst possible
risk measure values under DU. The paper only offers a first step on the way to this
goal, and numerous alternative approaches as well as results are available or can
be obtained. We very much hope that this paper incites other researchers to look at
these and related problems of Quantitative Risk Management.

2 Homogeneous portfolios

We consider random variables Xi ∼ Fi, i = 1, . . . ,d and Sd = X1 + · · ·+Xd . For the
purpose of this paper we assume the marginal distribution functions (dfs) Fi to be
known. If Fi = F , i = 1, . . . ,d, we refer to the homogeneous case, otherwise we refer
to the inhomogeneous case. For most of the paper we will concentrate on the ho-
mogeneous case, though for many of the results information on the inhomogeneous
case can be obtained; see Section 3 for a brief discussion. The joint distribution of
(X1, . . . ,Xd) is not specified, and thus the aggregate value-at-risk VaRα(Sd) and ex-
pected shortfall ESα(Sd) are not uniquely determined. In the following we consider
the range of possible values these aggregate risk measures can take, under fixed
marginal distributions, but unspecified joint model. This framework in risk manage-
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ment is referred to as dependence uncertainty; see Embrechts et al. (2015). In this
section we focus on the homogeneous case and assume throughout that the support
of F is bounded below. Define the generalized inverse

F−1(p) = inf{x : F(x)≥ p}, p ∈ (0,1],

and F−1(0) = inf{x : F(x)> 0} (the left endpoint of the support); for properties of
generalized inverses, see Embrechts and Hofert (2013). Since ES and VaR are trans-
lation equivariant, for simplicity also assume F−1(0) = 0 (via translation). To give
the main results in the literature on DU bounds on risk measures in the following
sections, a definition from Wang and Wang (2011) will be useful.

Definition 1 (Wang and Wang (2011)). For d ≥ 1, a distribution function F is
called d-completely mixable (d-CM) if there exist rvs X1, . . . ,Xd ∼ F and a constant
k such that X1 + · · ·+Xd = dk a.s.

Examples of distributions that are completely mixable for d ≥ 2 include uni-
form, Gaussian, Cauchy and other unimodal symmetric continuous distributions;
for higher values of d also distributions with monotone or concave densities on a
bounded support; see Puccetti et al. (2012) for further examples.

Some notation from Bernard et al. (2014a) will also be needed. With respect to
a df G (to be specified), we introduce functions H(c) and D(c), c ∈ [0,1] and a
constant cd :

H(c) = (d−1)G−1((d−1)c/d)+G−1(1− c/d),

D(c) =
1

1− c

∫ 1

c
H(t)dt =

d
1− c

∫ 1−c/d

(d−1)c/d
G−1(t)dt, (1)

cd = inf{c ∈ [0,1] : H(c)≤ D(c)},

where for c = 1 we set D(1) := D(1−) = H(1) = dG−1(1−1/d). Also, introduce
two conditions

(A) H is non-increasing on [0,cd ],
(B) The conditional distribution of G on [(d − 1)cd/d,1− cd/d] is d-completely

mixable.

These conditions will imply validity and sharpness of some of the bounds stated in
the following sections. A special case in which these conditions are satisfied is given
in the following lemma.

Lemma 1 (Bernard et al. (2014a)). If the df G admits a non-increasing density on
its support, then conditions (A) and (B) hold.

Furthermore, Bernard et al. (2014a) motivate numerically that these conditions are
satisfied also in some other cases, using examples with Lognormal and Gamma dfs.
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2.1 Upper bound on VaR

For a random variable X ∼FX representing a loss, VaR at confidence level α ∈ (0,1)
is defined as the α-quantile,

VaRα(X) = F−1
X (α).

In turn, the upper bound on VaRα(Sd) over all joint models is defined as

VaRα(Sd) := sup{VaRα(X1 + · · ·+Xd) : Xi ∼ Fi, i = 1, . . . ,d}.

In the homogeneous case Fi = F , i = 1, . . . ,d, the upper bound VaRα(Sd) can be ob-
tained by solving the integral inequality for cd in (1) with respect to the conditional
distribution in the tail (defined below).

Proposition 1 (Embrechts and Puccetti (2006); Puccetti and Rüschendorf (2013);
Wang et al. (2013)). Define H, D and cd in (1) with respect to Fα , the conditional
distribution of F on [F−1(α),∞). If Fα admits a non-increasing density on its sup-
port, then

VaRα(Sd) = D(cd).

Remark 1. A non-increasing density above the α-quantile is a natural assumption
for high values of α , which holds for essentially all distributions used in practice.
The proof of Proposition 1 uses Lemma 1 to verify conditions (A) and (B), which
are sufficient for the bound in Proposition 1 to be sharp.

Before giving the next proposition, we recall the definition of expected shortfall,

ESα(X) =
1

1−α

∫ 1

α

VaRq(X)dq.

Let VaR+
α (Sd) and ES+

α (Sd) denote VaRα(Sd) and ESα(Sd) respectively, when the
Xi are comonotonic. It is well-known that the comonotonic dependence structure
gives the worst-case expected shortfall; see Dhaene et al. (2002) and p. 251 in Mc-
Neil et al. (2005).

