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1 Introduction

In recent years, the problem of obtaining bounds for the distribution of a function of n
dependent risks has received considerable attention. One of the main reasons for this
is the New Basel Capital Accord (Basel II), under the terms of which international active
banks are required to set aside capital to offset various types of risks. In fact, the new
regulatory capital charges are based on Value-at-Risk (VaR), i.e. a quantile of the distri-
bution function of the potential loss exposure of positions held by a bank. Since the ag-
gregate exposure is typically described by a function ψ(X ) of a portfolio X = (X1, . . . , Xn)
of n dependent loss random variables, the search for bounds on the distribution function
of ψ(X ) becomes crucial, especially in the case ψ = +, the sum operator. So far, in the
literature, this problem has been studied under the so-called non-overlapping marginals
setup, i.e. only the marginal distributions F1, . . . ,Fn of the risks held are known or mod-
elled. Of course, the exact calculation of VaR(ψ(X )), say, needs a joint model for X ; un-
fortunately, in applications of Quantitative Risk Management (QRM), such information
is often not available. A two-stage fitting procedure is then called for, typically leading
to bounds on VaR(ψ(X )). Mikosch (2006) gives a critical assessment of this approach,
whereas Embrechts (2008) puts the criticisms in a proper QRM perspective.

In some cases, it may be that further dependence information is available. This calls
for a theory which interpolates between marginal knowledge (F1, . . . ,Fn) and full joint dis-
tribution function (df) knowledge of the vector X . Examples where such intermediate
dependence information may be available is to be found in the modelling of Operational
Risk; see McNeil et al. (2005) for an introduction and Embrechts and Puccetti (2006a) for
a more detailed modelling. Such intermediate cases we refer to as an overlapping frame-
work.

To our knowledge, the only paper which deals with distributional bounds in a over-
lapping marginals setup is Rüschendorf (1991a), in which several theoretical results are
obtained. In our paper, we describe the computational procedures which are necessary
to produce numerical bounds from the results by Rüschendorf (1991a). Moreover, we ap-
ply some techniques from mass transportation theory to study some particular cases not
covered in the above reference.

This paper is a further development in the analysis of distributional bounds which,
within a non-overlapping marginals context, we started in Embrechts and Puccetti (2006b)
(univariate homogeneous marginals), and continued in Embrechts and Puccetti (2006a)
(univariate non-homogeneous marginals) and Embrechts and Puccetti (2006c) (multi-
variate marginals). In this paper we cover all overlapping systems of marginals which are
called regular or decomposable. Future research concerning also so-called indecompos-
able systems will thus complete the panorama of risk aggregation with fixed marginals.
The main motivation for writing these papers is the emergence of QRM within banking
and insurance. The subprime crisis, as for instance summarized in Crouhy et al. (2008),
highlights the need for a better understanding of risk estimation (both numerical as well
as statistical) under incomplete model information. The resulting model uncertainty will
no doubt become one of the major issues going forward. Whereas we use the language
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of banking and insurance regulation in our examples, no doubt the results obtained are
more widely applicable.

A brief summary of the paper follows. In Section 2 we introduce the mathematical
model used throughout the paper. In Section 3 we apply the results contained in Rüschen-
dorf (1991a) to a three dimensional portfolio under the so-called star-like system of
marginals. An extension of this methodology to an arbitrary number of risks is given in
Section 4. In Section 5 we study the kissing system of marginals using a duality theorem
from mass transportation theory. Finally, in Section 6 we briefly comment on how to anal-
yse all decomposable systems of marginals and how to produce improved distributional
bounds when the above mentioned ones are not sharp. Several concrete examples are
presented throughout.

2 The mathematical framework

We follow the mathematical setup described in Rüschendorf (1991a). Let B = Πn
i=1Bi be

the product of n Borel spaces with σ-algebra B =⊗n
i=1 Bi , Bi being the Borel σ-algebra

on Bi . Define I := {1, . . . ,n} and let ξ ⊂ 2I , the power set of I , with ∪J∈ξ J = I . For J ∈ ξ,
let F J ∈ F(B J ) be a consistent system of probability measures on B J = πJ (B) = Π j∈J B j , πJ

being the natural projection from B to B J and F(B J ) denoting the set of all probability
measures on B J . Consistency of F J , J ∈ ξ means that J1, J2 ∈ ξ, J1 ∩ J2 6= ; implies that

πJ1∩J2 F J1 =πJ1∩J2 F J2 .

Finally, we denote by
Fξ =F(F J , J ∈ ξ)

the Fréchet class of all probability measures on B having marginals F J , J ∈ ξ. Some partic-
ular choices of ξ will be relevant in what follows:

• ξn = {{1}, . . . , {n}}, also called the simple system of marginals, which defines the Fréchet
class F(F1, . . . ,Fn),

• ξ?n = {{1, j }, j = 2, . . . ,n}, the star-like system of marginals, which defines the Fréchet
class F(F12,F13, . . . ,F1n),

• ξ♥n = {{ j , j + 1}, j = 1, . . . ,n − 1}, the kissing system of marginals, which defines the
Fréchet class F(F12,F23, . . . ,Fn−1n).

