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A. The New Accord (Basel II)

A. The New Accord (Basel II)

• 1988: Basel Accord (Basel I): minimal capital requirements

against credit risk, one standardised approach, Cooke ratio

• 1996: Amendment to Basel I: market risk, internal models,

netting...VaR is born

• 1999: First Consultative Paper on the New Accord (Basel II)

• to date: Several Consultative Papers on the

New Basel Capital Accord (www.bis.org/bcbs/)

• 2007+: full implementation of Basel II
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A. The New Accord (Basel II)

Basel II: What is new?

• Rationale for the New Accord: More flexibility and risk

sensitivity

• Structure of the New Accord: Three-pillar framework:

➊ Pillar 1: minimal capital requirements (risk measurement)

➋ Pillar 2: supervisory review of capital adequacy

➌ Pillar 3: public disclosure
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A. The New Accord (Basel II)

• Two options for the measurement of credit risk:

- Standard approach

- Internal rating based approach (IRB)

• Pillar 1 sets out the minimum capital requirements

(Cooke Ratio, McDonough Ratio):

total amount of capital

risk-weighted assets
≥ 8%

• MRC (minimum regulatory capital)
def
=

8% of risk-weighted assets

• Explicit treatment of operational risk
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A. The New Accord (Basel II)

Operational Risk:

The risk of losses resulting from inadequate or failed internal

processes, people and systems, or external events.

Remark: This definition includes legal risk, but excludes strategic

and reputational risk.

Note: Solvency 2
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A. The New Accord (Basel II)

• Notation: COP: capital charge for operational risk

• Target: COP ≈ 12% of minimum risk capital (down from

initial 20%)

• Estimated total losses in the US (2001): $50b

• Not uncommon that COP > CMR

• Some examples

- 1977: Credit Suisse Chiasso-affair

- 1995: Nick Leeson/Barings Bank, £1.3b

- 2001: September 11

- 2001: Enron (largest US bankruptcy so far)

- 2002: Allied Irish, £450m
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B. Risk measurement methods for OP risks

B. Risk measurement methods for OP risks

Pillar 1 regulatory minimal capital requirements for operational

risk:

Three distinct approaches:

➊ Basic Indicator Approach

➋ Standardised Approach

➌ Advanced Measurement Approach (AMA)
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B. Risk measurement methods for OP risks

Basic Indicator Approach (BIA)

• Capital charge:

CBIA
OP = α × GI

• CBIA
OP : capital charge under the Basic Indicator Approach

• GI : average annual gross income over the previous three years

• α = 15% (set by the Committee based on CISs)
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B. Risk measurement methods for OP risks

Standardised Approach (SA)

• Similar to the BIA, but on the level of each business line:

CSA
OP =

8∑

i=1

βi × GIi

βi ∈ [12%, 18%], i = 1, 2, . . . , 8 and 3-year averaging

• 8 business lines:

Corporate finance (18%) Payment & Settlement (18%)

Trading & sales (18%) Agency Services (15%)

Retail banking (12%) Asset management (12%)

Commercial banking(15%) Retail brokerage (12%)
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B. Risk measurement methods for OP risks

Advanced Measurement Approach (AMA)

• Allows banks to use their internally generated risk estimates

• Preconditions: Bank must meet qualitative and quantitative

standards before being allowed to use the AMA

• Risk mitigation via insurance possible (≤ 20% of CSA
OP)

• Incorporation of risk diversification benefits allowed

• “Given the continuing evolution of analytical approaches for

operational risk, the Committee is not specifying the approach

or distributional assumptions used to generate the operational

risk measures for regulatory capital purposes.”