ESα(Sd) := sup{ESα(X1+· · ·+Xd) : Xi∼Fi, i= 1, . . . ,d}=
d

∑
i=1

ESα(Xi)=: ES+
α (Sd).

Moreover, as d increases, VaRα(Sd) is asymptotically equivalent to ES+
α (Sd). A first

result in this direction is:

Proposition 2 (Puccetti and Rüschendorf (2014)). Suppose (Xd)d≥1 is a sequence
of rvs identically distributed as F, where F is integrable and has a decreasing den-
sity on [F−1(α),∞). Then

lim
d→∞

VaRα(X1 + · · ·+Xd)

ES+
α (X1 + · · ·+Xd)

= 1.
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Table 1 Thresholds for the number of margins d for which VaRα (Sd) is within 10% of ES+
α (Sd).

The levels α ∈ {0.95,0.99,0.999} are listed for comparison. The parameter σ for LogN(0,σ2) is
chosen to match the ratio VaRα (X1)/ESα (X1) with that of Pareto(a), i.e. P[X1 > x] = (x+ 1)−a,
x≥ 0.

Pareto(a), a = 10.0 5.0 3.0 2.5 2.0 1.7 1.6 1.5
VaR0.95 3 3 4 4 6 12 17 29

LogN(0,σ2), σ = 0.75 0.90 1.13 1.26 1.49 1.71 1.81 1.94
VaR0.95 3 3 3 4 5 6 7 9

Pareto(a), a = 10.0 5.0 3.0 2.5 2.0 1.7 1.6 1.5
VaR0.99 2 3 3 4 6 11 16 27

LogN(0,σ2), σ = 0.70 0.89 1.20 1.37 1.66 1.95 2.08 2.23
VaR0.99 2 3 3 4 5 6 7 9

Pareto(a), a = 10.0 5.0 3.0 2.5 2.0 1.7 1.6 1.5
VaR0.999 2 3 3 4 6 11 15 27

LogN(0,σ2), σ = 0.67 0.92 1.33 1.56 1.93 2.28 2.44 2.63
VaR0.999 2 2 3 4 5 7 8 11

Remark 2. Proposition 2 holds under much more general conditions, also in the het-
erogeneous case; see Embrechts et al. (2015). Results of this type are relevant for
regulatory practice for both the banking world (the so-called Basel framework) as
well as insurance (Solvency 2); see Embrechts et al. (2015).

In Table 1 the smallest number of margins d is given for which VaRα(Sd) is within
10% of ES+

α (Sd), i.e. after which the asymptotically equivalent sequence gives a
reasonable approximation. Notice that in all but the most heavy-tailed cases, d ≈ 10
was sufficient. Hence, if the number of margins is greater than that, we may use the
easily calculated ES+

α (Sd) as a reasonable estimate of the conservative VaRα(Sd).
The convergence rate in Proposition 2 is also known.

Proposition 3 (Embrechts et al. (2015)). If E[|X1−E[X1]|k] is finite for some k > 1
and ESα(X1)> 0, then, as d→ ∞,

VaRα(Sd)

ES+
α (Sd)

= 1−O(d−1+1/k).

So in particular, if all moments are finite, then the convergence rate is O(d−1), and if
the distribution has a regularly varying tail (see Section 7.3 in McNeil et al. (2005))
with index −ρ , for example X1 ∼ Pareto(ρ), then the convergence is slower, since
k < ρ < ∞. In Figure 1 the differences 1−VaRα(Sd)/ES+

α (Sd) as d increases are
plotted on a logarithmic scale for different Pareto and Lognormal distributions. We
observe that, although initially the rate of convergence is slower, for large d it seems
faster than the theoretical one. Moreover, for small d the rates are not very different
between Pareto and Lognormal. Tail-heaviness is often measured using the notion
of regular variation, and also Proposition 3 determines the convergence rate accord-
ing to the highest existing moment. However, regular variation concerns quantiles
asymptotically approaching 1, and Proposition 3 holds for d tending to infinity. In
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Fig. 1 Relative differences 1−VaRα (Sd)/ES+
α (Sd) for α = 0.99 on the vertical axis versus d on

the horizontal, on a log-log scale. Below the dotted line the relative difference is smaller than 10%.
The left panel contains Pareto(a) distributions, a = 1.5,2,3,5,10 from top down. The bold line
shows the theoretical convergence rate O(d−1/3) for Pareto(1.5) according to Proposition 3. In the
right panel the Lognormal LogN(0,σ2) case is plotted, σ = 2.23,1.66,1.20,0.89,0.70 from top
down, chosen to match the ratio VaRα (X1)/ESα (X1) with that of Pareto. The bold line shows the
theoretical convergence rate O(d−1) for distributions with all moments finite.

order to analyze VaRα(Sd) at a fixed level, say, α = 0.99, and for small d, we need
a measure of tail-heaviness that captures the behavior for moderate α and d. We
refrain from using skewness, kurtosis and higher moments, as they may not exist
for power tails. Instead, we will define a different measure of tail-heaviness in the
following section.