Note that consistency of F J , J ∈ ξ is a necessary condition to guarantee that Fξ is non-
empty. When ξ is regular, see Vorob’ev (1962) and Section 6 below, then consistency is also
sufficient. The three systems of marginals listed above are examples of regular systems.
When the system ξ is non-regular, the Fréchet class Fξ may happen to be empty even with
consistent marginals; see Rüschendorf (1991a). When ξ is a partition of I , i.e. when all sets
J ∈ ξ are also pairwise disjoint, we speak about a non-overlapping system of marginals,
overlapping otherwise.
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In the following, we will consider the case Bi = R, B = Rn . For the sake of notational
simplicity, we identify probability measures on these spaces with the corresponding dis-
tribution functions.

Consider now n R-valued random variables X1, . . . , Xn defined on some probability
space (Ω,A,P). For fixed ξ ⊂ 2I , our aim is to calculate bounds on the df FS of the sum
S = X1+·· ·+Xn , when the distribution F of the vector X = (X1, . . . , Xn) belongs to Fξ. With
the notation introduced above, and for a fixed real threshold s, we look for

mξ(s) = inf

{∫
1{x1+···+xn<s}dF (x1, . . . , xn),F ∈Fξ

}
, (2.1a)

Mξ(s) = sup

{∫
1{x1+···+xn≤s}dF (x1, . . . , xn),F ∈Fξ

}
. (2.1b)

Note that the indicator functions in (2.1a) and (2.1b) are defined differently in or-
der to guarantee the inf and the sup are attained. With respect to the random variables
X1, . . . , Xn , problems (2.1) translate into the bounds

mξ(s) ≤P[X1 +·· ·+Xn ≤ s] ≤ Mξ(s). (2.2)

Problems of this type arise especially in insurance or finance when one has to cal-
culate bounds for the distribution of the aggregate position S deriving from a portfolio
X = (X1, . . . , Xn) of n random losses. In such contexts, the marginal information F1, . . . ,Fn

about the individual risks may be available, while it is difficult to capture statistically the
n-variate structure of dependence of the vector X . However, it is often the case that partial
information about dependence in some subgroups J of marginals exists. This framework
fits for example the case of a portfolio of operational risks as described for instance in Em-
brechts and Puccetti (2006a).

The risk measure most often used in finance/insurance to evaluate the risk of a loss
portfolio X is Value-at-Risk (VaR) at some probability level α ∈ (0,1), which is simply the
α-quantile F−1

S (α) of the distribution of S. Since banks are obliged to calculate a VaR-
based capital charge to offset S, equations (2.1) become useful since they provide, by (nu-
merical) inversion, bounds on VaR, i.e.

M−1
ξ (α) ≤ VaRα(S) := F−1

S (α) ≤ m−1
ξ (α). (2.3)

Having mainly financial/actuarial applications in mind, in the following we will com-
pute the bounds (2.3) on VaR, instead of the equivalent bounds (2.2) on probabilities. For
an extensive treatment of Fréchet problems in insurance and finance, we refer the reader
to Section 6.2 in McNeil et al. (2005). Finally note that ξ = {I } defines a trivial system in
which FI has only one element and therefore mξ = Mξ.

3 Bounds for the case n = 3

When n = 2, ξ can always be considered to be trivial (ξ = {{1,2}}) or to be simple (ξ =
{{1}, {2}}) . In this latter case, solutions to problems (2.1) have been given in Rüschendorf
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(1982); see also Embrechts and Puccetti (2006b) for further details. We hence start our
analysis with the case n = 3 and the system ξ?3 = {{1,2}, {1,3}}, which is equivalent to the
system ξ♥3 up to a relabeling of the marginals.

Proposition 7 in Rüschendorf (1991a) states that bounds on FS for the system ξ?3 can
be obtained by integrating the corresponding bounds for the Fréchet class F(F2|x1 ,F3|x1 ),
defined by the two univariate marginals obtained by conditioning F12 and F13 on the value
x1 of the common marginal F1. The calculation of bounds in an overlapping system is
thus reduced to the calculation of bounds in a non-overlapping system. We reformulate
the above cited proposition within our specific framework.

Theorem 3.1 (Rüschendorf (1991a)). Define F2|x1 as the conditional distribution of F12

given that X1 takes the value x1. Analogously for F3|x1 . We then have that

mξ?3
(s) =

∫
m23|x1 (s −x1) dF1(x1), (3.1a)

Mξ?3
(s) =

∫
M23|x1 (s −x1) dF1(x1), (3.1b)

where

m23|x1 (s −x1) = inf

{∫
1{x2+x3<s−x1}dF (x2, x3),F ∈F(F2|x1 ,F3|x1 )

}
,

M23|x1 (s −x1) = sup

{∫
1{x2+x3≤s−x1}dF (x2, x3),F ∈F(F2|x1 ,F3|x1 )

}
.