• Example:

Loss distribution approach
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B. Risk measurement methods for OP risks

Internal Measurement Approach

• Capital charge (similar to Basel II model for Credit Risk):

C IMA
OP =

8∑

i=1

7∑

k=1

γik eik (first attempt)

eik : expected loss for business line i , risk type k

γik : scaling factor

• 7 loss types: Internal fraud

External fraud

Employment practices and workplace safety

Clients, products & business practices

Damage to physical assets

Business disruption and system failures

Execution, delivery & process management
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C. Loss Distribution Approach

C. Loss Distribution Approach (LDA)

• For each business line/loss type cell (i , k) one models

LT+1
i ,k : OP risk loss for business line i , loss type k

over the future (one year, say) period [T ,T + 1]

LT+1
i ,k =

NT+1
i,k∑

`=1

X `
i ,k (next period’s loss for cell (i , k))

Note that X `
i ,k is truncated from below
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C. Loss Distribution Approach

Remark:
Look at the structure of the loss random variable LT+1

LT+1 =
8∑

i=1

7∑

k=1

LT+1
i ,k (next period’s total loss)

=

8∑

i=1

7∑

k=1

NT+1
i,k∑

`=1

X `
i ,k
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C. Loss Distribution Approach

A methodological pause I

L =
N∑

k=1

Xk (compound rv)

where (Xk) are the severities and N the frequency

Models for Xk :

• gamma, lognormal, Pareto (≥ 0, skew)

Models for N:

• binomial (individual model)

• Poisson(λ) (limit model)

• negative binomial (randomize λ as a gamma rv)
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C. Loss Distribution Approach

Loss Distribution Approach continued

Choose:

• Period T

• Distribution of LT+1
i ,k for each cell i , k

• Interdependence between cells

• Confidence level α ∈ (0, 1), α ≈ 1

• Risk measure gα

Capital charge for:

• Each cell: C
T+1,OR
i ,k = gα(LT+1

i ,k )

• Total OR loss: CT+1,OR based on C
T+1,OR
i ,k
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C. Loss Distribution Approach

Basel II proposal

• Period: one year

• Distribution: should be based on

- internal data/models

- external data

- expert opinion

• Confidence level: α = 99.9%, for economic capital purposes

even α = 99.95% or α = 99.97%

• Risk measure: VaRα

• Total capital charge:

CT+1,OR =
∑

i ,k

VaRα(LT+1
i ,k )

- possible reduction due to correlation effects
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C. Loss Distribution Approach

Basel II proposal: Some issues

• Very high confidence level:

- lack of data, difficult (if not impossible) in-sample estimation

- high variability/uncertainty

- robustness, scaling

• Distribution of LT+1
i ,k :

- extreme value theory necessarily enters

- credibility theory (combination of internal data, expert opinion

and external data)

- non-stationarity, dependence, inhomogeneity, contamination ...

• Choice of VaR as a risk measure:

- VaR is not subadditive

- other risk measures exist, but require finite mean

• “Correlation effects”:

- dynamic dependence models between loss processes

- multivariate extreme value theory, copulas ...
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C. Loss Distribution Approach

Summary

• Marginal VaR calculations

VaR1
α, . . . ,VaRl

α

• Global VaR estimate

VaR+
α = VaR1

α + · · · + VaRl
α

• Reduction because of “correlation effects”

VaRα < VaR+
α

• Further possibilities: insurance, pooling, ...
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C. Loss Distribution Approach

Subadditivity

A risk measure gα is called subadditive if

gα(X + Y ) ≤ gα(X ) + gα(Y )

VaRα is in general not subadditive:

• skewness

• special dependence

• very heavy-tailed losses

VaRα is subadditive for:

• elliptical distributions
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C. Loss Distribution Approach

Skewness

• 100 iid loans: 2%-coupon, 100 face value, 1% default

probability (period: 1 year):

Xi =





−2 with probability 99%

100 with probability 1% (loss)

• Two portfolios L1 =
100∑
i=1

Xi , L2 = 100X1

• VaR95%(L1)︸ ︷︷ ︸
VaR95%

„

100
P

i=1
Xi

«

> VaR95%(100X1)︸ ︷︷ ︸
100
P

i=1
VaR95%(Xi )

(!)
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C. Loss Distribution Approach

Special dependence

• Given rvs X1, . . . ,Xn with marginal dfs F1, . . . ,Fn, then one

can always find a copula C so that for the joint model

F (x1, . . . , xn) = C (F1(x1), . . . ,Fn(xn))