2.1.1 The normalized mean-median ratio

For X ∼ F define the normalized mean-median ratio as

Mα(F) :=
ESα(X)−VaRα(X)

MSα(X)−VaRα(X)
,

where MS is the median shortfall, MS1−p(X) := VaR1−p/2(X); see Kou et al.
(2013). Mα(F) is a measure of tail-heaviness defined for regularly varying, sub-
exponential, as well as exponential tails, and only requires the first moment to exist.
Mα(F) is invariant under scaling and translation, since the risk measures used in
the definition are positively homogeneous and translation equivariant. In Figure 2
Mα is plotted for Gamma, Lognormal and Pareto distributions, as a function of the
shape parameter. For all three families Mα diverges to infinity as the tail becomes
heavier, and converges to a finite value for light tails.

For the Gamma distribution Γ (k,1) the values are computed numerically; to
reach values in the typical range for Lognormal and Pareto, a very small parameter
k is required (e.g. k = 0.0027 for Mα(Γ ) = 3). For k = 1 we recover the exponential
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Fig. 2 M0.99 for Γ (k,1), LogN(0,σ2) and Pareto(a) distribution, depending on the shape param-
eters k,σ ,a, respectively.

distribution E (1), for which

Mα(E ) =
− log(1−α)+1+ log(1−α)

− log((1−α)/2)+ log(1−α)
=

1
log(2)

≈ 1.4427, (2)

independent of α (and scale). And as k→ ∞, Γ (k,1) converges (under scaling and
translation) to the standard Normal distribution Φ , so

lim
k→∞

Mα(Γ (k,1)) =
ϕ(Φ−1(α))/(1−α)−Φ−1(α)

Φ−1(1− (1−α)/2)−Φ−1(α)
(≈ 1.3583 for α = 0.99),

(3)
using the analytic formula for ES of the Normal distribution; see p. 45 in McNeil
et al. (2005).

For the Lognormal distribution LogN(µ,σ2),

Mα(LogN(µ,σ2)) =
eσ2/2(1−Φ(Φ−1(α)−σ))/(1−α)− eσΦ−1(α)

eσΦ−1(1−(1−α)/2)− eσΦ−1(α)
,

independent of the scale eµ . Since for Z∼Φ we have eσZ ∼LogN(0,σ2), as σ→ 0,
using the Taylor series of ex about x = 0 we recover the same limit 1.3583 as in (3).

For the Pareto distribution P(a), a > 1,

Mα(P(a)) =
a

a−1 (1−α)−1/a− (1−α)−1/a

((1−α)/2)−1/a− (1−α)−1/a =
1

(a−1)(2−1/a−1)
,

independent of the level α . As a→ ∞, we obtain 1/ log(2) as the limit, the same
value as in (2). This is due the fact that if X ∼ E (1), then eX/a−1∼P(a), and we
can again use the Taylor series of ex about x = 0.

We shall use Mα as a measure of tail-heaviness in order to compare the tails of
different families of distributions, and from that deduce how close VaRα(Sd) is to
ES+

α (Sd) for small values of d. Notice that Mα(F) exactly determines the worst-
case VaR when d = 2 and the density is decreasing beyond F−1(α) = VaRα(X1).
This is because for d = 2 the worst-case dependence structure for VaRα is counter-
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Fig. 3 δα (Sd) plotted in de-
pendence on d. Pareto(a)
with a = 10,5,3,2,1.5
from top down, with
tail-heaviness Mα =
1.55,1.68,1.92,2.41,3.40, re-
spectively, and LogN(µ,σ2)
with the parameters chosen to
match the Mα , α = 0.99.
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monotonicity above the α-quantile of X1 and X2, viz. X2 = F−1(α +(1−F(X1)))
when F(X1) ≥ α; see Makarov (1982) and Embrechts et al. (2005). Furthermore,
when the density is decreasing, the minimal sum X1 +X2 in the tail is attained when
X1 = X2 = MSα(X1). Hence VaR(S2) = 2MSα(X1). See also (4) and Figure 3 in the
next section.

2.1.2 The normalized VaR bound

Since VaR is a positively homogeneous and translation equivariant risk measure, it
is easy to recalculate VaR under these operations. The upper bound on VaR depends
only on the conditional distribution F on the interval [F−1(α),∞). Moreover, it is
easy to see that

VaRα(Sd) ∈ [VaR+
α (Sd),ES+

α (Sd)].

So, in order to focus on the issue of specifying where in this interval VaRα lies, we
define the normalized VaR bound

δα(Sd) :=
VaRα(Sd)−VaR+

α (Sd)

ES+
α (Sd)−VaR+

α (Sd)
∈ [0,1].