Theorem (3.1) is very useful, since m23|x1 (s − x1) and M23|x1 (s − x1) are known; see for
example Proposition 1 in Rüschendorf (1982):

m23|x1 (s −x1) = sup
x∈R

{F−
2|x1

(x)+F3|x1 (s −x1 −x)−1}, (3.2a)

M23|x1 (s −x1) = inf
x∈R

{F−
2|x1

(x)+F3|x1 (s −x1 −x)}, (3.2b)

where F−
2|x1

(x) denotes the left-hand limit of F2|x1 in x.
From a theoretical viewpoint, equations (3.1) and(3.2) are the solution to problems (2.1)

for the system ξ?3 . Computationally, things are different because the pointwise calculation
of m23|x1 (s−x1) and M23|x1 (s−x1) in (3.2) may be very complicated depending on the con-
ditional distributions F2|x1 and F3|x1 . Embrechts and Puccetti (2006a), Section 3.1, show
that under certain conditions, the computational complexity reduces considerably. This
is in particular so if F ′

2|x1
and F ′

3|x1
are monotone in the tail. A further issue is that we want

to compute m23|x1 (s − x1) and M23|x1 (s − x1) also when (s − x1) approaches zero, say. As
a consequence, monotonicity of the densities of the conditional distributions should be
required on the entire domains, and this last requirement is seldomly fulfilled. However,
we can adapt the technique used in the above cited paper to obtain at least bounds on
mξ?3

and Mξ?3
.

In order to illustrate our approach, we take the case in which the marginals are homo-
geneous, F12 = F13, nonnegative, F12(0,0) = 0, with F2|x1 = F3|x1 = Gx1 , for all x1 ≥ 0. We
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also assume that Gx1 is continuous with density G ′
x1

. Under the above assumed hypothe-
ses, we can write (3.2) as

m23|x1 (s −x1) = sup
0≤x≤s−x1

{Gx1 (x)+Gx1 (s −x1 −x)−1}, (3.3a)

M23|x1 (s −x1) = inf
0≤x≤s−x1

{Gx1 (x)+Gx1 (s −x1 −x)}. (3.3b)

Instead of solving (3.3) numerically, we calculate the corresponding objective func-
tions at some points being candidates to be optimizers. In (3.3a) we choose x = 0 (or
x = s−x1) as a point at the boundary of the domain and x = (s−x1)/2 as a zero-derivative
point. In (3.3b) we choose the same candidates, the objective function being (up to a
constant) the same. Formally, we calculate the bounds m̂23|x1 and M̂23|x1 defined as:

m23|x1 (s −x1) ≥ m̂23|x1 (s −x1) = max{2Gx1 ((s −x1)/2)−1,Gx1 (s −x1)−1,0}, (3.4a)

M23|x1 (s −x1) ≤ M̂23|x1 (s −x1) = min{2Gx1 ((s −x1)/2),Gx1 (s −x1),1}. (3.4b)

We also define m̂ξ?3
(s) and M̂ξ?3

(s) as the corresponding bounds obtained by substitut-

ing m̂23|x1 (s − x1) and M̂23|x1 (s − x1) in (3.1). It is easy to verify that, for every threshold s,
we have

m̂ξ?3
(s) ≤ mξ?3

(s) and Mξ?3
(s) ≤ M̂ξ?3

(s). (3.5)

Consequently, the range [m̂ξ?3
(s), M̂ξ?3

(s)] contains the solution to (3.1), i.e.

m̂ξ?3
(s) ≤P[X1 +X2 +X3 ≤ s] ≤ M̂ξ?3

(s), (3.6)

for all (X1, X2, X3) ∈F(F12,F13), or equivalently

M̂−1
ξ?3

(α) ≤ F−1
S (α) ≤ m̂−1

ξ?3
(α). (3.7)

If G ′
x1

is decreasing on its entire domain, and this for all x1 ≥ 0, we deduce from Em-
brechts and Puccetti (2006a) that the equations (3.5) hold with equality and hence the
bounds (3.6) and (3.7) are sharp. We will remark in the following examples when this case
occurs.

As an application relevant for insurance and finance, we choose each random variable
Xi to be of Pareto type with tail parameter θ > 0, i.e.

Fi (x) =P[Xi ≤ x] = 1− (1+x)−θ, x ≥ 0, i = 1, . . .n. (3.8)

In order to generate the bivariate distributions F12 and F23 from these Pareto marginals we
use the concept of copula; this is not necessary but analytically as well as computationally
convenient. A copula C is a bivariate distribution on [0,1]2 with uniform marginals. Given
a copula C and two univariate marginals F1,F2, one can always define a distribution F12

on R2 having these marginals by

F12(x1, x2) =C (F1(x1),F2(x2)), x1, x2 ∈R. (3.9)
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Sklar’s theorem (see for instance Nelsen (2006)) states conversely that we can always find
a copula C coupling the marginals of a fixed joint distribution F12 trough the above ex-
pression (3.9). Any copula C satisfies the Fréchet bounds, i.e. for all u1,u2 ∈ [0,1]:

max{u1 +u2 −1,0} ≤C (u1,u2) ≤ min{u1,u2}.