VaRα is superadditive:

VaRα

(
n∑

k=1

Xk

)

>

n∑

k=1

VaRα(Xk)

• In particular, take the “nice” case

F1 = · · · = Fn = N(0, 1)
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C. Loss Distribution Approach
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C. Loss Distribution Approach

Very heavy-tailedness

• Take X1, X2 independent with P(Xi > x) = x−1/2, x ≥ 1
then for x > 2

P(X1 + X2 > x) =
2
√

x − 1

x
> P(2X > x)

so that

VaRα(X1 + X2) > VaRα(2X1) = VaRα(X1) + VaRα(X2)

• Similar result holds for

P(Xi > x) = x−1/ξL(x),

with ξ > 1, L slowly varying
• For ξ < 1, we obtain subadditivity!

WHY?
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C. Loss Distribution Approach

Several reasons:

• (Marcinkiewicz-Zygmund) Strong Law of Large Numbers

• Argument based on stable distributions

• Main reason however comes from functional analysis

In the spaces Lp, 0 < p < 1, there exist no convex

open sets other than the empty set and Lp itself.

Hence as a consequence 0 is the only continuous linear

functional on Lp; this is in violent contrast to Lp, p ≥ 1

• Discussion:

- no reasonable risk measures exist

- diversification goes the wrong way
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C. Loss Distribution Approach

Definition

An R
d -valued random vector X is said to be regularly varying if

there exists a sequence (an), 0 < an ↑ ∞, µ 6= 0 Radon measure

on B
(

R
d\{0}

)
with µ(R

d\R) = 0, so that for n → ∞,

nP(a−1
n X ∈ ·) → µ(·) on B

(
R

d\{0}
)

.

Note that:

• (an) ∈ RV ξ for some ξ > 0

• µ(uB) = u−1/ξµ(B) for B ∈ B
(

R
d\{0}

)

Theorem (several versions – Samorodnitsky)

If (X1,X2)
′ ∈ RV−1/ξ, ξ < 1, then for α sufficiently close to 1,

VaRα is subadditive.
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D. Operational Risk data

Is this relevant for Operational Risk?

Some data
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D. Operational Risk data

• P(L > x) ∼ x−1/ξL(x)
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D. Operational Risk data

• Stylized facts about OP risk losses:

- Loss amounts show extremes

- Loss occurence times are irregularly spaced in time

(reporting bias, economic cycles, regulation, management

interactions, structural changes, . . . )

- Non-stationarity (frequency(!), severity(?))

• Large losses are of main concern

• Repetitive versus non-repetitive losses

• However: severity is of key importance
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D. Operational Risk data

A methodological pause II

• severity models need to go beyond the classical models

(binomial, homogeneous Poisson, negative binomial: →
stochastic processes)

• as stochastic processes:

- Poisson(λt), λ > 0 deterministic (1)

- Poisson(λ(t)), λ(t) deterministic

non-homogeneous Poisson, via time change → (1)

- Poisson(Λ(t)), Λ(t) stochastic process

• double stochastic (or Cox-) process

• basic model for credit risk

• industry example: (NB,LN)

• desert island model: (Poisson, Pareto)
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D. Operational Risk data

Analysis of the Basel II data

• P(Li > x) = x−1/ξi Li(x)

Business line ξ̂i

Corporate finance 1.19 (*)
Trading & sales 1.17
Retail banking 1.01

Commercial banking 1.39 (*)
Payment & settlement 1.23

Agency services 1.22 (*)
Asset management 0.85

Retail brokerage 0.98
* means significant at 95% level

ξ̂i > 1: infinite mean

• Remark: different picture at level of individual banks
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D. Operational Risk data

Some issues regarding infinite mean models

• Reason for ξ > 1?

• Potentially:

- wrong analysis

- EVT conditions not fulfilled

- contamination, mixtures

• We concentrate on the latter:

Two examples:

- Contamination above a high threshold

- Mixture models

• Main aim: show through examples how certain

data-structures can lead to infinite mean models
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D. Operational Risk data

Contamination above a high threshold

Example (1)

Consider the model

FX (x) =






1 −
(
1 + ξ1x

β1

)
−1/ξ1

if x ≤ v ,

1 −
(
1 + ξ2(x−v∗)

β2

)
−1/ξ2

if x > v ,

where 0 < ξ1 < ξ2 and β1, β2 > 0.