Note that δα(Sd) does not depend on the scale and location of F . In Figure 3 the
values of δα(Sd) are plotted in dependence on d. The parameters for Pareto and
Lognormal distributions are chosen so that the Mα values match, thus, as explained
in the previous section,

δα(S2) =
2MSα(X1)−2VaRα(X1)

2ESα(X1)−2VaRα(X1)
= 1/Mα(F), (4)

and the upper VaR bounds agree for d = 2. For d > 2 the bounds for the matched
Lognormal and Pareto dfs converge at a similar rate, especially for lighter tails,
when convergence to 1 is rather fast. The difference 1− δα seems to decrease as
a power of d, so in Figure 4 we plot this difference versus the dimension d on a
logarithmic scale. We observe that, apart from the “kink” at d = 2, the dependence
is approximately linear on the log-log scale. Based on this numerical evidence, and
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Fig. 4 Left panel: normalized VaR bound δα , α = 0.99, depending on the dimension d. Solid lines
correspond to Pareto(a) distributions with a = 1.5,2,3,5,10 and Mα = 3.40,2.41,1.92,1.68,1.55
from top down. Dashed lines correspond to Lognormal distributions with parameters selected to
match the Mα values. Right panel: the fitted values of λ (Mα ) obtained by linear regression for
different tail-weight levels Mα .

fixing the value at d = 2 according to (4), we consider an approximate model

1−δα ≈ (1−1/Mα)

(
d
2

)λ (Mα )

. (5)

Taking logs from both sides we obtain a linear dependence, and using linear regres-
sion for d ∈ {2 . . .15} we fit the slope parameter λ (the intercept at d = 2 is fixed)
for each considered Mα . The obtained values of λ are plotted on the right panel
of Figure 4. They show that the convergence rate is indeed determined by the tail-
heaviness Mα , and the values of λ (Mα) for the Pareto and Lognormal families are
similar. Note also that e.g. for Pareto(1.5) the convergence rate according to Propo-
sition 3 is O(d−1/3) as d→ ∞, whereas from Figure 4 we read that for small d the
difference 1−δα decreases approximately as d−2/3 for the corresponding Mα = 3.4.
Finally, the fitted curves for δα using λ values from the linear regression are plot-
ted in Figure 5. The close match shows that the model (5) works well for small
dimensions.

2.2 Lower bound on VaR

The lower bound on VaRα(Sd) over all joint models is defined as

VaRα(Sd) := inf{VaRα(X1 + · · ·+Xd) : Xi ∼ Fi, i = 1, . . . ,d}.

Before providing the basic result for the lower bound on VaR in the homogeneous
case, we define the left-tail expected shortfall
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Fig. 5 Normalized VaR bound δα , α = 0.99 (solid lines) compared to the fitted values (dashed)
according to the model (5), depending on the dimension d. Left panel: Pareto(a) distributions with
a = 1.5,2,3,5,10 and Mα = 3.40,2.41,1.92,1.68,1.55 from bottom up. Right panel: Lognormal
distributions with parameters selected to match the Mα values.

LESα(X) =
1
α

∫
α

0
VaRp(X) dp,

and the comonotonic LES+
α (Sd) = ∑

d
i=1 LESα(Xi) = d LESα(X1) (since Xi ∼ F , ∀i).

Proposition 4 (Bernard et al. (2014a)). If the support of F is bounded below, then

VaRα(X1 + · · ·+Xd)≥max{(d−1)F−1(0)+F−1(α) , d LESα(X1)}. (6)

Furthermore, define H and D as in (1) with respect to Fα , the conditional distri-
bution of F on [F−1(0),F−1(α)]. If conditions (A) and (B) with respect to Fα are
satisfied, then (6) holds with equality, i.e.

VaRα(Sd) = max{H(0),D(0)}.

Since we assume that the essential support of F is the positive half-axis, (6) reduces
to VaRα(X1 + · · ·+Xd)≥max{F−1(α),d LESα(X1)}. In contrast to Proposition 1,
in Proposition 4 we include the conditions (A) and (B) explicitly. Recall that pre-
viously these were implied by the non-increasing density assumption. While it is
reasonable to assume this for the upper tail, in the lower tail this assumption holds
for some distributions (e.g. Pareto) but fails for other (e.g. Lognormal). In such
cases, one may resort to testing (A) numerically and testing for complete mixabil-
ity in (B) using the method in Puccetti and Wang (2014). Note, however, that if
F−1(α) > d LESα(X1) then the bound can be sharp also without the d-CM condi-
tion. Typically, however, letting d∗ = F−1(α)/LESα(X1), we may use as a good
approximation

VaRα(Sd)≈ F−1(α) for d < d∗,
VaRα(Sd)≈ d LESα(X1) for d ≥ d∗.

(7)
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Table 2 Thresholds for the number of margins d for which VaRα (Sd)/LES+
α (Sd) has converged

to 1. Parameters for the distributions are chosen to match the ratio d∗ = VaRα (X1)/LESα (X1).