In the following, we denote the upper Fréchet bound by M(u1,u2). M is the so-called
comonotonic copula which describes perfect positive dependence between two coupled
marginals; see Dhaene et al. (2002) for a detailed discussion of the concept of comono-
tonicity. The lower Fréchet bound W (u1,u2) is called the countermonotonic copula and
describes perfect negative dependence between F1 and F2. Another fundamental copula
is the product copula Π(u1,u2) = u1u2, which represents independence between the cou-
pled marginals. For any additional details on the concept of copula and its applications,
we refer the reader to Nelsen (2006) and Chapter 5 in McNeil et al. (2005).

In the following, the bivariate distributions F12 = F13 (by way of example) will be gen-
erated by coupling two Pareto marginals via two different families of copulas:

(i) The (bivariate) Pareto copula with parameter γ> 0,

C Pa
γ (u, v) = ((1−u)−1/γ+ (1− v)−1/γ−1)−γ+u + v −1,

as defined in Hutchinson and Lai (1990). The survival copula of C Pa
γ is the function

Ĉ Pa
γ (u, v) = u + v +−1+C Pa

γ (1−u,1− v) = (u−1/γ+ v−1/γ−1)−γ,

which is known in the literature to be of Clayton type. See Section 2.6 and Exam-
ple 2.14 in Nelsen (2006) for the definition of survival copula and for further details
on the parameterization used here. Under the Pareto copula, the joint distribution
function F12 is given by

F12(x1, x2) = 1+ ((1+x1)θ/γ+ (1+x2)θ/γ−1)−γ− (1+x1)−θ− (1+x2)−θ. (3.10)

The Pareto copula has a density everywhere cPa
γ (u, v) = ∂2

∂u∂v C Pa
γ (u, v) and interpo-

lates between comonotonicity (C Pa
0 = M) and independence (C Pa+∞ =Π). Elementary

calculations give for the conditional distribution:

Gx1 (x) = F2|x1 (x) =
∫ x

0
cPa
γ (F1(x1),F2(x2))F ′

2(x2)d x2

= 1− (1+x1)θ(1/γ+1)
(
(1+x)(θ/γ) + (1+x1)(θ/γ) −1

)−γ−1
. (3.11)

(ii) The Frank copula with parameter δ ∈R\ {0},

C F
δ (u, v) =−1

δ
ln

(
1+ (e−δu −1)(e−δv −1)

e−δ−1

)
.
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The Frank family is continuous with density cF
δ

(u, v) and comprehensive, i.e. in-
cludes W (when δ→−∞), Π (δ→ 0) and M (δ→+∞). Under the Frank copula, the
joint distribution function F12 is given by

F12(x1, x2) =−1

δ
ln

(
1+ (e−δ(1−(1+x1)−θ) −1)(e−δ(1−(1+x2)−θ) −1)

e−δ−1

)
. (3.12)

Straightforward calculations yield:

Gx1 (x) = eδ(1+x1)−θ (eδ−1)

eδ(1+x1)−θ −eδ

×
[(

1+eδ((1+x1)−θ+(1+x)−θ−1) −eδ(1+x)−θ −eδ(1+x1)−θ
)−1 −

(
1−eδ

)−1
]

.

The motivation for choosing these copula families is mainly pedagogical in order to ob-
tain different conditional distributions F2|x1 and F3|x1 which can be written in closed form.
In this latter case, a numerical computation of (3.2) is possible using the techniques de-
scribed in Embrechts and Puccetti (2006a), but it may be cumbersome to compute nu-
merically the two integrals in (3.1) if m23|x1 and M23|x1 are not expressed in closed analytic
form.

In Figure 1, we provide the bounds m̂−1
ξ?3

(α) and M̂−1
ξ?3

(α) on the VaR for the sum of three

Pareto-distributed risks under the bivariate Pareto (left) and Frank (right) dependence
scenarios introduced above. In these pictures, the Pareto tail parameter is set to θ = 2 (fi-
nite marginal mean, infinite marginal variance), while the probability level at which the
quantile range is computed isα= 0.90. Both plots show how the bounds on Value-at-Risk
vary over the parameter log(γ) (respectively δ) chosen for the bivariate Pareto (respec-
tively Frank) dependence.