• v∗ is a constant depending on the model parameters in a way
that FX is continuous

• VaR can be calculated explicitly:

VaRα(X ) =

{
1
ξ1

β1

(
(1 − α)−ξ1 − 1

)
if α ≤ FX (v),

v∗ + 1
ξ2

β2

(
(1 − α)−ξ2 − 1

)
if α > FX (v).
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D. Operational Risk data

Shape plots

Easy case: v low Hard case: v high
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D. Operational Risk data

Shape plots

Careful: similar picture for v high and ξ1 � ξ2 < 1
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D. Operational Risk data

Contamination above a high threshold continued

• Easy case: v low

- Change of behavior typically visible on the mean excess plot

• Hard case: v high

- Typically only few observations above v

- Mean excess plot may not reveal anything

- Classical POT analysis easily yields incorrect resuls

- Vast overestimation of VaR possible

c© Embrechts & Nešlehová (ETH Zurich) Quantitative Models for Operational Risk 36 / 45



D. Operational Risk data

Mixture models

Example (2)

Consider

FX = (1 − p)F1 + pF2,

with Fi exact Pareto, i.e. Fi(x) = 1 − x−1/ξi for x ≥ 1 and

0 < ξ1 < ξ2.

• Asymptotically, the tail index of FX is ξ2

• VaRα can be obtained numerically and furthermore

- does not correspond to VaRα of a Pareto distribution with

tail-index ξ∗

- equals VaRα
∗ corresponding to F2 at a level α∗ lower than α
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D. Operational Risk data

• Classical POT analysis can be very misleading:
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D. Operational Risk data

Mixture models continued

α VaRα(FX ) VaRα(Pareto(ξ2)) ξ∗

0.9 6.39 46.42 0.8

0.95 12.06 147.36 0.83

0.99 71.48 2154.43 0.93

0.999 2222.77 105 1.12

0.9999 105 4.64 · 106 1.27

0.99999 4.64 · 106 2.15 · 108 1.33

Value-at-Risk for mixture models with p = 0.1, ξ1 = 0.7 and
ξ2 = 1.6.
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D. Operational Risk data

Back to the Basel II data:
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D. Operational Risk data
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E. One loss causes ruin problem

E. One loss causes ruin problem

• based on Lorenz curve in economics

- 20 – 80 rule for 1/ξ = 1.4

- 0.1 – 95 rule for 1/ξ = 1.01

• for L = L1 + · · · + Ld , Lk ’s iid and subexponential we have

that

P(L > x) ∼ P(max(L1, . . . ,Ld ) > x)

P(L > x) ∼ dP(L1 > x)

• if Lk =
∑Nk

i=1 Xi(k) and some extra conditions we have that

for heavy tailed loss distributions (Pareto, subexponential)

P(L > x) ∼ cP(X (1) > x)

“The one-cell-dominates-all rule”
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E. One loss causes ruin problem

The one-cell-dominates-all rule
The basic result: Embrechts, Goldie and Veraverbeke, ZfW, 1979

• Suppose F is a df on [0,∞) which is infinitely divisible with
Lévy measure ν, i.e.

f (s) =

∫
∞

0
e−sxdF (x) = exp

{
−as −

∫
∞

0
(1 − e−sx)ν(dx)

}

a ≥ 0, ν Borel measure on (0,∞),
∫ 1
0 xν(dx) < ∞ and

µ = ν(1,∞) < ∞
• Then equivalent are:

(i) F ∈ S
(ii) µ−1ν(1, x ] ∈ S
(iii) 1 − F (x) ∼ ν(x ,∞) as x → ∞

• Link to compound Poisson dfs F = F1 ∗ F2 where F1 is
CP(ν), F 2(x) = o(e−εx ), ε > 0, x → ∞.
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E. One loss causes ruin problem
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