α = 0.99 d∗ 2.36 3.42 5.59 6.55 8.19 11.00 14.91
Pareto(a), a = - - 10 5 3 2 1.5

d - - 6 7 9 11 15
LogN(0,σ2), σ = 0.40 0.59 0.88 0.98 1.13 1.35 1.60

d 3 4 6 7 9 11 15
Gamma(k,1), k = 5.00 2.00 0.77 0.58 0.40 0.25 0.16

d 3 4 6 7 9 11 15

An alternative numerical approach for computing an approximation of the sharp
bounds on VaR under DU is given by the Rearrangement Algorithm (RA); see Em-
brechts et al. (2013) or Puccetti and Rüschendorf (2012, 2013) for earlier formula-
tions.1 In Table 2 the values for Pareto, Lognormal and Gamma distributed variables
are listed for which the ratio VaRα(Sd)/LES+

α (Sd) has reached the limit 1. Due to a
non-increasing density, in the Pareto case (6) is always sharp and the limit is reached
at d = dd∗e. As a side note, for the Pareto(a) distribution at level p = α , as a→ ∞,

d∗ =
(1− p)−1/a−1

(1− (1− p)1−1/a)/((1−1/a)/p)−1
−→ − log(1− p)

1+((1− p)/p) log(1− p)
,

so for p = 0.99 we have d∗ > 4.8298, i.e. no parameter a gives a lower value of
d∗, hence they are not listed in Table 2. For the Lognormal and Gamma dfs, the
values were obtained by the RA, using as discretization parameter N = 105 and
the stopping condition ε = 10−4. In Figure 6 the normalized lower VaR bounds are
plotted. The approximate bounds from (7) are the same for the three families. These
are sharp for the Pareto, but differ from the sharp bounds (here, computed using the
RA) for the Lognormal and Gamma families in the lighter-tailed cases, since the
densities are not decreasing and the conditions in Proposition 4 are not satisfied. In
particular, for small d it is the condition (A) that matters, and is not satisfied e.g. for
the LogN(0,0.592) df with d = 3; see Figure 7. With parameter k ≤ 1, however,
Γ (k,1) has a decreasing density, so by Lemma 1 satisfies the conditions and the
approximate bound (6) is sharp. Overall, (6) gives an easily calculated lower bound
on aggregate VaR, which is close to the sharp bound.

2.3 Lower bound on ES

The lower bound on ESα(Sd) under dependence uncertainty is defined as

1 A website set up by Giovanni Puccetti with the title “The Rearrangement Al-
gorithm project” provides full details and recent developments on the RA; see
https://sites.google.com/site/rearrangementalgorithm/.
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Fig. 6 (VaRα (Sd) − LES+
α (Sd))/(VaR+

α (Sd) − LES+
α (Sd)) plotted in dependence on d for

Pareto(a), LogN(0,σ2) and Γ (k,1) distributions with the parameters chosen to match the d∗ (see
Table 2). For Pareto, the approximate bounds (7) are sharp, whereas for LogN and Gamma there
are small deviations for the lighter-tailed cases in comparison to the sharp bounds given by the RA.
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Fig. 7 Functions H and D with respect to Fα , the conditional distribution of F = LogN(0,0.592)
on [0,F−1(α)], d = 3, α = 0.99. The vertical scale is normalized to show the interval
[LES+

α (Sd),VaR+
α (Sd)] as [0,1]. Left panel: full range c ∈ [0,1]. Right panel: close-up of the range

[0,0.01] shows that the function H is increasing initially. H(0) = 0.058, while the sharp lower
bound (from the RA) is 0.091.

ESα(Sd) := inf{ESα(X1 + · · ·+Xd) : Xi ∼ Fi, i = 1, . . . ,d}.

In the literature, few results on ESα are available. The two main references are
Puccetti (2013) (using the RA) and Bernard et al. (2014a). The latter provides the
following result in the homogeneous case.

Proposition 5 (Bernard et al. (2014a)). Define H, D and cd as in (1) with respect
to F. If condition (A) is satisfied, then

ESα(Sd)≥

{
1

1−α
[E[Sd ]−αD(cd)] if α ≤ 1− cd ,

1
1−α

∫ 1−α

0 H(t)dt if α > 1− cd .
(8)

Furthermore, if condition (B) is satisfied, then (8) holds with equality.
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Fig. 8 (ESα (Sd)−E[Sd ])/(ES+
α (Sd)−E[Sd ]) plotted in dependence on d. Solid lines are the bound

from Proposition 8 (Bernard et al. (2014a)), dashed lines correspond to the RA (Puccetti (2013))
and dotted lines to Proposition 6 (Cheung and Lo (2013)). Left panel: Pareto(a) distributions with
a = 1.5,2,3,5,10 from top down. Right panel: LogN(µ,σ2) distributions with the parameters
chosen to match E[X1] and ESα (X1) with those of Pareto.

Remark 3. Due to Lemma 1, Proposition 5 is most useful in the case of a decreasing
density, e.g. for Pareto or Exponential df. In other cases the conditions (A) and
(B) would need to be verified numerically. Alternatively, one may apply the RA.
The latter, however, uses a discretization of the marginal distributions, which may
underestimate the integral over the infinite tail of the aggregate risk.

A simple lower bound on the aggregate ES can be calculated as follows.

Proposition 6 (Cheung and Lo (2013)). If F−1(0)≥ 0, then

ES1−p(Sd)≥ ES1−p/d(X1). (9)

Furthermore, if F(0)≥ (d−1)/d, then (9) holds with equality.