There are several interesting points to remark about these plots. First of all, note that
the bounds obtained under the Pareto family of copulas are sharp, since, in this latter case,
the conditional distribution Gx1 has a monotone density on its entire domain and then
the conditions specified in Remark 3.2 in Embrechts and Puccetti (2006a) apply. When
γ tends to 0, the bivariate Pareto copula C Pa

γ tends to the comonotonic copula M , and
the distribution F12 = F13 hence goes to M(F1,F2). It is elementary to show that the class
F(M(F1,F2), M(F1,F3)) has only one element, which is the 3-variate comonotonic distri-
bution M(F1,F2,F3), defined by the 3-dimensional copula M(u, v, z) = min{u, v, z}. As a
consequence, the range for VaR reduces to a single value, i.e.

M̂−1
ξ?3

(α) = m̂−1
ξ?3

(α) = VaR+.

In general, VaR+ is simply the sum of marginal VaRs, i.e. VaR+ = F−1
1 (α)+F−1

2 (α)+F−1
3 (α);

see Proposition 6.15 in McNeil et al. (2005).
An analogous behavior characterizes the Frank dependence when δ goes to +∞ (the

VaR range again reduces to VaR+). Moreover, since the Frank family is comprehensive, a
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Figure 1: Bounds m̂−1
ξ?3

(0.90) and M̂−1
ξ?3

(0.90) on the Value-at-Risk for the sum of three

Pareto(2)-distributed risks coupled by a bivariate Pareto (left) and Frank (right) copula.
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Figure 2: The same as Figure 1 for three Pareto(0.9) distributed risks.

similar case occurs when δ goes to −∞, indeed F(W (F1,F2),W (F1,F3)) is a singleton. We
call the corresponding limit VaR−. Note that in this latter case, the subvectors (X1, X2) and
(X2, X3) are countermonotonic, while the subvector (X1, X3) is comonotonic. It is well
known that a 3-dimensional countermonotonic distribution does not exist; see Nelsen
(2006, p.47). In both plots, the ranges for VaR under independence are highlighted. Note
that independence may not be the most dangerous (=highest upper bound) case. More-
over, for Frank dependencies, Var+ > VaR− holds.

In Figure 2 we provide the same bounds as in Figure 1, except for the fact that the
Pareto tail parameter is set to θ = 0.9. This makes a big difference since, with such a
choice, the marginals Fi enter the infinite-mean world, where many pitfalls regarding
risk aggregation have been established; see Nešlehová et al. (2006) and Ibragimov and
Walden (2008). For instance, with θ = 1 and under the Frank copula model we get that
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VaR− > VaR+.
Finally note that in the plots displayed in Figures 1 and 2, the total y-axis range corre-

sponds to the bounds for Value-at-Risk within the same portfolios of risks, but when the
marginal system chosen is the simple ξ3 = {{1}, {2}, {3}}. The fact that the overlapping VaR
range is always narrower than the total range on the y-axis follows from the fact that

F(F12,F23) ⊂F(F1,F2,F3),

i.e. the Fréchet class of risks gets smaller when switching from a non-overlapping to an
overlapping system of marginals.

4 Bounds for the case n > 3, star-like system of marginals

The techniques described in Section 3 can be easily extended to consider the star-like
system of marginals ξ?n for an arbitrary number n of marginals. Again, the calculation
of bounds in the case of ξ?n is reduced to the calculation of bounds in a non-overlapping
system. The following theorem is essentially Proposition 8 in Rüschendorf (1991a).

Theorem 4.1 (Rüschendorf (1991a)). Define Fi |x1 as the distribution of Xi |X1 = x1, and
this for all i = 2, . . . ,n. Then we have that

mξ?n
(s) =

∫
m2,...,n|x1 (s −x1) dF1(x1), (4.1a)

Mξ?n
(s) =

∫
M2,...,n|x1 (s −x1) dF1(x1), (4.1b)

where

m2,...,n|x1 (s −x1) = inf

{∫
1{

∑n
i=2 xi<s−x1}dF (x2, . . . xn),F ∈F(F2|x1 , . . . ,Fn|x1 )

}
, (4.2a)

M2,...,n|x1 (s −x1) = sup

{∫
1{

∑n
i=2 xi≤s−x1}dF (x2, . . . xn),F ∈F(F2|x1 , . . . ,Fn|x1 )

}
. (4.2b)

The main difference between the case n = 3 (Theorem 3.1) and the case n > 3 (Theo-
rem 4.1) is that the solutions to problems (4.2) are not known in the literature. Therefore,
bounds on the latter are necessary, not only from a computational, but also from a theo-
retical point of view.

Under the simplifying assumptions and notation of Section 3, the bounds (3.3) can be
extended to an arbitrary number n of random variables; see for example equations (12)
and (13) in Denuit et al. (1999). We can then write that

m2,...,n|x1 (s −x1) ≥ sup
x2,...,xn−1∈[0,s]

{
Gx1 (x2)+·· ·+Gx1 (xn−1)+Gx1

(
s −

n−1∑
i=1

xi

)
−n +2

}
,

(4.3a)

M2,...,n|x1 (s −x1) ≤ inf
x2,...,xn−1∈[0,s]

{
Gx1 (x2)+·· ·+Gx1 (xn−1)+Gx1

(
s −

n−1∑
i=1

xi

)}
, (4.3b)
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Figure 3: Bounds m̂−1
ξ?4

(0.90) and M̂−1
ξ?4

(0.90) on the Value-at-Risk for the sum of four

Pareto(2)-(left) and Pareto(0.9)-(right) distributed risks coupled by a bivariate Frank cop-
ula.

Analogously to the case n = 3, we define the bounds m̂2,...,n|x1 and M̂2,...,n|x1 as

m2,...,n|x1 (s −x1) ≥ m̂2,...,n|x1 (s −x1) = max
{

(n −1)Gx1

( s −x1

n −1

)
−n +2,Gx1 (s −x1)−n +2,0

}
,

(4.4a)

M2,...,n|x1 (s −x1) ≤ M̂2,...,n|x1 (s −x1) = min
{

(n −1)Gx1

( s −x1

n −1

)
,Gx1 (s −x1),1

}
. (4.4b)

Defining m̂ξ?n
(s) and M̂ξ?n

(s) as the corresponding bounds obtained by substituting (4.4)
in (4.1), it is easy to verify that, for all thresholds s, we have

m̂ξ?n
(s) ≤P[X1 +·· ·+Xn ≤ s] ≤ M̂ξ?n

(s),

for all F ∈F(F12, . . . ,F1n), or equivalently

M̂−1
ξ?n

(α) ≤ F−1
S (α) ≤ m̂−1

ξ?n
(α).

As an application, we consider for the F1i ’s the same set of bivariate marginals de-
fined in Section 3. In Figure 3, we provide bounds on the VaR for the sum of n = 4 Pareto-
distributed risks under the bivariate Frank dependence scenario and the tail parameter of
the Pareto df set to θ = 2 (left) and θ = 0.9 (right). The quantile level is α= 0.90. Both plots
show how the bounds on Value-at-Risk vary as a function of the Frank parameter δ. Apart
from sharpness of the bounds, which does not hold in these cases, similar comments as
made for Figure 2 apply. Finally note that the computational time needed for the calcu-
lation of the bounds (4.4) does not change considerably with n. As noted in Section 3,
matters may change considerably if the portfolio X is assumed to be non homogeneous.

10



5 Bounds for the case n > 3, kissing system of marginals

Rüschendorf (1991a) also suggests a method to calculate (2.1) in the case of a kissing
system of marginals ξ♥n when n > 3. Unfortunately, as the author of the latter paper re-
marks, this method is hardly tractable for computational purposes. We therefore suggest
a different technique to compute bounds for (2.1), which is based on a dual representa-
tion of these problems, which has been given in (3) and (4) in Rüschendorf (1991a); see
also Rüschendorf (1991b) and Rachev and Rüschendorf (1998) for further details. Denote
by BM (R2) the class of bounded and measurable functions f :R2 →R. We have that

mξ♥n
(s) = inf

{∫
1{

∑n
i=1 xi<s}dF (x1, . . . , xn),F ∈F(F12,F23, . . . ,Fn−1 n)

}
= 1− inf

{n−1∑
i=1

∫
fi i+1(xi , xi+1)dFi i+1(xi , xi+1), fi i+1 ∈BM (R2) s.t. (5.1a)

n−1∑
i=1

fi i+1(xi , xi+1) ≥ 1{
∑n

i=1 xi≥s}, x1, . . . , xn ∈R
}

,

Mξ♥n
(s) = sup

{∫
1{

∑n
i=1 xi≤s}dF (x1, . . . , xn),F ∈F(F12,F23, . . . ,Fn−1 n)

}
= inf

{n−1∑
i=1

∫
fi i+1(xi , xi+1)dFi i+1(xi , xi+1), fi i+1 ∈BM (R2) s.t. (5.1b)

n−1∑
i=1

fi i+1(xi , xi+1) ≥ 1{
∑n

i=1 xi≤s}, x1, . . . , xn ∈R
}

.

An exact solution of the dual problems (5.1) seems to be well out of reach when n > 3.
In order to obtain bounds on mξ♥n

and, respectively Mξ♥n
, it is however sufficient to find

a feasible choice of the functions fi i+1 in (5.1a), respectively (5.1b). This method has
already been used in Embrechts and Puccetti (2006a,b,c) and produces excellent bounds
for the sum of risks for non-overlapping systems of marginals.

Theorem 5.1. Let (X1, . . . , Xn) be a random vector with distribution F ∈F(F12,F23, . . .Fn−1 n).
Then we have that

mξ♥n
(s) ≥ 1− inf

u1,...,un−2∈R

{
P

[
X1 + X2

2
≥ u1

]
+

n−2∑
i=2

P

[
Xi +Xi+1

2
≥ ui

]
+P

[
Xn−1

2
+Xn ≥

(
s −

n−2∑
i=1

ui

)]}
, (5.2a)

Mξ♥n
(s) ≤ inf

u1,...,un−2∈R

{
P

[
X1 + X2

2
≤ u1

]
+

n−2∑
i=2

P

[
Xi +Xi+1

2
≤ ui

]
+P

[
Xn−1

2
+Xn ≤

(
s −

n−2∑
i=1

ui

)]}
.