For this bound to be sharp, a sufficient mass at 0 (at least p(d− 1)/d) is required
for the marginal distributions, in which case Proposition 5 gives the same bound. In
Figure 8 all three bounds are plotted for different Pareto and Lognormal dfs. First,
notice that the convergence to the limit (E[Sd ] in this case) is much slower than for
the VaR bounds. For the Pareto df, bounds from Proposition 5 are sharp, while the
error in the RA bound due to discretization is clearly visible in the heavy-tailed cases
(discretization parameter N = 105 and stopping condition ε = 10−4 were used). The
non-sharp bound from Proposition 6, however, is very close, because the Pareto
distribution has a large mass near 0. For the Lognormal dfs, the density is small
near 0, hence there is a visible approximation error for the lighter tails. The bound
from the RA again underestimates the tail-expectation in the heavy-tailed cases due
to discretization. Overall, Proposition 5 seems to give the best bound (due to infinite
tails, condition (A) is likely to hold).
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3 Inhomogeneous portfolios

In this section suppose Xi ∼ Fi, i = 1, . . . ,d, where the Fi’s are not necessarily the
same, and hence Sd = X1 + · · ·+Xd is the aggregate loss of a possibly inhomoge-
neous portfolio. In order to investigate the key determinants of the DU bounds for
VaR and ES of an inhomogeneous portfolio, we sample at random different families
and parameters for the marginal distributions. In particular, we choose Fi indepen-
dently for i = 1, . . . ,d from each of the following families with probability 1/3:

• Gamma, Γ (k,µ/k) with k ∼ 1+Poisson(1), µ ∼ E (1/5),
• Lognormal, LogN(µ,σ2) with µ ∼N (0.2,0.42), σ ∼ Γ (8,0.1),
• Generalized Pareto, GPD(k,ν ,0) with k ∼ 1/(1.5+E (1/5)), ν ∼ Γ (4,0.3).

For the latter Pareto-type df from Extreme Value Theory, see Embrechts et al.
(1997). In this manner we sample the marginal distributions of 100 portfolios for
each d = 2, . . . ,15; in total 1400 portfolios. Then, using only basic properties of
these randomly selected marginal distributions and their respective risk quantities,
such as VaRα(Xi), MSα(Xi) and ESα(Xi), we will approximate the dependence un-
certainty bounds for the aggregated portfolio risk measures.

3.1 Upper bound on VaR

In this section we focus on approximating the upper bound for VaRα(Sd). As the
two key drivers, similarly to the homogeneous case, we look at the dimension and
the mean-median ratio, properly adapted. Since the marginal distributions can be
different, the scale and shape of each margin affects the aggregate VaR. In Figure 9,
the left panel, we observe that the nominal portfolio dimension d is a poor predictor
of δα(Sd). The reason is that the different scales of the marginals have the numerical
effect of a dimension reduction for the underlying portfolio; for example, if one
marginal has a much larger scale then the others, then the VaR of this marginal
gives a good estimate of the aggregate VaR. In this case the dependence uncertainty
is small and δα is close to 0 (similar to d = 1). If the marginals are of a similar scale,
then the dependence uncertainty is greater (similar to the homogeneous case d) and
δα is closer to 1.

Let VaR+(Sd), MS+(Sd) and ES+(Sd) denote VaR(Sd), MS(Sd) and ES(Sd) re-
spectively, when the Xi are comonotonic. Define the effective dimension as

d̃(Sd) :=
ES+

α (Sd)−VaR+
α (Sd)

maxi=1,...,d{ESα(Xi)−VaRα(Xi)}
.

On the right panel of Figure 9 we observe that the effective dimension d̃ determines
the normalized VaR-bound δα better. In order to take into account also the tail-
heaviness of the marginal distributions, define the average mean-median ratio as
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Fig. 10 The fitted values of λ (M̃α ) obtained by linear regression for different tail-weight levels
M̃α .

M̃α(Sd) :=
ES+

α (Sd)−VaR+
α (Sd)

MS+
α (Sd)−VaR+

α (Sd)
.

We speculate that, similar to the homogeneous case, the rate of convergence depends
on the tail-heaviness M̃α(Sd), and consider an approximate model

δα ≈ 1− d̃ λ (M̃α ).

Rearranging and taking log, we obtain a linear dependence log(1−δα)≈ λ log(d̃)
for which we estimate λ using linear regression. The estimated parameters are plot-
ted in Figure 10. As expected, for light tails the convergence is fast, O(d̃ −3), and
slower for heavy tails. The fitted lines for δα for three levels of the average tail-
weight M̃α , as well as the true VaR bound for portfolios with similar tail-weight,
are plotted in Figure 11. We observe that the two key determinants d̃ and M̃α pro-
vide a reasonable approximation of δα(Sd) and hence of VaRα(Sd). Of course, these
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Fig. 11 Fitted curves δ.99 = 1− d̃ λ for tail-heaviness levels M̃α = 1.4,1.8,2.4, superimposed on
scatterplots of the true δ99 of those sampled portfolios with tail-heaviness within 10% of these
levels.

conclusions are to be understood in the specific context of the example. An out-of-
sample test would be required to determine whether this is a good fit in general.