(5.2b)
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Proof. Choose real numbers u1, . . . ,un−1 ∈R such that
∑n−1

i=1 ui = s. Then define the func-

tions f̂i i+1 :R→R as
f̂12(x1, x2) = 1{x1+x2/2≥u1},

f̂i i+1(xi , xi+1) = 1{(xi+xi+1)/2≥ui }, i = 2, . . . ,n −2,

f̂n−1 n(xn−1, xn) = 1{xn−1/2+xn≥un−1},

We now prove that ( f̂12, . . . , f̂n−1 n) is a feasible choice in (5.1a). Since the fi i+1’s are non-
negative, it is sufficient to prove that

∑n
i=1 xi ≥ s implies

∑n−1
i=1 fi i+1(xi , xi+1) ≥ 1. Suppose

that
∑n−1

i=1 fi i+1(xi , xi+1) < 1. By definition of the fi i+1’s, this can only happen if fi i+1 = 0
for all i = 1, . . . ,n −1, i.e. x1 + x2/2 < u1,(xi + xi+1)/2 < ui , i = 2, . . . ,n −2 and xn−1/2+ xn <
un−1. Summing up all the latter inequalities we obtain that

∑n−1
i=1 xi < ∑n−1

i=1 ui = s. The
theorem follows by checking that

n−1∑
i=1

∫
fi i+1(xi , xi+1)dFi i+1 =

P

[
X1 + X2

2
≥ u1

]
+

n−2∑
i=2

P

[
Xi +Xi+1

2
≥ ui

]
+P

[
Xn−1

2
+Xn ≥ un−1

]
, (5.3)

and substituting un−1 = s −∑n−2
i=1 xi . The proof for Mξ♥n

is analogous.

According to Theorem 5.1, any choice of the values u1, . . .un−2 in (5.2a) ((5.2b)) pro-
duces a lower (upper) bound on mξ♥n

(s) (Mξ♥n
(s)). At this point, we remark that also the

bounds (3.3) and (4.3), used in Sections 3 and 4, can be produced by a choice of admissible
functions in the corresponding dual representation under a simple marginal system. In
order to choose the ui ’s in (5.2), we assume that the bivariate marginals are homogeneous,
Fi i+1 = F12, i = 2, . . . ,n −1 with a parametric form as described by (3.10) or (3.12). While
Theorem 5.1 holds for general marginals, some simplifying assumptions are needed to
avoid computational difficulties. Define the functions w, z :R→ [0,1] as

w(u) :=P
[

X1 + X2

2
≤ u

]
, z(u) :=P

[
X1 +X2

2
≤ u

]
,

where (X1, X2) has distribution F12. From (5.2) we can then define the bounds

m̂ξ♥n
(s) = max

{
sup

u1,...,un−2≥0

{
w(u1)+

n−2∑
i=2

z(ui )+w

(
s −

n−2∑
i=1

ui

)
−n +2

}
,0

}
, (5.4a)

M̂ξ♥n
(s) = min

{
inf

u1,...,un−2≥0

{
w(u1)+

n−2∑
i=2

z(ui )+w

(
s −

n−2∑
i=1

ui

)}
,1

}
. (5.4b)

The functions m̂ξ♥n
and M̂ξ♥n

represent bounds on (5.1) in the sense that, for all thresh-
old s, we have

m̂ξ♥n
(s) ≤P[X1 +·· ·+Xn < s] ≤ M̂ξ♥n

(s)
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for all (X1, . . . , Xn) ∈F(F12,F23, . . . ,Fn−1 n), or equivalently

M̂−1
ξ♥n

(α) ≤ F−1
S (α) ≤ m̂−1

ξ♥n
(α).

Again, a good choice of the ui ’s can be based on the search for local optimizers of (5.4).
A set of ui ’s at which the partial derivatives of the objective functions in (5.4) are zero is
given by the following set of equations:

w ′
(

s−(n−3)u2
2

)
= z ′(u2),

u2 = ·· · = un−1,

u1 = s−(n−3)u2
2 .

(5.5)

The first equation has to be solved numerically. Under the model (3.10) for the bivariate
distribution F12, it reads as:

∫ s−(n−3)u2
2

0
G ′

x1
(s − (n −3)u2 −2x1)F ′

1(x1)d x1 =
∫ 2u2

0
G ′

x1
(2u2 −x1)F ′

1(x1)d x1, (5.6)

where G ′
x1

and, respectively, F ′
1 are the densities of the conditional distribution defined

in (3.11) and, respectively, of the Pareto distribution in (3.8). Together with the solution
of (5.5), we look for boundary solutions ui = 0, i ∈G for all possible choice of G ∈ 2{1,...,n−2}.
For instance, by setting u1, . . . ,un−2 = 0, we find the bound max{w(s)−n+2,0}. By cancel-
ing a different set of ui ’s instead, one has to solve a system of equations analogous to (5.5)
but with the remaining ui ’s as variables. Finally, one chooses the set of u′

i s giving the
larger bound in (5.4a) and the smaller bound in (5.4b), and this for each value of s. Note
that the n-dimensional problems (5.1) are reduced to finding the root of a single equation,
a task which is manageable by standard mathematical software. This also means that go-
ing to larger dimensions does not increase computational complexity, provided that the
portfolio X under study is homogeneous.

In Figure 4 we provide the bounds m̂−1
ξ♥5

and M̂−1
ξ♥5

on the VaR for the sum of five risks

under the bivariate Pareto dependence scenario with dependence parameter γ = 1 and
marginal tail parameter θ = 2 (left) and θ = 0.9 (right). Both plots show how the bounds on
F−1

S (α) vary over the quantile levelα. The value VaR+(α), obtained under comonotonicity
of the five risks, is also displayed.

Figure 4 displays bounds on VaR for a fixed value of γ since, contrary to the equivalent
bounds on VaR for the star-like marginal systems studied above, these bounds are much
less sensitive to a change in the dependence parameterγ. This is a consequence of the fact
that it is not possible to condition on a single marginal as done for the star-like marginal
system in Sections 3 and 4. Moreover, the bounds (5.2) do not contain as a particular
case the comonotonic case arising for example from the choice of γ=∞. One can obtain
this case for the kissing system of marginals only by taking piecewise linear functions
as admissible choices in the dual formulations (5.1). At this point heavy computational
issues arise; see Section 6 below.
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Figure 4: Bounds m̂−1
ξ♥5

and M̂−1
ξ♥5

on the Value-at-Risk for the sum of five Pareto(2)-(left) and

Pareto(0.9)-(right) distributed risks coupled by a bivariate Pareto copula with dependence
parameter γ= 1.

6 Dual bounds and final comments

The bounds on mξ♥n
and Mξ♥n

stated in Theorem 5.1 have been produced by choosing a
particular set of admissible indicator functions in the corresponding dual formulation of
the problems, as stated in (5.1). As we have already remarked, these bounds are not sharp
but can be improved if one chooses a more sophisticated set of admissible functions. This
technique has been used for instance in Embrechts and Puccetti (2006b) in the definition
of so-called dual bounds. Though it is theoretically possible to give dual bounds also in
the context of overlapping marginals, this technique is here very difficult to apply because
of heavy computational issues. Moreover, when dealing with multivariate marginals, the
dual function has to be tailored to the specific marginals chosen (see Embrechts and Puc-
cetti (2006c)) and often produces only a poor improvement of the bounds.

The importance given in this paper to the three systems of marginals introduced in
Section 2 is justified by the fact that every regular system of marginals can be reduced
to the study of these ones. Regularity is a consequence of the absence of cycles, e.g. the
system ξ = {{1,2}, {2,3}, {3,1}} is non-regular. The procedure to reduce a regular system
to a sequence of simple, star-like and kissing systems of marginals is described in the
proof of Theorem 4 in Rüschendorf (1991a). It would be much more effective to produce
a bound using the dual representation given in (5.1) with specific indicator functions as
dual admissible functions. For instance, for the system ξ̂= {345,234,267,12,18} one could
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choose the admissible functions

f̂345(x3, x4, x5) = 1{x3/2+x4/2+x5≥u1},

f̂234(x2, x3, x4) = 1{x2/3+x3/2+x4/2≥u2},

f̂267(x2, x6, x7) = 1{x2/3+x6+x7≥u3},

f̂12(x1, x2) = 1{x1/2+x2/3≥u4},

f̂18(x1, x8) = 1{x1/2+x8≥u5},

with
∑5

i=1 ui = s, in order to obtain the bound

mξ̂(s) ≥ 1− inf
u1,...,u4∈R

{
P

[
X3 +X4

2
+X5 ≥ u1

]
+P

[
X2

3
+ X3 +X4

2
≥ u2

]
+P

[
X2

3
+X6 +X7 ≥ u3

]
+P

[
X1

2
+ X2

3
≥ u4

]
+P

[
X1

2
+X8 ≥ s −

4∑
i=1

ui

]}
.

We remark again that all the theorems stated in this paper can be analogously stated
choosing arbitrary nonnegative marginal distributions. The computational complexity
for obtaining the corresponding bounds in general depends upon the number of non-
identical marginals. In order to find a good choice of the ui ’s in these non-homogeneous
cases, a multivariate local search algorithm can be useful; see Section 4.4 in Embrechts
and Puccetti (2006a) and references therein.
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