3.2 Lower bound on VaR

Similar to the homogeneous case (6), an easily calculated but non-sharp bound is

VaRα(Sd)≥max{VaRα(Xi), i = 1, . . . ,d}∨LES+
α (Sd). (10)

In Figure 12 the error of this approximation is shown, relative to the length of the
possible interval VaRα(Sd) ∈ [LES+

α (Sd),VaR+
α (Sd)]. We see that of the 1400 port-

folios, only 4 have a relative error above 5%. The marginal densities for one of
these portfolios is plotted in the right panel of Figure 12. Notice the light left tails
of the Lognormal margins (especially for σ < 0.5); these do not have enough mass
to compensate for the heaviest right tail, and hence the approximate bound (10) is
not sharp. This is in agreement with the results in the homogeneous case; see Fig-
ure 6. Keeping this observation in mind, we can in most cases use (10) as a good
approximation for the most favorable aggregate VaR.

3.3 Lower bound on ES

In the inhomogeneous case a lower bound on the ES is given in Jakobsons et al.
(2015), based on a similar construction to that of (1). In this case, however, due to
the lack of symmetry, one cannot combine the tails of the margins at the same rate; a
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Fig. 12 Left panel: True VaRα (Sd) on the horizontal axis (computed using the RA) versus
the error of the approximate bound (10) on the vertical axis. For each portfolio the values in
[LES+

α (Sd),VaR+
α (Sd)] are normalized to lie within [0,1]. The arrow indicates an example port-

folio, for which the marginal densities are plotted on the Right panel. Notice the light left tail of
LogN(0.4,0.272). Here VaRα (S4) = 7.18, while max{VaRα (Xi), i= 1, . . . ,4}= 6.22. The possible
range is [LES+(S4),VaR+(S4)] = [5.67,16.01], hence the error is 9% of this range.

dynamical weighting needs to be found by solving a system of functional equations.
Also, to check the validity and sharpness of the obtained bounds, conditions similar
to (A) and (B) would need to be verified. Instead, based on the good performance
of the approximate bounds in Section 2.3, we consider the following generalization,
based on Theorem 4.1 in Cheung and Lo (2013).

Theorem 1. Let ζ = min{x : ∑
d
i=1 Fi(x)≥ d− (1−α)}. Then

ESα(Sd)≥
1

1−α

d

∑
i=1

E[XiI{Xi>ζ}]. (11)

Furthermore, if ∑
d
i=1 Fi(0)≥ d−1, then (11) holds with equality.

Proof. Let S′d = ∑
d
i=1 XiI{Xi>ζ}. Clearly Sd ≥ S′d , so by monotonicity of ES,

ESα(Sd)≥ ESα(S′d)≥ ESα(SM
i ) =

1
1−α

d

∑
i=1

E[XiI{Xi>ζ}],

where SM
d = ∑

d
i=1 Yi for Yi

d
= XiI{Xi>ζ} such that Y1, . . . ,Yd are mutually exclusive and

hence SM
d ≤sl S′d (stop-loss order); see Dhaene and Denuit (1999). If ∑

d
i=1 Fi(0) ≥

d−1, then there exist mutually exclusive Xi ∼ Fi, i = 1, . . . ,d and (11) is an equality.
ut

Also in the inhomogeneous case the RA (Puccetti (2013)) can be applied, with the
caveat that the obtained bound may underestimate the expectation in the infinite
tail. We computed both bounds at the level α = 0.99 for the sampled portfolios, the
results are plotted in Figure 13. First, notice that the bound for higher-dimensional
portfolios is closer to E[Sd ]. However, for a fixed d, the RA underestimates the
bound (due to discretization) when ESα(Sd) is closer to ES+

α (Sd), since this is often
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Fig. 13 On the horizontal axis: ESα (Sd) of the sampled portfolios as approximated by the RA
(with discretization parameter N = 105 and stopping condition ε = 10−4). Vertical axis: the dif-
ference between the non-sharp bound (11) and the RA bound. For portfolio labeled P1 the error is
negative, so (11) is away from sharpness, while for P2 the error is positive, so the RA bound un-
derestimates the tail integral. The marginal densities for these portfolios are plotted in Figure 14.
The color corresponds to the dimension from d = 2 (dark) to d = 15 (light). For each portfolio the
values in [E[Sd ],ES+

α (Sd)] are normalized to lie within [0,1].

due to one or more heavy-tailed margins (e.g. the GPD with parameter k > 0.5,
which has infinite variance). On the other hand, the RA gives a sharper bound than
(11) in the presence of marginals with light left tails (e.g. LogN(µ,σ2) with σ <
0.5). Marginal densities for example portfolios in each of these two cases are given
in Figure 14. Out of the 1400 portfolios, in only 7 cases the RA was worse than
(11) by more than 5% points, and in only 6 cases the RA was better by more than
5% points (relative to the possible interval ESα(Sd) ∈ [E[Sd ],ES+

α (Sd)]). Hence,
depending on the portfolio, either of the two bounds may give a value closer to the
sharp lower bound on ES, but in most cases the difference is small (and both of the
bounds are close to sharpness).

4 Conclusions and further research

Model uncertainty in general and dependence uncertainty in particular have taken
center stage of the regulatory discourse of financial and insurance regulation. In the
present paper we have mainly looked at some recent results from the latter, i.e. prop-
erties of extremal regulatory risk measures, where we assume full knowledge of the
marginal risk distributions, but we do not have, or want, to make assumptions on
their interdependence. Whereas numerous analytic results have recently appeared
on this issue, there is an increasing need for a better understanding of the underlying
numerical problems. This paper provides a first (small) step in this direction. Com-
paring simple approximate DU bounds for VaR and ES with more advanced ones,
we observe that the former often give reasonable estimates of the sharp bounds.
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Fig. 14 Top panel: marginal
densities of portfolio P1
from Figure 13. Notice the
light left tails of the Log-
normal margins. RA yields
ESα (S4) ≥ 8.98 while (11)
ESα (S4)≥ 7.73. The possible
range is [E[S4],ES+

α (S4)] =
[5.81,19.20], hence the dif-
ference is −9% of this range.
Bottom panel: marginal den-
sities of portfolio P2. Notice
the heavy right tails of the
GPD margins. RA yields
ESα (S5) ≥ 64.63 while (11)
ESα (S5) ≥ 69.90. The pos-
sible range is [6.73,103.19],
hence the relative difference
is 5%.
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Moreover, we identify the cases when the approximate bounds are far from the
sharp ones. We also note that the convergence rate of VaR as the portfolio dimen-
sion increases is different for small dimensions compared to the theoretical asymp-
totic rate. The above examples should serve as illustrations for the recent analytic
results in the literature, build intuition and motivate further research in the area of
dependence uncertainty.

An important direction of research is investigating what partial information on
the dependence structure helps to obtain narrower bounds, which under complete
dependence uncertainty tend to be very wide. An early approach considers the case
when some multivariate marginals are known, and it is found that it can lead to
strongly improved bounds; see Rüschendorf (1991), Embrechts and Puccetti (2010),
and Embrechts et al. (2013). Another approach is taken in Bernard and Vanduffel
(2014), where the full-dimensional joint density of the assets in portfolio is assumed
to be known, but only on a “trusted region”, which is a subset of the support. They
find that the bounds quickly deteriorate as the trusted region deviates from the entire
support. Bernard et al. (2014b) argue that variance of the sum of marginals (portfo-
lio variance) is often available, and that this dependence information often leads to
substantially narrower VaR bounds. Recently, dynamic factor multivariate GARCH
models have been proposed for forecasting financial time series; see Alessi et al.
(2009) and Santos and Moura (2014). Consequently, a new and relevant approach
would be using factor models in order to reduce the DU to a smaller dimension,
namely, the number of factors. Recall the observations from Section 3, which show
that for small-dimensional portfolios the bounds are closer to the comonotonic case
(narrower). Gordy (2003) even considers the portfolio VaR in a one-factor model,
eliminating DU entirely. Of course, any additional assumptions on the structure
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should be justified, so it is equally important to understand what additional infor-
mation on the dependence is typically available in practice. An illuminating case
study in the applied setting of economic capital computation for a bank is Aas and
Puccetti (2014), where the DU bounds are calculated, compared with the value cor-
responding to a t-copula, and other practical issues discussed.
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Fig. 15 The fitted values of λ (M̃α ), α = 0.99 obtained by regression for different tail-weight levels
M̃α , for three collections of portfolios: either only Gamma, Lognormal, or Generalized Pareto
marginal distributions.

Fig. 16 Fitted curve δα =

1− d̃ λ , α = 0.99 for tail-
heaviness level M̃α = 1.4,
superimposed on scatterplots
of the true δα (Sd) of the
sampled portfolios. Portfolios
with only Gamma marginal
distributions.
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Fig. 17 Fitted curves δα = 1− d̃ λ , α = 0.99 for tail-heaviness levels M̃α = 1.6,2.0,2.2, super-
imposed on scatterplots of the true δα (Sd) of those sampled portfolios with tail-heaviness within
10% of these levels. Portfolios with only Lognormal marginal distributions.

2 4 6
0

0.2

0.4

0.6

0.8

1

2 4 6
0

0.2

0.4

0.6

0.8

1

2 4 6
0

0.2

0.4

0.6

0.8

1

Fig. 18 Fitted curves δα = 1− d̃ λ , α = 0.99 for tail-heaviness levels M̃α = 1.6,2.0,2.6, super-
imposed on scatterplots of the true δα (Sd) of those sampled portfolios with tail-heaviness within
10% of these levels. Portfolios with only Generalized Pareto marginal distributions.
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Fig. 19 On the horizontal axis: ESα (Sd) of the sampled portfolios as approximated by the RA
(with discretization parameter N = 105 and stopping condition ε = 10−4). Vertical axis: the dif-
ference between the non-sharp bound (11) and the RA bound. For each portfolio the values in
[E[Sd ],ES+

α (Sd)] are normalized to lie within [0,1]. The color corresponds to the dimension from
d = 2 (dark) to d = 15 (light). The marginal dfs are sampled from the families given above each
plot. For LogN and Gamma distributions, light lower tails are possible, so (11) is away from sharp-
ness and gives a worse bound than the RA. For Pareto, (11) always gives a better bound due to
heavy upper tails. For LogN and Pareto mixed, either of the two bounds may be sharper.


